
Article

Cloud-native Observability: The Many-faceted Benefits of
Structured and Unified Logging - A Case Study
Nane Kratzke

Lübeck University of Applied Sciences; nane.kratzke@th-luebeck.de
Correspondence: nane.kratzke@th-luebeck.de

Abstract: Background: Cloud-native software systems often have a much more decentralized 1

structure and many independently deployable and (horizontally) scalable components, making it 2

more complicated to create a shared and consolidated picture of the overall decentralized system state. 3

Today, observability is often understood as a triad of collecting and processing metrics, distributed 4

tracing data, and logging. The result is often a complex observability system composed of three 5

stovepipes whose data is difficult to correlate. Objective: This study analyzes whether these three 6

historically emerged observability stovepipes of logs, metrics and distributed traces could be handled 7

more integrated and with a more straightforward instrumentation approach. Method: This study 8

applied an action research methodology used mainly in industry-academia collaboration and common 9

in software engineering. The research design utilized iterative action research cycles, including one 10

long-term use case. Results: This study presents a unified logging library for Python and a unified 11

logging architecture that uses the structured logging approach. The evaluation shows that several 12

thousand events per minute are easily processable. Conclusion: The results indicate that a unification 13

of the current observability triad is possible without the necessity to develop utterly new toolchains. 14

Keywords: cloud-native; observability; cloud computing; logging; structured logging; logs; metrics; 15

traces; distributed tracing; log aggregation; log forwarding; log consolidation 16

1. Introduction 17

A "crypto winter" basically means that the prices for so-called cryptocurrencies such as 18

Bitcon, Ethereeum, Solana, etc. fell sharply on the crypto exchanges and then stay low. The 19

signs were all around in 2022: the failure of the TerraUSD crypto project in May 2022 sent 20

an icy blast through the market, then the cryptocurrency lending platform Celsius Network 21

halted withdrawals, prompting a sell-off that pushed Bitcoin to a 17-month low. 22

This study logged such a "crypto winter" on Twitter more by accident than by intention. 23

Twitter was simply selected as an appropriate use case to evaluate a unified logging solution 24

for cloud-native systems and decided to log Tweets containing stock symbols like $USD or 25

$EUR. It turned out that most symbols used on Twitter are not related to currencies like 26

$USD (US-Dollar) or stocks like $AAPL (Apple) but to Cryptocurrencies like $BTC (Bitcoin) 27

or $ETH (Ethereum). The Twitter community therefore seems to be quite cryptocurrency- 28

savvy. So, although some data of this 2022 crypto winter will be presented in this paper, 29

this paper will take more the methodical part into focus and will address how such and 30

further data could be collected more systematically in distributed cloud-native applications. 31

The paper will at least show that even complex observability of distributed systems can be 32

reached, simply by logging events to stdout. 33

Observability measures how well a system’s internal state can be inferred from knowl- 34

edge of its external outputs. The concept of observability was initially introduced by 35

the Hungarian-American engineer Rudolf E. Kálmán for linear dynamical systems [1,2]. 36

However, observability also applies to information systems and is of particular interest 37

to fine-grained and distributed cloud-native systems that come with a very own set of 38

observability challenges. 39

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://doi.org/10.20944/preprints202208.0427.v1
http://creativecommons.org/licenses/by/4.0/

2 of 18

Traditionally, the responsibility for observability is (was?) with operations (Ops). With 40

the emergence of DevOps, we can observe a shift of Ops responsibilities to developers. So, 41

observability is evolving more and more into a Dev responsibility. Observability should 42

ideally already be considered during the application design phase and not be regarded 43

as some "add-on" feature for later expansion stages of an application. The current discus- 44

sion about observability began well before the advent of cloud-native technologies like 45

Kubernetes. A widely cited blog post by Cory Watson from 2013 shows how engineers at 46

Twitter looked for ways to monitor their systems as the company moved from a monolithic 47

to a distributed architecture [3–5]. One of the ways Twitter did this was by developing a 48

command-line tool that engineers could use to create their dashboards to keep track of the 49

charts they were creating. While CI/CD tools and container technologies often bridge Dev 50

and Ops in one direction, observability solutions close the loop in the opposite direction, 51

from Ops to Dev [4]. Observability is thus the basis for data-driven software development 52

(see Fig. 1 and [6]). As developments around cloud(-native) computing progressed, more 53

and more engineers began to "live in their dashboards." They learned that it is not enough 54

to collect and monitor data points but that it is necessary to address this problem more 55

systematically. 56

Figure 1. Observability can be seen as a feedback channel from Ops to Dev (adopted from [4] + [6]).

2. Problem description 57

Today, observability is often understood as a triad. Observability of distributed information 58

systems is typically achieved through the collection and processing of metrics (quantitative 59

data primarily as time-series), distributed tracing data (execution durations of complex 60

system transactions that flow through services of a distributed system), and logging (qual- 61

itative data of discrete system events often associated with timestamps but encoded as 62

unstructured strings). Consequently, three stacks of observability solutions have emerged, 63

and the following somehow summarizes the current state of the art. 64

• Metrics: Here, quantitative data is often collected in time series, e.g., how many 65

requests a system is currently processing. The metrics technology stack is often 66

characterized by tools such as Prometheus and Grafana. 67

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

3 of 18

• Distributed tracing involves following the path of transactions along the components 68

of a distributed system. The tracing technology stack is characterized by tools such as 69

Zipkin or Jaeger, and the technologies are used to identify and optimize particularly 70

slow or error-prone substeps of distributed transaction processing. 71

• Logging is probably as old as software development itself, and many developers, 72

because of the log ubiquity, are unaware that logging should be seen as part of holistic 73

observability. Logs are usually stored in so-called log files. Primarily qualitative events 74

are logged (e.g. user XYZ logs in/out). An event is usually attached to a log file in 75

a text line. Often the implicit and historically justifiable assumption prevails with 76

developers that these log files are read and evaluated primarily by administrators 77

(thus humans). However, that is hardly the case anymore. It is becoming increasingly 78

common for the contents of these log files to be forwarded to a central database 79

through "log forwarders" so that they can be evaluated and analyzed centrally. The 80

technology stack is often characterized by tools such as Fluentd, FileBeat, LogStash 81

for log forwarding, databases such as ElasticSearch, Cassandra or simply S3 and user 82

interfaces such as Kibana. 83

Figure 2. An application is quickly surrounded by a complex observability system when metrics,
tracing and logs are captured with different observability stacks.

