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Using the principle of equivalence, it has recently been shown that the electrostatic field l ines of 
a charge, stationary in the gravitational field, b end exactly l ike the trajectories of photons emitted 
isotropically from a source at the charge location and that the fraction of electric flux crossing 
a surface ‘below’ or ‘above’ the charge is exactly similar to the fraction of photon trajectories 
intersecting these surfaces, with more flux in the downward direction than u pward. As one goes much 
deeper in the gravitational field, all electric field lines increasingly point in  the vertically downward 
direction as is also the case for a stream of photons. Since photon trajectories as well as electric 
field l ines, a t a ny l ocation i n t he g ravitational fi eld, ar e aff ected by the  loc al spa ce-time curvature 
an inference can be drawn that this parallel between the photon trajectories and the electric field 
lines is a general result. We could then apply these results in the external gravitational field o f a 
black hole, where the trajectories of photons in the gravitational field a re a lready well-known and 
the behaviour of electric field l ines of a  stationary charge could be inferred t herefrom. Accordingly, 
we show that the electric field t hrough a n e xternal s pherical s urface s urrounding t he b lack hole 
steadily reduces as the charge location approaches the event horizon (Schwarzschild radius), and 
like photons from a source inside the Schwarzschild radius cannot escape outside, the electric field 
lines of a charge within the black hole too remain trapped inside the event horizon. From this one 
arrives at a conclusion that, contrary to the conventional wisdom, the electric charge contained 
inside a static black hole cannot be detected or inferred by an external observer. A black hole, said 
to have no hair with the only external identifying characteristics being mass, electric charge, and 
angular momentum, is therefore all the more ‘hairless’, as even its charge cannot be ascertained. 
The derivation of the Reissner–Nordström metric, supposedly describing the gravitational field of a 
static charged black hole, presumes an external stress-energy tensor of the electrostatic field, as per 
Gauss law, even for the charges contained within the black hole. However, the absence of electric 
flux external to a  s tatic charged b lack hole implies that such a  charged b lack hole i s not described 
correctly by the Reissner–Nordström metric and the consequential peculiarities of the space-time 
geometry, leading in specific cases to the idea of a naked intrinsic singularity and a need for the 
“cosmic censorship” hypothesis, also do not arise here.

Keywords: Black Hole has no hair; Electromagnetic field of a charged black hole; electromagnetic field of a 
supported  charge in gravitational field; electric fields follow photo trajectories in gravitational field

I. INTRODUCTION

Almost immediately after Schwarzschild arrived at an
exact solution for a static spherical mass, in terms of
(t, r, θ, ϕ), called Schwarzschild coordinates [1], Reissner
and Nordström [2, 3], independently, came up with a
solution for an electrically charged static spherical mass
known as Reissner–Nordström (RN) metric, which sup-
posedly describes the external gravitational field of a
static charged black hole [4–9]. The derivation of the
RN metric presumes a stress-energy tensor of the elec-
trostatic field, in regions external to the the black hole,
due to the electric charge within the black hole and the
conventional wisdom is [4–9] that this electrostatic field
obeys Gauss law, like in the case of any other electrically
charged system, even when the region in question might
be encompassing a space-time singularity.

Using the principle of equivalence, it has recently been
shown [10] that in a uniform gravitational field not only
the photon trajectories follow a curved path, even the
electrostatic field lines of a charge follow exactly the bent
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trajectories of photons emitted isotropically from a source
situated at the charge location. The fraction of electric
field lines crossing a surface, above or below the charge
stationary in the gravitational field, has been shown to
be exactly similar to the fraction of photon trajectories
intersecting that surface. As one goes much deeper in
the gravitational field, the electric field lines, even if ini-
tially along horizontal directions while emanating from
the charge, point progressively downward vertically, as
is also the case for a stream of photons.

Maxwell equations can be transformed from a flat
spacetime to a curved spacetime by replacing commas
(partial derivatives) with semicolons (covariant deriva-
tives), which is nothing but rephrasing the equivalence
principle where a change from local flat spacetime to
curved spaceetime takes place by such a replacement
[4, 8, 11]. In the case of a black hole such an approach,
which could be rather involved, has been made in litera-
ture to get a general, multipole solution in terms of Leg-
endre polynomials for the electric potential of a charge
stationary in the Schwarzschild space [12, 13].

However, our interest here is a much simpler prob-
lem of studying what fraction of electrostatic field lines
reaches the horizon for a charge stationary at a certain
‘height’ in the gravitational field. This fraction has been
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shown to be similar for the trajectories of photons from a
source at the charge position in a uniform gravitational
field. Now, a uniform gravitational field and the horizon
encountered there is an archetypal of a black hole field
and the event horizon there [6, 14], and behaviour of
many a phenomenon in the external gravitational field of
a black hole field can be studied by analogy from a static
‘uniform’ gravitational field, which in turn is derived from
a comoving uniformly accelerated frame [10], using the
equivalence principle [4, 11]. It has been demonstrated
from the equivalence principle applied to the charge sta-
tionary at different ‘heights’ in the gravitational field in
Rindler space (of a uniformly accelerated charge) that
the electric field through an external surface ‘above’ the
charge reduces as the charge approaches the event hori-
zon [10].

From the equivalence principle, the trajectories of the
photons as well as the electric field lines, assumedly along
straight lines in the local Lorentz frame, at any location
in the gravitational field would be affected by the local
space-time curvature, independent of the ultimate source
of the gravitational field. Therefore we expect that this
parallel between the trajectories of the photons and the
electric field lines should be a general result. This ac-
tually has a genesis in the fact that both influences, viz.
the electric field and the photons, start from their respec-
tive sources in radial directions, moving with the same
speed c, therefore their transformations between differ-
ent frames should be similar too. From that we infer the
reduction of the electric flux external to a charged black
hole, as the position of the stationary charge approaches
the event horizon (Schwarzschild radius) in the case of
a black hole, becoming zero when the charge position
crosses the event horizon or is within the Schwarzschild
radius of a black hole.

