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Abstract: This work presents a methodology that seeks to be a new standard in modeling identification 1

in anaerobic digestion reactors. Because it is not possible to measure all variables with reliable and 2

cost-efficient real-time methods, a specific structure composed of an asymptotic observer for the 3

concentration of state variables; acidogenic and methanogenic bacterias, unlock the use of new 4

types of raw sludges for industrial control and monitoring purposes. New yield parameters were 5

included in the reduced anaerobic digestion model (ADM2) used as the core, precisely two terms 6

in total alkalinity, to bring about the modeling of additional organic materials at inlet containing 7

proteins or amino acids. The fermentation of these substances introduces ammonium, providing 8

variations in the amount of alkalinity available inside the reaction. The new model is used to solve an 9

optimization problem that calculates the parameters that best fit the dynamics of state variables with 10

the same information taken on the experimental data. The adjustment process started with the genetic 11

algorithm; however, to improve the performance, a novel method is proposed called step-ahead. 12

Together, including the design of an asymptotic observer, numerical simulations demonstrate the 13

strengths of the structure, which constitutes a significant step in paving the way further to implement 14

feasible, cost-effective control and monitoring systems in the industry. 15

16Keywords: asymptotically observer; homogeneous reaction systems; anaerobic digestion; volatile 
fatty acids 17

1. Introduction 18

Anaerobic digestion (AD) is a complex biological process where a consortium of anaerobic 19

microorganisms, in the absence of oxygen, break down a biodegradable fraction of biomass 20

into biogas and digestate [1]. The organic matter takes place inside a sealed vessel (reactor). 21

Compared to other common alternatives, such as aerobic treatment systems, the AD process 22

return little sludges, have a positive overall energy balance, and also has an enormous 23

potential to reduce challenging and concentrated substrates such as animal wastes, wastew- 24

ater, by-products from industrial plants, and food wastes to name the most important 25

ones [2]. However, despite these benefits, the technology is not yet used extensively in 26

large-scale industries. The reasons behind this are; that the control systems, trying to 27

balance the operational requirements inside the reactor, failed because the reaction becomes 28

easily unstable due to slight sensitive variations in biological rates [3]. The arguments 29

mentioned above support why full-scale reactors are mainly still operated manually [4], 30

because its efficiency depends mainly on the expertise of based-knowledge operators and 31
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the process circumstances, becoming a challenge if the purpose is to develop a technology 32

that operates massively. However, these obstacles explain why such research area has been 33

active by scientists during the last years, allowing to improve the performance of reactors 34

and maintain them over stable operational conditions [5,6]. 35

36

Typically those systems inherently act with non-linear nature. In addition, essential sin- 37

gularities, such as high sensitiveness to uncontrollable inputs and perturbations, and the 38

drawbacks caused by the restricted access to online measurements (due to the lack of cost- 39

efficient and reliable sensors), originate mathematical models with limited approximations. 40

The effort begins with setting a reliable architecture based on non-linear monitoring and 41

control schemes to overcome these inconveniences. While there exists a varied number of 42

alternatives, based on mathematical modeling found in the literature that demonstrates 43

good efficiency, generalization and partial knowledge of the phenomena are the main 44

challenges to solve, especially if the main goal is to develop scalable software as the basis 45

of implementations on the large-scale industry. 46

47

The phenomenology is frequently poorly comprehended because the anaerobic digestion 48

processes are related to the existence of microorganisms. Then, replicating mathematically 49

the same operating conditions are not possible regularly due to the uncertainty and varia- 50

tion in yield parameters because of changes in metabolism. This paper aims to contribute 51

with a novel software beyond traditional methods, where performance depends on mea- 52

sured data and new software sensors strategies that capture the reality with high reliability. 53

To perform a long-term plan to achieve feasible control schemes for industrial purposes, 54

the first step is to ensure the existence of a measurable layer that provides continued data 55

to the mathematical model. Although these observer strategies have been widely used 56

on different types of microorganisms inside a reactor, there are still obstacles in trying to 57

define a method that guarantees full knowledge of the data inside a reaction [7]. 58

59

A desirable alternative used in literature, the asymptotic observers, estimate the state 60

variables that cannot be measured directly over systems. Depending on the information 61

available, the design of the observer mainly depends on two conditions; the information 62

available regarding the reaction kinetics and the yield parameters. This paper uses a math- 63

ematical model AM2 with additional terms to consider a wide range of organic matter 64

modeled at the inlet. With the use of this model, it is still not possible to obtain information 65

on the state variables concentrations of acidogenic X1 and methanogenic X2 using feasi- 66

ble online sensors. Additionally, there is no complete knowledge of the process kinetics. 67

Therefore, based on the preliminary information, this paper focuses on developing an 68

asymptotic observer conditioned by the following characteristics; the state variables X1 and 69

X2 are unknown, and the yield parameters are known and calculated using a parameter 70

identifications procedure based on optimization. The main challenge resides in using real 71

data from an industrial process that evaluates the proposed methodology in a wide range 72

of possibilities [8,9]. 73

74

In order to start demonstrating well-performance indicators in the online model parameter 75

identification strategy, the following sections have been proposed as follows. In section 2, a 76

reduced model ADM2 with additional terms for control purposes is presented. Then, in 77

section 3, experimental results are performed in an anaerobic digestion reactor to use as a 78

basis for setting the experimental conditions to test the methods proposed. In section 4, the 79

parameter identification algorithm is presented where an optimization problem is solved to 80

find the values that better fit the dynamics of the mathematical model and the experimental 81

data. Section 5 proposes an asymptotic observer with the condition that the information 82

from reaction rates is unknown. This algorithm aims to estimate the concentrations of 83

acidogenic and methanogenic microorganisms. Finally, on the conclusions, some remarks 84

are discussed coming from the evaluation of performance from the strategy proposed. 85
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2. The anaerobic Digestion Mass-Balance Model 86

