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Article 

Reflection of Light as a Mechanical Phenomenon 
Applied to the Michelson Interferometer with Light 
from the Sun 

Filip Dambi Filipescu *  

Independent Researcher, Surprise AZ, USA 
Correspondence: filipdambi1@gmail.com 

Abstract: The Sun is a frame at relative rest where its light travels at the emitted speed 𝑐𝑐. Earth travels at the 
revolving speed 𝑣𝑣 in this frame. The reflection of light as a mechanical phenomenon applies to the modified 
Michelson interferometer employed by Miller in his experiments with light from the Sun. Unlike the 
Tomaschek experiments, which use light from stars that may travel in the Universe at velocities different from 
that of the Sun, the fringe shifts in the Miller experiments are predictable. Based on Michelson's derivation, 
Miller expected in his experiments at Mount Wilson a 1.12 fringe shift and observed a fringe shift of 0.08 in 
1921 and 0.088 in 1925. The reflection of light as a mechanical phenomenon predicts zero fringe shift for 
Miller's experiment agreeing only with his observations at the Cleveland laboratory in 1824. 

Keywords: geometrical optics; speed of light; reflection of light; elastic collision ball-wall; modified Michelson 
interferometer 
 

1. Introduction 

The reflection of light as a mechanical phenomenon [1–3] considers the speed of light 
independent from its moving source and its reflection similar to a ball by a mirror in motion. This 
study continues with emission, propagation, and reflection of light as mechanical phenomena in 
inertial frames [4], observation of a star’s orbit [5], a general consideration of light reflection [6,7], and 
here with the reflection of light applied to the Miller experiment [8,9]. 

The emission, propagation, and reflection of light in inertial frames [4] conclude that physics 
phenomena in an inertial frame can be studied in any other inertial frame considered at relative rest. 
Here, the Sun’s frame at relative rest replaces the absolute frame for physics studies in Earth’s inertial 
frame. Thus, the Sun is a fixed light source for Earth, and Earth may be considered an inertial frame 
in the Sun’s frame at relative rest at the time of an experiment. The light from the Sun travels at the 
constant speed 𝑐𝑐 in any direction in the Sun’s frame at relative rest. 

The reflection of light as a mechanical phenomenon applied to Michelson’s interferometer with 
a particular geometry [1,2] predicts zero fringe shift, and to a geometry [3] close to that presented in 
the Michelson-Morley experiment [10] offers 0.40 × 10−4  fringe shift and greater for other 
geometries. Michelson’s derivation predicts a 0.40 fringe shift. 

This paper applies the theoretical derivation [1,2] and numerical calculation [3] to Miller’s 
experiments. Unlike the Tomaschek experiments [11], the fringe shifts in Miller’s experiments are 
predictable. 

The reflection of light as a mechanical phenomenon [1,2,5] based on the elastic collision of balls 
with a wall in motion at the limit when the mass of balls converges to zero offers the equation 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + 𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑟𝑟 . (1) 

In Eq. (1), 𝑐𝑐𝑟𝑟𝑟𝑟 is the speed of a reflected wavefront of a ray of light by a mirror in motion, 𝑐𝑐𝑠𝑠 is the 
wavefront speed from the source or a mirror as a source, 𝑣𝑣𝑖𝑖  is the mirror speed in the opposite 
direction of the incident wavefront from the source, and 𝑣𝑣𝑟𝑟  is the mirror speed in the direction of 
the reflected wavefront. Here, these speeds are in the Sun’s frame at relative rest. The mirror moves 
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in one unique observable direction with speed 𝑣𝑣. However, regarding the light wavefront, as far as 
the collision effect is concerned, it has multiple directions of 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑟𝑟  at the moment of collision 
according to the mirror inclinations. Speeds 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑟𝑟  are projections of 𝑣𝑣 in their corresponding 
directions. 

Another form of Eq. (1) is 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + 𝑣𝑣 cos𝑎𝑎 + 𝑣𝑣 cos𝑏𝑏 (2) 

In Eq. (2), the speeds 𝑣𝑣 cos𝑎𝑎  and 𝑣𝑣 cos 𝑏𝑏  replace 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑟𝑟  in Eq. (1), respectively. Angle 𝑎𝑎 
corresponds to the opposite direction of the incident wavefront, and angle 𝑏𝑏 to the direction of the 
reflected wavefront. These angles are measured from the direction of velocity vector 𝑣𝑣, originating 
at the point of collision. The directions of 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑟𝑟  are outward from the point of collision. 

In the Sun’s frame at relative rest, the velocity of mirrors attached to the Michelson 
interferometer is affected by Earth’s revolving velocity 𝑣𝑣 around the Sun and Earth’s spin velocities 𝑢𝑢. Therefore, Eq. (1) becomes the equation 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣𝑖𝑖 + 𝑢𝑢𝑖𝑖) + (𝑣𝑣𝑟𝑟 + 𝑢𝑢𝑟𝑟) (3) 

and Eq. (2) the equation 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos𝑏𝑏𝑢𝑢), (4) 

where  𝑎𝑎𝑣𝑣, 𝑎𝑎𝑢𝑢, 𝑏𝑏𝑣𝑣, and 𝑏𝑏𝑢𝑢 are the corresponding angle for the incident and reflected wavefront of 
light for velocity 𝑣𝑣 and 𝑢𝑢. 

Michelson [10] derives the fringe shift in the space filled with ether. Consequently, the speed of 
light from a source before and after reflection is the constant 𝑐𝑐. The study of light reflection as a 
mechanical phenomenon [1,2,5] occurs in a vacuum. Like a ball in an elastic collision with a wall, the 
wavefront speed changes after reflection by a moving mirror.  Therefore, the difference between 
these two approaches is the reflection of light by a moving mirror. 