Actually no particle or non-gravitational field or influ-
ence will ever cross the Schwarzschild radius to go from
inside to the outside of event horizon of the black hole.
Event horizon around a black hole is a boundary through
which matter and light can only pass inward towards the
central black hole. Nothing, not even light, can escape
out from inside the event horizon [4, 6–9]. As predicted
by the general relativity, the presence of a mass deforms
space-time in such a way that the paths taken by particles
bend towards the mass. At the event horizon of a black
hole, this deformation becomes so strong that there are
no paths that lead away from the black hole. The pho-
ton sphere is a spherical boundary of zero thickness such
that photons moving along tangents to the sphere will
be trapped in a circular orbit [4, 6, 7]. For non-rotating
black holes, the photon sphere has a radius 1.5 times the
Schwarzschild radius. While light can still escape from
inside the photon sphere, any light that crosses the pho-
ton sphere on an inbound trajectory will be captured by
the black hole. Any light reaching an outside observer
from inside the photon sphere must have been emitted
within a certain critical (acute) angle with respect to the
outward radial direction, by objects inside the photon

sphere but still outside of the event horizon [4, 6, 9].

Thus, in the case of a black hole, the trajectories of
photons in the gravitational field are well-known, and
is a text-book material [4, 6, 7]. Therefore, in order to
study the behaviour of electric field lines, we do not need
to perform separate calculations because the configura-
tion of the electric field of a supported charge can be ob-
tained from the already-known trajectories of photons.
If the photons from a source within certain radial coor-
dinate, the Schwarzschild radius, cannot escape out to
infinity and remain trapped inside the event horizon of
the black hole, the same has to be true for the electric
fields of a charge too. We shall thence demonstrate the
reduction of the electric flux external to a charged black
hole, as the position of the stationary charge approaches
the event horizon (Schwarzschild radius), becoming zero
when the charge position crosses the Schwarzschild radius
or is within the black hole event horizon.

Here we shall be analysing the situation for a col-
lapsed charged black hole and would not be concerned
with the possibility that for an external observer any
further electric charge falling into the already collapsed
charged black hole may need infinite amount of external
observer’s time to pass through the event horizon, and all
perceived black holes might for ever have their infalling
charge ever outside the event horizon as far as an external
observer is concerned.

According to the no-hair theorem [4], a collapsed black
hole has no other distinguishing properties except its
mass, angular momentum and the electric charge. Apart
from these, there is no external characteristic distinguish-
ing one black hole from another. Any two black holes that
share the same values for these properties, or parame-
ters, are indistinguishable according to classical physics.
Black holes, therefore, are classified commonly accord-
ing to their mass M , angular momentum J or/and elec-
tric charge Q. In particular, it is thought that a static
charged black hole, with charges inside the event hori-
zon, has, in addition to its gravitational field, an external
electromagnetic stress-energy tensor, quite like around
any other charged object. However, as we shall demon-
strate the electric field lines too would not extend out-
side the event horizon, from the electric charges inside
the black hole. Therefore one infers that the external
electric field of a charged black hole is zero and that the
electric charge contained inside a static black hole cannot
be detected or inferred by an external observer. Accord-
ingly, as we shall argue, a static charged black hole is
not correctly described by the Reissner–Nordström met-
ric and the consequential peculiarities of its space-time
geometry. Moreover, a black hole, with only two exter-
nal identifying characteristics, viz. its mass and angular
momentum, can be said to be even more ‘hairless’, as
even its charge cannot be ascertained.
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II. THE CRITERIA FOR PHOTONS OR
ELECTRIC FIELD LINES REACHING THE

HORIZON IN A SCHWARZSCHILD GEOMETRY

The metric for a static spherical mass M in
Schwarzschild coordinates (t, r, θ, ϕ) is written as [1]

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+r2 (dθ2 + sin2 θ dϕ2) , (1)

where we have adopted the sign convention of Misner et
al [4]. The metric can be expressed alternately in terms
of Schwarzschild radius, rs = 2GM/c2, as

ds2 = −
(
1− rs

r

)
c2dt2 +

(
1− rs

r

)−1

dr2 + r2dω2, (2)

where dω =
√
dθ2 + sin2 θdϕ2 is an element of solid an-

gle.
Assuming it to be a “point” mass, the only intrinsic sin-

gularity in the Schwarzschild geometry occurs at r = 0.
However, there is, in addition, a coordinate singularity
at the Schwarzschild radius, rs and it turns out that rs
presents a sort of barrier, called event horizon, from in-
side of which nothing, not even photons, can emerge out
of the black hole. It is interesting to note that in Newto-
nian mechanics rs corresponds to a radial distance where
the escape velocity is equal to the speed of light.

From the trajectories of photons emitted from a source
at different radial coordinate r in the external (r > rs)
gravitational field of a black hole, we want to deter-
mine the fraction f of photons reaching the horizon in
a Schwarzschild geometry. This would also tell us the
fraction 1 − f of photons that could emerge out of the
gravitational field of a black hole to ultimately escape to
infinity, even if highly redshifted.