Incidentally, all three observability pillars have in common that software to be developed 84

must be somehow instrumented. This instrumentation is normally done using program- 85

ming language-specific libraries. Developers often regard distributed tracing instrumenta- 86

tion in particular as time-consuming. Also, which metric types (counter, gauge, histogram, 87

history, and more) are to be used in metric observability solutions such as Prometheus 88

often depends on Ops experience and is not always immediately apparent to developers. 89

Certain observability hopes fail simply because of wrongly chosen metric types. Only 90

system metrics such as CPU, memory, and storage utilization can be easily captured in a 91

black-box manner (i.e., without instrumentation in the code). However, these data are often 92

only of limited use for the functional assessment of systems. For example, CPU utilization 93

provides little information about whether conversion rates in an online store are developing 94

in the desired direction. 95

So, current observability solutions are often based on these three stovepipes for logs, 96

metrics, and traces. The result is an application surrounded by a complex observability 97

system whose isolated datasets can be difficult to correlate. Fig. 2 focuses on the application 98

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

4 of 18

(i.e., the object to be monitored) and triggers the question, whether it is justified to use three 99

complex subsystems and three types of instrumentation, which always means three times 100

the instrumentation and data analysis effort of isolated data silos. 101

The often-used tool combination of ElasticSearch, LogStash, and Kibana is often used 102

for logging and has even been given a catchy acronym: ELK-Stack [3]. The ELK stack 103

can be used to collect metrics and using the plugin APM also for distributed tracing. So, 104

at least for the ELK stack, the three stovepipes are not clearly separable or disjoint. The 105

separateness is somewhat historically "suggested" than technologically given. Nevertheless, 106

this tripartite division into metrics, tracing and logging is very formative for the industry, 107

as shown, for example, by the OpenTelemetry project [7]. OpenTelemetry is currently in the 108

incubation stage at the Cloud Native Computing Foundation and provides a collection of 109

standardized tools, APIs, and SDKs to instrument, generate, collect, and export telemetry 110

data (metrics, logs, and traces) to analyze the performance and behaviour of software 111

systems. OpenTelemetry thus standardizes observability but hardly aims to overcome the 112

columnar separation into metrics, tracing, and logging. 113

In past and current industrial action research [4,6,8–14], I came across various cloud- 114

native applications and corresponding engineering methodologies like the 12-factor app 115

(see 4.1) and learned that the discussion around observability is increasingly moving 116

beyond these three stovepipes and taking a more nuanced and integrated view. There is a 117

growing awareness of integrating and unifying these three pillars, and more emphasis is 118

being placed on analytics. 119

The research question arises whether these three historically emerged observability 120

stovepipes of logs, metrics and distributed traces could be handled more integrated and 121

with a more straightforward instrumentation approach. The results of this action research 122

study shows that this unification potential could be surprisingly easy to realize. This paper 123

presents the methodology in Sec. 3 and its results in Sec. 4 (including a logging prototype 124

in Sec 4.4 and its evaluation results in 4.5 as the main contribution of this paper to the 125

field). The results are discussed in Sec. 5. Furthermore, the study presents related work in 126

Sec. 6 and concludes its findings as well as future promising research directions in Sec. 7. 127

3. Methodology 128

This study followed the action research methodology as a proven and well-established re- 129

search methodology model for industry-academia collaboration in the software engineering 130

context to analyze the research-question mentioned above. Following the recommendations 131

of Petersen et al. [15], a research design was defined that applied iterative action research 132

cycles (see Fig. 3): 133

1. Diagnosis (Diagnosing according to [15]) 134

2. Prototyping (Action planning, design and taking according to [15]) 135

3. Evaluation including a may be required redesign (Evaluation according to [15]) 136

4. Transfer learning outcomes to further use cases (Specifying learning according to 137

[15]) 138

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

5 of 18

Figure 3. Action research methodology of this study

With each of the following use cases insights were transferred from the previous use case 139

into a structured logging prototype (see Fig. 3). The following use cases have been studied 140

and evaluated. 141

• Use Case 1: Observation of qualitative events occurring in an existing solution (on- 142

line code editor; https://codepad.th-luebeck.dev, this use case was inspired by our 143

research [11]) 144

• Use Case 2: Observation of distributed events along distributed services (distributed 145

tracing in an existing solution of an online code editor, see UC1) 146

• Use Case 3: Observation of quantitative data generated by a technical infrastructure 147

(Kubernetes platform, this use case was inspired by our research [14]) 148

• Use Case 4: Observation of a massive online event stream to gain experiences with 149

high-volume event streams (we used Twitter as a data source and tracked worldwide 150

occurrences of stock symbols, this use case was inspired by our research [16,17]) 151

4. Results 152

The analysis of cloud-native methodologies like the 12-factor app [18] has shown that to 153

build observability, one should take a more nuanced and integrated view to integrate and 154

unify these three pillars of metrics, traces, and logs to enable more agile and convenient 155

analytics in feedback information flow in DevOps cycles (see Fig. 1). Two aspects that 156

gained momentum in cloud-native computing are of interest: 157

• Recommendations on how to handle log forwarding and log consolidaion in cloud- 158

native applications 159

• Recommendations to apply structured logging 160

Because both aspects guided the implementation of the logging prototype deeply, they will 161

be explained in more details providing the reader the necessary context. 162

4.1. Twelve-factor apps 163

The 12-factor app is a method [18] for building software-as-a-service applications that 164

pay special attention to the dynamics of organic growth of an application over time, 165

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://codepad.th-luebeck.dev
https://doi.org/10.20944/preprints202208.0427.v1

6 of 18

the dynamics of collaboration between developers working together on a codebase, and 166

avoiding the cost of software erosion. At its core, 12 rules (factors) should be followed to 167

develop well-operational and evolutionarily developable distributed applications. This 168

methodology harmonizes very well with microservice architecture approaches [3] and 169

cloud-native operating environments like Kubernetes [19], which is why the 12-factor 170

methodology is becoming increasingly popular. Incidentally, the 12-factor methodology 171

does not contain any factor explicitly referring to observability, certainly not in the triad of 172

metrics, tracing and logging. However, factor XI recommends how to handle logging: 173

Logs are the stream of aggregated events sorted by time and summarized from the output 174

streams of all running processes and supporting services. Logs are typically a text format 175

with one event per line. 176

[...] 177

A twelve-factor app never cares about routing or storing its output stream. It should 178

not attempt to write to or manage log files. Instead, each running process writes its 179

stream of events to stdout. [...] On staging or production deploys, the streams of all 180

processes are captured by the runtime environment, combined with all other streams of 181

the app, and routed to one or more destinations for viewing or long-term archiving. These 182

archiving destinations are neither visible nor configurable to the app - they are managed 183

entirely from the runtime environment. 184

4.2. From logging to structured logging 185

The logging instrumentation is quite simple for developers and works mainly programming 186

language specific but basically according to the following principle illustrated in Python. 187

