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Abstract: This work presents a methodology that seeks to be a new standard in modeling identification 1
in anaerobic digestion reactors. Because it is not possible to measure all variables with reliable and =
cost-efficient real-time methods, a specific structure composed of an asymptotic observer for the s
concentration of state variables; acidogenic and methanogenic bacterias, unlock the use of new 4
types of raw sludges for industrial control and monitoring purposes. New yield parameters were s
included in the reduced anaerobic digestion model (ADM2) used as the core, precisely two terms 6
in total alkalinity, to bring about the modeling of additional organic materials at inlet containing 7
proteins or amino acids. The fermentation of these substances introduces ammonium, providing =
variations in the amount of alkalinity available inside the reaction. The new model is used to solvean
optimization problem that calculates the parameters that best fit the dynamics of state variables with 10
the same information taken on the experimental data. The adjustment process started with the genetic 11
algorithm; however, to improve the performance, a novel method is proposed called step-ahead. 12
Together, including the design of an asymptotic observer, numerical simulations demonstrate the 13
strengths of the structure, which constitutes a significant step in paving the way further to implement 14
feasible, cost-effective control and monitoring systems in the industry. 15

Keywords: asymptotically observer; homogeneous reaction systems; anaerobic digestion; volatile 16
fatty acids 17

1. Introduction 18

Anaerobic digestion (AD) is a complex biological process where a consortium of anaerobic 1
microorganisms, in the absence of oxygen, break down a biodegradable fraction of biomass 2o
into biogas and digestate [1]. The organic matter takes place inside a sealed vessel (reactor). =
Compared to other common alternatives, such as aerobic treatment systems, the AD process 2z
return little sludges, have a positive overall energy balance, and also has an enormous  =»
potential to reduce challenging and concentrated substrates such as animal wastes, wastew-  ze
ater, by-products from industrial plants, and food wastes to name the most important s
ones [2]. However, despite these benefits, the technology is not yet used extensively in 26
large-scale industries. The reasons behind this are; that the control systems, trying to =7
balance the operational requirements inside the reactor, failed because the reaction becomes 2.
easily unstable due to slight sensitive variations in biological rates [3]. The arguments 2o
mentioned above support why full-scale reactors are mainly still operated manually [4], o
because its efficiency depends mainly on the expertise of based-knowledge operators and s
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the process circumstances, becoming a challenge if the purpose is to develop a technology =
that operates massively. However, these obstacles explain why such research area has been 33
active by scientists during the last years, allowing to improve the performance of reactors s
and maintain them over stable operational conditions [5,6]. 35

36
Typically those systems inherently act with non-linear nature. In addition, essential sin- s7
gularities, such as high sensitiveness to uncontrollable inputs and perturbations, and the s
drawbacks caused by the restricted access to online measurements (due to the lack of cost- 3¢
efficient and reliable sensors), originate mathematical models with limited approximations. 4o
The effort begins with setting a reliable architecture based on non-linear monitoring and
control schemes to overcome these inconveniences. While there exists a varied number of 4
alternatives, based on mathematical modeling found in the literature that demonstrates 43
good efficiency, generalization and partial knowledge of the phenomena are the main 44
challenges to solve, especially if the main goal is to develop scalable software as the basis s
of implementations on the large-scale industry. a6

a7
The phenomenology is frequently poorly comprehended because the anaerobic digestion  4s
processes are related to the existence of microorganisms. Then, replicating mathematically
the same operating conditions are not possible regularly due to the uncertainty and varia- so
tion in yield parameters because of changes in metabolism. This paper aims to contribute s
with a novel software beyond traditional methods, where performance depends on mea- s
sured data and new software sensors strategies that capture the reality with high reliability. ss
To perform a long-term plan to achieve feasible control schemes for industrial purposes, sa
the first step is to ensure the existence of a measurable layer that provides continued data s
to the mathematical model. Although these observer strategies have been widely used e
on different types of microorganisms inside a reactor, there are still obstacles in trying to =7
define a method that guarantees full knowledge of the data inside a reaction [7]. 58

59
A desirable alternative used in literature, the asymptotic observers, estimate the state «o
variables that cannot be measured directly over systems. Depending on the information e
available, the design of the observer mainly depends on two conditions; the information e
available regarding the reaction kinetics and the yield parameters. This paper uses a math- e
ematical model AM2 with additional terms to consider a wide range of organic matter s
modeled at the inlet. With the use of this model, it is still not possible to obtain information s
on the state variables concentrations of acidogenic X; and methanogenic X, using feasi- s
ble online sensors. Additionally, there is no complete knowledge of the process kinetics. o7
Therefore, based on the preliminary information, this paper focuses on developing an s
asymptotic observer conditioned by the following characteristics; the state variables X1 and e
X; are unknown, and the yield parameters are known and calculated using a parameter 7
identifications procedure based on optimization. The main challenge resides in using real 7.
data from an industrial process that evaluates the proposed methodology in a wide range 7
of possibilities [8,9]. 73