Suppose a source S of photons is supported at a ra-
dial coordinate r0 in the gravitational field of a central
spherical mass M with a corresponding Schwarzschild
radius rs = 2GM/c2 (Fig. 1). Trajectories of photons
emitted by S at r0 along directions in a plane perpen-
dicular to the radial coordinate (ψ0 = π/2) will get bent
due to gravity by an angle ∆ψ ≈ ζ−1 for ζ ≫ 1, where
ζ = r0/rs is the radial coordinate expressed in units of
the Schwarzschild radius rs [4, 6, 7]. This has been amply
confirmed observationally where trajectories of photons
from distant astronomical objects coming along a tan-
gential direction to Sun’s limb, get bent in Sun’s gravita-
tional field, with 2ζ−1 ≈ 1.75 arcsec as the angle between
the two asymptotes to the photon trajectories before and
after the deflection [4, 6, 7, 15, 16]. This is consistent with
ζ = r0/rs ≈ 2.36× 105 for Sun’s limb at r0 = 6.96× 105

km and its Schwarzschild radius ≈ 2.95km, correspond-
ing to Sun’s mass M = 1.99 × 1030 kg. Now as r0 be-
comes smaller, the bending would increase, and we might
expect it to become so severe, as r0 approaches rs, that
the photon might not be able to escape out to infinity

FIG. 1. A schematic of the bending of photon trajectories
(electric field lines) in the gravitational field of a central spher-
ical mass M . The source of photons (electric charge) is held
stationary at a radial coordinate r0, much larger than the
Schwarzschild radius rs of M . The initial photon trajecto-
ries (electric field lines), starting from the source (charge)
along ψ0 in the horizontal plane, are represented by the dot-
ted line. The dashed curve represents the photon trajectories
(field lines) bent due to gravity, with asymptotes at angle
∆ψ ≈ ζ−1 = rs/r0 with respect to the initial directions. The
figure is drawn for ζ = r0/rs = 10.

and instead get captured by the central mass. This sce-
nario is equally applicable to an electric field line that,
starting horizontally from a charge held at ζ, would bend
due to gravity by an angle ζ−1, the bending increasing
at lower ζ values, eventually ending in the central mass
as ζ → 1.

Actually, in the case of a black hole, the trajectories
of photons through the gravitational field are well-known
for different ζ > 1 values. Thus we do not need to do sep-
arate computations for the electric field lines because the
configuration of the electric field of a supported charge
can be obtained from the known trajectories of photons.
If photons from a source at certain r0 cannot escape out
to infinity and do get trapped inside the event horizon of
the black hole, the same has to be true for electric field
lines from a charge located at that r0 and these electric
field lines too should also end up inside the event horizon
and not extend outside to infinity. Thus in the case of a
black hole, the electrostatic field lines following the path
of photons emitted at the charge location, and if photons
from within the Schwarzschild radius could not escape a
black hole’s event horizon, then the electric field lines too,
from electric charges lying within the black hole, would
not extend outside the event horizon.
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Gravitational bending of electrostatic field lines, simi-
lar to the photon trajectories, is applicable at all radial
coordinates beyond Schwarzschild radius, ζ > 1, where
the trajectories of photons through the gravitational field
of a black hole are well understood and are now a text-
book material [4, 6, 7, 9]. The ultimate fate of a photon
emitted within the gravitational field at a given radial
value ζ > 1 from the central mass, depends on the initial
angle ψ0 (made with respect to the radial outward direc-
tion) compared to a critical value ψc at ζ [4, 6, 9], given
by

sinψc =
3
√
3(1− 1/ζ)

2ζ
. (3)

Putting ζ = 3/2, we get ψc = π/2. However, for any
other ζ ̸= 3/2 but ζ > 1 value, there can be an am-
biguity in the ψc value, determined from Eq.(3), since
sin(π − ψc) = ψc. To resolve the ambiguity, we adopt
the convention that for ζ < 3/2, ψc < π/2, i.e., ψc lies
between 0 and < π/2, while for ζ > 3/2, ψc > π/2, im-
plying ψc lies between π/2 and π. Then only photons
emitted with ψ0 < ψc could escape to infinity.

Thus photons emitted even outward, i.e. ψ0 < π/2 but
along ψ0 > ψc, which could happen for ζ < 3/2, will not
escape to infinity, instead attain a maximum distance and
turn back to fall into the horizon [6]. On the other hand
photons emitted inward but within the critical angle, i.e.
π/2 < ψ0 < ψc, which could happen for ζ > 3/2, will
escape to infinity.

III. THE FRACTION OF PHOTONS
CAPTURED BY THE BLACK HOLE

For photons emitted from a source S, stationed at vari-
ous radial coordinates ζ in the gravitational field, we can
compute the fraction of photon that would ultimately
escape to infinity. Only photons emitted along ψ0 < ψc

(Eq. 3) from the source at ζ, can escape the gravitational
field and ultimately go to infinity. Let n be the temporal
rate of number of photons emitted per unit solid angle by
the source S, assuming an isotropic initial distribution.
If f is the fraction of the photons that falls in the hori-
zon, then 4πn(1 − f), the photon number-flux escaping
the gravitational field, is calculated from

4πn(1− f) = n

∫ ψc

0

2π sinψdψ = 2πn(1− cosψc) , (4)

implying, the fraction escaping the gravitation pull of the
black hole to be

1− f =
1− cosψc

2
, (5)

For very large initial distances, i.e. ζ → ∞, ψc →
π and all photons would escape to infinity and pho-
ton number-flux through a spherical surface Σ, of large
enough radius r > r0 around the black hole and thus en-
closing the source S, would be 4πn. However, for finite

TABLE I. Critical angle (ψc) for the source at some represen-
tative values of radial coordinate (ζ = r0/rs) and the fraction
f of photons that disappears into the horizon

ζ ψc(
◦) f

2.36× 105 (Sun) 180 3× 10−11

102 179 1.7× 10−4

10 166 1.5× 10−2

3 135 0.15
2 113 0.3

1.5 90 0.5
1.3 74 0.64
1.1 45 0.85

1 0 1.0

ζ, but with ζ ≫ 1, we can write sinψc ≈ 3
√
3/2ζ ≪ 1,

implying ψc ≈ π − 3
√
3/2ζ and the number of photons

that would escape to infinity or equivalently the pho-
ton number-flux through Σ, would be 2πn(1− cosψc) ≈
4πn(1− 27/16ζ2). This is because photons that get im-
mersed in the event horizon, do not emerge out again.