2. Interferometer on the Earth’s Equator 

2.1. General considerations 

The following drawings illustrate a way to bring the light from the Sun to a modified Michelson 
interferometer. For simplicity, Earth’s axis has no tilt. 

Figure 1(a) illustrates Earth's equatorial circle, Earth's revolving orbit around the Sun, and the 
center of the Sun and Earth in the same plane. The North Pole is outward, and the South Pole is 
inward, perpendicular to the paper plane. 

An observer in the Sun’s frame at relative rest also perceives the physics phenomena as a local 
observer in Earth’s inertial frame. The observer’s location is on the North side of the Equator. 

Figure 1(b) illustrates the Michelson interferometer at 6 am, as seen from the top side of Figure 
1(a). Mirrors M1, M2, M3, and beam splitter M belong to the instrument. Mirror M3 replaces the 
instrument’s source of light. 

The cartesian frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, fixed to the instrument, originates at point 𝑂𝑂 of M3. Axis 𝑂𝑂𝑂𝑂 is on 
the horizontal line, and axis 𝑂𝑂𝑂𝑂 is perpendicular to Earth’s local surface. Plane 𝑂𝑂𝑂𝑂𝑂𝑂 is parallel to 
Earth’s local surface and perpendicular to the local Earth’s radius. At 6 am, the revolving velocity 𝑣𝑣 
of Earth coincides with 𝑂𝑂𝑂𝑂. 

The interferometer is in plane 𝑂𝑂𝑂𝑂𝑂𝑂. It rotates counterclockwise around 𝑂𝑂𝑂𝑂 with an angle 𝑓𝑓 
measured from 𝑂𝑂𝑂𝑂. The initial position of the instrument is when direction 𝑂𝑂𝑀𝑀1 coincides with 𝑂𝑂𝑂𝑂 
for 𝑓𝑓 = 0°, as shown in Figure 1(b). 

In the Sun’s frame at relative rest, a vector velocity 𝑣𝑣 in the direction 𝑂𝑂𝑂𝑂′ of the cartesian frame 𝑂𝑂𝑂𝑂′𝑂𝑂′𝑂𝑂′ is attached permanently to the origin 𝑂𝑂 of 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. Earth’s spin changes the origin position 𝑂𝑂 
of 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′𝑂𝑂′𝑂𝑂′; different from 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑂𝑂𝑂𝑂′𝑂𝑂′𝑂𝑂′ keeps its axes’ directions fixed in the Sun’s frame 
at relative rest. 
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The instrument on the Equator belongs to a local Meridian. The Equator's start position can be 
defined when: the local Meridian of the instrument is at 6 am, frames 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′𝑂𝑂′𝑂𝑂′ coincide, 
and the device is at the initial position, as illustrated in Figure 1(b). 

 

Figure 1. (a) Interferometer on Earth's Equator at 6 am, noon, 6 pm, and between 6 am and 6 pm. (b) 
Interferometer details. 

In the Sun’s frame at relative rest, the center of the Sun, Earth’s orbit, and the Equator’s circle 
are always in the same plane. Planes 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′𝑂𝑂′ belong to Equator’s plane. Plane 𝑂𝑂𝑂𝑂𝑂𝑂 is parallel 
to Earth’s local surface and perpendicular to Equator’s plane. Axes 𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′ are overlapping 
from 6 am to 6 pm. 

Earth’s spin changes the position of 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. At the same time, in plane 𝑂𝑂𝑂𝑂𝑂𝑂, axis 𝑂𝑂𝑂𝑂′ rotates 
clockwise around 𝑂𝑂𝑂𝑂′, keeping the directions of 𝑂𝑂𝑂𝑂′𝑂𝑂′𝑂𝑂′ unchanged. 𝑂𝑂𝑂𝑂′ with the vector velocity 𝑣𝑣 
at 𝑂𝑂 makes the angle 𝑔𝑔 measured from 𝑂𝑂𝑂𝑂. 

Figure 1(a) indicates the position of the interferometer at 6 am, which is the Equator's start 
position, corresponding to 𝑔𝑔 = 0°. Earth’s spin brings the interferometer to an angle 𝑔𝑔 between 6 
am and 6 pm, to 𝑔𝑔 = 90° at noon, and 𝑔𝑔 = 180° at 6 pm. 

2.2. Interferometer on the Equator at 6 am, noon, and 6 pm 

Figure 2(a) depicts the Equator’s start position at 6 am for 𝑔𝑔 = 0° . Earth’s spin brings the 
interferometer at noon, as illustrated in Figure 2(b) for 𝑔𝑔 = 90°, at 6 pm, as presented in Figure 2(c) 
for 𝑔𝑔 = 180°, and in general, at a time between 6 am and 6 pm, as shown in Figure 3(a) for an angle 𝑔𝑔. 

Point 𝐴𝐴 belongs to mirror M4 and to axis 𝑂𝑂𝑂𝑂. Mirror M4, axis 𝑂𝑂𝑂𝑂, mirror M3, and interferometer 
form a solid structure. Mirror M4 rotates at the Equator around an axis through point 𝐴𝐴 
perpendicular to 𝑂𝑂𝑂𝑂𝑂𝑂. At the North Pole around axis 𝑂𝑂𝑂𝑂. And between the Equator and the North 
Pole around both. M4 stays fixed while the interferometer rotates 360° around axis 𝑂𝑂𝑂𝑂. 

Considering that the Sun emits parallel rays of light in the direction from the Sun’s center toward 
Earth’s center, only these rays are reflected by M4 in the opposite direction to 𝑂𝑂𝑂𝑂 toward M3. The 
incident rays from the Sun are perpendicular to 𝑣𝑣 at any location on Earth. 
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Figure 2. Interferometer on the Equator: (a) at 6 am, (b) at noon, and (c) at 6 pm. 