74
In order to start demonstrating well-performance indicators in the online model parameter s
identification strategy, the following sections have been proposed as follows. In section2,a 7
reduced model ADM2 with additional terms for control purposes is presented. Then, in 7
section 3, experimental results are performed in an anaerobic digestion reactor to useasa s
basis for setting the experimental conditions to test the methods proposed. In section 4, the 7
parameter identification algorithm is presented where an optimization problem is solved to =0
find the values that better fit the dynamics of the mathematical model and the experimental &
data. Section 5 proposes an asymptotic observer with the condition that the information e
from reaction rates is unknown. This algorithm aims to estimate the concentrations of s
acidogenic and methanogenic microorganisms. Finally, on the conclusions, some remarks s
are discussed coming from the evaluation of performance from the strategy proposed. 85
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2. The anaerobic Digestion Mass-Balance Model 86

Among the alternatives encountered in the literature that propose reduced mathematical -
models aiming to deploy control and monitoring systems, the ADM2 mathematical model s
is considered the best practical option available; it becomes the cornerstone between the e
anaerobic digestion process on site and feasible controller schemes. The lack of phenomeno- s
logical knowledge, the high level of difficulties over the process, its nonlinearities, and the o
lack of reliable sensors support why almost all of the mathematical models found in the o2
literature work as coarse approximations [2]. Therefore is the reason why it is necessary s
to find reduced models that have the potential to evade the absence of phenomenological s
knowledge. The alternative proposed in this paper based on mass-balance specifications s
beats this difficulties positioning the lack of information over specific terms called reaction o6
rates. 97

98
The ADM2 reduced model proposed considers biological phase reactions, dividing the o
consortium into two homogeneous groups; acidogens and methanogens that represent 100
the destabilization phenomenon [2]. To incorporate a broader spectrum of usable organic 1o
matter, the influence of ammonium on alkalinity is considered because it is usual to find 102
these compounds when fermentation and microbial growth metabolism occur. Thus, two  10s
yield parameters were added to represent this effect; Kz ; and Kz, respectively. Based 10
on the considerations made by Kil et al. [5], the term (Kz 101 — Kz2p2) is added to the 105
dynamic of the total alkalinity equation proposed by Bernard et al. [2]. The content of 106
waste sludges influences the new yield parameters. In conclusion, the new equation system 1o

that represents the anaerobic digestion process is shown in the following equations. 108
ax
—p =X —aD), M
aX
Tf = Xp(u2 — aD), @)
dSl Sl
— =D(5, —51) — — ), 3
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where Pc and ® comes from the equations described in Bernard et al. [2]. 110
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From the equations above, X; represents the concentration of acidogenic bacterias, X, the 112
concentration of methanogenic archaeas, S the concentration of organic substrate, S, the 112
concentration of VFA, Z the total alkalinity, and C the concentration of inorganic carbon. 11
The subscript "in" indicates the influent flow of the correspondent concentrations Sy, S, C = s
and Z. D is the dilution rate. The yield coefficients k1, k, k3, k4, k5 and k¢ mean the yield 1
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for COD degradation, the yield for VFA production, the yield for VFA consumption, the 117
yield for CO, production, the yield for CO, production, and the yield for CHy production  11s
respectively. Originally, the ADM2 model considers that the reaction rate processes do not 11
affect the total alkalinity; nevertheless, the amino acids and proteins usually are presented 120
on the organic matter. Thus, we decided to incorporate this effect to extend the types of 12
raw sludges that the mathematical model can use. In order to keep a simple mathematical 122
description, we introduce the ammonium contribution to the alkalinity mass-balance 123
proposed by Kil et al. [3,5]. The following Monod-type representations characterize the 12

reaction rates | and »: 128
p1 =11 —1 (10)
Ks, + 51
and. 126
S
={P1—. 11
p1 =11 Ks, + 51 (11)

Where 1, §», Ks1, and Kg, describe the maximum rate of acidogenic degradation, the 127
maximum rates of methanogenic degradation, the half-saturation constant associated with  12s
substrate S1, and the half-saturation constant associated with the substrate S, respectively. 120
Monod-type kinetics describes the growth of acidogenic bacteria ¢, (S) and methanogenic 130
archaea 1 (S), because, in the fermentation process, the biomass does not register possible 131
VFA accumulation and consequently inhibition. Finally, the methane flow rate produced 1.2
gm is proportional to the reaction rate of methanogenesis, as shown in the following 1ss

equation: 134
Sz
=k —_— 12
am = kcn, 2 (Ksz i Sz) (12)
3. Experimental results and characteristics of the reactor 135

The data set in this paper were collected from a CSTR pilot plant (150 L) operated at 55 136
+ 2 °C (thermophilic range). The experiment took place in a sewage treatment plant in  1s7
Guadalete (Jerez de la Frontera, Spain). The system operates with diary inlet flow with 1ss
primary and secondary combined waste sludges. Figure 1 shows the diagram of the struc- 13
ture. The temperature on the jacket is regulated via an internal coil (Heat unit) using a PID 140
controller linked by a Temperature sensor. The Influent receive the raw sludges before water 14
is added on the Dilution unit. After that, the Pump feeds a dilution rate continuously to 1
the reactor. The liquid-flow speed is measured by an electromagnetic sensor (Flow liquid 14
meter). The off-line measurements on the Effluent, at the bottom of the reactor, are tested 14a
periodically in the laboratory using different procedures and protocols. Finally, the biogas 1as
on the reaction is tested by a Gas analyzer that quantifies the volume of CHy produced. The 146
Flow gas meter measures the gas rate produced. 147