A logging library must often be imported, defining so-called log levels such as DEBUG, 188

INFO, WARNING, ERROR, FATAL, and others. While the application is running, a log 189

level is usually set via an environment variable, e.g. INFO. All log calls above this level are 190

then written to a log file. 191

1 import logging 192

logging.basicConfig(filename="example.log", level=logging.DEBUG) 193

3 logging.debug("Performing␣user␣check") 194

user = "Nane␣Kratzke" 195

5 logging.info(f"User␣{␣user␣}␣tries␣to␣log␣in.") 196

logging.warning(f"User␣{␣user␣}␣not␣found ’) 197

7 logging.error(f"User { user } has been banned.") 198

For example, line 5 would create the following entry in a log file: 199

1 INFO 2022 -01 -27 16:17:58 - User Nane Kratzke tries to log in 200

In a 12-factor app, this logging would be configured so that events are written directly to 201

Stdout (console). The runtime environment (e.g., Kubernetes with FileBeat service installed) 202

then routes the log data to the appropriate database taking work away from the developer 203

that they would otherwise have to invest in log processing. This type of logging is well 204

supported across many programming languages and can be consolidated excellently with 205

the ELK stack (or other observability stacks). 206

Logging (unlike distributed tracing and metrics collection) is often not even perceived 207

as (complex) instrumentation by developers. Often it is done on their own initiative. 208

However, one can systematize this instrumentation somewhat and extend it to so-called 209

"structured logging". Again, the principle is straightforward. One simply does not log lines 210

of text like 211

1 INFO 2022 -01 -27 16:17:58 - User Nane Kratzke tries to log in 212

but instead, the same information in a structured form, e.g. using JSON: 213

1 {"log␣level": "info", "timestamp": "2022 -01 -27␣16:17:58", "event": "Log␣in", 214

"user": "Nane␣Kratzke", "result": "success"} 215

In both cases, the text is written to the console. In the second case, however, a structured text- 216

based data format is used that is easier to evaluate. In the case of a typical logging statement 217

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

7 of 18

like "User Max Mustermann tries to log in" the text must first be analyzed to determine the 218

user. This text parsing is costly on a large scale and can also be very computationally 219

intensive and complex if there is plenty of log data in a variety of formats (which is the 220

common case in the real world). 221

However, in the case of structured logging, this information can be easily extracted 222

from the JSON data field "user". In particular, more complex evaluations become much 223

easier with structured logging as a result. However, the instrumentation does not become 224

significantly more complex, especially since there are logging libraries for structured 225

logging. The logging looks in the logging prototype log12 of this study like this: 226

1 import log12 227

[...] 228

3 log12.error("Log␣in", user=user , result="Not␣found", reason="Banned") 229

The resulting log files are still readable for administrators and developers (even if a bit more 230

unwieldy) but much better processable and analyzable by databases such as ElasticSearch. 231

Quantitative metrics can also be recorded in this way. Structured logging can thus also be 232

used for the recording of quantitative metrics. 233

1 import log12 234

[...] 235

3 log12.info("Open␣requests", requests=len(requests)) 236

1 { "event": "Open␣requests", "requests": 42 } 237

What is more, this structured logging approach can also be used to create tracings. In 238

distributed tracing systems, a trace ID is created for each transaction that passes through a 239

distributed system. The individual steps are so-called spans. These are also assigned an 240

ID (span ID). The span ID is then linked to the trace ID, and the runtime is measured and 241

logged. In this way, the time course of distributed transactions can be tracked along the 242

components involved, and, for example, the duration of individual processing steps can be 243

determined. 244

4.3. Resulting and simplified logging architecture 245

So, if the two principles to print logs simply to stdout and to log in a structured and text- 246

based data format are applied consequently. The resulting observability system complexity 247

thus reduces from Fig. 2 to Fig. 4 because all system components can collect log, metric, and 248

trace information in the same style that can be routed seamlessly from an operation platform 249

provided log forwarder (already existing technology) to a central analytical database. 250

Figure 4. An observability system consistently based on structured logging with significantly reduced
complexity.

4.4. Study outcome: Unified instrumentation via an structured logging library (prototype) 251

This paper will briefly explain below the way to capture events, metrics, and traces using 252

the logging prototype that emerged. The prototype library log12 was developed in Python 253

3 but could implemented in other programming languages analogously. 254

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

8 of 18

log12 will create automatically for each event additional key-value attributes like an 255

unique identifier (that is used to relate child events to parent events and even remote events 256

in distributed tracing scenarios) and start and completion timestamps that can be used to 257

measure the runtime of events (although known from distributed tracing libraries but not 258

common for logging libraries). It is explained 259

• how to create a log stream, 260

• how an event in a log stream is created and logged, 261

• how a child event can be created and assigned to a parent event (to trace and record 262

runtimes of more complex and dependent chains of events within the same process), 263

• and how to make use of the distributed tracing features to trace events that pass 264

through a chain of services in a distributed service of services system). 265

The following lines of code create a log stream with the name "logstream" that is logged to 266

stdout. 267

Listing 1: Creating an event log stream in log12
1 import log12 268

log = log12.logging("logstream", 269

3 general="value", tag="foo", service_mark="test" 270

) 271

Each event and child events of this stream are assigned a set of key-value pairs: 272

• general="value" 273

• tag="foo" 274

• service_mark="test" 275

These log-stream-specific key-value pairs can be used to define selection criteria in analytical 276

databases like ElasticSearch to filter events of a specific service only. The following lines of 277

code demonstrate how to create a parent event and child events. 278

Listing 2: Event logging in log12 using blocks as structure
Log events using the with clause 279