The fraction f of photons, reaching the event horizon
and thus disappearing in the black hole, is calculated
from Eq. (5) as

f =
1 + cosψc

2
, (6)

To get an idea of this fraction at different heights, for a
source at ζ = 2.36× 105 (the surface of Sun), the critical
angle ψc ∼ π − 10−5 radians and f ≈ 3 × 10−11, an in-
significant fraction that may not escape the gravitational
field. However, for decreasing values of ζ, the critical
angle ψc also decreases and accordingly the fraction f
steadily increases. For example, at ζ = 10, f = 0.015,
and the fraction falling on to the horizon may already be
appreciable, but for ζ = 2, it becomes a good fraction,
f ≈ 0.3. In fact, for ζ = 3/2, ψc = π/2 and f = 0.5,
photons emitted outward with ψ0 < π/2, will ultimately
travel to infinity, the other half number, with ψ0 > π/2,
will go through the horizon to disappear inside the black
hole. The total photon number-flux through a large sur-
face surrounding the black hole in this case would be 2πn,
with an equal number disappearing in the black hole. For
the source at still closer distances to the event horizon,
as ζ → 1, ψc → 0, implying all photons will disappear
through the horizon, with none reaching the distant ob-
server, justifying the name ‘black hole’.

Table 1 shows for some representative values of ra-
dial coordinate (ζ = r0/rs), where the source lies in the
gravitation field, the critical angle (ψc) and the frac-
tion f of photons that disappears into the event hori-
zon of the black hole. The first row in Table 1 is for a
source at the outer surface of Sun, where the critical an-
gle ψc ∼ π−10−5 radians and the fraction f ≈ 3×10−11,
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FIG. 2. For a source of photons held stationary at a radial coordinate ζ = r0/rs, in the gravitational field of a black hole, the
fraction f of the photon flux, that ultimately disappears in the horizon of the black hole, is shown by a dashed curve. The
fraction 1 − f , shown by a dash-dotted curve, escapes the gravitational field to reach infinity, and represents those photon
trajectories that start from the source along initial angle ψ0 < ψc, as seen by local observers in the gravitational field. Critical
angle ψc, whose values can be read on the right hand vertical scale, is depicted by a dotted curve, as a function of ζ (Eq. 3).

quite negligible. However as can be seen from the table,
for decreasing values of ζ, the critical angle ψc decreases
steadily and accordingly the fraction f becomes appre-
ciable. For ζ = 3, ψc = 135◦ with f = 0.15, while at
ζ = 2, about 30% of the total flux ends up in the hori-
zon. Of course for ζ = 1.5, ψc = 90◦ with f = 0.5,
but for ζ = 1.1, ψc = 45◦ with 85% of the flux lost in
the horizon, and as ζ approaches unity, all photons, ir-
respective of the initial direction, reach the horizon and
get captured by the black hole.

Figure 2 shows the fraction f of the photon flux, that
ultimately disappears in the horizon of the black hole.
Also shown in the figure is the fraction 1 − f that es-
capes the gravitational field to reach infinity. These are
those photon trajectories that start from the source along
an initial angle ψ0, as measured by local observers in the
gravitational field, lesser than a critical value, ψc, which
depends upon ζ, the location of the source in the gravi-
tational field, as shown in Fig. 2.

IV. THE ABSENCE OF EXTERNAL ELECTRIC
FLUX OF A CHARGED BLACK HOLE

As discussed in section II, the behaviour of electric field
lines in a gravitational field is similar to that of photons,
in the sense that the field lines follow the photon trajec-
tories and that the fraction of electric flux crossing a sur-
face ‘below’ or ‘above’ the charge is exactly similar to the
fraction of photon trajectories intersecting these surfaces.
For any given position of the charge in the gravitational
field, there may be less electric flux from the charge in
the ‘upward’ direction and more in the ‘downward’ direc-
tion. This difference in the upward and downward flux
increases as the charge position is brought nearer to the
event horizon and the difference becomes acute as the
charge approaches the horizon. The fraction of electric
field lines that reach the horizon and may disappear in
the black hole would exactly be similar as of photons that
reach the horizon and get captured by the black hole, de-
rived in section III.
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FIG. 3. A schematic presentation of the critical angle ψc as a function of the position of an electric charge in the gravitational
field of a black hole. The electric field lines, starting along angle ψ0 < ψc from the charge at radial coordinate ζ = r0/rs, where
rs is the Schwarzschild radius, can extend to infinity. The missing sector of a circle represents the initial directions of electric
field lines, starting along ψ0 > ψc from the charge at that ζ, that intersect the horizon of the black hole and disappear into
it. At large ζ, ψc ≈ 180◦, implying almost all electric field lines extend to infinity. However, as ζ decreases, ψc reduces and an
increasing number of electric field lines do not make it to infinity and are thus trapped in the gravitational field. For instance,
at ζ = 20, ψc = 173◦, while at ζ = 2.5, ψc = 126◦. At ζ = 1.5 particularly, ψc = 90◦ and only one half of the total number of
electric field lines can reach the infinity. At still closer radial coordinates, majority of electric field lines get bent sufficiently to
intersect the horizon, e.g. at ζ = 1.1, ψc ≈ 45◦, with 85 percent of the total number of electric field lines reaching the horizon
and disappearing into it; the remainder 15 percent only extends to infinity.