Among the alternatives encountered in the literature that propose reduced mathematical 87

models aiming to deploy control and monitoring systems, the ADM2 mathematical model 88

is considered the best practical option available; it becomes the cornerstone between the 89

anaerobic digestion process on site and feasible controller schemes. The lack of phenomeno- 90

logical knowledge, the high level of difficulties over the process, its nonlinearities, and the 91

lack of reliable sensors support why almost all of the mathematical models found in the 92

literature work as coarse approximations [2]. Therefore is the reason why it is necessary 93

to find reduced models that have the potential to evade the absence of phenomenological 94

knowledge. The alternative proposed in this paper based on mass-balance specifications 95

beats this difficulties positioning the lack of information over specific terms called reaction 96

rates. 97

98

The ADM2 reduced model proposed considers biological phase reactions, dividing the 99

consortium into two homogeneous groups; acidogens and methanogens that represent 100

the destabilization phenomenon [2]. To incorporate a broader spectrum of usable organic 101

matter, the influence of ammonium on alkalinity is considered because it is usual to find 102

these compounds when fermentation and microbial growth metabolism occur. Thus, two 103

yield parameters were added to represent this effect; KZ,1 and KZ,2 respectively. Based 104

on the considerations made by Kil et al. [5], the term (KZ,1ρ1 − KZ,2ρ2) is added to the 105

dynamic of the total alkalinity equation proposed by Bernard et al. [2]. The content of 106

waste sludges influences the new yield parameters. In conclusion, the new equation system 107

that represents the anaerobic digestion process is shown in the following equations. 108

dX1

dt
= X1(µ1 − αD), (1)

dX2

dt
= X2(µ2 − αD), (2)

dS1

dt
= D(S1in − S1)− ψ1

(
S1

KS1 + S1

)
, (3)

dS2

dt
= D(S2in − S2) + ks2,1ψ1

(
S1

KS1 + S1

)
− ψ2

(
S2

KS2 + S2

)
, (4)

dZ
dt

= D(Zin − Z) + kZ,1ψ1

(
S1

KS1 + S1

)
+ kZ,2ψ2

(
S2

KS2 + S2

)
, (5)

dC
dt

= D(Cin − C)− qC + k4µ1X1 + k5µ2X2, (6)

with: 109

qC = kLa[C + S2 − Z − KH PC] (7)

where PC and Φ comes from the equations described in Bernard et al. [2]. 110

PC =
Φ −

√
Φ2 − 4KH PT(C + S2 − Z)

2KH
(8)

with: 111

Φ = C + S2 − Z + KH PT +
k6

kLa
µ2X2 (9)

From the equations above, X1 represents the concentration of acidogenic bacterias, X2 the 112

concentration of methanogenic archaeas, S1 the concentration of organic substrate, S2 the 113

concentration of VFA, Z the total alkalinity, and C the concentration of inorganic carbon. 114

The subscript "in" indicates the influent flow of the correspondent concentrations S1, S2, C 115

and Z. D is the dilution rate. The yield coefficients k1, k2, k3, k4, k5 and k6 mean the yield 116
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for COD degradation, the yield for VFA production, the yield for VFA consumption, the 117

yield for CO2 production, the yield for CO2 production, and the yield for CH4 production 118

respectively. Originally, the ADM2 model considers that the reaction rate processes do not 119

affect the total alkalinity; nevertheless, the amino acids and proteins usually are presented 120

on the organic matter. Thus, we decided to incorporate this effect to extend the types of 121

raw sludges that the mathematical model can use. In order to keep a simple mathematical 122

description, we introduce the ammonium contribution to the alkalinity mass-balance 123

proposed by Kil et al. [3,5]. The following Monod-type representations characterize the 124

reaction rates 1 and 2: 125

ρ1 = ψ1
S1

KS1 + S1
(10)

and. 126

ρ1 = ψ1
S1

KS1 + S1
. (11)

Where ψ1, ψ2, KS1, and KS2 describe the maximum rate of acidogenic degradation, the 127

maximum rates of methanogenic degradation, the half-saturation constant associated with 128

substrate S1, and the half-saturation constant associated with the substrate S2 respectively. 129

Monod-type kinetics describes the growth of acidogenic bacteria ψ1 (S1) and methanogenic 130

archaea ψ2 (S2), because, in the fermentation process, the biomass does not register possible 131

VFA accumulation and consequently inhibition. Finally, the methane flow rate produced 132

qM is proportional to the reaction rate of methanogenesis, as shown in the following 133

equation: 134

qM = kCH4 ψ2

(
S2

KS2 + S2

)
(12)

3. Experimental results and characteristics of the reactor 135

The data set in this paper were collected from a CSTR pilot plant (150 L) operated at 55 136

± 2 ºC (thermophilic range). The experiment took place in a sewage treatment plant in 137