 

Figure 3. (a) Interferometer at an angle 𝑔𝑔. (b) Three-dimensional detail of mechanical velocities at 
point 𝑂𝑂. (c) Interferometer at an angle 𝑓𝑓 from 𝑂𝑂𝑂𝑂 illustrated in plane 𝑂𝑂𝑂𝑂𝑂𝑂. 

The vector sum of velocity 𝑣𝑣 and 𝑢𝑢 offers the moving velocity of the device in the Sun’s frame 
at relative rest. The instrument has a longitudinal velocity given by velocities 𝑣𝑣  and 𝑢𝑢  and a 
transversal velocity only given by velocity 𝑣𝑣 at any Earth’s location. 

In Figure 2(a), point 𝐴𝐴 of M4 reflects the ray of light toward 𝑂𝑂 with the speed 𝑐𝑐𝑟𝑟𝑟𝑟 given by Eq. 
(4), 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos𝑏𝑏𝑢𝑢) = 𝑐𝑐 + (𝑣𝑣 cos 90° + 𝑢𝑢 cos 0°) +

( 𝑣𝑣 cos 180° + 𝑢𝑢 cos 90°) = 𝑐𝑐 + 𝑢𝑢 − 𝑣𝑣. 
The ray reflected at 𝑂𝑂  along 𝑂𝑂𝑂𝑂  and 𝑂𝑂𝑀𝑀1  for 𝑓𝑓 = 0° has the speed 𝑐𝑐𝑓𝑓=0° = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 +𝑢𝑢 cos𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) . With 𝑐𝑐𝑠𝑠 = 𝑐𝑐𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑓𝑓=0° = (𝑐𝑐 + 𝑢𝑢 − 𝑣𝑣) + (𝑣𝑣 cos 0° + 𝑢𝑢 cos 90°) +

( 𝑣𝑣 cos 90° + 𝑢𝑢 cos 180°) = 𝑐𝑐. 
The projection of 𝑣𝑣  on 𝑂𝑂𝑂𝑂  is 𝑣𝑣𝑧𝑧 = 𝑣𝑣 . The rays reflected by M3 drift transversal opposite to 

velocity 𝑣𝑣𝑧𝑧. 
In Figure 2(b), the light from the Sun travels perpendicular to 𝑂𝑂𝑂𝑂; therefore, no need for mirror 

M4. At this position, M4 rotates 180° around 𝑂𝑂𝑂𝑂 to continue reflecting rays for 90° < 𝑔𝑔 ≤ 180°. 
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The ray reflected at 𝑂𝑂  along 𝑂𝑂𝑂𝑂  and 𝑂𝑂𝑀𝑀1  for 𝑓𝑓 = 0° has, according to Eq. (4),  the speed 𝑐𝑐𝑓𝑓=0° = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos𝑏𝑏𝑢𝑢) = 𝑐𝑐 + (𝑣𝑣 cos 90° + 𝑢𝑢 cos 90°) + ( 𝑣𝑣 cos 0° +𝑢𝑢 cos 180°) = 𝑐𝑐 + 𝑣𝑣 − 𝑢𝑢. 
The projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂 is zero. Thus, there is no transversal drift on rays reflected at M3. 
Figure 2(c) shows the device at 6 pm. Point 𝐴𝐴 of M4 reflects the ray of light toward 𝑂𝑂 with the 

speed 𝑐𝑐𝑟𝑟𝑟𝑟  given by Eq. (4), 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = 𝑐𝑐 + (𝑣𝑣 cos 90° +𝑢𝑢 cos 180°) + ( 𝑣𝑣 cos 0° + 𝑢𝑢 cos 90°) = 𝑐𝑐 − 𝑢𝑢 + 𝑣𝑣. 
The ray reflected at 𝑂𝑂  along 𝑂𝑂𝑂𝑂  and 𝑂𝑂𝑀𝑀1  for 𝑓𝑓 = 0° has the speed 𝑐𝑐𝑓𝑓=0° = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 +𝑢𝑢 cos𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = 𝑐𝑐𝑟𝑟𝑟𝑟 + (𝑣𝑣 cos 180° + 𝑢𝑢 cos 90°) + (𝑣𝑣 cos 90° + 𝑢𝑢 cos 180°) = (𝑐𝑐 − 𝑢𝑢 +𝑣𝑣) − 𝑣𝑣 − 𝑢𝑢 = 𝑐𝑐 − 2𝑢𝑢. 
The projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂 is 𝑣𝑣𝑧𝑧 = −𝑣𝑣. The rays reflected by M3 drift transversal opposite to 

velocity 𝑣𝑣𝑧𝑧. 

2.3. Interferometer on the Equator at an angle g 

Figure 3(a) presents the instrument between 6 am and 6 pm when 𝑂𝑂𝑂𝑂′  makes an angle 𝑔𝑔 
measured from 𝑂𝑂𝑂𝑂. To reflect the rays in the direction 𝐴𝐴𝑂𝑂, M4 rotates around the axis through point 𝐴𝐴 and perpendicular to 𝑂𝑂𝑂𝑂𝑂𝑂. Angle 𝑔𝑔 has an opposite direction to Earth’s spin. 

