
A New Solution for Measuring Planck’s Constant using

Compton Scattering

David Humpherys

david.humpherys@yahoo.com

Lehi, UT 84043

Abstract

Measured values of the electron mass and Compton wavelength produce a value of Planck’s 

constant with a relative standard uncertainty of 3 × 10−10. This is only slightly larger than the 1.3 × 

10−10 relative standard uncertainty in measurements performed using the Kibble balance. Compton 

scattering represents an alternative pathway to improving the value of Planck’s constant in the future.

Natural units of length, mass, and time offer new pathways to improving the values of physical 

constants. While extensive values of the Planck units lie beyond the reach of present-day instrumen-

tation, certain product and quotient pairs of Planck units such as the speed of light can be measured 

with relatively high precision. Better measurements of certain unit pairs will improve the value of the 

gravitational constant.
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1 Introduction

The System of International Units sets an exact value for Planck’s constant based on measurements

undertaken by the National Institute of Standards and Technology between the years 2015 and 2017

using the Kibble balance [1]. These measurements reduced uncertainty by more than twofold over

previous measurements, achieving a relative standard uncertainty of 1.3 × 10−10.

Although the Kibble balance was the preferred method for measuring Planck’s constant, it is not

the only experimental means for obtaining a high precision measurement. Planck’s constant can also

be determined from measurements of the electron’s Compton wavelength and rest mass, each with a

relative standard uncertainty of 3.0×10−10 [2]. The formula relating these measurements to the reduced
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Planck constant is

~ = oCm0c = 1.054 571 8176... × 10−34 kgm2/s (1)

Although it is not widely understood that the formula gives an accurate value of Planck’s constant,

the physics behind the formula are mathematically consistent and yield valuable insights [3].

2 Derivation of the results

Equation 1 is derived by representing Planck’s constant with natural units in the dimensions L2MT−1

[3–5]

~ =
l2PmP

tP
= lPmPc. (2)

In addition, it has been shown that an electron’s Compton wavelength and rest mass are inversely

proportional [6–8], making the product of wavelength and mass invariant and equal to the product of

Planck length and Planck mass [3]

oCm0 = lPmP. (3)

An important consequence of 3 is that wavelength and mass are equal ratios of the Planck scale

where Planck length gives a minimum basis and Planck mass gives a maximum basis

lP

oC
=

m0

mP
. (4)

To obtain Planck’s constant from the electron properties, we substitute 3 into 2 yielding equation 1.

Table 1 summarizes the CODATA values of Compton wavelength and rest mass which produce

Planck’s constant according to equation 1. Note that measurements of the muon and tau Compton

wavelengths and rest masses also produce the constant but with less certainty: 2.2×10−8 and 6.8×10−5

relative standard uncertainties respectively [2].

Table 1: Lepton properties which determine the value of Planck’s constant.

Particle Compton wavelength Rest mass Reduced Planck constant

oC m0 oCm0c

Electron 3.861 592 6796 × 10−13 9.109 383 7015 × 10−31 1.054 571 8176... × 10−34

Muon 1.867 594 306 × 10−15 1.883 531 627 × 10−28 1.054 571 817... × 10−34

Tau 1.110 538 × 10−16 3.167 540 × 10−27 1.054 57... × 10−34
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3 Planck scale metrology

It may be reasonably argued that extensive quantities of Planck length, mass, and time lie beyond the

reach of experimental measurement [9]. However, certain product and quotient relationships between

pairs of Planck units are demonstrably within the reach of modern instrumentation; for example, the

ratio of Planck length to Planck time. The speed of light has been measured with a relative standard

uncertainty of 1.6× 10−10 m/s [10], an important consideration in the decision to define c in the System

of International Units
lP

tP
= c = 299, 792, 458 m/s. (5)

An accurate measurement of the speed of light is possible because the intensive ratio of distance

and time can be measured on scales much larger than the Planck scale.

Similarly, the product of Planck length and Planck mass has a defined value under the SI as the

ratio between two defined constants—Planck’s constant and the speed of light

lPmP =
~

c
=

lPmP�c

�c
= 3.517 672 9417... × 10−43 kgm. (6)

The inversely proportional relationship between wavelength and mass shown in equations 3 and

4 is responsible for the invariance of Planck’s constant. It has been shown that this invariance per-

tains to integer cycles of elementary particle oscillations and also conserves quantities of wavelength-

momentum and time-energy [3].

Planck’s constant and the speed of light give a third defined value in the product of Planck mass

and Planck time

mPtP =
~

c2 =

mP��l
2
P

�tP

��l
2
P

tP�tP

= 1.173 369 3920... × 10−51 kgs. (7)

The significance of these three defined values is much more than academic; the Planck units

offer an overlooked pathway to obtaining more accurate values of the gravitational constant and other

constants that depend on G. Like Planck’s constant, the gravitational constant can be represented in

natural units of length, mass, and time [3]

G =
lP

mP
c2. (8)

The formula indicates that uncertainty in G lies in the ratio of Planck length to Planck mass given

an exact value of c. Consequently, the gravitational constant has a relative standard uncertainty of

2.2 × 10−5 which is comparable to the 1.1 × 10−5 relative standard uncertainty in the CODATA values of

Planck length and Planck mass.

Improving the value of G requires a more accurate measurement of at least one of the three unde-
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Table 2: Of the six product and quotient relationships between the Planck units, three have exact values based
on the exact values of Planck’s constant and the speed of light. The other three relationships have uncertainties
comparable to the uncertainty in the gravitational constant.