Guadalete (Jerez de la Frontera, Spain). The system operates with diary inlet flow with 138

primary and secondary combined waste sludges. Figure 1 shows the diagram of the struc- 139

ture. The temperature on the jacket is regulated via an internal coil (Heat unit) using a PID 140

controller linked by a Temperature sensor. The Influent receive the raw sludges before water 141

is added on the Dilution unit. After that, the Pump feeds a dilution rate continuously to 142

the reactor. The liquid-flow speed is measured by an electromagnetic sensor (Flow liquid 143

meter). The off-line measurements on the Effluent, at the bottom of the reactor, are tested 144

periodically in the laboratory using different procedures and protocols. Finally, the biogas 145

on the reaction is tested by a Gas analyzer that quantifies the volume of CH4 produced. The 146

Flow gas meter measures the gas rate produced. 147

148

The study was conducted to test the effect of step changes in the solid retention time (SRT) 149

during 338 days. The measurements were obtained using two different sources. The values 150

of treatment efficiency indicators (the amount of COD and VFA reduced at effluent from 151

inlet) and the total alkalinity are measured from sensors measuring the production rate of 152

biogas online and from laboratory protocols and procedures. The experiment starts with 153

a portion of raw sludge at thermophilic temperature. SRT starts in 75 days; it gradually 154

decreases from 40 days followed by 27 days, 20 days, and 15 days (see the details on 155

Table 1). However, for modeling purposes, only a specific range of data was used to 156

discard unstable scenarios, which are unfavorable for modeling purposes due to deviations 157

related to the nature of reactions. The range periods discarded were; the latency period (a 158

dormancy of microorganisms) at the beginning and the latest one due to the presence of 159

high nonlinear (at the end of the experiment when the reactor operates closer to boundaries) 160
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[10]. Therefore, the data selected started on SRT at 40 days (day 46 of the experiment) and 161

moved forward until the end of the stage SRT 20 days (day 253 of the experiment). Finally, 162

207 days were selected, aiming to work with standard patterns of microorganisms as much 163

as possible. 164

Figure 1. Schematic diagram of the anaerobic digester process in a reactor.

The data selected start at SRT in 40 days, the organic loading rate (OLR) equivalent was 165

0.8 KgVS/m3day (or 1.5 KgCOD/ m3 day). This value remained constant until the steady 166

state was reached (when the measurements of VS and COD removals and the production 167

rate of CH4 are the means of the last 15 days’ measurements. From the data selected, the 168

first change in the value of SRT occurred on the day 40, where the value of SRT switched to 169

27 days. At this new stage, the system operates from day 40 until the day 124. Finally, on 170

the day 125, the SRT value decreases to 20 days. This stage took place on the day 124. This 171

value remained constant until the end of the experiment, the day 208. 172

Table 1. OLR stages during the 338 days experiment.

SRT Days
Start End

75 1 45
40 46 85
27 86 170
20 171 253
15 254 323

As seen in experimental results, only in specific scenarios does the value of pH decrease 173

beyond 7.3. At this moment, a small amount of sodium carbonate was added at a concen- 174

tration of 2N to keep the value of pH over a desirable (feasible) operational range. The 175

main attributes of the organic material used are shown in Table 2. 176

177

On Figure 2 the level of CODin keeps around 60 g/L with variations in ± 40 g/L. Only in 178

exceptional cases some values of CODin remain scattered from the mean value. Otherwise, 179

when the VFAin operates at SRT 40 days, the mean value remains closely to 22 g/L with 180

no significant variations. When the reactor operates at SRT values of 27 days and 20 days, 181

there was an upward tendency. On the effluent, Figure 3 shown the values of COD and 182

VFA. The value of COD (see Figure 3a) remained constant during SRT at 40; all values 183

are centred around 18 g/L. After that, in the subsequent stages, at SRT values from 27 to 184
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20, the amount of COD shows a growing irregular tendency. The degree of dispersion is 185

much larger than in the previous period. On the other hand, the values of VFA vary widely, 186

except on SRT at 40 days (see Figure 3b). Only on the stage SRT 40 days the values remain 187

constant around 3 g/L. 188

Table 2. Main characteristics of the raw sludge.

Parameter Mean value Minimal value Maximum value
COD (kg/m3) 64 42 74
pH 6.2 5.8 6.4
Sólidos totales (kg/m3) 55 38 68
Sólidos volátiles (kg/m3) 68 27 51

Figure 4 shown the consequences of the microbial dynamism derived from the current state 189

of the reactor (see Figures 2 and 3). The volume of CH4 shown in Figure 4b has a specific 190

behavior at each stage. After surpassing the latency stage, specifically, when the operation 191

of the system changes to SRT 40, the dynamics of bacteria showed a slow linear progression 192

in the volume of CH4 produced, reaching a maximum of 40 L/day. 193

(a)

(b)
Figure 2. Evolution of the core parameters of the anaerobic digestion process. (a) influent con-
centration of chemical oxygen demand (COD); (b) influent concentration of volatile fatty acids
(VFA).

