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Abstract: This work presents a nonlinear model predictive control scheme that challenges overcoming 1

the obstacles holding back over decades to develop affordable autonomous control and monitoring 2

systems applied in the large-scale industry. Among the numerous proposals in the literature, most 3

do not consider the significant fluctuation of kinetic parameters in the reduced mathematical model 4

ADM2, widely used for control and monitoring purposes. The prevalent cause, on a basis, is the lack 5

of information caused by some dynamics and parameters that cannot be measured in real-time by 6

reliable sensors. In addition, to make matters worse, those systems inherently act with nonlinear 7

nature and have a high sensitiveness to uncontrollable inputs and perturbations. Therefore, to prevent 8

these drawbacks, this work proposes a new methodology that reconstructs the lack of information 9

from the non-measurable dynamics, concentration of bacterias, and the kinetic parameters related to 10

reaction rates. Simulations results demonstrate the effectiveness of the methodology compared with 11

traditional industrial control schemes. 12

13Keywords: model predictive control; asymptotically observer; kinetic parameter observer; 
homoge-neous reaction systems; anaerobic digestion 14

1. Introduction 15

Anaerobic digestion (AD) treatment reactors are not a very common technology widespread 16

at industrial scale, and less than usual even find control and monitoring schemes operating 17

those systems. The AD process has attractive advantages in comparison to classical alterna- 18

tives like aerobic digestion systems or composting; it returns little sludges, has a positive 19

overall energy balance, and also has an enormous potential to reduce challenging and 20

concentrated substrates such as animal wastes, wastewater, by-products from industrial 21

plants, and food wastes to name the most important ones. However, to move forward 22

aiming to evolve to autonomous control and monitoring system, too many obstacles have 23

to be overcome, like the inherent problems of acting with nonlinearities. Additionally, 24

essential singularities as high sensitiveness to uncontrollable inputs and perturbations, and 25

the drawbacks caused by the restricted access to online measurements due to the lack of 26

the existence of cost-efficient and reliable sensors, originate mathematical models with 27

limited approximation to real data. To start solving these drawbacks, this paper proposes 28

a substitution of the physical sensors for software online transducers in order to access 29

reliable data, carrying out an estimation based on the available measurements over the 30

reaction system [1,2]. 31

32
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Thus, a necessary condition must be satisfied when reliable control and monitoring al- 33

gorithms must be designed. The information obtained from anaerobic reactors need to 34

be sensed in real time with reliable instruments or methods in order to feed mathemat- 35

ical models, and so, to follow the evolution of reactions, and ensure early detection of 36

faults. Then, it is necessary to guarantee a continuous flow of data on demand. The key 37

variables of the reaction system, the concentrations of biomass, substrate, and metabolite, 38

as well as the kinetics of reactions, are measured by laboratory procedures. However, 39

the drawbacks related to this process are the high operational costs and the high time 40

lapsed between measurements and results. Hence, the design of software sensors allowing 41

regular communication between reality and the data needed by the algorithm is one of the 42

main concerns of this paper. The ADM2 model with modifications in some dynamics (to 43

enable a broad spectrum of usable types of organic matters at influent) is the mathematical 44

model selected to represent the system [3]. Specifically, the model has two inconveniences. 45

Two dynamics are impossible to measure directly; first, the data coming from acidogenic 46

and methanogenic bacterias concentrations, and second, the data from the kinetic yield 47

parameters. Due to the importance of accurate knowledge of data from the system, specific 48

observers were proposed due to the bacterias considered are high sensitiveness to weak 49

changes in the reaction system [4,5]. 50

51

Because the AD processes are related to the existence of microorganisms, the phenomenol- 52

ogy is frequently poorly comprehended. Replicating the same operation conditions is 53

not possible regularly due to the uncertainty and variation in the yield parameters since 54

the metabolisms vary. This paper aims to contribute with new software that also looks 55

beyond the traditional methods, where the performance depends on measured data and 56

new software sensors strategies that enable a step forward to capture the reality with better 57

reliability. In order to perform a long-term strategical plan to achieve feasible control 58

schemes for industrial purposes, the first step is to ensure the availability of the measure 59

layer, providing the mathematical model with required data. Based on information found 60

in literature, the use of state observers has emerged in the last decades as one of the most 61

common alternatives because of its relatively easy use. High gain observers, Kalman and 62

extended Kalman filters, asymptotic observers, and the estimation of reaction rates are the 63

most commonly used in bioprocess. However, there is no evidence in literature designing 64

observer structures related to estimating dynamics and kinetic parameters in the anaerobic 65

digestion process. Pross in-depth knowledge of the process kinetics is an extreme challenge 66

in numerous engineering applications; therefore, there is a huge motivation to search for a 67