From 6 am to 6 pm for 0° ≤ 𝑔𝑔 ≤ 180°, projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂 is the transversal speed of the 
instrument in the Sun’s frame at relative rest 𝑣𝑣𝑧𝑧 = 𝑣𝑣 cos𝑔𝑔. (5) 

Projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂, 𝑣𝑣𝑥𝑥 = 𝑣𝑣 cos(90° − 𝑔𝑔), offers the equation 𝑣𝑣𝑥𝑥 = 𝑣𝑣 sin𝑔𝑔. (6) 

In Figure 3(b), the vector sum of velocities 𝑣𝑣 and 𝑢𝑢, shown in the plane 𝑂𝑂𝑂𝑂𝑂𝑂, is the moving 
velocity 𝑣𝑣𝑖𝑖 of the device in the Sun’s frame at relative rest. 𝐶𝐶𝐶𝐶 and 𝐵𝐵𝐵𝐵 are equal to 𝑢𝑢 for any angle 𝑔𝑔 . The projection of 𝑣𝑣  and 𝑣𝑣𝑖𝑖  are 𝑣𝑣𝑥𝑥  and 𝑣𝑣𝑙𝑙 , respectively. 𝑣𝑣𝑙𝑙  is the longitudinal component of 
velocity 𝑣𝑣 for the instrument. 𝐵𝐵𝐵𝐵  and 𝐵𝐵𝐸𝐸  are perpendicular to 𝑂𝑂M1  for any angle 𝑓𝑓 . 𝑂𝑂𝐵𝐵𝐶𝐶  and 𝐵𝐵𝐶𝐶𝐵𝐵  planes and their 
intersection along 𝐵𝐵𝐶𝐶 are perpendicular to 𝑂𝑂𝑂𝑂𝑂𝑂, and 𝐵𝐵𝐵𝐵 is perpendicular to 𝑂𝑂𝐵𝐵. Therefore, 𝑂𝑂𝐵𝐵 is 
perpendicular to plane 𝐵𝐵𝐶𝐶𝐵𝐵, and 𝐶𝐶𝐵𝐵 is perpendicular to 𝑂𝑂𝐵𝐵. Thus, the projections of 𝑣𝑣 and 𝑣𝑣𝑥𝑥 on 𝑂𝑂M1 are identical to 𝑂𝑂𝐵𝐵 = 𝑣𝑣𝑥𝑥 cos𝑓𝑓. With the same reasoning, the projections of 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑙𝑙  on 𝑂𝑂𝑀𝑀1 
are identical to 𝑂𝑂𝐸𝐸 = 𝑣𝑣𝑓𝑓 = 𝑣𝑣𝑙𝑙 cos𝑓𝑓. Point 𝑂𝑂 belongs to 𝐵𝐵𝐷𝐷, and 𝐵𝐵𝐸𝐸 = 𝑂𝑂𝐷𝐷 that vary with angle 𝑔𝑔. 

The longitudinal speed of the instrument in the Sun’s frame at relative rest 𝑣𝑣𝑙𝑙 = 𝑣𝑣𝑥𝑥 + 𝑢𝑢 cos 180° 
then, with 𝑣𝑣𝑥𝑥 from Eq. (6), 𝑣𝑣𝑙𝑙 = 𝑣𝑣 sin𝑔𝑔 − 𝑢𝑢. (7) 

Figure 3(c) illustrates the top side view of Figure 3(a) with the interferometer rotated by an angle 𝑓𝑓  from 𝑂𝑂𝑂𝑂 . For the geometry presented in Ref. [3], reflected rays by beam splitter M travel as 
illustrated at an angle 𝑒𝑒 from the perpendicular line to M2. 𝑂𝑂𝑂𝑂′, 𝑂𝑂𝑂𝑂′ and 𝑣𝑣 in green indicate that 
they are not in plane 𝑂𝑂𝑂𝑂𝑂𝑂. 

Point 𝐴𝐴  of M4 reflects the ray of light toward 𝑂𝑂  with the speed 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 +𝑢𝑢 cos𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = 𝑐𝑐 + (𝑣𝑣 cos 90° + 𝑢𝑢 cos𝑔𝑔) + ( 𝑣𝑣 cos(180° + 𝑔𝑔) + 𝑢𝑢 cos 90°) that gives 
the equation 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣 cos𝑔𝑔. (8) 

The ray from 𝐴𝐴  reflected at 𝑂𝑂  along 𝑂𝑂𝑂𝑂 , employing Eq. (4), has the speed 𝑐𝑐𝑓𝑓=0° = 𝑐𝑐𝑟𝑟𝑟𝑟 +

(𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢). The term (𝑣𝑣 cos𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) is according to Figs. 3(a) 
and 3(b), and (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) to Figure 3(b)  and 3(c), both at 𝑂𝑂. With 𝑐𝑐𝑟𝑟𝑟𝑟 from Eq. (8) and 𝑣𝑣𝑙𝑙  
from Eq. (7), 𝑐𝑐𝑟𝑟𝑟𝑟 = (𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣 cos𝑔𝑔) + (𝑣𝑣 cos𝑔𝑔 + 𝑢𝑢 cos 90°) + 𝑣𝑣𝑙𝑙 cos𝑓𝑓 yields the equation 𝑐𝑐𝑓𝑓=0° = 𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 + 𝑣𝑣𝑙𝑙 . (9) 
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With the same reasoning as for 𝑐𝑐𝑓𝑓=0°, the reflected speed of light at 𝑂𝑂 along 𝑂𝑂𝑀𝑀1 at an angle 𝑓𝑓 
is 𝑐𝑐𝑓𝑓 = 𝑐𝑐𝑟𝑟𝑟𝑟 + (𝑣𝑣 cos𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = (𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣 cos𝑔𝑔) + (𝑣𝑣 cos𝑔𝑔 +𝑢𝑢 cos 90°) + 𝑣𝑣𝑙𝑙 cos 𝑓𝑓). 𝑐𝑐𝑓𝑓 = 𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 + 𝑣𝑣𝑙𝑙 cos 𝑓𝑓. (10) 

3. Interferometer on the North Pole 

The solid structure, illustrated in Figure 2(a), brought from the Equator at 6 am along the local 
Meridian at the North Pole, looks like in Figure 4(a). From the Equator to the North Pole, the frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 rotates 90° in the Sun’s frame at relative rest. In plane 𝑂𝑂𝑂𝑂𝑂𝑂, 𝑂𝑂𝑂𝑂′ rotates 90° around 𝑂𝑂𝑂𝑂′ from 𝑂𝑂𝑂𝑂 to 𝑂𝑂𝑂𝑂; after rotation, 𝑂𝑂𝑂𝑂′ has the same direction as 𝑂𝑂𝑂𝑂. Planes 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′𝑂𝑂′ coincide and are 
parallel to Equator’s plane. Axis 𝑂𝑂𝑂𝑂′ is perpendicular to Equator’s plane. 