In the subsequent stages, over SRT values 27 and 20, the volume of CH4 remains with no 194

substantial variations over the mean. The volume of CH4 produced rose moderately once 195

again over the day 210. A moderate stationary tendency is observed beyond the middle of 196

the stage SRT 27 until the day 200. Going beyond data used for modeling purposes, the 197

volume of CH4 on stage SRT 15 days shows a nonstationary tendency (nonlinear behavior); 198

in some circumstances, the volume of CH4 produced reached 115 L/day, while in other 199

sections, the volume of CH4 produced reached almost 20 L/day. The system oscillates 200
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maybe because it was closer to the operational limits. 201

202

Figure 4a shown the consequences of the reactor over its operation on pH. From the be- 203

ginning of stage SRT 40 days until the end of the stage SRT 20, the measurements oscillate 204

around a mean value of 7.7. However, only for informational purposes, although the range 205

SRT 15 days was discarded, it is worth analyzing the high variation in the level of pH 206

due to the reactor producing a high amount of biogas at this stage. Because the system 207

works closely to biochemical and physical limits, the reaction system operates in some 208

cases within unstable regions where production of CH4 could decrease dramatically due to 209

the well-being of microorganisms and is exposed to uncomfortable scenarios. By the time 210

the value of CH4 turned chaotic, the value of pH decreases over the limit 7.3 (see Figure 211

stage 15 days). 212

213

From the beginning of the data selected, it has been possible to bring about substantial 214

improvement in the volume of CH4 produced while the values of STR decreased from 40 215

days to 20 days. However, despite trying to stabilize the variations on the inlet, it was not 216

possible to stabilize the system around a steady state behavior. In the following section, a 217

parameter identification method will be detailed using the data collected from 208 days of 218

measurements. 219

(a)

(b)
Figure 3. Evolution of the core parameters of the anaerobic digestion process. (a) concentration of
chemical oxygen demand (COD); (b) concentration of volatile fatty acids (VFA).

4. An Adaptive modelling identification strategy for anaerobic digestion reactors 220

The most common methods used for modeling identification on bioprocess are linear 221

regressions and other strategies based on optimization. The linear regression strategy 222

proposed by Bernard et al. [2] uses the mathematical model ADM2 as the core due it is 223

the best option for control and monitoring purposes. Consequently, the deal is to calculate 224

(calibrate) the set of parameters that assist the mathematical model in closely tracking 225

the experimental data when it runs over the steady-state. The validation procedure is 226
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supported, based on the premise, that the mathematical model has to be evaluated on 227

steady-state and during the process of convergence over transients [4]. 228

(a)

(b)
Figure 4. Evolution of the core parameters of the anaerobic digestion process. (a) level of pH; (b)
methane volume rate production

The transient has been tested step by step once the inlet conditions change. However, 229

despite the numerous advantages; the guarantee of identifiability of parameters, a rigorous 230

identification procedure that covers a wide range of operational conditions, and the ability 231

to validate the performance during transients, especially over unstable phases, the method 232

exhibit disadvantages; the supposition of linearity related with independent and dependent 233

variables, the sensitiveness to noise, the presence of outliers and overfitting [11]. 234

4.1. Parameter identification based on optimization 235

Consider the mathematical model on equations (1) to (6). The parameters to be identified 236

p(k) are calculated from a parametric identification algorithm that uses the measured infor- 237

mation from the reactor, see Figure 5a. The Table 3 below list the parameters to be identified. 238

This method solves an optimization problem to find the values of parameters aiming to 239

minimize the difference between the measured data from the experiment and the same 240

variables considered on the mathematical model ADM2 modified [12]. Figure 5a shows a 241

schematic that explains the architecture proposed. The variables used from the data of the 242

experiment are; Fout = {CH4}, the volume of methane produced as a consequence of the 243

metabolism by methanogenic archaeas; nm = {S1, S2, Z}, the measured states considered 244

by the mathematical model ADM2, the organic substrate concentration, volatile fatty acids 245

concentration, and total alkalinity; and finally, the level of pH [13,14]. 246

247

The variables CODin, VFAin, and D are the chemical oxygen demand, the volatile fatty 248

acids, and the dilution rate, all at the inlet. The input profiles test the system around a 249

wide range of operational scenarios. Qin is the energy used to maintain the reactor within a 250

thermophilic range (not considered by the mathematical model). Figure 5b shown the rules 251

used by the parametric identification algorithm to calculate the optimal parameters p(k). 252
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Table 3. Nomenclature of parameters to be identified on the optimization algorithm.

Parameter Description Unit
µ1max Maximum acidogenic bacteria growth rate d−1

µ2max Maximum metanogenic bacteria growth rate d−1

KS1 Half saturation constant g/L
KS2 Half saturation constant mmol/L
k1 Yield for substrate degradation []
k2 Yield for VFA production mmol/g
k3 Yield for VFA consumption mmol/g
k4 Yield for CO2 production mmol/g
k5 Yield for CO2 production mmol/g
k6 Yield for CH4 production mmol/g
KZ1 Yield for aminoacids degradation mmol/L
KZ2 Yield for proteins degradation mmol/L
Zin Total alkalinity at inlet mmol/L

The most important restriction is that the values of parameters have to be the same during 253

the experiment. It allows the mathematical model to evolve (x̂), trying to adjust the values 254

of states and other variables to data collected from the experiment (gray line) [15]. 255

(a) (b)
Figure 5. Optimal-based schematics procedures. (a) identification parametric diagram; (b) identifica-
tion parametric algorithm.