category of observers which allows one to asymptotically reconstruct the missing states 68

even when the kinetics are unknown. A cascade structure of an asymptotic observer to 69

estimate the concentration of acidogens and methanogens is proposed followed by a kinetic 70

parameters observer that estimates two reaction rates of the process [6–8]. 71

72

Monitor and control schemes are essential to achieve an adequate operation in anaerobic 73

digestion reactors. Among the alternatives registered on literature, the model predictive 74

control (MPC) have several benefits compared with traditional methods [1,9,10]. This 75

algorithm uses a mathematical model to make predictions to see the evolution of the 76

system in advance, then an optimization algorithm calculate the correspondent control 77

actions. One of the main advantages is that it is possible to explicitly program the physical 78

and operations constraints controller have physical and operational constraints, allowing 79

to work under feasible operational conditions. However, one of the main obstacles are 80

the nonlinearities, thus, the control strategies based on mathematical models have to be 81

nonlinear too. On literature we find a diverse type of those systems, such as nonlinear PID, 82

sliding mode control, parametrized nonlinear MPC, and game theory nonlinear MPC to 83

name some examples. In general, although those control schemes have shown an affordable 84

performance, the implementation is the main drawback, specially if the system is subjected 85
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to constraints [11–13]. 86

87

This paper is organized as follows. Section 2 explains the mathematical anaerobic digestion 88

model ADM2, used for control purposes, proposed with additional terms to include a wide 89

spectrum of organic matter in operation. Then, section 3 shows the parameter identification 90

procedure based on optimization that adjusts the model ADM2 to experimental data 91

and the hierarchical observer structure proposed, which unlocks the possibility of being 92

aware of the lack of information due to the absence of reliable sensors. In section 4, the 93

controller MPC structure proposed is explained. Finally, section 5 shows the results of 94

the improvements achieved by using the MPC controller compared with other similar 95

structures and traditional solutions found in the industry like the PID controllers. 96

2. Mathematical modeling and experimental data 97

2.1. Mass-Balance Mathematical Model for Anaerobic Digestion reactors 98

The mathematical model used to represent the anaerobic digestion process inside a reactor 99

is presented as follows. The new version of the model ADM2, proposed by Luis Cortés et 100

al. [14], comes from the need to develop an appropriate methodology to design control and 101

monitoring systems that consider a wide spectrum of organic matters. Therefore, the new 102

equation system is shown as follows. 103

dX1

dt
= X1(µ1 − αD), (1)

dX2

dt
= X2(µ2 − αD), (2)

dS1

dt
= D(S1in − S1)− ψ1

(
S1

KS1 + S1

)
, (3)

dS2

dt
= D(S2in − S2) + ks2,1ψ1

(
S1

KS1 + S1

)
− ψ2

(
S2

KS2 + S2

)
, (4)

dZ
dt

= D(Zin − Z) + kZ,1ψ1

(
S1

KS1 + S1

)
+ kZ,2ψ2

(
S2

KS2 + S2

)
, (5)

dC
dt

= D(Cin − C)− qC + k4µ1X1 + k5µ2X2, (6)

with: 104

qC = kLa[C + S2 − Z − KH PC] (7)

where PC and Φ comes from the equations described in Bernard et al. [15]. 105

PC =
Φ −

√
Φ2 − 4KH PT(C + S2 − Z)

2KH
(8)

with: 106

Φ = C + S2 − Z + KH PT +
k6

kLa
µ2X2 (9)

X1 represents the concentration of acidogenic bacterias, X2 is the concentration of methanogenic107

archaeas, S1 is the concentration of organic substrate, S2 is the concentration of VFA, Z is 108

the total alkalinity, and C is the concentration of inorganic carbon. The subscript "in" indi- 109

cates influent flow correspondent to the concentrations S1, S2, C, and Z. D is the dilution 110

rate. The yield coefficients k1, k2, k3, k4, k5 and k6 mean the yield for COD degradation, the 111

yield for VFA production, the yield for VFA consumption, the yield for CO2 production, 112

the yield for CO2 production, and the yield for CH4 production respectively. The ammo- 113

nium contribution to the alkalinity is considered in the mass-balance mathematical model 114
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proposed by Kil et al. [13]. The following Monod-type representations characterize the 115

reaction rates 1 and 2: 116

ρ1 = ψ1
S1

KS1 + S1
(10)

and. 117

ρ1 = ψ1
S1

KS1 + S1
. (11)

Where ψ1, ψ2, KS1, and KS2 describe the maximum rate of acidogenic degradation, the 118

maximum rates of methanogenic degradation, the half-saturation constant associated with 119

substrate S1, and the half-saturation constant associated with the substrate S2 respectively. 120