The study was conducted to test the effect of step changes in the solid retention time (SRT) 140
during 338 days. The measurements were obtained using two different sources. The values 1so
of treatment efficiency indicators (the amount of COD and VFA reduced at effluent from s
inlet) and the total alkalinity are measured from sensors measuring the production rate of ~1s2
biogas online and from laboratory protocols and procedures. The experiment starts with  1ss
a portion of raw sludge at thermophilic temperature. SRT starts in 75 days; it gradually s
decreases from 40 days followed by 27 days, 20 days, and 15 days (see the details on 1ss
Table 1). However, for modeling purposes, only a specific range of data was used to 1se
discard unstable scenarios, which are unfavorable for modeling purposes due to deviations sz
related to the nature of reactions. The range periods discarded were; the latency period (a  1ss
dormancy of microorganisms) at the beginning and the latest one due to the presence of  1se
high nonlinear (at the end of the experiment when the reactor operates closer to boundaries) 160
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[10]. Therefore, the data selected started on SRT at 40 days (day 46 of the experiment) and 1
moved forward until the end of the stage SRT 20 days (day 253 of the experiment). Finally,
207 days were selected, aiming to work with standard patterns of microorganisms as much e

o

2

as possible. 168
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Figure 1. Schematic diagram of the anaerobic digester process in a reactor.

The data selected start at SRT in 40 days, the organic loading rate (OLR) equivalent was 1es
0.8 KgVS/m3day (or 1.5 KgCOD/ m3 day). This value remained constant until the steady e
state was reached (when the measurements of VS and COD removals and the production 1e7
rate of CHy are the means of the last 15 days’ measurements. From the data selected, the 1es
first change in the value of SRT occurred on the day 40, where the value of SRT switched to  1es
27 days. At this new stage, the system operates from day 40 until the day 124. Finally, on 17
the day 125, the SRT value decreases to 20 days. This stage took place on the day 124. This 17
value remained constant until the end of the experiment, the day 208. 172

Table 1. OLR stages during the 338 days experiment.

Days
SRT Start yEnd
75 1 45
40 46 85
27 86 170
20 171 | 253
15 254 | 323

As seen in experimental results, only in specific scenarios does the value of pH decrease 17
beyond 7.3. At this moment, a small amount of sodium carbonate was added at a concen- 174
tration of 2N to keep the value of pH over a desirable (feasible) operational range. The 17s
main attributes of the organic material used are shown in Table 2. 176

On Figure 2 the level of COD;;, keeps around 60 g/L with variations in 40 g/L. Only in 17
exceptional cases some values of COD;,, remain scattered from the mean value. Otherwise, 17
when the VFA;, operates at SRT 40 days, the mean value remains closely to 22 g/L with 10
no significant variations. When the reactor operates at SRT values of 27 days and 20 days, 1s
there was an upward tendency. On the effluent, Figure 3 shown the values of COD and s
VFA. The value of COD (see Figure 3a) remained constant during SRT at 40; all values 1ss
are centred around 18 g/L. After that, in the subsequent stages, at SRT values from 27 to  1es
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20, the amount of COD shows a growing irregular tendency. The degree of dispersionis 1ss
much larger than in the previous period. On the other hand, the values of VFA vary widely,
except on SRT at 40 days (see Figure 3b). Only on the stage SRT 40 days the values remain sz
constant around 3 g/L. 188

6

Table 2. Main characteristics of the raw sludge.

Parameter Mean value | Minimal value | Maximum value
COD (kg /m®) 64 42 74
pH 6.2 5.8 6.4
Solidos totales (kg/m?>) 55 38 68
Solidos volatiles (kg /m?) 68 27 51

Figure 4 shown the consequences of the microbial dynamism derived from the current state 1ss
of the reactor (see Figures 2 and 3). The volume of CH4 shown in Figure 4b has a specific 190
behavior at each stage. After surpassing the latency stage, specifically, when the operation 11
of the system changes to SRT 40, the dynamics of bacteria showed a slow linear progression sz

in the volume of CH, produced, reaching a maximum of 40 L/day. 103
120 L[| T T T L T L] T
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Figure 2. Evolution of the core parameters of the anaerobic digestion process. (a) influent con-
centration of chemical oxygen demand (COD); (b) influent concentration of volatile fatty acids
(VFA).

In the subsequent stages, over SRT values 27 and 20, the volume of CH, remains withno e
substantial variations over the mean. The volume of CH produced rose moderately once 1e5
again over the day 210. A moderate stationary tendency is observed beyond the middle of 106
the stage SRT 27 until the day 200. Going beyond data used for modeling purposes, the 1o
volume of CHy on stage SRT 15 days shows a nonstationary tendency (nonlinear behavior); 1s
in some circumstances, the volume of CHy produced reached 115 L/day, while in other 100
sections, the volume of CH4 produced reached almost 20 L/day. The system oscillates 200
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maybe because it was closer to the operational limits. 201