The following equation (13) shows the optimization problem proposed to be solved. 256

min
p(k),...,p(k+NF)

J(u(k), p(k), x(k))

s.t.

x(k + 1) = f (x(k), p(k)),

y(k) = g(x(k), u(k)), (13)

ymin ⩽ y(k) ⩽ ymax, ∀k = 1, ..., Np,

pmin,⩽ u(k) ⩽ pmax, ∀k = 1, ..., Nu

The equation J(u(k), p(k), x(k)) is the functional cost that contains the criteria to min- 257

imize. It depends on the parameters p(k) to compute, the output function y(k), and 258

the states variables of the mathematical model x(k). g(·) represents the reference sig- 259

nal introduced. ymin and ymax are the lower and upper operational constraints. Finally, 260

pmin and pmax are the lower and upper limits of the parameters to be calculated, hence, 261

p(k) ϵ {µ1max, µ2max, KS1 , KS2 , k1, k2, k3, k4, k5, k6, KZ1 , KZ2 , Zin}. 262
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J(u(k), p(k), x(k)) = norm
(
(xmod(k)− xe)

2
)

(14)

The previous equation (14) shows the cost function; the norm of the squared difference 263

between the mathematical model variables and dynamics xmod(k) and the correspondent 264

variables xe(k) measured on the experimental data. Finally, the following equation shows 265

the variables used in detail. 266

J(nm(k), u(k)) =norm
((

nmod
m (k)− ne

m(k)
)2

+(
pHmod(k)− pHe(k)

)2
+

(
qmod

M (k)− qe
M(k)

)2
)

(15)

The previous equation represents the mean square error between the experimental data 267

(ne
m(k), pHe(k) y qe

M(k)) and the correspondent data obtained by the mathematical model 268

(nmod
m (k), pHmod(k) y qmod

M (k)). On nm(k)mod and nm(k)e the subscript m represents the 269

dynamics with information over the experiment. The parameters to be computed are p(k). 270

4.2. On-line identification strategy 271

Finally, the best alternative is to use a mathematical model that uses both; static parameters 272

influenced by the waste composition and nitrogen content and the online estimation of 273

kinetic parameters due to their large variation. The identifiability of its parameters is 274

conditioned by isolated structures conformed into subsystems that depend on natural 275

interactions. The equations (1) and (3) can be grouped in one subsystem because the state 276

variables S1 and X1 are not influenced by others, and so, by the correspondent parameters. 277

Then, the subsystems composed by equations (1), (3) and (2), and (4) can be considered 278

independently. Under normal operation scenarios, the reactor has three equilibrium op- 279

erational points. The first occurs when the reactor operates under a stable region over 280

operational constraints. The second is when the system operates under instability scenarios, 281

and the third is when the reactor experiment a wash out, so that X1 = 0 and S1 = S1in. 282

When the subsystem composed by the equations (1) and (3) converges, the equations (2) 283

and (4) will do the same towards over an stability region. In the same way, the equations 284

(5) and (6) will converges at the same time [16,17]. 285

4.2.1. Static parameter identification procedure: genetic algorithms 286

Genetic algorithms evolve inspired by the ability of nature to adapt and evolve conditioned 287

by the environment and the genetic characteristics of their predecessors. The algorithm 288

is based on a random rough search around the solution space area; thus, the convergence 289

depends on the number of iterations until the optimal solution is encountered. This option 290

is used as a reference in order to quantify the improvements achieved on the algorithm 291

proposed in the next section. 292

4.2.2. Static parameter identification procedure: step ahead 293

Figure 6a shows the algorithm’s structure and the step-by-step designing process to es- 294

timate the static parameters over the process. The technique, called step-ahead, place a 295

mathematical model as the core to predict the evolution of the system dynamics over each 296

time step determined. Consider X0 as the starting point (represented by a black circle •). 297

At this time, the algorithm uses the mathematical model to calculate the next step forward, 298

aiming to discover the system’s evolution in advance (represented by a black triangle ▲). 299

Now, on X1, the new measured value (the •) is compared with prediction (the ▲). The 300

difference between the values of • and ▲ (• − ▲) means the error aiming to minimize over 301

the experiment. To calculate the prediction of the system in advance, in X0 is required the 302

information of; the initial conditions, the inputs us, and the value of the parameters to be 303

calculated p. 304
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E = [error1, error2, ..., errorn] (16)

In the next step, aiming to perform a new prediction (on X1), the algorithm updates the 305

initial conditions (replacing the value of the previous prediction ▲ with the new initial 306

condition, or measurable value, •). This strategy allows adjusting the deviation (or error) on 307

each step. The end of the simulation results in a vector that stores all the errors encountered 308

over each step [18]. 309

(a) (b)
Figure 6. The proposed structures in the anaerobic digestion process. (a) step-ahead algorithm; (b)
asymptotic observer structure.