2 with log.event("Test", hello="World") as event: 280

event.update(test="something") 281

4 # adds event specific key value pairs to the event 282

283

6 with event.child("Subevent␣1␣of␣Test") as ev: 284

ev.update(foo="bar") 285

8 ev.error("Catastrophe") 286

Explicit call of log (here on error level) 287

10 288

with event.child("Subevent␣2␣of␣Test") as ev: 289

12 ev.update(bar="foo") 290

Implicit call of ev.info(" Success ") (at block end) 291

14 292

with event.child("Subevent␣3␣of␣Test") as ev: 293

16 ev.update(bar="foo") 294

Implicit call of ev.info(" Success ") (at block end) 295

Furthermore, it is possible to log events in the event stream without the block style. That 296

might be necessary for programming languages that do not support to close resources (here 297

a log stream) at the end of a block. In this case programmers are responsible to close events 298

using the .info(), .warn(), .error() log levels. 299

Listing 3: Event logging in log12 without blocks
1 # To log events without with -blocks is possible as well. 300

ev = log.event("Another␣test", foo="bar") 301

3 ev.update(bar="foo") 302

child = ev.child("Subevent␣of␣Another␣test", foo="bar") 303

5 ev.info("Finished") 304

<= However , than you are are responsible to log events explicity 305

7 # If parent events are logged all subsequent child events 306

are assumed to have closed successfully as well 307

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

9 of 18

Using this type of logging to forward events along HTTP-based requests is also possible. 308

This usage of HTTP-Headers is the usual method in distributed tracing. Two main ca- 309

pabilities are required for this [20]. First, extracting header information received by an 310

HTTP service process must be possible. Secondly, it must be possible to inject the tracing 311

information in follow-up upstream HTTP requests (in particular, the trace ID and span ID 312

of the process initiating the request). 313

Listing 4 shows how log12 supports this with an extract attribute at event creation 314

and an inject method of the event that extracts relevant key-value pairs from the event so 315

that they can be passed as header information along an HTTP request. 316

Listing 4: Extraction and injection of tracing headers in log12
import log12 317

2 import requests # To generate HTTP requests 318

from flask import request # To demonstrate Header extraction 319

4 320

with log.event("Distributed␣tracing", extract=request.headers) as ev: 321

6 322

Here is how to pass tracing information along remote calls 323

8 with ev.child("Task␣1") as event: 324

response = requests.get(325

10 "https ://qr.mylab.th-luebeck.dev/route?url=https :// google.com", 326

headers=event.inject() 327

12) 328

event.update(length=len(response.text), status=response.status_code) 329

4.5. Evaluation of logging prototype in the definded use cases 330

Use Cases 1 and 2: Codepad is an online coding tool to share quickly short code snippets in 331

online and offline teaching scenarios. It has been introduced during the Corona Pandemic 332

shutdowns to share short code snippets mainly in online educational settings for 1st or 333

2nd semester computer science students. Meanwhile the tool is used in presence lectures 334

and labs as well. The reader is welcome to try out the tool at https://codepad.th-luebeck. 335

dev. This study used the Codepad tool in its steps 1, 2, 3, and 4 of its action research 336

methodology as an instrumentation use case (see Fig. 3) to evaluate the instrumentation of 337

qualitative system events according to Sec. 4.4. Fig. 5 shows the Web-UI on the left and the 338

resulting dashboard on the right. In a transfer step (steps 12, 13, 14, and 15 of the action 339

research methodolgy, see Fig. 3) the same product was used to evaluate distributed tracing 340

instrumentation (not covered in detail by this report). 341

Figure 5. Use Cases 1 and 2: Codepad is an online coding tool to share quickly short code snippets in
online and offline teaching scenarios. On the left the Web-UI. On the right the Kibana Dashboard
used for observability in this study. Codepad was used as an instrumentation object of investigation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://codepad.th-luebeck.dev
https://codepad.th-luebeck.dev
https://codepad.th-luebeck.dev
https://doi.org/10.20944/preprints202208.0427.v1

10 of 18

The Use Case 3 (steps 5, 6, 7, 8 of research methodology; Fig. 3) observed an institutes 342

infrastructure, the so-called myLab infrastructure. myLab (https://mylab.th-luebeck.dev) 343

is a virtual laboratory that can be used by students and faculty staff to develop and host 344

web applications. This use case was chosen to demonstrate that it is possible to collect 345

primarily metrics based data over a long term using the same approach as in Use Case 1. A 346

pod tracked mainly the resource consumption of various differing workloads deployed by 347

more than 70 student web projects of different university courses. To observe this resource 348

consumption the pod simply run periodically 349

• kubectl top nodes 350

• kubectl top pods –all-namespaces 351

against the cluster. This observation pod parsed the output of both shell commands and 352

printed the parsed results in the structured logging approach presented in Sec. 4.4. Fig. 6 353

shows the resulting Kibana dashboard for demonstration purposes. 354

Figure 6. Use Case 3: The dashboard of the Kubernetes infrastructure under observation (myLab)

The Use Case 4 (steps 9, 10, 11 of research methodology; Fig. 3) left our own ecosystem and 355

observed the public Twitter Event stream as a type representative for a high-volume and 356

long-term observation of an external system. So, a system that was intentionally not under 357

the direct administrative control of the study investigators. The Use Case 4 was designed as 358

two phase study: The first screening phase was designed to gain experiences in logging high 359

volume event streams and to provide necessary features and performance optimizations 360

to the structured logging library prototype. The screening phase was designed to screen 361

the complete and representative Twitter traffic as a kind of "ground truth". We were 362

interested in the distribution of languages and stock symbols in relation to the general 363

Twitter "background noise". This screening phase lasted from 20/01/2022 to 02/02/2022 364

and identified most used stock symbols. A long-term recording was then done as a second 365

long-term evaluation phase and was used to track and record the most frequent used stock 366

symbols identified in the screening phase. This evaluation phase lasted from Feb. 2022 until 367

mid of August 2022. In this evaluation phase just one infrastructure downtime occurred 368

due to a shutdown of electricity of the author’s institute. However, this downtime was not 369

due to or related to the presented unified logging stack (see Fig. 9). 370

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://mylab.th-luebeck.dev
https://doi.org/10.20944/preprints202208.0427.v1

11 of 18

hashtag

mention
symbol

tweet

user

Screening
phase

0.0

0.5

1.0

1.5

Ev
en

ts
 p

er
 d

ay

1e7

all events
symbols

hashtag

mention

symbol

tweet

user

Evaluation
phase

2022-02
2022-03

2022-04
2022-05

2022-06
2022-07

2022-08
0

2

4

Ev
en

ts
 p

er
 d

ay

1e6

Infrastructure
downtime

LUNA crash all events
symbols

Figure 7. Recorded events (screening and evaluation phase of Use Case 4).