Figure 4a shown the consequences of the reactor over its operation on pH. From the be-  z0:
ginning of stage SRT 40 days until the end of the stage SRT 20, the measurements oscillate 204
around a mean value of 7.7. However, only for informational purposes, although the range 205
SRT 15 days was discarded, it is worth analyzing the high variation in the level of pH 206
due to the reactor producing a high amount of biogas at this stage. Because the system o7
works closely to biochemical and physical limits, the reaction system operates in some  zos
cases within unstable regions where production of CH4 could decrease dramatically due to 200
the well-being of microorganisms and is exposed to uncomfortable scenarios. By the time 210
the value of CH, turned chaotic, the value of pH decreases over the limit 7.3 (see Figure 21
stage 15 days). 212

From the beginning of the data selected, it has been possible to bring about substantial 21
improvement in the volume of CHy produced while the values of STR decreased from 40 215
days to 20 days. However, despite trying to stabilize the variations on the inlet, it was not  21e
possible to stabilize the system around a steady state behavior. In the following section, a 217
parameter identification method will be detailed using the data collected from 208 days of  =1s
measurements. 210

80 I T l T T l T II T
SRT I SRT : SRT : : SRT
75 days 140 days 27 days 15 days

i @ 80

60 I I o | o !
y | o @ Q@?Q@ QO Qo
=40t ° -
)] 1 J)O % 0© @ |an Qj
20 L I | | |
QEKIfﬁmk%%ﬁgﬁg I SRT I
0 || l 1 1 l 1 days |l 1
0 50 100 150 200 250 300 350
days
(a) 10
Vet V' srr ! ' k '
8l OO :40 da\,(s:O 27 days :O °o o :O o0 _
6 L Q Q@ O i
g [ oy ! b ©9 g0 ® 0 1, ©0
o 40 [ 1© | | |
1% I I
2 _(%RT | | | SRT 1 SRT i
0 75 days 1. 1 . | 1 2|0 days 1 15 qays
0 50 100 150 200 250 300 350
days

(b)
Figure 3. Evolution of the core parameters of the anaerobic digestion process. (a) concentration of
chemical oxygen demand (COD); (b) concentration of volatile fatty acids (VFA).

4. An Adaptive modelling identification strategy for anaerobic digestion reactors 220

The most common methods used for modeling identification on bioprocess are linear 22
regressions and other strategies based on optimization. The linear regression strategy 222
proposed by Bernard et al. [2] uses the mathematical model ADM2 as the core due itis 22
the best option for control and monitoring purposes. Consequently, the deal is to calculate 224
(calibrate) the set of parameters that assist the mathematical model in closely tracking 2zs
the experimental data when it runs over the steady-state. The validation procedure is =2z
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supported, based on the premise, that the mathematical model has to be evaluated on
steady-state and during the process of convergence over transients [4].

SRT
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OOQ%O daysl @ 27 days

T
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20 days

T
SRT
15 days

227

228

Ool .

& %C% oggﬁg@g wa
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SRT | | 1
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e (O
0 100 150 200 250 300 350
days
(b)

Figure 4. Evolution of the core parameters of the anaerobic digestion process. (a) level of pH; (b)
methane volume rate production

The transient has been tested step by step once the inlet conditions change. However,
despite the numerous advantages; the guarantee of identifiability of parameters, a rigorous
identification procedure that covers a wide range of operational conditions, and the ability
to validate the performance during transients, especially over unstable phases, the method
exhibit disadvantages; the supposition of linearity related with independent and dependent
variables, the sensitiveness to noise, the presence of outliers and overfitting [11].

4.1. Parameter identification based on optimization

Consider the mathematical model on equations (1) to (6). The parameters to be identified
p(k) are calculated from a parametric identification algorithm that uses the measured infor-
mation from the reactor, see Figure 5a. The Table 3 below list the parameters to be identified.
This method solves an optimization problem to find the values of parameters aiming to
minimize the difference between the measured data from the experiment and the same
variables considered on the mathematical model ADM?2 modified [12]. Figure 5a shows a
schematic that explains the architecture proposed. The variables used from the data of the
experiment are; Fy,; = {CHj}, the volume of methane produced as a consequence of the
metabolism by methanogenic archaeas; 1,, = {51, Sy, Z}, the measured states considered
by the mathematical model ADM2, the organic substrate concentration, volatile fatty acids
concentration, and total alkalinity; and finally, the level of pH [13,14].

The variables COD;,, VFA;,, and D are the chemical oxygen demand, the volatile fatty
acids, and the dilution rate, all at the inlet. The input profiles test the system around a
wide range of operational scenarios. Q;, is the energy used to maintain the reactor within a
thermophilic range (not considered by the mathematical model). Figure 5b shown the rules
used by the parametric identification algorithm to calculate the optimal parameters p(k).
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Table 3. Nomenclature of parameters to be identified on the optimization algorithm.

Parameter Description Unit
W1, Maximum acidogenic bacteria growth rate a1
120 Maximum metanogenic bacteria growth rate | =1

K51 Half saturation constant g/L

Ks, Half saturation constant mmol /L
kq Yield for substrate degradation ]

ko Yield for VFA production mmol/g
ks Yield for VFA consumption mmol/g
ky Yield for CO; production mmol /g
ks Yield for CO; production mmol /g
ke Yield for CHy production mmol/g
Kz, Yield for aminoacids degradation mmol /L
Kz, Yield for proteins degradation mmol /L
Zin Total alkalinity at inlet mmol /L

The most important restriction is that the values of parameters have to be the same during 2s:
the experiment. It allows the mathematical model to evolve (£), trying to adjust the values 2ss

of states and other variables to data collected from the experiment (gray line) [15]. 255
A
Finish
Start .State (foreca.!st) o
r-) - - T-=-=-"-"T=-====== 1
[ T T Optimal parameters ,
Lo I
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
] >
Kk k1 k+2 k+3 k+4 K+N,
(a) (b)

Figure 5. Optimal-based schematics procedures. (a) identification parametric diagram; (b) identifica-
tion parametric algorithm.