The objective of the optimization problem to be solved changes; however, the restric- 310

tions and operational boundaries are the same compared with equations 13. The new 311

optimization problem is shown in the following equations. 312

min
u(k)

E (17)

s.t.

nm(k + 1) = f (nm(k), u(k)),

nnm(k + 1) = f (nnm(k), u(k)),

0 ⩽ u(k) ⩽ pmax, ∀k = 1, ..., t f

(18)

4.2.3. Dynamic parameters: an asymptotic observer in anaerobic digestion processes 313

One significant problem with using control and monitoring systems in anaerobic digestion 314

reactors; it is not yet possible to achieve all measurements online to feed the mathematical 315

model and start operations with a controller. However, the absence of information due to 316

the lack of reliable sensors, and the inadequate strategies to test constantly all measure- 317

ments made by laboratory analyses, opens up an opportunity to substitute the uncertainty 318

by using online software sensors. 319

320

The online software sensors, or the so-called state observers (in control and engineering 321

theory), estimate the state variables inside the homogeneous reaction systems using other 322

measurements tied to the given system. Based on the previously existing information 323

(the reaction kinetics and the static parameters), different state observers are proposed 324

in the literature. The data from reaction kinetics is unknown; therefore, this observer is 325

a consequence of the strictly challenging requirement that the information from kinetics 326

needs to be known. This results in a particular category of observers named asymptotically 327

because it estimates the non-existing measurable states based on two conditions; the system 328

is still not exponentially observable, and the reaction kinetics are unknown. The design 329

of the algorithm has to fulfill the following conditions: the information of matrix ϕ is 330
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unknown, the yield coefficients from K are fully known, and finally, the number of qstate, 331

the number of measured state variables is the same or higher than the rank of the matrix 332

K, that is qstate = dim(ξ1) ≥= rank(K). First, consider the general homogeneous reaction 333

systems described by the general nonlinear state space model, that is. 334

dξ

dt
= Kϕ(ξ, t)− Dξ − Q(ξ) + F. (19)

Where dim(ξ) = dim(F) = dim(Q) = N, dim(ϕ) = M and dim(K) = N × M. The general 335

nonlinear model equation (19) can be divided as. 336

dξa

dt
= Kaϕ(ξa, ξb)− Dξa − Qa + Fa, (20)

dξb
dt

= Kbϕ(ξa, ξb)− Dξb − Qb + Fb, (21)

Where the rank of K is p. The submatrix Ka comes from K and the dimensions are p × M. 337

The submatrix Kb has the remaining information of K. Finally, the matrices (ξa, ξb), (Qa, Qb) 338

and (Fa, Fb) are the corresponding parts of ξ, Q and F caused by the influence of Ka and 339

Kb. The previous formulation has the following feature. There exists a transformation that 340

considers Zob as a linear combination of Xa and Xb, thus. 341

Zob = A0ξa + ξb. (22)

derived from the previous equation. 342

˙Zob = A0ξ̇a + ξ̇b. (23)

then, using the equation (20) on the equation (23): 343

˙Zob = A0(Kaϕ − DXa − Qa + Fa) + Kbϕ − DXb − Qb + Fb. (24)

solving the last equation. 344

˙Zob = A0Kaϕ − A0DXa − A0Qa + A0Fa + Kbϕ − DXb − Qb + Fb, (25)

then grouping the expressions. 345

˙Zob = −D(A0Xa + Xb) + A0(Fa − Qa) + Fb − Qb + A0Kaϕ + Kbϕ. (26)

finally, using the equation (23) on equation (26), then: 346

˙Zob = −DZob + A0(Fa − Qa) + Fb − Qb + ϕ(A0Ka + Kb)︸ ︷︷ ︸
eliminate

. (27)

there are two conditions in order to remove the expression in (27). However ϕ ̸= 0, thus. 347

A0Ka + Kb = 0, (28)

Finally, according to the previous equations, the state space model is equivalent to. 348

dξa

dt
= Kaϕ(ξa, ξb)− Dξa − Qa + Fa, (29)

dZob
dt

= −DZob + A0(Fa − Qa) + (Fb − Qb). (30)

If the expression Fa − Qa = 0, then it means that the partition made by the equations (20) 349

and (21) are appropriate due to the new dynamics on Zob are independent from K and ϕ. 350
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Equation (29) shown the values of ξ̇a independent from ϕ (the information of the reaction 351

kinetics). 352

Observer design 353

Using the nonlinear general dynamical model, equations (1) to (6), the following equations 354

describes a decoupled subsystem conducted by the state variables X1, X2, S1 y S2 that can 355

be run separately. This representation allows working with a reduced model re-written as. 356

ξ =


X1
X2
S1
S2

, F =


0
0

DS1in
DS2in

, Q =


0
0
0
0

, K =


1 0
0 1

−k1 0
k2 −K3

, ϕ =

[
µ1X1
µ2X2

]
. (31)

Considering the previous subsystem, the subsequent state equations are structured as 357

follows. 358

d
dt


X1
X2
S1
S2

 =


1 0
0 1

−k1 0
k2 −K3

[ϕ1
ϕ2

]
− D


X1
X2
S1
S2

+


0
0

DS1in
DS2in

. (32)

Then, comparing the previous subsystem with the equivalent generic equations (29) and 359

(30) results in the following specifications. 360

• The original nonlinear state space system was decoupled into two parts; the subsys- 361

tem equation in (32), and the other part that includes the remaining state variables, 362

inorganic carbon C and total alkalinity Z. 363

• The information, usually contained on matrices Qa and Qb, is located in the state 364

dynamic variable C. 365

• The matrices Q1 and Q2 are the reaction rates r1 and r2. 366

Based on the previous requisites, ξa and ξb represents the information of measurable and 367

no measurable states, thus. 368

ξa =

[
S1
S2

]
, ξb =

[
X1
X2

]
(33)

therefore. 369

Zob =

[
Zob1
Zob2

]
=

[
A0ξa + ξb

]
=

[
1

K1
0

K2
K1K3

1
K3

][
S1
S2

]
+

[
X1
X2

]
(34)

using Z = A1ξ1 + A2ξ2 to compare with the previous structure in equation (34) results in. 370