The recording was done using the following source code, compiled into a Docker container, 371

that has been executed on a Kubernetes cluster that has been logged in Use Case 1, 2, and 3. 372

FileBeat was used as a log forwarding component to a background ElasticSearch database. 373

The resulting event log has been analyzed and visualized using Kibana. Kibana was used 374

as well to collect the data in form of CSV-Files for the screening and the evaluation phase. 375

The Fig. 7, 8, and 9 have been compiled from that data. This setting followed exactly the 376

unified and simplified logging architecture presented in Fig. 4. 377

Listing 5: The used logging program to record Twitter stock symbols from the public
Twitter Stream API

1 import log12 , tweepy , os 378

379

3 KEY = os.environ.get("CONSUMER_KEY") 380

SECRET = os.environ.get("CONSUMER_SECRET") 381

5 TOKEN = os.environ.get("ACCESS_TOKEN") 382

TOKEN_SECRET = os.environ.get("ACCESS_TOKEN_SECRET") 383

7 384

LANGUAGES = [l.strip() for l in os.environ.get("LANGUAGES", "").split(",")] 385

9 TRACK = [t.strip() for t in os.environ.get("TRACKS").split(",")] 386

387

11 log = log12.logging("twitter␣stream") 388

389

13 class Twista(tweepy.Stream): 390

391

15 def on_status(self , status): 392

with log.event("tweet", tweet_id=status.id_str , 393

17 user_id=status.user.id_str , lang=status.lang 394

) as event: 395

19 kind = "status" 396

kind = "reply" if status._json[’in_reply_to_status_id ’] else kind 397

21 kind = "retweet" if ’retweeted_status ’ in status._json else kind 398

kind = "quote" if ’quoted_status ’ in status._json else kind 399

23 event.update(lang=status.lang , kind=kind , message=status.text) 400

401

25 with event.child(’user’) as usr: 402

name = status.user.name if status.user.name else "unknown" 403

27 usr.update(lang=status.lang , id=status.user.id_str , 404

name=name , 405

29 screen_name=f"@{status.user.screen_name}", 406

message=status.text , 407

31 kind=kind 408

) 409

33 410

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

12 of 18

for tag in status.entities[’hashtags ’]: 411

35 with event.child(’hashtag ’) as hashtag: 412

hashtag.update(lang=status.lang , 413

37 tag=f"#{tag[’text ’].lower()}", 414

message=status.text , 415

39 kind=kind 416

) 417

41 418

for sym in status.entities[’symbols ’]: 419

43 with event.child(’symbol ’) as symbol: 420

symbol.update(lang=status.lang , 421

45 symbol=f"${sym[’text ’].upper ()}", 422

message=status.text , 423

47 kind=kind 424

) 425

49 symbol.update(screen_name=f"@{status.user.screen_name}") 426

427

51 for user_mention in status.entities[’user_mentions ’]: 428

with event.child(’mention ’) as mention: 429

53 mention.update(lang=status.lang , 430

screen_name=f"@{user_mention[’screen_name ’]}", 431

55 message=status.text , 432

kind=kind 433

57) 434

435

59 record = Twista(KEY , SECRET , TOKEN , TOKEN_SECRET) 436

if LANGUAGES: 437

61 record.filter(track=TRACK , languages=LANGUAGES) 438

else: 439

63 record.filter(track=TRACK) 440

According to Fig. 7, just every 100th observed event in the screening phase was a stock 441

symbol. That is simply the "ground-truth" on Twitter. If one is observing the public Twitter 442

stream without any filter, that is what you get. So, the second evaluation phase recorded 443

a very specific "filter bubble" of the Twitter stream. The reader should be aware, that the 444

data presented in the following is a clear bias and not a representative Twitter event stream, 445

it is clearly a stock market focused subset or to be even more precise: a cryptcocurrency 446

focused subset, because almost all stock symbols on Twitter are related to cryptocurrencies. 447

It is possible to visualize the resulting effects using the recorded data. Fig. 8 shows the 448

difference in language distributions of the screening phase (unfiltered ground-truth) and 449

the evaluation phase (activated symbol filter). While in the screening phase English (en), 450

Spanish (es), Portugese (pt), and Turkish (tr) are responsible for more than 3/4 of all traffic, 451

in the evaluation phase almost all recorded Tweets are in English. So, on Twitter, the most 452

stock symbol related language is clearly English. 453

en

es

pt
tr

Other
fr
und
ja
itplinLanguages

(ISO code)

Screening phase

en

und
OthertrqmefresjaincydeLanguages

(ISO code)

Evaluation phase

Figure 8. Observed languages (screening and evaluation phase of Use Case 4).

Although the cryptocurrency logging was used mainly as a use case for technical evaluation 454

purposes of the logging library prototype, some interesting insights could be gained. E.g., 455

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

13 of 18

although Bitcoin (BTC) is likely the most prominent cryptocurrency, it is by far not the most 456

frequent used stock symbol on Twitter. The most prominent stock symbols on Twitter are: 457

• ETH: Ethereum cryptocurrency 458

• SOL: Solana cryptocurrency 459

• BTC: Bitcoin cryptocurrency 460

• LUNA: Terra Luna cryptocurrency (replaced by a new version after the crash in May 461

2022) 462

• BNB: Binance Coin cryptocurrency 463

What is more, we can see interesting details in trends (see Fig. 9). 464

• The ETH usage on Twitter seems to reducing throughout our observed period. 465

• The SOL usage is on the opposite increasing, although we observed a sharp decline in 466

July. 467

• The LUNA usage has a clear peak that correlates with the LUNA cryptocurrency crash 468

in the mid of May 2022 (this crash was heavily reflected in the investor media). 469

The Twitter usage was not correlated with the curreny rates on crpytocurrency stock 470

markets. However, changes in usage patterns of stock market symbols might be of interest 471

for cryptocurrency investors as interesting indicators to observe. As this study shows, these 472

changes can be easily tracked using structured logging approaches. Of course, this can be 473

transferred to other social media streaming or general event streaming use cases like IoT 474

(Internet of Things) as well. 475

5. Discussion 476

This style of a unified and structured observability was successfully evaluated on several 477

use cases that made usage of a FileBeat/ElasticSearch-based observability stack. However, 478

other observability stacks that can forward and parse structured text in a JSON-format will 479

likely show the same results. The evaluation included a long-term test over more than six 480

months for a high-volume evaluation use-case. 481

• On the one hand, it could be proven that such a type of logging can easily be used to 482

perform classic metrics collections. For this purpose, BlackBox metrics such as CPU, 483

memory, and storage for the infrastructure (nodes) but also the "payload" (pods) were 484

successfully collected and evaluated in several Kubernetes clusters (see Fig. 6). 485

• Second, a high-volume use case was investigated and analyzed in-depth. Here, all 486

English-language tweets on the public Twitter stream were logged. About 1 million 487

events per hour were logged over a week and forwarded to an ElasticSearch database 488

using the log forwarder FileBeat. Most systems will generate far fewer events (see 489