The following equation (13) shows the optimization problem proposed to be solved. 256

s.t.

y(k) = g(x(k), u(k)), (13)
(

The equation J(u(k),p(k),x(k)) is the functional cost that contains the criteria to min- =s-
imize. It depends on the parameters p(k) to compute, the output function y(k), and zss
the states variables of the mathematical model x(k). g(-) represents the reference sig- s
nal introduced. y,,i, and Y.y are the lower and upper operational constraints. Finally, ze0
Pmin and ppgy are the lower and upper limits of the parameters to be calculated, hence, 26
p(k) € {ftimax, Homax, Ks,, Ks,, k1, ko, k3, ks, k5, ke, Kz,,Kz,, Zin }- 262
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J k), p(k), (k) = norm ( (xpoa (k) — x¢)%) (14)

The previous equation (14) shows the cost function; the norm of the squared difference ze:
between the mathematical model variables and dynamics x,,,4(k) and the correspondent 2.
variables x. (k) measured on the experimental data. Finally, the following equation shows  zes
the variables used in detail. 266

J(nu(k), u(k)) :norm<(nm0d(k) — n;(k))2+
(PHmod(k) - ]f’hle(k))2 + (q%’d(k) - q‘jw(k))z) (15)

The previous equation represents the mean square error between the experimental data ze7
(n5,(k), pH®(k) y g5,(k)) and the correspondent data obtained by the mathematical model  es
(04 (k), pH™ (k) y q7(k)). On ny, (k)" and n,, (k)¢ the subscript m represents the zeo
dynamics with information over the experiment. The parameters to be computed are p(k). =7

4.2. On-line identification strategy a1

Finally, the best alternative is to use a mathematical model that uses both; static parameters 272
influenced by the waste composition and nitrogen content and the online estimation of 273
kinetic parameters due to their large variation. The identifiability of its parameters is 27
conditioned by isolated structures conformed into subsystems that depend on natural 2ss
interactions. The equations (1) and (3) can be grouped in one subsystem because the state 276
variables S1 and X are not influenced by others, and so, by the correspondent parameters. =27z
Then, the subsystems composed by equations (1), (3) and (2), and (4) can be considered =z7s
independently. Under normal operation scenarios, the reactor has three equilibrium op- 27
erational points. The first occurs when the reactor operates under a stable region over zso
operational constraints. The second is when the system operates under instability scenarios, ze1
and the third is when the reactor experiment a wash out, so that X; = 0 and 51 = Sqj;,. 262
When the subsystem composed by the equations (1) and (3) converges, the equations (2) 2.
and (4) will do the same towards over an stability region. In the same way, the equations s
(5) and (6) will converges at the same time [16,17]. 285

4.2.1. Static parameter identification procedure: genetic algorithms 286

Genetic algorithms evolve inspired by the ability of nature to adapt and evolve conditioned  2s7
by the environment and the genetic characteristics of their predecessors. The algorithm  zss
is based on a random rough search around the solution space area; thus, the convergence =zs
depends on the number of iterations until the optimal solution is encountered. This option 200
is used as a reference in order to quantify the improvements achieved on the algorithm 2o
proposed in the next section. 202

4.2.2. Static parameter identification procedure: step ahead 203

Figure 6a shows the algorithm’s structure and the step-by-step designing process to es- zes
timate the static parameters over the process. The technique, called step-ahead, place a 205
mathematical model as the core to predict the evolution of the system dynamics over each 206
time step determined. Consider Xj as the starting point (represented by a black circle o). 207
At this time, the algorithm uses the mathematical model to calculate the next step forward, 298
aiming to discover the system’s evolution in advance (represented by a black triangle A). 200
Now, on Xj, the new measured value (the o) is compared with prediction (the A). The 300
difference between the values of e and A (¢ — A) means the error aiming to minimize over s
the experiment. To calculate the prediction of the system in advance, in Xj is required the o2
information of; the initial conditions, the inputs us, and the value of the parameters to be  sos
calculated p. 304
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E = [errory, errory, ..., errory] (16)

In the next step, aiming to perform a new prediction (on X;), the algorithm updates the o5
initial conditions (replacing the value of the previous prediction A with the new initial 06
condition, or measurable value, ®). This strategy allows adjusting the deviation (or error) on oz
each step. The end of the simulation results in a vector that stores all the errors encountered  soe
over each step [18]. 300

A upert
A
® Pump
: }error error
1
\)919\ f A u D Ysal
1 1 H ent
O ! ' : ¢
: 1 i Sensors
? 1 ! : H
1 1 : E nnmed
1 i 1 Asymptotic Nmed
J T —> observer
0 Xo Xy Xz
(@ (b)

Figure 6. The proposed structures in the anaerobic digestion process. (a) step-ahead algorithm; (b)
asymptotic observer structure.