A2 = I (35)

as a consequence, in order to find A0. 371

A0 = −KbK−1
a (36)

Using the equation (36) and employing the previous information originates the following 372

matrices. 373

Kb =

[
1 0
0 1

]
, Ka =

[
−K1 0
K2 −K3

]
. (37)

The next step is to separate the non-measurable states in order to estimate the variables Zob1 374

and Zob2 , and the measurable states S1 and S2. Using the equation (22) and solving for ξb. 375
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ξb = Zob − A0ξa (38)

At this point we have the matrices of ξa, A0 and Zob. 376

ξb =

[
X1
X2

]
, Zob =

[
Zob1
Zob2

]
, A0 =

[
1
k1

0
k2

k1k3
1
k3

]
, ξb =

[
S1
S2

]
(39)

The state variables X1 and X2 are unknown. The variables Zob1 and Zob2 represent the new 377

dynamics independent from the reaction kinetics contained on ϕ. The matrix A0 has the 378

yield coefficients, and the state variables S1 and S2 are the estimation space. The values of 379

Fa and Fb are. 380

Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
(40)

Finally, with the use of the previous equations, the expression of Zob is as follows [19]. 381

dZob
dt

= −DZob + A0(Fa − Qa) + (Fb − Qb) (41)

5. Results 382

Figure 7 shown the data used to feed the reactor during the experiment, the inputs consid- 383

ered are S1in , S2in , Zin and D. Figure 7c shown the value of S1in . 384

(a) (b)

(c) (d)
Figure 7. Influent measurements on anaerobic digestion process. (a) dilution rate (D); (b) volatile
fatty acids (VFA); (c) chemical oxigen demand (COD); (d) alkalinity (Z).

The red line represents the value measured of COD on influent. However, for simulation 385

purposes, it is considered a constant value over the three stages (the same changes that 386
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occur on the value D) represented by the blue line. The same procedure was proposed to 387

the value S2in (VFA). Finally, on Figure (7d), the optimizer calculates the data to reconstruct 388

Zin. This variable was computed along the experiment because the total alkalinity Z at the 389

inlet was not measured by M.A. de la Rubia [10]. The condition inserted on the optimization 390

algorithm is that Zin maintain its value constant over four days, trying to replicate the 391

measurements made on-site. 392

393

Figure 8 shows the results achieved by the parametric identification algorithm using 394

experimental data. Figures 8a and 8b present the adjustment achieved by the state variables 395

S1 and S2 between the mathematical model and the experimental data, the chemical 396

oxygen demand and volatile fatty acids respectively. The red line represents the actual 397

data measured from the experiment, and the blue line (only for informative purposes) 398

is the mean value used as a reference where the system theoretically be established on 399

steady-state (due to the dilution rate D remains constant). The discontinuous black line is 400

the dynamic of the mathematical model that better adjusts to the experimental data. 401

(a) (b)

(c) (d)
Figure 8. The use of genetic algorithms to fit the mathematical model to the experimental data. (a)
volatile fatty acids (VFA); (b) chemical oxigen demand (COD); (c) level of pH; (d) alkalinity (Z).

The pH value achieves desirable results because the difference between the experimental 402

data and the mathematical model is relatively close. Only at the beginning was the differ- 403

ence very high due to the initial conditions set on the simulator. Finally, Figure 8d shows 404

the results of the identification procedure made for total alkalinity Z. The dynamic of the 405

mathematical model (discontinuous black line) closely follows the reference (the measured 406

data, the red line). 407

408

Figure 9a shows the results after running the parameter identification genetic algorithm 409

conditioned trajectory volume of methane CH4 produced. The discontinuous black line 410
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that represents the mathematical model adjusted to the data by the parameters follows the 411

variations closely. 412

413

Figure 10a and Figure 10b shown the improvement achieved by the use of the step-ahead 414

algorithm. For the dynamics S1 and S2, the difference between the discontinuous black 415

line (mathematical model) and the experimental data (red line) is closer than the previous 416

results. Figure 10c shows the results of the new algorithm with the pH value. As it is being 417

shown, there is a significant improvement compared with the previous results. 418

(a) (b)
Figure 9. The use of genetic algorithms to fit the mathematical model to the experimental data. (a)
the volume of methane (CH4). (b) Influent alkalinity results using the algorithm step-ahead.

Figure 10d shows the results of the adjustment achieved by the total alkalinity using the 419

algorithm step-ahead. There is a significant improvement compared with the previous 420

results (see Figure 10d). Figure 11a shows the results between the mathematical model 421

(discontinuous black line) and the experimental data (red line) achieved in the volume of 422

methane CH4 produced [10,20]. 423

Table 4. Values of parameters achieved by the two algorithms; genetic algorithm (GA) and step ahead
(SA)

Parameter Value UnitGA SA
µ1max 0.26 0.06 d−1

µ2max 1.52 0.05 d−1

KS1 213.89 298.03 g/L
KS2 168.76 1.08 mmol/L
k1 29.34 1.34x10−6 []
k2 31.14 216.80 mmol/g
k3 40.81 14.23 mmol/g
k4 36.61 8.58x10−7 mmol/g
k5 43.21 1.14x10−6 mmol/g
k6 549.99 550.00 mmol/g
KZ1 0.68 3.21 mmol/L
KZ2 1.28 4.45 mmol/L
Zin VZin 19.66 mmol/L