Figure 3 shows schematically the sectors drawn of cir-
cles for the initial angles ψ0 < ψc of electric field lines,
that would extend to infinity, starting from a charge at
radial coordinate ζ = r0/rs. The missing sector of each
circle in Fig. 3 represents the initial directions of electric
field lines, starting along ψ0 > ψc from the charge at
that ζ, that intersect the horizon of the black hole and
disappear into it. At large ζ, ψc ≈ 180◦, implying almost

all electric field lines extend to infinity. However, as ζ
decreases, ψc reduces and an increasing number of field
lines do not make it to infinity and are thus trapped in the
gravitational field. For instance, at ζ = 3.5, ψc = 141◦

and 89 percent of electric field lines can reach the infin-
ity, while at ζ = 1.5, ψc = 90◦, and only one half of the
electric field lines could do so. At still closer radial coordi-
nates, as the charge position nears the horizon, majority
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FIG. 4. A schematic of the computation of the electric flux
in the gravitational field of a central spherical mass M of a
Schwarzschild radius rs. The electric charge Q is held station-
ary at a radial coordinate r0. The dashed-line circle represents
the spherical surface Σ surrounding the charge Q. Various
dotted-line circles represent spheres Σ1, Σ2, Σ3, indicating
the boundaries of various regions containing the charge Q
and/or the spherical mass M . The unit vector n in each case
shows the unit normal to the respective spherical surface, as
seen from the perspective of the charge, located at r0.

of electric field lines intersect the horizon, with hardly
any electric field lines reaching the infinity for ζ → 1.

Thus the electric flux of a charge through an exter-
nal spherical surface of large enough radius surrounding
the black hole should be reducing as the charge loca-
tion, enclosed within that spherical surface, is selected
closer to the event horizon (Schwarzschild radius) be-
coming in limit zero as the event horizon is approached.
For very large initial radial distance of the charge, i.e.
for ζ = r0/rs → ∞ in the gravitational field of a
black hole, the electric flux through a spherical surface
of large enough radius r > r0 around the black hole
and thus enclosing the charge Q, would be 4πQ, as per
Gauss law. However, for finite ζ, but with ζ ≫ 1 still,
the electric flux through the spherical surface would be
2πQ(1 − cosψc) ≈ 4πQ(1 − 27/16ζ2), an apparent vio-
lation of Gauss law, though the electric flux through a
surface surrounding the charge within the gravitational

field, that is when the spherical surface does not surround
the central mass, would still be 4πQ, thus in conformity
with Gauss law. The fraction 1 − f of the electric flux
that escapes the black hole, for ζ = 10 is 0.985, and for
ζ = 2, it is ≈ 0.7. For ζ = 3/2, ψc = π/2 and 1−f = 0.5,
and while one half of the total electric flux will reach the
infinity, the other half, with ψ0 > π/2, due to gravity will
go through the horizon. The total electric flux through
a large surface surrounding the black hole in this case
would be 2πQ, instead of the usual 4πQ, calculated from
Gauss law in the absence of a gravitational field. At still
closer distances to the event horizon, as ζ → 1, ψc → 0,
most of the electric flux from the charge will disappear
through the horizon into the black hole.

As photons will not escape a black hole from the event
horizon (Schwarzschild radius), and the electrostatic field
lines following the path of photons emitted from the
charge location, the electric field lines also, due to charges
lying within the event horizon in the case of a black hole,
will not extend outside the horizon. In fact, any elec-
tromagnetic influence that propagates with the velocity
of light, may not cross the event horizon in the outward
direction, therefore charges, if any, within the black hole
may not get detected by external observers, i.e. outside
the event horizon. Thus the electric flux through an ex-
ternal spherical surface surrounding the black hole will be
nil due to the charges within the black hole. From that
one can conclude the absence of electric flux external to
a charged black hole. and the distant observers may not
know about the presence of electric charges within the
black hole.

Figure 4 shows schematically various spherical sur-
faces, Σ,Σ1, Σ2, Σ3, for which we want to examine the
electric flux passing through, from a charge Q, held sta-
tionary at a radial coordinate r0, in the gravitational field
of a central spherical mass M of a Schwarzschild radius
rs. The unit vector n in the case of each spherical sur-
face, shows a normal to the surface for computing the
electric flux through the respective sphere, seen from the
perspective of the charge Q, located at r0. The electric
flux passing through the surface Σ, that surrounds the
charge at r0 but does not enclose the black hole singu-
larity, is 4πQ, consistent with Gauss law. This will be
true even if the charge is close to but still outside the
event horizon, and the surface Σ surrounding the charge
too lies wholly outside the event horizon, for instance,
a tiny (infinitesimal!) spherical surface surrounding the
charge. However, if the surface chosen is large enough
to enclose the black hole singularity like Σ1 in Fig. 4,
then the field lines passing through will be 4πQ(1 − f),
where 1−f is given by Eq. (5), with ψc determined from
Eq. (3), depending upon the radial position ζ = r0/rs of
the charge. It may be noted that the remaining flux, viz.
4πQf , will be passing through Σ2 to disappear into the
black hole horizon, even though the radial coordinate r0
of the charge lies outside Σ2. However, through Σ3, it is
nil, as it does not enclose any charge and whatever field
lines may be entering Σ3 the same must be leaving it.
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In an earlier investigation by Hani and Ruffini [13] of
the electric field configuration of a charge, stationary at
various radial coordinates in the gravitational field of a
black hole, it was shown than field lines, bent due to
gravity, are tangential to the horizon at some critical an-
gle θc, with field lines within θc intersecting the horizon
while those outside θc escaping the gravitation field. It
should be noted that θc is not the same as our ψc, while
θc is in terms of the Schwarzschild coordinate θ, angle ψ
is around the charge position. Now taking the charge Q
to be positive, the intersection of field lines with the hori-
zon was interpreted in terms of negative charges induced
on the horizon for θ < θc and a further assumption made
was that there are an equal amount of positive charges
induced on the horizon for θ > θc. While the bending
of electric field lines towards the central mass, resulting
in these field lines intersecting the horizon could be ex-
pected, the field lines outside θc bending away from the
central mass in its gravitational field looks rather strange,
which is happening due to the assumed positive charges.
In an equivalent picture for photon trajectories, it will
seem as if photons were getting repelled by the gravita-
tional field of the black hole. In fact, for field lines that
intersected and disappeared into the horizon from one
side of the black hole, an equal amount of field lines seem
to be emerging out of the horizon on the opposite side of
the black hole. Here it seems as if photons falling into
the horizon on one side of the black hole were emerging
out of the horizon on the opposite side of the black hole.
In fact, as one approaches the event horizon, the electric
field lines intersecting the horizon should do so orthog-
onally as their θ component should be reducing to zero
near the horizon [13]. However, in the field line plots of
Hani and Ruffini it does not seem to be so. This discrep-
ancy actually stems from the assumed induced charge,
especially the assumed positive charges induced outside
θ > θc [13], which cause additional outward field com-
ponents. The assumption of equal and opposite charges
induced on the different sides of the horizon of a black
hole, and the electric field configuration derived there-
from does not seem be correct.