The objective of the optimization problem to be solved changes; however, the restric- s
tions and operational boundaries are the same compared with equations 13. The new su
optimization problem is shown in the following equations. a2

min E (17)
u(k)

s.t.
nm(k+1) = f(nm(k),u(k)),
i (k+1) = f(”nm (k), u(k)),
0 < u(k) < pmax, Vk =1, ..., tr
(18)

4.2.3. Dynamic parameters: an asymptotic observer in anaerobic digestion processes 313

One significant problem with using control and monitoring systems in anaerobic digestion 1
reactors; it is not yet possible to achieve all measurements online to feed the mathematical 15
model and start operations with a controller. However, the absence of information due to 316
the lack of reliable sensors, and the inadequate strategies to test constantly all measure- a7
ments made by laboratory analyses, opens up an opportunity to substitute the uncertainty s
by using online software sensors. 310

The online software sensors, or the so-called state observers (in control and engineering = s2:
theory), estimate the state variables inside the homogeneous reaction systems using other sz
measurements tied to the given system. Based on the previously existing information 23
(the reaction kinetics and the static parameters), different state observers are proposed sz
in the literature. The data from reaction kinetics is unknown; therefore, this observer is szs
a consequence of the strictly challenging requirement that the information from kinetics 326
needs to be known. This results in a particular category of observers named asymptotically = s2r
because it estimates the non-existing measurable states based on two conditions; the system  s2s
is still not exponentially observable, and the reaction kinetics are unknown. The design sz
of the algorithm has to fulfill the following conditions: the information of matrix ¢ is 330
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unknown, the yield coefficients from K are fully known, and finally, the number of gstate, 331
the number of measured state variables is the same or higher than the rank of the matrix s
K, that is gstate = dim(&1) >= rank(K). First, consider the general homogeneous reaction  sss

systems described by the general nonlinear state space model, that is. 334
dg
o = Ke(&,t) = DG —Q(8) + F. (19)
Where dim (&) = dim(F) = dim(Q) = N, dim(¢) = M and dim(K) = N x M. The general sss
nonlinear model equation (19) can be divided as. 336
d(:_fg o
E —Ka¢(€ur€b)_DCa_Qu+Faz (20)
dep _ K — D¢y, — F 21
5 = Ko#(CasGp) = DGy — Qv + (21)

Where the rank of K is p. The submatrix K,; comes from K and the dimensions are p X M. s
The submatrix Kj, has the remaining information of K. Finally, the matrices (s, &p), (Qa, Qp) 338
and (F,, F,) are the corresponding parts of &, Q and F caused by the influence of K, and 330
K. The previous formulation has the following feature. There exists a transformation that a0

considers Z,;, as a linear combination of X,; and X, thus. 341
Zop = AoGa + Cp- (22)

derived from the previous equation. 242
Zop = Aoka + G- (23)

then, using the equation (20) on the equation (23): 343
Zop = Ao(Kap — DXy — Qo + Fa) + Kpp — DXy — Qp + Fy. (24)

solving the last equation. 348
Zob = AoKap — AgDXo — AgQa + AoFa + Ky — DXy — Qp + Fy, (25)

then grouping the expressions. 24
Zop = —D(AoXa + Xp) + Ao (Fa — Qa) + Fy — Qp + AoKa + Kp¢p. (26)

finally, using the equation (23) on equation (26), then: 346
Zop = —DZoj, + Ag(Fa — Qa) + Fy — Qp + p(AoKs + Kp) - (27)

eliminate

there are two conditions in order to remove the expression in (27). However ¢ # 0, thus. 347

AoK; +Kp =0, (28)
Finally, according to the previous equations, the state space model is equivalent to. 248
dgu o
W = Ku‘P(ga/ gb) - Dga - Qa + F, (29)
dZ,y
5 = DZop+ Ao(Fa = Qa) + (B — Qu)- (30)

If the expression F;, — Q, = 0, then it means that the partition made by the equations (20) sas
and (21) are appropriate due to the new dynamics on Z,, are independent from K and ¢. ss0
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Equation (29) shown the values of &, independent from ¢ (the information of the reaction ss:
kinetics). 352

Observer design 353

Using the nonlinear general dynamical model, equations (1) to (6), the following equations  ss
describes a decoupled subsystem conducted by the state variables X;, X, S1 y Sy thatcan =5
be run separately. This representation allows working with a reduced model re-written as. sse

X1 0 0 1 0
X, 0 0 0 1 ;41X1]
— , F = ’ = ’ K = ’ - . 31
¢ 51 DS1in 2= 1o —k1 ¢ [ﬂzxz 6D
Sy DSy 0 kp —Ks
Considering the previous subsystem, the subsequent state equations are structured as sz
follows. 358
X3 1 0 X1 0
d | X, . 0 1 P Xo 0
A R R R P 2
52 kz —K3 SZ D SZin

Then, comparing the previous subsystem with the equivalent generic equations (29) and  sse
(30) results in the following specifications. 360

*  The original nonlinear state space system was decoupled into two parts; the subsys- e
tem equation in (32), and the other part that includes the remaining state variables, se2

inorganic carbon C and total alkalinity Z. 363
*  The information, usually contained on matrices Q, and Qy, is located in the state ses
dynamic variable C. 365
e The matrices Qq and Q; are the reaction rates r and ry. 366
Based on the previous requisites, ¢, and ¢, represents the information of measurable and e
no measurable states, thus. 368
_ |5 _ 1%
o=l &= (3)
therefore. 360
0T | Zy,| T 1<11<12<3 & | 152 Xz

using Z = A1y + A(p to compare with the previous structure in equation (34) results in. sz