Figure 7). 490

2022-02 2022-03 2022-04 2022-05 2022-06 2022-07 2022-08
0

100000

200000

300000

400000

500000

600000

700000

800000

Infrastructure
downtime

LUNA crash

decline unclear

Recorded symbols per day (Screening phase)
$ETH $SOL $BTC $LUNA $BNB

Figure 9. Recorded symbols per day (evaluation phase of Use Case 4).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

14 of 18

• In addition, the prototype logging library log12 is meanwhile used in several internal 491

systems, including web-based development environments, QR code services, and 492

e-learning systems, to record access frequencies to learning content, and to study 493

learning behaviours of students. 494

5.1. Lessons learned 495

All use cases have shown that structured logging is easy to instrument and harmonizes 496

well with existing observability stacks (esp. Kubernetes, Filebeat, ElasticSearch, Kibana). 497

However, some aspects should be considered: 498

1. It is essential to apply structured logging, cause this can be used to log events, metrics, 499

and traces in the same style. 500

2. Very often, only error-prone situations are logged. However, if you want to act in the 501

sense of DevOps-compliant observability, you should also log normal - completely 502

regular - behaviour. DevOps engineers can gain many insights from how normal 503

users use systems in standard situations. So, the log level should be set to INFO, and 504

not WARNING, ERROR, or above. 505

3. Cloud-native system components should rely on the log forwarding and log aggrega- 506

tion of the runtime environment. Never implement this on your own. You will double 507

logic and end up with complex and may be incompatible log aggregation systems. 508

4. To simplify analysis for engineers, one should push key-value pairs of parent events 509

down to child events. This logging approach simplifies analysis in centralized log 510

analysis solutions - it simply reduces the need to derive event contexts that might be 511

difficult to deduce in JSON document stores. However, this comes with the cost of 512

more extensive log storage. 513

5. Do not collect aggregated metrics data. The aggregation (mean, median, percentile, 514

standard deviations, sum, count, and more) can be done much more convenient in 515

the analytical database. The instrumentation should focus on recording metrics data 516

in a point-on-time style. According to our developer experience, developers are glad 517

to be authorized to log only such simple metrics, especially when there is not much 518

background knowledge in statistics. 519

5.2. Threats of validity and to be considered limitations of the study design 520

Action research is prone to drawing incorrect or non-generalizable conclusions. Logically, 521

the significance is consistently highest within the considered use cases. In order to draw 522

generalizable conclusions, this study defined use cases in such a way that intentionally 523

different classes of telemetry data (logs, metrics, traces) were considered. It should be noted 524

that the study design primarily considered logs and metrics but traces only marginally. 525

Traces were not wholly neglected, however, but were analyzed less intensively. 526

The long-term acquisition was performed with a high-volume use case to cover certain 527

stress test aspects. However, the reader must be aware, that the screening phase generated 528

significantly higher data volumes in Use Case 4 than the evaluation phase. Therefore, to use 529

stress test data from this study, one should look at the event volume of the screening phase 530

of Use Case 4. Here, about ten thousand events per minute were logged for more than a 531

week giving an impression of the performance of the proposed approach. The study data 532

shows that the saturation limit should be far beyond these ten thousand events per minute. 533

However, the study design did not pushed the system to its event recording saturation 534

limits. 535

What is more, this study should not be used to derive any cryptocurrency related 536

conclusions. Although some interesting aspects from Use Case 4 could be of interest for 537

cryptocurency trading indicator generation. However, no detailed analysis on correlations 538

between stock prices and usage frequencies of stock symbols on Twitter have been done. 539

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

15 of 18

6. Related work 540

There are relatively few studies dealing with observability as a main object of investigation 541

in an academic understanding. The field is currently treated somewhat stepmotherly. 542

However, an interesting and recent overview is provided by the survey of Usman et al. 543

[21]. This survey provides a list of microservice-focused managed and unified observability 544

services (Dynatrace, Datadog, New Relic, Sumo Logic, Solar Winds, Honeycomb). The 545

presented research prototype of this study heads into the same direction, but tries to pursue 546

the problem primarily on the instrumenting side using a more lightweight and unified 547

approach. So, to address the client-side of the problem is obviously harder economical ex- 548

ploitable which is why the industry might address the problem preferable on the managed 549

service side. 550

Of logs, metrics and distributed traces, distributed tracing is still considered in the 551

most detail. In particular, the papers around Dapper [20] should be mentioned here, which 552

had a significant impact on this field. A black box approach without instrumenting needs 553

for distributed tracing is presented by [22]. This study, however, has seen tracing as only 554

one of three aspects of observability and therefore follows a broader approach. A more 555

recent review on current challenges and approaches of distributed tracing is presented by 556

Bento et. al. [23]. 557

6.1. Existing instrumenting libraries and observability solutions 558

Although the academic coverage of the observability field is expandable, in practice, there is 559

an extensive set of existing solutions, especially for time series analysis and instrumentation. 560

A complete listing is beyond the scope of this paper. However, from the disproportion 561

of the number of academic papers to the number of real existing solutions, one quickly 562

recognizes the practical relevance of the topic. Table 1 contains a list of existing database 563

products often used for telemetry data consolidation to give the reader an overview without 564

claiming completeness. This study used ElasticSearch as an analytical database. 565

Table 1. Often seen databases for telemetry data consolidation. Products used in this study are
marked bold ⊗. Without claiming completeness.

Product Organization License often seen scope

APM Elastic Apache 2.0 Tracing (add-on to ElasticSearch database)
ElasticSearch ⊗ Elastic Apache/Elastic License 2.0 Logs, Tracing, (rarely Metrics)
InfluxDB Influxdata MIT Metrics
Jaeger Linux Foundation Apache 2.0 Tracing
OpenSearch Amazon Web Services Apache 2.0 Logs, Tracing, (rarely Metrics); fork from ElasticSearch
Prometheus Linux Foundation Apache 2.0 Metrics
Zipkin OpenZipkin Apache 2.0 Tracing

Table 2 lists several frequently used forwarding solutions that developers can use to forward 566

data from the point of capture to the databases listed in Table 1. In the context of this study, 567

FileBeat was used as a log forwarding solution. It could be prooved that this solution is 568

also capable to forward traces and metrics if applied in a structured logging setting. 569

Table 2. Often seen forwarding solutions for log consolidation. Products used in this study are
marked bold ⊗. Without claiming completeness.