V. REISSNER–NORDSTRÖM METRIC FOR A
CHARGED BLACK HOLE AND SOME
PECULIARITIES OF ITS GEOMETRY

If a static spherical system of mass M , comprises in
addition also an electric charge Q, then such a system is
externally described usually by the Reissner–Nordström
(RN) metric [2, 3, 5, 12, 17]

ds2 = −
(
1− 2GM

rc2
+
GQ2

r2c4

)
c2dt2

+

(
1− 2GM

rc2
+
GQ2

r2c4

)−1

dr2 + r2 dω2 . (7)

We can express the metric in an alternate form

ds2 = −

(
1− rs

r
+
r2q
r2

)
c2dt2 +

(
1− rs

r
+
r2q
r2

)−1

dr2

+r2 dθ2 + r2 sin2 θ dϕ2 , (8)

where rs = 2GM/c2 again is the Schwarzschild radius,
while rq, defined by r2q = GQ2/c4, is a characteristic
length scale in the presence of the electric charge Q. Here
it is presumed that the exterior of the black hole is not a
vacuum and is filled with a static electric field due to the
charge contained within the black hole and accordingly
a solution of the Einstein field equations is obtained for
a static spherically symmetric system in the presence of
a non-zero energy–momentum tensor, representing the
electromagnetic field of charge Q inside the black hole
[7, 18, 19]. This is the metric of a charged black hole,
without a rotation or having nil angular momentum. In
the limit that the charge Q goes to zero, one recovers the
Schwarzschild metric (Eq. (1)).

The Schwarzschild metric has a long and somewhat te-
dious derivation, which is widely available in textbooks
[4, 6–9, 11]. The derivation of the RN metric follows
mostly on similar lines because of the assumed spherical
symmetry, however, it involves some additional steps be-
cause of the presence of the electromagnetic stress-energy
tensor due to the charge Q [7, 18, 19].

A. A heuristic derivation of the RN metric

It is possible to derive the RN metric in a heuristic
manner, building on the Schwarzschild metric, incorpo-
rating in that the electric field of the chargeQ. A rigorous
derivation of the RN metric, starting from Einstein’s field
equations, employing the electromagnetic stress-energy
tensor due to the charge Q, is given in Appendix.

The heuristic approach we employ here to arrive at
the Reissner–Nordström metric emphasizes, in particu-
lar, the role of energy in the electrostatic field, in the pro-
cess clarifying its relation to the charge-dependent terms
in the Reissner–Nordström metric. For this we first look
at the electric field of an isolated charge Q in ordinary
space (devoid of gravity)

E =
Q

r2
, (9)

and compute the energy in the electric field in space ex-
terior to a radial distance r from the charge Q at the
center, as

Er =
∫ ∞

r

E2

8π
4πr2dr =

Q2

2r
, (10)

We now superpose charge Q and its electric field on
the Schwarzschild solution (Eq. (1)), treating r, the ra-
dial coordinate in the Schwarzschild geometry to be the
radial distance from the center. In the Schwarzschild
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metric, M represents the total mass as inferred by a dis-
tant observer (at infinity!) from its gravitational influ-
ence, and it includes the electromagnetic mass-energy
contribution of the charge Q as well. The quantity
Mq = E/c2 = Q2/(2rc2) from Eq. (10) can be inter-
preted, from mass-energy equivalence, as the mass exte-
rior to radius r [19], while M ′ = M − Q2/2rc2 then has
the interpretation [19] as the mass interior to radius r.
In other words, M ′ =M −Mq is the mass, M , including
contributions from the charge Q, bereft Mq, mass equiv-
alent of energy Er/c2 in the electric field exterior to r.
Then the Schwarzschild metric for M ′ (Eq. (1)) is

ds2 = −
(
1− 2GM ′

rc2

)
c2dt2

+

(
1− 2GM ′

rc2

)−1

dr2 + r2 dω2

= −
(
1− 2G(M −Mq)

rc2

)
c2dt2

+

(
1− 2G(M −Mq)

rc2

)−1

dr2 + r2 dω2 . (11)

With Mq = Q2/2rc2, Eq. (11) is nothing but the RN
metric (Eq. (7)).

B. Occurrence of naked singularities in RN
geometry and the “cosmic censorship” hypothesis

The RN geometry leads to some interesting conse-
quences. Assuming it to be a “point” mass, the only
intrinsic singularity in the RN metric is at r = 0. How-
ever, from the RN metric (Eq. (8)) one finds that, in
Schwarzschild coordinates (t, r, θ, ϕ), there also occurs a
coordinate singularity wherever r satisfies

1− rs
r
+
r2q
r2

= 0 , (12)
or

r2 − rsr + r2q = 0 , (13)
Accordingly, coordinate singularities occur at

r =
rs
2

±
[(rs

2

)2
− r2q

]1/2
, (14)

which for Q = 0 reduces of course to r = rs, the event
horizon at the Schwarzschild radius, as would be ex-
pected. However, for Q ̸= 0, and especially for rs > 2rq,
there are two real values for r and thus two coordinate
singularities, implying two event horizons [5, 7]. On the
other hand, rs < 2rq yields only imaginary solutions, im-
plying the absence of a real event horizon. Without an
event horizon, the intrinsic singularity at r = 0 is visible
to the outside observers; such is termed a naked singu-
larity. The idea of a naked singularity appears to be
highly unacceptable and a “cosmic censorship” hypothe-
sis has been proposed [20] that only singularities allowed
in nature are the ones shrouded by an event horizon.