Ay =1 (35)
as a consequence, in order to find Ay. 371
Ay = —KpK; ! (36)
Using the equation (36) and employing the previous information originates the following sz
matrices. 373
|10 =Ky 0
L -

The next step is to separate the non-measurable states in order to estimate the variables Z,;, 37
and Z,p,,, and the measurable states S; and S,. Using the equation (22) and solving for ;. s

J
o
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&b = Zob — AoGa (38)
At this point we have the matrices of ¢,, Ag and Z,. 376
1
X1 Zop m 0 51
e A e AT R A )
X2 ° Zob, T % S2

The state variables X; and X; are unknown. The variables Z,;, and Z,;,, represent the new sz
dynamics independent from the reaction kinetics contained on ¢. The matrix Ag has the a7
yield coefficients, and the state variables S and S, are the estimation space. The values of 37

F, and F, are. 380
_ | DSy 10
F=pa] m=g 0)
Finally, with the use of the previous equations, the expression of Z, is as follows [19]. 381
az
oi- = ~DZoy + Ao(Fa — Qu) + (Fy — Q) (41)
5. Results 382
Figure 7 shown the data used to feed the reactor during the experiment, the inputs consid- ses
ered are Sy, , So, , Zi and D. Figure 7c shown the value of Sy, . 384
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Figure 7. Influent measurements on anaerobic digestion process. (a) dilution rate (D); (b) volatile
fatty acids (VFA); (c) chemical oxigen demand (COD); (d) alkalinity (Z).

The red line represents the value measured of COD on influent. However, for simulation s
purposes, it is considered a constant value over the three stages (the same changes that ses
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occur on the value D) represented by the blue line. The same procedure was proposed to ez
the value S, (VFA). Finally, on Figure (7d), the optimizer calculates the data to reconstruct = sss
Ziy,. This variable was computed along the experiment because the total alkalinity Z at the seo
inlet was not measured by M.A. de la Rubia [10]. The condition inserted on the optimization se0
algorithm is that Z;,, maintain its value constant over four days, trying to replicate the 3o
measurements made on-site. 302

Figure 8 shows the results achieved by the parametric identification algorithm using ses
experimental data. Figures 8a and 8b present the adjustment achieved by the state variables o5
51 and S, between the mathematical model and the experimental data, the chemical 306
oxygen demand and volatile fatty acids respectively. The red line represents the actual so7
data measured from the experiment, and the blue line (only for informative purposes) e
is the mean value used as a reference where the system theoretically be established on e
steady-state (due to the dilution rate D remains constant). The discontinuous black line is 400
the dynamic of the mathematical model that better adjusts to the experimental data. a01
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Figure 8. The use of genetic algorithms to fit the mathematical model to the experimental data. (a)
volatile fatty acids (VFA); (b) chemical oxigen demand (COD); (c) level of pH; (d) alkalinity (Z).

The pH value achieves desirable results because the difference between the experimental 402
data and the mathematical model is relatively close. Only at the beginning was the differ- o3
ence very high due to the initial conditions set on the simulator. Finally, Figure 8d shows 04
the results of the identification procedure made for total alkalinity Z. The dynamic of the 405
mathematical model (discontinuous black line) closely follows the reference (the measured 406
data, the red line). 407

Figure 9a shows the results after running the parameter identification genetic algorithm 400
conditioned trajectory volume of methane CHy produced. The discontinuous black line 410
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that represents the mathematical model adjusted to the data by the parameters follows the a1
variations closely. a12

Figure 10a and Figure 10b shown the improvement achieved by the use of the step-ahead 414
algorithm. For the dynamics S; and S, the difference between the discontinuous black a5
line (mathematical model) and the experimental data (red line) is closer than the previous a1
results. Figure 10c shows the results of the new algorithm with the pH value. As it is being 417

shown, there is a significant improvement compared with the previous results. a1s
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Figure 9. The use of genetic algorithms to fit the mathematical model to the experimental data. (a)
the volume of methane (CHjy). (b) Influent alkalinity results using the algorithm step-ahead.

Figure 10d shows the results of the adjustment achieved by the total alkalinity using the 41
algorithm step-ahead. There is a significant improvement compared with the previous 2o
results (see Figure 10d). Figure 11a shows the results between the mathematical model 42
(discontinuous black line) and the experimental data (red line) achieved in the volume of 422

methane CHy produced [10,20]. 423
Table 4. Values of parameters achieved by the two algorithms; genetic algorithm (GA) and step ahead
(SA)
Value .

Parameter CA SA Unit

11,0 0.26 | 0.06 d!

12,0 152 | 0.05 d!