 
Figure 4. Interferometer on the North Pole: (a) at 6 am, (b) at noon, and (c) at 6 pm. 

Earth’s spin rotates 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 in the Sun’s frame at relative rest. In plane 𝑂𝑂𝑂𝑂𝑂𝑂, 𝑂𝑂𝑂𝑂′ rotates around 
fixed 𝑂𝑂𝑂𝑂′ from 𝑂𝑂𝑂𝑂 at 6 am at angle 𝑔𝑔 = 0°, as illustrated in Figure 4(a), to 𝑂𝑂𝑂𝑂 at noon at angle 𝑔𝑔 =

90°, as in Figure 4(b), and to −𝑂𝑂𝑂𝑂 at 6 pm at angle 𝑔𝑔 = 180°, as in Figure 4(c). At the North Pole, 
mirror M4 rotates only around 𝑂𝑂𝑂𝑂. 

4. Interferometer on a Latitude 

The right side view of Figure 2(a), ignoring M1, is as in Figure 5(a). Moving the solid structure 
from the Equator toward the North Pole, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 rotates in the Sun’s frame at relative rest. Velocity 𝑣𝑣 
with its axis 𝑂𝑂𝑂𝑂′  rotates in plane 𝑂𝑂𝑂𝑂𝑂𝑂  around 𝑂𝑂𝑂𝑂′  with angle ℎ  measured from axis 𝑂𝑂𝑂𝑂 , as 
visualized in Figure 5(b). For ℎ = 0°, the interferometer is at the Equator, and for ℎ = 90° at the 
North Pole. In the rotation on a Meridian, from the Equator to the North Pole, Mirror M4 stays fixed.  

In Figure 5(b), we can define the Latitude's start position at the intersection of the local Meridian 
with the local Latitude at 6 am. 𝑂𝑂𝑂𝑂′ is marked with index o for angle 𝑔𝑔 = 0°, 𝑂𝑂𝑂𝑂o′  , and is in plane 𝑂𝑂𝑂𝑂𝑂𝑂 making an angle ℎ measured from 𝑂𝑂𝑂𝑂. 

Plane 𝑂𝑂𝑂𝑂′𝑂𝑂′  is parallel, and axis 𝑂𝑂𝑂𝑂′  is perpendicular to Equator’s plane here and at any 
location on Earth. Plane 𝑂𝑂𝑂𝑂𝑂𝑂 is parallel, and the axis 𝑂𝑂𝑂𝑂 is perpendicular to Earth’s local surface as 
on any place on Earth. 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂′𝑂𝑂′ are perpendicular to plane 𝑂𝑂𝑂𝑂𝑂𝑂 and intersect along 𝑂𝑂𝑂𝑂. 

Earth’s spin rotates the frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 on the Latitude from 6 am to 6 pm. At the same time, 
velocity 𝑣𝑣 with its axis 𝑂𝑂𝑂𝑂′ rotates around fixed axis 𝑂𝑂𝑂𝑂′ from 𝑂𝑂𝑂𝑂o′  at 6 am for angle 𝑔𝑔 = 0° to 𝑂𝑂𝑂𝑂  at noon for 𝑔𝑔 = 90°  and to −𝑂𝑂𝑂𝑂o′  at 6 pm for 𝑔𝑔 = 180° . Thus, on a Meridian, angle 𝑔𝑔  is 
identical when the instrument is on different Latitudes to that at the Equator. On a Latitude, mirror 
M4 rotates around both axes to capture only the parallel rays from the Sun. 

The view from the opposite direction of 𝑂𝑂𝑂𝑂′ shows vector 𝑣𝑣 with its axis 𝑂𝑂𝑂𝑂′ rotating from 6 
am to 6 pm on a semicircle with origin at 𝑂𝑂 and radius 𝑣𝑣. The semicircle is in plane 𝑂𝑂𝑂𝑂′𝑂𝑂′. Any angle 
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ℎ yields an identical image. The semicircle is identical to that in Figure 3(a), illustrated in a dashed 
line in plane 𝑂𝑂𝑂𝑂𝑂𝑂. 

The view from the opposite direction of 𝑂𝑂𝑂𝑂 sees the semicircle projection of the vector 𝑣𝑣 as a 
semi-ellipse in plane 𝑂𝑂𝑂𝑂𝑂𝑂, as illustrated in Figure 5(c). The projection points of this semi-ellipse on 𝑂𝑂𝑂𝑂 represent the speeds 𝑣𝑣𝑧𝑧  for angles 𝑔𝑔. 

Figure 5(c) is the left side view of Figure 5 (b) for an angle 𝑔𝑔 measured from 𝑂𝑂𝑂𝑂o′ . The projection 
of the velocity 𝑣𝑣 that belongs to 𝑂𝑂𝑂𝑂′ on plane 𝑂𝑂𝑂𝑂𝑂𝑂 is 𝑣𝑣′. 𝑂𝑂𝑂𝑂′, 𝑂𝑂𝑂𝑂′, and 𝑂𝑂𝑂𝑂′ axes are depicted in 
green to indicate that they are not in plane 𝑂𝑂𝑂𝑂𝑂𝑂; 𝑂𝑂𝑂𝑂′ is in the front, and 𝑂𝑂𝑂𝑂′ and 𝑂𝑂𝑂𝑂′ are in the back 
of plane 𝑂𝑂𝑂𝑂𝑂𝑂. 

 

Figure 5. (a) Interferometer on the Equator at 6 am. Interferometer on a Latitude: (b) at angle ℎ, and 
(c) left side view of Figure 5(b). 