VI. PROBLEMS IN THE DERIVATION OF THE
REISSNER–NORDSTRÖM METRIC AND THE

CONSEQUENCES THERE OF

In the derivation of the Reissner–Nordström metric
(Eq. (7) or (8)) one crucial step is the assumed expression
for the electric field (Eq. (9) or (A.5)) for all r, employ-
ing the Gauss law for a spherically symmetric system,
in the external regions of a black hole. However, as we
discussed earlier, the electric field of a charged black hole
does not exist in regions external to a black hole, then its
influence should not affect the metric outside. Gauss law
may not be applicable to calculate the electric field exter-
nal to the black hole for an electric charge that is trapped
within the black hole event horizon. Thus the presump-
tion that the electromagnetic energy density (E2/8π), or
the stress-energy tensor (Eq. (A.12)) exists for all r, i.e.,
even beyond rs, is not valid, then the RN metric cannot
be correctly describing a charged black hole. In that case,
with no external electric field, a charged black hole is still
described by the Schwarzschild metric (Eq. (1) or (2)),
of course the mass M , that enters in the expression for
Schwarzschild radius rs = 2GM/c2, encompasses contri-
butions from the electromagnetic mass of the charge as
well.

Since, Eq. 14 follows from the RN metric, which, as we
pointed out, cannot be a valid description of a charged
black hole, then the question of consequential two event
horizons for rs > 2rq or even the absence of singularity
leading to the idea of a naked intrinsic singularity when
rs < 2rq and a need for the “cosmic censorship” hypoth-
esis, do not even arise, at least in the case of a charged
black hole with no angular momentum.

VII. CONCLUSIONS

We started from the result derived in the literature
that the electrostatic field lines of a charge, stationary
in the gravitational field, bend exactly like the trajec-
tories of photons emitted isotropically from a source at
the charge location, and that the fraction of electric flux
crossing a surface ‘below’ or ‘above’ the charge, sup-
ported in the gravitational field, is exactly similar to
the fraction of photon trajectories intersecting these sur-
faces. Applying these results in the external gravita-
tional field of a black hole, it was shown that the electric
field through an external spherical surface surrounding
the black hole steadily reduces as the charge location ap-
proaches the event horizon (Schwarzschild radius). Fur-
ther, from the well-known result that photons from a
source inside the Schwarzschild radius cannot escape out-
side, it was argued that the electric field lines of a charge
within the black hole too remain trapped inside the event
horizon, which leads to the conclusion about the absence
of electric flux external to a charged black hole. From
this we arrived at a conclusion that, contrary to the con-
ventional wisdom, the electric charge contained inside a
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static black hole cannot be detected or inferred by an
external observer. A black hole, said to have no hair
with the only external identifying characteristics being
mass, electric charge, and angular momentum, is there-
fore all the more ‘hairless’, as even its charge cannot be
ascertained. The derivation of the Reissner–Nordström
metric, supposedly describing the gravitational field of a
static charged black hole, presumes an external stress-
energy tensor of the electrostatic field, as per Gauss law,
even for the charges contained within the black hole.
From the absence of electric flux external to a static
charged black hole it was argued that such a charged
black hole is not described correctly by the Reissner–
Nordström metric and the consequential peculiarities of
its space-time geometry, which lead to the idea of a naked
intrinsic singularity in specific cases and a need for the
“cosmic censorship” hypothesis, also do not arise, at least
in the case of a charged black hole with no angular mo-
mentum.
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Appendix: Derivation of Reissner–Nordström metric
and the presumptions made therein

Einstein’s field equations are [4, 6–9, 11]

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν , (A.1)

where Rµν is the Ricci tensor, gµν is the metric tensor,
R ≡ gµνRµν is the contraction of the Ricci tensor and
Tµν is the stress-energy tensor, the source of gravitation.
We follow the sign conventions of Misner et al [4] for the
curvature tensor as well as for the stress-energy tensor.

The electromagnetic stress-energy tensor in a gravita-
tional field can be written as [4]

Tµν =
1

4π
[FµαgνβF

βα − 1

4
gµνF

αβFαβ ] , (A.2)

where Fµν is the electromagnetic field tensor [4, 8, 11].
The stress-energy tensor is, in general, symmetric (Tµν =
Tνµ) and for an electromagnetic field it is traceless (T ≡
gµνTµν = 0).

Using gµνgµν = 4, we get from Eq. (A.1)

gµνGµν = −R =
8πG

c4
gµνTµν =

8πG

c4
T . (A.3)

Therefore, for a traceless electromagnetic stress-energy
tensor (T = 0), R = 0 and Einstein’s field equations then
become

Rµν =
8πG

c4
Tµν . (A.4)

For a spherically symmetric system, which we assume
to be the case for a simple electrostatic charge Q at the
center, the electric field can have only a radial compo-
nent, Er, with no angular dependence. Because of the
spherical symmetry, using Gauss theorem, we can write

Er =
Q

r2
(A.5)

Unlike in Eq. (9), where r was taken to be a radial dis-
tance, here r is a radial coordinate, and not necessarily
a radial proper distance in the gravitational field.

Then the electromagnetic field tensor, Fµν , which is
antisymmetric, can be written as

Fµν =


0 −Er 0 0

Er 0 0 0

0 0 0 0

0 0 0 0

. (A.6)

The metric for our assumedly time-static, spherical
symmetric system, can be written in a general form

ds2 = −Ac2dt2 +Bdr2 + r2 dθ2 + r2 sin2 θ dϕ2 ,(A.7)

where A and B are time-independent and have depen-
dence at most on r.