Ks, 213.89 | 298.03 g/L

Ks, 168.76 | 1.08 mmol /L

kq 29.34 | 1.34x10°° | []

ko 31.14 | 216.80 mmol /g

ks 40.81 14.23 mmol /g

ky 36.61 | 8.58x10~7 | mmol/g

ks 4321 | 1.14x10°® | mmol/g

ke 549.99 | 550.00 mmol /g

Kz, 0.68 3.21 mmol /L

Kz, 1.28 4.45 mmol /L

Zin Vz.. 19.66 mmol /L

Finally, based on previous results, to quantify the improvement achieved by the new 42
algorithm, Figure 11b is focused on measuring the improvements in the variables VFA, 425
COD, Z, pH and CHy. The performance achieved by the genetic algorithm is used asa 26
reference (see the results in Table 5). The equation used to calculate the performance is (42). a27
Table 6 shown the values calculated by solvers. a28
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Figure 10. Step-ahead algorithms to fit the mathematical model to the experimental data. (a) volatile
fatty acids (VFA); (b) chemical oxygen demand (COD); (c) level of pH; (d) alkalinity (Z).

Finally, after 60 days, both dynamics converge. Once the dynamics of the mathematical 420
model and the estimator run together, both react instantly simultaneously due to changes. 430
On day 50, a change in the operational point occurred; the value of the dilution rate changed 431
from 0.03 to 0.07. 432

208
100 Y S1(k)* — Sq(k)*P

00 k=1
% Improvement = 100 308 (42)

Y S1(k)E" = S1(k)™F
k=1

As shown in Figure 12, both concentration of acidogenic and methanogenic bacterias ass
drastically reduce their presence in the reactor. Even when the dynamics were about to  a3s
achieve a stabilization point, a new change on day 100 was carried out; the dilution rate a3s
changed from 0.07 to 0.05. Both the dynamics of the mathematical model and the estimation 436
algorithm continue running together towards its natural behavior. a37

Table 5. Evaluation of the adjustment achieved by the parameter identification strategies; genetic
algorithm and step-ahead.

Variable Sy Sy Z pH | CHy
% Improvement | 78.7 | 60.5 | 38.6 | 255 | 7.7
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From that moment, the dynamics of the mathematical model and the observer remained 43s

together. 439
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Figure 11. Step-ahead algorithm used to adjust the mathematical model to experimental data. (a)
the volume of methane (CHy). (b) Fitting improvement from step-ahead compared with genetic
algorithm.

All aforementioned demonstrates that the asymptotic observer has good performance. 440

Table 6. Values of the parameters selected.

Parameter CA Value SA Unit
Wi, 026 | 0.06 a1
12,0 152 | 0.05 a1

Ks, 213.89 | 298.03 g/L

Ks, 168.76 | 1.08 mmol /L
k1 29.34 | 1.34x10°° | []

ko 31.14 216.80 mmol /g
ks 40.81 | 14.23 mmol/ g
ky 36.61 | 8.58x107 | mmol/g
ks 4321 | 1.14x107° | mmol/g
ke 549.99 | 550.00 mmol /g
Kz, 0.68 3.21 mmol /L
Kz, 1.28 4.45 mmol /L
Zin Vz., 19.66 mmol /L

Then, Figure 6b shows the structure proposed by direct measurement (Sensors) and the 4
asymptotic observer that estimates the state variables X; and Xj. This structure seeks as2
to address the lack of measurements due to the absence of reliable sensors. Figure 12 4
shows the results obtained by the algorithm asymptotic observer that reconstruct the s
state variables concentration of acidogenic X; and methanogenic X; bacterias. To test ass
the observer’s performance, the values of estimations were compared with the dynamics a4
measured directly from the mathematical model. The starting point between the simulation 4a7
of the dynamic observer and the mathematical model was different in order to confirm the s
convergence between them sometime. 240
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Figure 12. Performance test for the asymptotic observer. (a) model variable Xy; (b) model variable
X.
6. Conclusions as0

This paper proposes a structure composed of an asymptotic observer and a parameter as:
identification procedure based on optimization, aiming to measure continuous online data 4s2
to feed the mathematical model and run algorithms for control and monitoring purposes. 4ss
The proposed structure replaces traditional actions in the industry where the lack of infor- ass
mation is replaced by generic values found in the literature (rates of microorganisms like 4ss
substrate degradation fairly the same chemical and operational conditions). The module’s  se
operation starts with the parameter identification algorithm that, based on its optimization s
programming, finds the value of the best parameters that better minimize the difference 4se
between the data measured and the dynamics of the mathematical model by tunning the s
variables (degrees of freedom). The step-ahead algorithm, based on optimization, was aso
tested with success; the performance was compared with a traditional optimization method 46
(genetic algorithm). Using as a reference, the results obtained by the genetic algorithm ss2
were compared with those obtained by the step-ahead algorithm. The improvement was  4es
calculated using five variables; S1, Sp, Z, pH and CH4. The results shown improvements  aes
from 7.7 % for 78.7 % in CHj to achieved by S;. Once the parameters were calculated Addi- 4es
tionally, the absence of online measurements from the concentration of microorganisms 4ss
(acidogens and methanogens) gives affordable times for control purposes; it was necessary e
to choose an asymptotic observer strategy to have the chance to approximate these mea- 4ss
surements in advance instead of having data from traditional methods but with extended aeo
dwell times. New variables were added to the mathematical model ADM2 (inspired by a7
other modifications found in the literature on this model) to extend the set of usable types a7
of organic matter. The methodology mentioned above aims to enable this algorithm as the 72
basis for designing a wide range of possibilities of control structures forward. a73
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