Planes 𝑂𝑂𝑂𝑂𝑂𝑂  and 𝑂𝑂𝑂𝑂′𝑂𝑂′  intersect along 𝑂𝑂𝑂𝑂 . 𝑂𝑂𝑂𝑂′  coincides with 𝑂𝑂𝑂𝑂  only at 𝑔𝑔 = 0° . Axis 𝑂𝑂𝑂𝑂′ 
rotates in the back of plane 𝑂𝑂𝑂𝑂𝑂𝑂 from 𝑂𝑂𝑂𝑂o′  at the Latitude’s start position when it is behind 𝑂𝑂𝑂𝑂 for 𝑔𝑔 = 0° to plane 𝑂𝑂𝑂𝑂𝑂𝑂 coinciding with 𝑂𝑂𝑂𝑂  for 𝑔𝑔 = 90°. Then 𝑂𝑂𝑂𝑂′ rotates in front of plane 𝑂𝑂𝑂𝑂𝑂𝑂 to −𝑂𝑂𝑂𝑂o′  for 𝑔𝑔 = 180°, above −𝑂𝑂𝑂𝑂. 𝑂𝑂𝑂𝑂′ rotates in front of plane 𝑂𝑂𝑂𝑂𝑂𝑂 from 𝑂𝑂𝑂𝑂  for 𝑔𝑔 = 0° to above −𝑂𝑂𝑂𝑂 for 𝑔𝑔 = 90°, then to −𝑂𝑂𝑂𝑂 for 𝑔𝑔 = 180°. 

Figure 6(a) offers a three-dimensional visualization of the mechanical velocities at point 𝑂𝑂 of 
Figure 5(c). Axis 𝑂𝑂𝑂𝑂o′  is in plane 𝑂𝑂𝑂𝑂𝑂𝑂 . Rectangular 𝑂𝑂𝐵𝐵𝐵𝐵𝐷𝐷  belongs to 𝑂𝑂𝑂𝑂𝑂𝑂 , 𝑂𝑂𝐵𝐵𝐶𝐶𝐸𝐸  to 𝑂𝑂𝑂𝑂𝑂𝑂 , and 𝑂𝑂𝐸𝐸𝐶𝐶𝐷𝐷  to 𝑂𝑂𝑂𝑂𝑂𝑂 . The speed 𝑣𝑣  is along axis 𝑂𝑂𝑂𝑂′. Index 𝑖𝑖  for M1𝑖𝑖  indicates that mirror M1 location 
corresponds to angles 𝑖𝑖 defined below. Velocities 𝑣𝑣,  𝑣𝑣𝑖𝑖, and 𝑣𝑣𝑧𝑧o′  belong to rectangular 𝑂𝑂𝐵𝐵𝐵𝐵𝐶𝐶 of 
the plane in red; 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑙𝑙  to plane 𝑂𝑂𝑂𝑂𝑂𝑂. 

The projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂 at the Latitude’s start position offers the equation 𝑣𝑣𝑧𝑧o = 𝑣𝑣 cos ℎ. (11) 

The projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂o′  is 𝑂𝑂𝐶𝐶 = 𝑣𝑣𝑧𝑧o′ , therefore, 𝑣𝑣𝑧𝑧o′ = 𝑣𝑣 cos𝑔𝑔. (12) 

The projection of 𝑣𝑣𝑧𝑧o′  on 𝑂𝑂𝑂𝑂, 𝑣𝑣𝑧𝑧 = 𝑣𝑣𝑧𝑧o′ cos ℎ, is also the projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂. Employing Eq. (12),  𝑣𝑣𝑧𝑧 = 𝑣𝑣 cosℎ cos𝑔𝑔. (13) 
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Figure 6. Mechanical velocities of Figure 5(c): (a) at point 𝑂𝑂 and (b) at point 𝐴𝐴. 

The contribution of 𝑢𝑢 on 𝑂𝑂𝑂𝑂 is zero at all times; therefore, 𝑣𝑣𝑧𝑧 is the transversal speed of the 
instrument in the Sun’s frame at relative rest. 

The projection of 𝑣𝑣 on 𝑂𝑂𝑂𝑂 is 𝑣𝑣𝑥𝑥 = 𝑣𝑣 cos(90° − 𝑔𝑔), therefore, 𝑣𝑣𝑥𝑥 = 𝑣𝑣 sin𝑔𝑔. (14) 

The vector sum of velocities 𝑣𝑣 and 𝑢𝑢 is the instrument velocity in the Sun’s frame at relative 
rest 𝑣𝑣𝑖𝑖. Angle 𝑂𝑂𝐵𝐵𝐶𝐶 = 𝐵𝐵𝑂𝑂𝐵𝐵 = cos(90° − 𝑔𝑔) 𝐼𝐼 and from triangle 𝑂𝑂𝐵𝐵𝐼𝐼, the cosines theorem yields the 

magnitude of velocity 𝑣𝑣𝑖𝑖 = �𝑣𝑣2 − 2𝑣𝑣𝑢𝑢 cos(90° − 𝑔𝑔) + 𝑢𝑢2 that yields the equation 𝑣𝑣𝑖𝑖 = �𝑣𝑣2 − 2𝑣𝑣𝑢𝑢 sin𝑔𝑔 + 𝑢𝑢2. (15) 