Planck Unit Pair Equivalent Value SI rel. std. uncertainty

lP

tP
c 299, 792, 458 m/s defined

lPmP
~

c
3.517 672 94 × 10−43 kgm defined

mPtP
~

c2 1.173 369 39 × 10−51 kgs defined

lP

mP

G
c2 7.426 160 × 10−28 m/kg 2.2 × 10−5

mP

tP

c3

G
4.036 978 × 1035 kg/s 2.2 × 10−5

lPtP
~G
c4 8.713 629 × 10−79 ms 2.2 × 10−5

fined values in table 2. This is because the three defined values only provide enough information to

constrain the proportions between the Planck units and do not reveal the extensive values themselves.

To see why this is the case, consider the three pairs of Planck units with defined values in table

2. Notice that the set contains either a product relationship or a quotient relationship between a given

pair of units, but not both. For example, the ratio lP/tP is defined but lPtP has a large uncertainty by

comparison.

If we had precision measurements for both the product and the quotient relationship between a

pair of units, we could determine a value for the two units with the same level of precision. This is

easy to see in the following way. Let a and b represent high precision values of a product and quotient

relationship between Planck length and Planck time

lP

tP
= a (9)

and

lPtP = b. (10)

From this information we can solve for two equations and two unknowns. Restating 9

lP = tPa (11)

and plugging into 10 gives a solution

t2
P =

b
a
. (12)

Our misfortune is in having defined values for three Planck unit pairs without a single set of product

and quotient relationships for any pair.
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A geometric representation of equations 9 through 12 further illustrates these constraints. We can

model the quotient relationship between Planck length and Planck time as two sides of a rectangle.

The speed of light gives a ratio between the two sides but not an extensive value of either side. In

natural units the ratio is 1:1, but in SI units the tP side of the rectangle is precisely 299, 792, 458 times

the length of the lP side. The ratio between the two sides offers a constraint on the values of lP and tP

but does not allow us to identify the value of either unit.

Introducing the product relationship lPtP gives the area of the rectangle and the two combined

constraints give a definite value for each of the units. In this geometric analogy, the defined values

of Planck’s constant and the speed of light give us defined values for the ratio of length-time and the

areas of length-mass and mass-time.

The result is that we have greater precision in the proportions between the Planck units than in the

unit values. This is easy to see in the CODATA values of Planck length and Planck time which give a

ratio of 299, 792, 423 for the speed of light. Although we know this ratio is inaccurate, we don’t know

how to adjust the two units to correct it. This can only be achieved with more accurate measurements.

Figure 1 illustrates the degree to which CODATA values of Planck length, mass, and time are

proportionally inaccurate. In the figure, each node of the triangle represents the current value of a

Planck unit and the equilateral triangle formed by these points represents a proportionally accurate

relationship between them. Three triangles overlaying the equilateral triangle show the degree to

which two of the units are out of proportion given the value of a first unit. For example, the blue triangle

with a node on the Planck length indicates that, given the current value of Planck length, the value of

Planck mass is too small and the value of Planck time is too large.

Table 3 gives the formulas for calculating proportionally accurate values of the second and third

Planck units when given the value of a first unit.

Table 3: Formulas for calculating the values of any two Planck units when given the value of a first unit. Defined
values of Planck’s constant and the speed of light provide the required constraints.

Given unit value lP mP tP

Planck length -
~

lPc
lP

c

Planck mass
~

mPc
-

lP

c

Planck time tPc
~

lPc
-
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Figure 1: The speed of light and Planck’s constant constrain the proportions between Planck length, mass, and
time. The equilateral triangle represents a proportionally accurate relationship between the units.

3.1 New measurement approaches

A better understanding and appreciation for the natural units presents an opportunity for devising new

measurement solutions that improve the accuracy of physical constants and shed light on the struc-

ture of natural phenomena. Measurements of the universal constants are also measurements of the

relationships between natural units and an improvement in one elevates the other.

One approach to improving the accuracy of the gravitational constant is to continue refining the

instruments and methods for measuring lP/mP. However, such measurements depend on accurate

measurements of the mass and radius of two bodies and it remains challenging to obtain more precise

measurements of the gravitational field between bodies of measurable mass.

An alternate pathway to improving the value of G is to devise new measurement techniques aimed

at determining more precise values of mP/tP or lPtP. A more precise measurement of either quantity

yields a commensurate gain in the precision of G. This is because a better measurement of any

undefined pair in table 2 will improve the values of the Planck units using the formulas in table 4. In

particular, we need better values of lP and mP given the exact value of c2. An improvement in these

two values will improve the value of G according to equation 8.
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Table 4: Formulas for calculating values of the three Planck units with the same precision as a measurement of
the Planck unit pairs in the first column. Better values of the Planck units improve the values of universal constants.

Planck unit pair lP mP tP

lP

mP

√
lP

mP

~

c

√
mP

lP

~

c

√
lP

mP

~

c3

mP

tP

√
tP

mP
~

√
mP

lP

~

c2

√
tP

mP

~

c2

lPtP
√

lPtPc

√
~2

lPtPc3

√
lPtP

c

The ratio mP/tP is found in unit dimensions of force and opens up the possibility of conducting more

precise measurements using electromagnetic forces. This is perhaps the most promising pathway for

significantly improving the value of G. A greater challenge, however, is measuring lPtP which does not

appear in the unit dimensions of common natural phenomena.

4 Conclusion

The significance of the natural units is still grievously underappreciated in physics. The historical prefer-

ence for universal constants in compound unit dimensions is a philosophical preference that overlooks

the advantages of more granular information in the natural unit formulas.

A better understanding of Planck’s constant in each of its unit dimensions opens up a new pathway

for obtaining a more precise value of the constant. The precision with which the electron properties

produce Planck’s constant was only recently surpassed by measurements using the Kibble balance,

demonstrating the viability of the proposed method and theory. The level of agreement between the two

methods also confirms the mathematical consistency of the natural units with high levels of precision.
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