Product Organization License

Fluentd FluentD Project Apache 2.0
Flume Apache Apache 2.0
LogStash Elastic Apache 2.0
FileBeat ⊗ Elastic Apache/Elastic License 2.0
Rsyslog Adiscon GPL
syslog-ng One Identity GPL

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

16 of 18

An undoubtedly incomplete overview of instrumentation libraries for different prod- 570

ucts and languages is given in Table 3, presumably because each programming language 571

comes with its own form of logging in the shape of specific libraries. To avoid this language- 572

binding is hardly possible in the instrumentation context unless one pursues "esoteric 573

approaches" like [22]. The logging library prototype is strongly influenced by the Python 574

standard logging library but also by structlog for structured logging but without actually 575

using these libraries. 576

Table 3. Often seen instrumenting libraries. Products that inspired the research prototype are marked
bold ⊗. Without claiming completeness.

Product Use Case Organization License Remark

APM Agents ⊗ Tracing Elastic BSD 3
Jaeger Clients Tracing Linux Foundation Apache 2.0
log Logging Go Standard Library BSD 3 Logging for Go
log4j Logging Apache Apache 2.0 Logging for Java
logging ⊗ Logging Python Standard Library GPL compatible Logging for Python
Micrometer Metrics Pivotal Apache 2.0
OpenTracing Tracing OpenTracing Apache 2.0
prometheus Metrics Linux Foundation Apache 2.0
Splunk APM Tracing Splunk Apache 2.0
structlog ⊗ Logging Hynek Schlawack Apache 2.0, MIT structured logging for Python
winston Logging Charlie Robbins MIT Logging for node.js

6.2. Standards 577

There are hardly any observability standards. However, a noteworthy standardization ap- 578

proach is the OpenTelemetry Specification [7] of the Cloud Native Computing Foundation 579

[24], that tries to standardize the way of instrumentation. This approach corresponds to the 580

core idea, which this study also follows. Nevertheless, the standard is still divided into Logs 581

[25], Metrics [26] and Traces [27], which means that the conceptual triad of observability 582

is not questioned. On the other hand, approaches like the OpenTelemetry Operator [28] 583

for Kubernetes enable to inject auto-instrumentation libraries for Java, Node.js and Python 584

into Kubernetes operated applications which is a feature that is currently not addressed 585

by the present study. However, so-called service meshes also use auto-instrumentation. A 586

developing standard here is the so-called Service Mesh Interface (SMI) [29]. 587

7. Conclusions and Future Research Directions 588

Cloud-native software systems often have a much more decentralized structure and many 589

independently deployable and (horizontally) scalable components, making it more compli- 590

cated to create a shared and consolidated picture of the overall decentralized system state. 591

Today, observability is often understood as a triad of collecting and processing metrics, 592

distributed tracing data, and logging. But why except for historical reasons? 593

This study presents a unified logging library for Python [30] and a unified logging 594

architecture (see Fig. 4) that uses a structured logging approach. The evaluation of four 595

use cases shows that several thousand events per minute are easily processable and can 596

be used to handle logs, traces, and metrics the same. At least, this study was able with 597

a straight-forward approach to log the world-wide Twitter event stream of stock market 598

symbols over a period of six months without any noteworthy problems. As a side effect, 599

some interesting aspects how crypto-currencies are reflected on Twitter could be derived. 600

This might be of minor relevance for this study but shows the overall potential of an unified 601

and structured logging based observability approach. 602

The presented approach relies on an easy-to-use programming language-specific 603

logging library that follows the structured logging approach. The long-term observation 604

results of more than six months indicate that a unification of the current observability 605

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.20944/preprints202208.0427.v1

17 of 18

triad of logs, metrics, and traces is possible without the necessity to develop utterly new 606

toolchains. The trick is to 607

• use structured logging and 608

• apply log forwarding to a central analytical database 609

• in a systematic infrastructure- or platform-provided way. 610

Further research should therefore be concentrated on the instrumenting and less on the 611

log forwarding and consolidation layer. If we instrument logs, traces, and metrics in the 612

same style using the same log forwarding, we automatically generate correlatable data in a 613

single data source of truth and we simplify analysis. 614

So, the observability road ahead may have several paths. On the one hand, we 615

should standardize the logging libraries in a structured style like log12 in this study 616

or the OpenTelemetry project in the "wild". Logging libraries should be comparably 617

implemented in different programming languages and shall generate the same structured 618

logging data. So, we have to standardize the logging SDKs and the data format. Both 619

should be designed to cover logs, metrics, and distributed traces in a structured format. To 620

simplify instrumentation further, we should additionally think about auto-instrumentation 621

approaches, for instance, proposed by the OpenTelemetry Kubernetes Operator [28] and 622

several Service Meshes like Istio [31] and corresponding standards like SMI [29]. 623

Funding: This research received no external funding. 624

Data Availability Statement: The resulting research prototype of the developed structured logging 625

library log12 can be accessed here [30]. However, the reader should be aware, that this is prototyping 626

software in progress. 627

Conflicts of Interest: The author declares no conflict of interest. 628

References 629

1. Kalman, R. On the general theory of control systems. IFAC Proceedings Volumes 1960, 1, 491–502. 1st International IFAC Congress 630

on Automatic and Remote Control, Moscow, USSR, 1960, https://doi.org/https://doi.org/10.1016/S1474-6670(17)70094-8. 631

2. Kalman, R.E. Mathematical Description of Linear Dynamical Systems. Journal of the Society for Industrial and Applied Mathematics 632

Series A Control 1963, 1, 152–192. https://doi.org/10.1137/0301010. 633

3. Newman, S. Building Microservices, 1st ed.; O’Reilly Media, Inc., 2015. 634

4. Kim, G.; Humble, J.; Debois, P.; Willis, J.; Forsgren, N. The DevOps handbook: How to create world-class agility, reliability, & security in 635

technology organizations; IT Revolution, 2016. 636

5. Davis, C. Cloud Native Patterns: Designing change-tolerant software; Simon and Schuster, 2019. 637

6. Kratzke, N. Cloud-native Computing: Software Engineering von Diensten und Applikationen für die Cloud; Carl Hanser Verlag GmbH 638

Co. KG, 2021. 639

7. The OpenTelemetry Authors. The OpenTelemetry Specification, 2021. 640

8. Kratzke, N.; Peinl, R. ClouNS - a Cloud-Native Application Reference Model for Enterprise Architects. In Proceedings 641

of the 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), 2016, pp. 1–10. https: 642

//doi.org/10.1109/EDOCW.2016.7584353. 643

9. Kratzke, N.; Quint, P.C. Understanding Cloud-native Applications after 10 Years of Cloud Computing - A Systematic Mapping 644

Study. Journal of Systems and Software 2017, 126, 1–16. https://doi.org/10.1016/j.jss.2017.01.001. 645