Then the metric can be written as

gµν =


−A(r) 0 0 0

0 B(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

. (A.8)

Since gµν is diagonal, we also have

gµν =


−A−1(r) 0 0 0

0 B−1(r) 0 0

0 0 r−2 0

0 0 0 r−2 sin−2 θ

. (A.9)

As the only non-zero components of the electromag-
netic field tensor (Eq. (A.6) are F01 = −F10 = −Er,
then using Eq. (A.9) in

Fµν = gµαFαβg
βν , (A.10)

we get the only non-vanishing components of Fµν as

F 01 = −F 10 = g00F01g
11 = −F01

AB
=

Er

AB
. (A.11)

Then from Eqs. (A.2), (A.6), (A.8) and (A.11), we
obtain components of the stress-energy tensor as

T00 =
1

B(r)

E2
r

8π
T11 = − 1

A(r)

E2
r

8π

T22 =
r2

A(r)B(r)

E2
r

8π
T33 =

r2 sin2 θ

A(r)B(r)

E2
r

8π
,(A.12)

with all non-diagonal components of Tµν being zero.
From Eqs. (A.9) and (A.12), it can be easily verified that
the trace of the stress-energy tensor, T ≡ gµνTµν , is zero.
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This determines the right hand side of Eq. (A.4). In
order to get components of the Ricci tensor on the left
hand side of Eq. (A.4), we need to first compute Christof-
fel symbols or connection coefficients from gµν as [4, 8, 11]

Γαβγ =
1

2
gαµ(gµβ,γ + gµγ,β − gβγ,µ) , (A.13)

where gµβ,γ ≡ ∂γgµβ , is a partial derivative of metric
coefficients gµβ along the coordinate basis direction de-
noted by γ. Then from these we can form the symmetric
Ricci tensor using the formulation [4, 8, 11]

Rµν ≡ Rαµαν = Γαµν,α − Γαµα,ν + ΓαβαΓ
β
µν − ΓαβνΓ

β
µα ,

(A.14)

where Γαµν,γ ≡ ∂γΓ
α
µν is a partial derivative of Γαµν along

the direction denoted by γ. The computations involved,
though straightforward, are yet lengthy due to their
rather repetitive nature.

Substituting Eqs. (A.8) and (A.9) in (A.13), we get
the only non-zero Christoffel symbols or connection co-
efficients as

Γ0
01 = Γ0

10 =
A′

2A
Γ1
00 =

A′

2B

Γ1
11 =

B′

2B
Γ1
22 = − r

B
Γ1
33 = −r sin

2 θ

B

Γ2
12 = Γ2

21 =
1

r
Γ2
33 = − sin θ cos θ

Γ3
13 = Γ3

31 =
1

r
Γ3
23 = Γ3

32 =
cos θ

sin θ
. (A.15)

Here a prime (′) denotes a differentiation with respect to
r. Of course, in our assumed time-static system, A and
B are time-independent.

Using these in Eq. (A.14), and after some lengthy
though straightforward computations, we arrive at the
following non-vanishing components of the Ricci tensor

R00 = − A′

4B

(
A′

A
+
B′

B

)
+
A′′

2B
+
A′

rB

R11 =
A′

4A

(
A′

A
+
B′

B

)
− A′′

2A
+
B′

rB

R22 = 1− r

2B

(
A′

A
− B′

B

)
− 1

B

R33 = R22 sin
2 θ , (A.16)

all non-diagonal components of Rµν turn out to be zero.
Now, from Eq. (A.12) we have

T00
A

+
T11
B

= 0 , (A.17)

which from Eq. (A.4) implies

R00

A
+
R11

B
= 0 . (A.18)

Substituting Eq. (A.16) in Eq. (A.18), we get

A′

A
+
B′

B
= 0 , (A.19)

implying A(r)B(r) = constant, i.e. independent of r.
Using the asymptotic requirement that the metric should
be flat for r → ∞, we could write A(r)B(r) = 1 or
A(r) = 1/B(r) [7, 18, 19].

Then from Eq. (A.5), we have

r2

A(r)B(r)
E2

r =
Q2

r2
(A.20)

Also from Eqs. (A.4), (A.12) and (A.20), we get

R22 =
8πG

c4
T22 =

G

c4
Q2

r2
. (A.21)

Then Eq. (A.16) gives

1− r

2B

(
A′

A
− B′

B

)
− 1

B
=
G

c4
Q2

r2
, (A.22)

or

1− G

c4
Q2

r2
= rA′ +A =

d(rA)

dr
. (A.23)

Integrating and then dividing by r, we get

A(r) =
a

r
+ 1 +

G

c4
Q2

r2
. (A.24)

The constant a can be determined from the limit Q →
0, where the metric should reduce to the Schwarzschild
metric, giving therefore a = −2GM/c2.

The upshot of these computations is a simple expres-
sion

A(r) = 1− 2GM

rc2
+
GQ2

r2c4
, (A.25)

as well as

B(r) =
1

A(r)
=

(
1− 2GM

rc2
+
GQ2

r2c4

)−1

. (A.26)

Writing rs = 2GM/c2 and r2q = GQ2/c4, we have

A(r) =
1

B(r)
= 1− rs

r
+
r2q
r2
, (A.27)

Accordingly, substituting in Eq. (A.8), one obtains for
the metric tensor

gµν =


−(1− rs

r +
r2q
r2 ) 0 0 0

0
(
1− rs

r +
r2q
r2

)−1

0 0

0 0 r2 0

0 0 0 r2 sin2 θ

,
(A.28)

which of course is nothing but Eq. (8). Using Eqs. (A.25)
and (A.26) in (A.16), we can cross-check that the trace
of the Ricci tensor, R ≡ gµνRµν , is indeed zero in our
case.
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