Monod-type kinetics describe the growth of acidogenic bacteria ψ1 (S1) and methanogenic 121

archaea ψ2 (S2) because, in the fermentation process, the biomass does not register possible 122

VFA accumulation and consequently inhibition. Finally, the methane flow rate produced 123

qM is proportional to the reaction rate of methanogenesis, as shown in the following 124

equation: 125

qM = kCH4 ψ2

(
S2

KS2 + S2

)
(12)

2.2. Experimental Data from the Pilot Plant Anaerobic Digester 126

The data set in this paper were collected from a CSTR pilot plant (150 L) that operates at 55 127

± 2 ºC (thermophilic range). The experiment occurred in Guadalete (Jerez de la Frontera, 128

Spain) on a sewage treatment plant []. The system operates with diary inlet flow with 129

primary and secondary combined waste sludges. The study was conducted to test the 130

effects of step changes in the solid retention time (SRT) during 338 days. The experiment 131

started at SRT in 75 days. It gradually decreases to steps 40 days, 27 days, 20 days, and 15 132

days (see details on Table 1). However, for modeling purposes, only a specific range of data 133

was used to discard unstable scenarios, which are unfavorable for modeling purposes due 134

to deviations from the natural behavior of reactions. Thus, 207 days were selected, aiming 135

to work with standard patterns of microorganisms as much as possible. 136

Table 1. OLR stages during the 338 days experiment.

SRT Days
Start End

75 1 45
40 46 85
27 86 170
20 171 253
15 254 323

The data selected starts at SRT in 40 days, the organic loading rate (OLR) equivalent was 137

0.8 KgVS/m3day (or 1.5 KgCOD/ m3 day). This value remains constant until a steady state 138

is reached; that is when the measurements of VS and COD removals and the production 139

rate of CH4 are the means of the latest measurements. The first change in the value of SRT 140

occurred on the day 40 from the data selected, where the SRT switched to 27 days. At this 141

new stage, the system operates from the day 40 until the day 124. Finally, at the day 125, the 142

SRT value decreases to 20 days. This stage took place on the day 124. This value remained 143

constant until the end of the experiment, the day at 208. Only in specific situations, when 144

the value of pH decreased beyond 7.3, a small amount of sodium carbonate was added at a 145

concentration of 2N to keep the value of pH over a feasible operational range. 146

147

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2022                   doi:10.20944/preprints202208.0393.v2

https://doi.org/10.20944/preprints202208.0393.v2


5 of 27

Figure 1 is shown some of the data used to describe the status of the anaerobic digestion 148

process inside the reactor. The information shown was used to perform an identification 149

procedure to characterize the mathematical model and adjust the experimental data. The 150

Figure 1a, Figure 1b, Figure 1c, and Figure 1d are the chemical oxygen demand (COD) at 151

influent, the volatile fatty acids (VFA) at influent, the volatile fatty acids (VFA) on effluent, 152

and the volume of CH4 produced respectively. 153

3. Parameter identification and on-line measurements 154

Consider the non-linear anaerobic digestion mathematical model from equations (1) to 155

(6). The parameter identification algorithm, that calculates the optimal parameters p(k) 156

(see Figure 2a), uses the information coming from three sources. Fout = {CH4}, the 157

volume of methane produced as a consequence of the metabolism by arquea methanogenic. 158

nm = {S1, S2, Z}, the measured states considered by the model ADM2, the organic substrate 159

concentration, the volatile fatty acids concentration, and the total alkalinity. Finally, the level 160

of pH. nnm = {X1, X2, C} are the non measured data. The vector uout = {nnm, nm, pH} are 161

the variables on the effluent. Finally, Qin represents the energy from an external source 162

delivered to the reaction inside the reactor. Table 2 list the parameters identified by the 163

method proposed (to check more details see [14]). This method solves an optimization 164

problem to find the values of parameters aiming to minimize the difference between the 165

measured data from the experiment and the correspondent variables on the model ADM2 166

modified [6]. 167

(a) (b)

(c) (d)
Figure 1. Influent measurements. (a) chemical oxygen demand (COD); (b) volatile fatty acids (VFA).
(c) Volatile fatty acids (VFA) at effluent. (d) Volumen of CH4 produced.