The projection of 𝑣𝑣𝑖𝑖 on 𝑂𝑂𝑂𝑂 also is 𝑣𝑣𝑧𝑧 from Eq. (13). The triangle 𝑂𝑂𝐼𝐼𝑂𝑂 gives the projection of 𝑣𝑣𝑖𝑖 
on the plane 𝑂𝑂𝑂𝑂𝑂𝑂, 𝑣𝑣𝑙𝑙  that is the longitudinal speed of the interferometer in the Sun’s frame at relative 
rest.  𝐼𝐼𝑂𝑂 = 𝑂𝑂𝐷𝐷, then 𝑣𝑣𝑙𝑙 = �𝑣𝑣𝑖𝑖2 − 𝑣𝑣𝑧𝑧2. (16) 𝐸𝐸𝑂𝑂 = 𝐵𝐵𝐶𝐶 − 𝐵𝐵𝐼𝐼 = 𝑣𝑣𝑥𝑥 − 𝑢𝑢, then in triangle 𝑂𝑂𝐸𝐸𝑂𝑂, tan 𝑖𝑖 = (𝑣𝑣𝑥𝑥 − 𝑢𝑢)/𝑣𝑣𝑙𝑙  that offers the equation 𝑖𝑖 = tan−1 𝑣𝑣𝑥𝑥 − 𝑢𝑢𝑣𝑣𝑙𝑙 . (17) 

Angle 𝑖𝑖  indicates the interferometer's initial position direction 𝑂𝑂M1𝑖𝑖  when 𝑂𝑂M1  and 𝑣𝑣𝑖𝑖 
directions coincide. 

Figure 6(b) offers a three-dimensional visualization of the mechanical velocities at point 𝐴𝐴 of 
Figure 5(c). At 𝐴𝐴, we can attach the same frame as at 𝑂𝑂, 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂, and 𝐴𝐴𝑂𝑂′𝑂𝑂′𝑂𝑂′. Axis 𝐴𝐴𝑂𝑂0′  is in plane 𝐴𝐴𝑂𝑂𝑂𝑂. 
Velocities 𝑣𝑣 and 𝑣𝑣𝑧𝑧o′  belong to rectangular 𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼 with its sides in red, which belongs to 𝐴𝐴𝑂𝑂′𝑂𝑂′. The 

ray from the Sun travels in this plane along the line 𝐼𝐼𝐴𝐴. Point 𝐴𝐴 of M4 reflects it towards 𝑂𝑂. M4 must 
be adjusted with both axes to reflect the incident ray at 𝐴𝐴 along 𝐴𝐴𝑂𝑂′’s direction towards 𝑂𝑂. 

The ray of light reflected at 𝐴𝐴  toward 𝑂𝑂  has the speed 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑠𝑠 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) +

(𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = 𝑐𝑐 + (𝑣𝑣 cos 90° + 𝑢𝑢 cos𝑔𝑔) + (−𝑣𝑣𝑧𝑧 + 𝑢𝑢 cos 90°) that gives the equation  𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣𝑧𝑧 . (18) 

From Figure 6(a), we can calculate the speed of light reflected in the direction M1𝑖𝑖 for angle 𝑖𝑖,  𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑟𝑟𝑟𝑟 + (𝑣𝑣 cos𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) . 𝑣𝑣𝑙𝑙  from Eq. (16) includes both 𝑣𝑣  and 𝑢𝑢 
contributions along 𝑂𝑂M1𝑖𝑖. Thus, term (𝑣𝑣 cos 𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos 𝑏𝑏𝑢𝑢) = 𝑣𝑣𝑙𝑙, and then  𝑐𝑐𝑖𝑖 = (𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣𝑧𝑧) +

(𝑣𝑣𝑧𝑧 + 𝑢𝑢 cos 90°) + 𝑣𝑣𝑙𝑙 that offers the equation 
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𝑐𝑐𝑖𝑖 = 𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 + 𝑣𝑣𝑙𝑙 . (19) 

For the same reason as in Figure 3(b), the projections of 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑙𝑙  are identical for any angle 𝑓𝑓 
measured from M1𝑖𝑖 . The speed of light reflected at 𝑂𝑂  in the direction of 𝑂𝑂M1  for an angle 𝑓𝑓 
measured from M1𝑖𝑖  is 𝑐𝑐𝑖𝑖𝑓𝑓 = 𝑐𝑐𝑟𝑟𝑟𝑟 + (𝑣𝑣 cos 𝑎𝑎𝑣𝑣 + 𝑢𝑢 cos 𝑎𝑎𝑢𝑢) + (𝑣𝑣 cos𝑏𝑏𝑣𝑣 + 𝑢𝑢 cos𝑏𝑏𝑢𝑢) = (𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 − 𝑣𝑣𝑧𝑧) +

(𝑣𝑣𝑧𝑧 + 𝑢𝑢 cos 90°) + 𝑣𝑣𝑙𝑙 cos 𝑓𝑓 that yield the equation 𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑐𝑐 + 𝑢𝑢 cos𝑔𝑔 + 𝑣𝑣𝑙𝑙 cos 𝑓𝑓. (20) 

5. Numerical calculation of the fringe shift 

For the length 𝐿𝐿 = 32 m of the interferometer’s arms, Miller expected a 1.12 fringe shift based 
on Michelson’s derivation [10] and observed, at Mount Wilson, 0.08 in 1921 and 0.088 in 1925 [8,9]. 
The observations taken in the laboratory at Cleveland 1924, with sunlight and laboratory sources, 
show a null result of experiments. The above discrepancy in experimental results requires a theory 
to support it or a reevaluation of Miller’s experiments. 

The velocity 𝑣𝑣 is the moving velocity of the instrument in the Sun’s frame at relative rest. The 
device has the longitudinal velocity 𝑣𝑣𝑥𝑥  at Equator and 𝑣𝑣𝑖𝑖  on a Meridian parallel to and the 
transversal velocity 𝑣𝑣𝑧𝑧 perpendicular to plane 𝑂𝑂𝑂𝑂𝑂𝑂. To correctly calculate the fringe shift within the 
interferometer, we have to consider both velocities, but there is no such theoretical derivation.  

In the following derivation, we assume that the fringe shift is not affected by the transversal 
speed 𝑣𝑣𝑧𝑧, and we calculate the fringe shift for the four positions offered by Ref. [3]. 