10. Kratzke, N. A Brief History of Cloud Application Architectures. Applied Sciences 2018, 8. https://doi.org/10.3390/app8081368. 646

11. Kratzke, N. How programming students trick and what JEdUnit can do against it. In Computer Supported Education ; Lane, H.C.; 647

Zvacek, S.; Uhomoibhi, J., Eds.; Springer International Publishing , 2020; pp. 1–25. CSEDU 2019 - Revised Selected Best Papers 648

(CCIS), https://doi.org/10.1007/978-3-030-58459-7_1. 649

12. Kratzke, N. Einfachere Observability durch strukturiertes Logging. Informatik Aktuell 2022. 650

13. Kratzke, N.; Siegfried, R. Towards Cloud-native Simulations - Lessons learned from the front-line of cloud computing. Journal of 651

Defense Modeling and Simulation 2020. https://doi.org/10.1177/1548512919895327. 652

14. Truyen, Eddy.; Kratzke, Nane.; Van Landyut, Dimitri.; Lagaisse, Bert.; Joosen, Wouter. Managing Feature Compatibility in 653

Kubernetes: Vendor Comparison and Analysis. IEEE Access 2020, 8, "228420–228439". https://doi.org/10.1109/ACCESS.2020.3 654

045768. 655

15. Petersen, K.; Gencel, C.; Asghari, N.; Baca, D.; Betz, S. Action Research as a Model for Industry-Academia Collaboration in the 656

Software Engineering Context. In Proceedings of the Proceedings of the 2014 International Workshop on Long-Term Industrial 657

Collaboration on Software Engineering; Association for Computing Machinery: New York, NY, USA, 2014; WISE ’14, p. 55–62. 658

https://doi.org/10.1145/2647648.2647656. 659

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/https://doi.org/10.1016/S1474-6670(17)70094-8
https://doi.org/10.1137/0301010
https://doi.org/10.1109/EDOCW.2016.7584353
https://doi.org/10.1109/EDOCW.2016.7584353
https://doi.org/10.1109/EDOCW.2016.7584353
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.3390/app8081368
https://doi.org/10.1007/978-3-030-58459-7_1
https://doi.org/10.1177/1548512919895327
https://doi.org/10.1109/ACCESS.2020.3045768
https://doi.org/10.1109/ACCESS.2020.3045768
https://doi.org/10.1109/ACCESS.2020.3045768
https://doi.org/10.1145/2647648.2647656
https://doi.org/10.20944/preprints202208.0427.v1

18 of 18

16. Kratzke, N. The #BTW17 Twitter Dataset - Recorded Tweets of the Federal Election Campaigns of 2017 for the 19th German 660

Bundestag. Data 2017, 2. https://doi.org/10.3390/data2040034. 661

17. Kratzke, N. Monthly Samples of German Tweets, 2022. https://doi.org/10.5281/zenodo.2783954. 662

18. Wiggins, A. The Twelve-Factor App, 2017. https://12factor.net. 663

19. The Kubernetes Authors. Kubernetes, 2014. https://kubernetes.io. 664

20. Sigelman, B.H.; Barroso, L.A.; Burrows, M.; Stephenson, P.; Plakal, M.; Beaver, D.; Jaspan, S.; Shanbhag, C. Dapper, a Large-Scale 665

Distributed Systems Tracing Infrastructure. Technical report, Google, Inc., 2010. 666

21. Usman, M.; Ferlin, S.; Brunstrom, A.; Taheri, J. A Survey on Observability of Distributed Edge & Container-based Microservices. 667

IEEE Access 2022, pp. 1–1. https://doi.org/10.1109/ACCESS.2022.3193102. 668

22. Chow, M.; Meisner, D.; Flinn, J.; Peek, D.; Wenisch, T.F. The Mystery Machine: End-to-end Performance Analysis of Large-scale 669

Internet Services. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14); 670

USENIX Association: Broomfield, CO, 2014; pp. 217–231. 671

23. Bento, A.; Correia, J.; Filipe, R.; Araujo, F.; Cardoso, J. Automated Analysis of Distributed Tracing: Challenges and Research 672

Directions. Journal of Grid Computing 2021, 19, 9. https://doi.org/10.1007/s10723-021-09551-5. 673

24. Linux Foundation. Cloud-native Computing Foundation, 2015. https://cncf.io. 674

25. The OpenTelemetry Authors. The OpenTelemetry Specification - Logs Data Model, 2021. https://opentelemetry.io/docs/ 675

reference/specification/logs/data-model/. 676

26. The OpenTelemetry Authors. The OpenTelemetry Specification - Metrics SDK, 2021. https://opentelemetry.io/docs/reference/ 677

specification/metrics/sdk/. 678

27. The OpenTelemetry Authors. The OpenTelemetry Specification - Tracing SDK, 2021. https://opentelemetry.io/docs/reference/ 679

specification/trace/sdk/. 680

28. The OpenTelemetry Authors. The OpenTelemetry Operator, 2021. https://github.com/open-telemetry/opentelemetry-operator. 681

29. Service Mesh Interface Authors. SMI: A standard interface for service meshes on Kubernetes, 2022. https://smi-spec.io. 682

30. Kratzke, N. log12 - a single and self-contained structured logging library, 2022. https://github.com/nkratzke/log12. 683

31. Istio Authors. The Istio service mesh, 2017. https://istio.io/. 684

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2022 doi:10.20944/preprints202208.0427.v1

https://doi.org/10.3390/data2040034
https://doi.org/10.5281/zenodo.2783954
https://12factor.net
https://kubernetes.io
https://doi.org/10.1109/ACCESS.2022.3193102
https://doi.org/10.1007/s10723-021-09551-5
https://cncf.io
https://opentelemetry.io/docs/reference/specification/logs/data-model/
https://opentelemetry.io/docs/reference/specification/logs/data-model/
https://opentelemetry.io/docs/reference/specification/logs/data-model/
https://opentelemetry.io/docs/reference/specification/metrics/sdk/
https://opentelemetry.io/docs/reference/specification/metrics/sdk/
https://opentelemetry.io/docs/reference/specification/metrics/sdk/
https://opentelemetry.io/docs/reference/specification/trace/sdk/
https://opentelemetry.io/docs/reference/specification/trace/sdk/
https://opentelemetry.io/docs/reference/specification/trace/sdk/
https://github.com/open-telemetry/opentelemetry-operator
https://smi-spec.io
https://github.com/nkratzke/log12
https://istio.io/
https://doi.org/10.20944/preprints202208.0427.v1