Finally, based on previous results, to quantify the improvement achieved by the new 424

algorithm, Figure 11b is focused on measuring the improvements in the variables VFA, 425

COD, Z, pH and CH4. The performance achieved by the genetic algorithm is used as a 426

reference (see the results in Table 5). The equation used to calculate the performance is (42). 427

Table 6 shown the values calculated by solvers. 428
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(a) (b)

(c) (d)
Figure 10. Step-ahead algorithms to fit the mathematical model to the experimental data. (a) volatile
fatty acids (VFA); (b) chemical oxygen demand (COD); (c) level of pH; (d) alkalinity (Z).

Finally, after 60 days, both dynamics converge. Once the dynamics of the mathematical 429

model and the estimator run together, both react instantly simultaneously due to changes. 430

On day 50, a change in the operational point occurred; the value of the dilution rate changed 431

from 0.03 to 0.07. 432

% Improvement = 100 −
100

208

∑
k=1

S1(k)sa − S1(k)exp

208

∑
k=1

S1(k)ga − S1(k)exp
(42)

As shown in Figure 12, both concentration of acidogenic and methanogenic bacterias 433

drastically reduce their presence in the reactor. Even when the dynamics were about to 434

achieve a stabilization point, a new change on day 100 was carried out; the dilution rate 435

changed from 0.07 to 0.05. Both the dynamics of the mathematical model and the estimation 436

algorithm continue running together towards its natural behavior. 437

Table 5. Evaluation of the adjustment achieved by the parameter identification strategies; genetic
algorithm and step-ahead.

Variable S1 S2 Z pH CH4
% Improvement 78.7 60.5 38.6 25.5 7.7
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From that moment, the dynamics of the mathematical model and the observer remained 438

together. 439

(a) (b)
Figure 11. Step-ahead algorithm used to adjust the mathematical model to experimental data. (a)
the volume of methane (CH4). (b) Fitting improvement from step-ahead compared with genetic
algorithm.

All aforementioned demonstrates that the asymptotic observer has good performance. 440

Table 6. Values of the parameters selected.

Parameter Value UnitGA SA
µ1max 0.26 0.06 d−1

µ2max 1.52 0.05 d−1

KS1 213.89 298.03 g/L
KS2 168.76 1.08 mmol/L
k1 29.34 1.34x10−6 []
k2 31.14 216.80 mmol/g
k3 40.81 14.23 mmol/g
k4 36.61 8.58x10−7 mmol/g
k5 43.21 1.14x10−6 mmol/g
k6 549.99 550.00 mmol/g
KZ1 0.68 3.21 mmol/L
KZ2 1.28 4.45 mmol/L
Zin VZin 19.66 mmol/L

Then, Figure 6b shows the structure proposed by direct measurement (Sensors) and the 441

asymptotic observer that estimates the state variables X1 and X2. This structure seeks 442

to address the lack of measurements due to the absence of reliable sensors. Figure 12 443

shows the results obtained by the algorithm asymptotic observer that reconstruct the 444

state variables concentration of acidogenic X1 and methanogenic X2 bacterias. To test 445

the observer’s performance, the values of estimations were compared with the dynamics 446

measured directly from the mathematical model. The starting point between the simulation 447

of the dynamic observer and the mathematical model was different in order to confirm the 448

convergence between them sometime. 449
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(a) (b)
Figure 12. Performance test for the asymptotic observer. (a) model variable X1; (b) model variable
X2.

6. Conclusions 450

This paper proposes a structure composed of an asymptotic observer and a parameter 451

identification procedure based on optimization, aiming to measure continuous online data 452

to feed the mathematical model and run algorithms for control and monitoring purposes. 453

The proposed structure replaces traditional actions in the industry where the lack of infor- 454

mation is replaced by generic values found in the literature (rates of microorganisms like 455

substrate degradation fairly the same chemical and operational conditions). The module’s 456

operation starts with the parameter identification algorithm that, based on its optimization 457

programming, finds the value of the best parameters that better minimize the difference 458

between the data measured and the dynamics of the mathematical model by tunning the 459

variables (degrees of freedom). The step-ahead algorithm, based on optimization, was 460

tested with success; the performance was compared with a traditional optimization method 461

(genetic algorithm). Using as a reference, the results obtained by the genetic algorithm 462

were compared with those obtained by the step-ahead algorithm. The improvement was 463

calculated using five variables; S1, S2, Z, pH and CH4. The results shown improvements 464

from 7.7 % for 78.7 % in CH4 to achieved by S1. Once the parameters were calculated Addi- 465

tionally, the absence of online measurements from the concentration of microorganisms 466

(acidogens and methanogens) gives affordable times for control purposes; it was necessary 467

to choose an asymptotic observer strategy to have the chance to approximate these mea- 468

surements in advance instead of having data from traditional methods but with extended 469

dwell times. New variables were added to the mathematical model ADM2 (inspired by 470

other modifications found in the literature on this model) to extend the set of usable types 471

of organic matter. The methodology mentioned above aims to enable this algorithm as the 472

basis for designing a wide range of possibilities of control structures forward. 473
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