The numerical calculation can be performed on a spreadsheet according to the theoretical 
derivation of Ref. [3], starting with the set of speeds 𝑐𝑐11, 𝑐𝑐12, 𝑐𝑐13, 𝑐𝑐21, and 𝑐𝑐22, followed by the times 
the light travels its paths and their differences, and finally, the fringe shift, for each of the four 
positions at angle 𝑎𝑎 = 0°, 90°, 180°, and 270°.  

The initial position of the interferometer for 𝑓𝑓 = 0° corresponds to the 𝑎𝑎 = 180° position in 
Ref. [3] because between the two selected initial positions, there is a difference of 180°. Thus, for  𝑓𝑓 = 0°, 90°,  180°, and 270° positions correspond to 𝑎𝑎 = 180°, 270°, 0°, and 90° positions in 
Ref. [3]. 

The speed 𝑐𝑐𝑖𝑖𝑓𝑓 from Eq. (20) replaces the speed 𝑐𝑐 correspondingly in the sets of speeds 𝑐𝑐11, 𝑐𝑐12, 𝑐𝑐13, 𝑐𝑐21, and 𝑐𝑐22 in the four positions as defined in Ref. [3]. The numerical magnitude of speed 𝑣𝑣𝑙𝑙  
from Eq. (16) replaces speed 𝑣𝑣  in all four positions of Ref. [3], including in the sets of speeds 
mentioned above. 

In Ref. [3], rays along the screen interfere because their speeds, 𝑐𝑐13 and 𝑐𝑐22, are equal. Ref. [3] 
derives the difference between the two light paths in the number of wavelengths  𝑁𝑁1,2,3,4  with 
formula  𝑁𝑁 = 𝑐𝑐∆𝑡𝑡12/𝜆𝜆, where ∆𝑡𝑡12 is the difference of time the two rays travel their paths with the 
same or different speeds, 𝑐𝑐 is the constant 3 × 108 m/s, and 𝜆𝜆 the wavelength of light for constant 𝑐𝑐. 

If the speed of the two interfering rays increases or decreases, their wavelengths increase or 
decrease directly proportional. Therefore, the ratio speed/wavelength is a constant for any of their 
corresponding speeds/wavelengths. Therefore, 𝑁𝑁1,2,3,4 are not affected by the speed magnitude of 
rays that interfere along the way to the screen. Thus, no need to change the formula  𝑁𝑁 = 𝑐𝑐∆𝑡𝑡12/𝜆𝜆. 

For any location on Earth, the numerical calculation of the fringe shift, for 𝐿𝐿 = 32 m, predicts 
unobservable fringe shifts in the 10−8 range. For 𝐿𝐿 = 108 m, the fringe shift is in the range of 10−1. 
The rays reflected by M4 coming from different points of the Sun, or 𝑣𝑣 corresponding to different 
altitudes, or magnitudes of angle 𝑒𝑒 greater than aberration angle do not change the result of the 
fringe shifts. 

In Ref. [3], different from this article, the source of light is a part of the interferometer belonging 
to Earth’s inertial frame. For 𝐿𝐿 = 11 m, the fringe shift is 0.4 × 10−4, and for 𝐿𝐿 = 32 m, the fringe 
shift is 0.4 × 10−4 . According to emission, propagation, and reflection of light as mechanical 
phenomena in inertial frames [4], the fringe shift in the Michelson interferometer is zero. 
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5. Conclusions 

With the assumption that the transversal velocity of the interferometer 𝑣𝑣𝑧𝑧 does not affect the 
fringe shift, Michelson derivation does not agree with Miller’s experiments at Mount Wilson in 1921 
and 1025 and with those at Cleveland laboratory in 1924. The derivation based on the reflection of 
light as a mechanical phenomenon does not agree with Miller’s experiments at Mount Wilson but 
agrees with experiments at Cleveland laboratory with sunlight and laboratory sources. 

When the local meridian is at noon, from the Equator to the North Pole, there is no transversal 
speed for the instrument, and the numerical calculation yields zero fringe shift. Miller observed fringe 
shifts at Mount Wilson for these positions as well. Therefore, a derivation considering the transversal 
speed should not affect the fringe shift for these positions and is not likely for any position of the 
instrument on Earth. 

For any angle 𝑓𝑓 , the speed of light 𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑐𝑐 + 𝑣𝑣𝑖𝑖 cos 𝑓𝑓 , and the longitudinal speed of the 
interferometer is 𝑣𝑣𝑖𝑖 cos 𝑓𝑓. Thus, the speed of light within the interferometer is 𝑐𝑐, which could explain 
why the fringe shift is zero or undetectable. 

The Tomaschek experiment [11] may display a fringe shift if the star's velocity in the Universe 
is different from that of the Sun. The light from a star arrives on Earth, no matter the distance from 
the star to the Sun, with two components: the emitted velocity 𝑐𝑐 and the star's velocity [4,5]. The 
fringe shift depends on the difference of star and Sun velocities. Experiments consist of trials and 
observations with different stars without any expectations. Nevertheless, the theoretical derivation 
is more complex, even if we know the star's velocity to the Sun. 

However, regardless of the outcome of a complete theoretical derivation, the contradictory 
results observed at Mount Wilson and the Cleveland laboratory leave this subject open to theoretical 
and experimental challenges. 

Ref. [3] offers zero fringe shift for 𝑒𝑒 = 0 rad, 0.40 × 10−4 for aberration angle 𝑒𝑒 = 0.0001 rad, 
and greater than 0.40 × 10−4 for an angle 𝑒𝑒 beyond the aberration angle. We chose a geometry for 
theoretical derivation and calculation of the fringe shift, but an experiment yields a fringe shift 
according to an unknown geometry. The author expected this study to predict Miller's observations 
at the Mount Wilson and Cleveland laboratory because different actual geometries of the 
interferometer's light paths, which imply different angles 𝑒𝑒, could explain the observations at the 
two locations. 
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