The equation (13) shown the optimization problem proposed to be solved. 168

min
p(k),...,p(k+NF)

J(p(k), y(k))

s.t.

x(k + 1) = f (x(k), p(k)),

y(k) = g(x(k), u(k)), (13)

ymin ⩽ y(k) ⩽ ymax, ∀k = 1, ..., Np,

pmin,⩽ u(k) ⩽ pmax, ∀k = 1, ..., Nu

The function J(u(k), y(k)) represents the function to be minimized, depending on the 169

optimal parameters p(k), the output y(k), and the state dynamics x(k). ymin and ymax 170

are the lower and upper operational boundaries. pmin and pmax are the lower and upper 171
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boundaries of the optimal parameters calculated. Thus, the variables to be calculated are 172

p(k) ϵ {µ1max, KSI , µ2max, KS2, k1, k2, k3, k4, k5, k6, KZ1 , KZ2 , Zin}. 173

J(u(k), y(k)) = norm
(
(xmod(k)− xe)

2
)

(14)

In the previous equation, it is observed that the proposed function is the norm of the 174

difference squared between the measured xe(k) and the correspondent data from the model 175

xmod(k). 176

Table 2. Parameters identified on the optimization algorithm.

Parameter Description Value Unit
µ1max Maximum acidogenic bacteria growth rate 0.06 d−1

µ2max Maximum metanogenic bacteria growth rate 0.05 d−1

KS1 Half saturation constant 298.03 g/L
KS2 Half saturation constant 1.08 mmol/L
k1 Yield for substrate degradation 1.34x10−6 []
k2 Yield for VFA production 216.80 mmol/g
k3 Yield for VFA consumption 14.23 mmol/g
k4 Yield for CO2 production 8.58x10−7 mmol/g
k5 Yield for CO2 production 1.14x10−6 mmol/g
k6 Yield for CH4 production 550.00 mmol/g
KZ1 Yield for aminoacids degradation 3.21 mmol/L
KZ2 Yield for proteins degradation 4.45 mmol/L
Zin Total alkalinity at inlet 19.66 mmol/L

Thus, the equation below shows the details of the proposed function. 177

J(nm(k), u(k)) =norm
((

nmod
m (k)− ne

m(k)
)2

+(
pHmod(k)− pHe(k)

)2
+

(
qmod

M (k)− qe
M(k)

)2
)

(15)

The aforementioned equation represents the mean square error between the experimental 178

data; (ne
m(k), pHe(k) and qe

M(k)), and the correspondent data from the model; (nmod
m (k), 179

pHmod(k) y qmod
M (k)). The parameters to be adjusted are exposed on the following vector 180

u(k) = {µ1max, KSI , µ2max, KS2, k1, k2, k3, k4, k5, k6, KZ1 , KZ2 , Zin}. 181

(a) (b)
Figure 2. Optimal-based schematics procedures. (a) identification parametric diagram; (b) s ahead
algorithm.
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3.1. Parameter identification using pattern search by step-ahead 182

Figure 2b shows the step-by-step structure of the algorithm to estimate the parameters. 183

The technique, called step-ahead, uses the mathematical model as the core to predict the 184

evolution of the system’s dynamics. Consider X0 as the starting point (represented by a 185

black circle •). At this point, using the inputs, the control actions, and the measurements 186

of the system, the algorithm uses the mathematical model to calculate the next step in 187

advance, aiming to discover the system’s evolution (represented by a black triangle ▲). In 188

the next step, in X1, the prediction (the ▲) is compared with the value measured (the •). 189

The previous operation completed on each step along the experiment is the error on each 190

step accomplished by the method. Finally, all this information is stored on the vector as 191

follows. 192

E = [error1, error2, ..., errorn] (16)

Where n represents the total number of days of the experiment. The optimization problem 193

is shown in the following equations. 194

min
u(k)

E (17)

s.t.

nm(k + 1) = f (nm(k), u(k)),

nnm(k + 1) = f (nnm(k), u(k)),

0 ⩽ u(k) ⩽ pmax, ∀k = 1, ..., t f

(18)

Figure 3 shows the results of the adjustment made by the parametric optimization algorithm. 195

Figure 3a and Figure show the results of VFA and COD; the data measurements from the 196

reactor (red line) and the adjustment achieved by the parameters calculated and used by 197

the model. The results were excellent. 198

(a) (b)
Figure 3. Mathematical model adjustment to experimental data in the step-ahead algorithm. (a)
Volatile fatty acids (VFA), variable S2. (b) Chemical oxigen demand (COD), variable S1.

3.2. Asymptotic Estimator 199

There is one significant problem using control and monitoring systems in anaerobic di- 200

gestion reactors; it is not yet possible to achieve all measurements online to feed the 201

mathematical model and run the controller. The absence of information due to the lack 202

of reliable sensors and the inadequate strategies to test constant measurements through 203

laboratory analyses opens up an opportunity to substitute the uncertainty by the design 204

of software sensors. This technology estimates the state variables, and concentrations of 205
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acidogenic and methanogenic bacterias, without the information of the reaction kinetics in 206

stoichiometric equations. It results in a particular category of observers named asymptoti- 207

cally, where two conditions support the estimation of the non-measurable dynamic states; 208

the system is still not exponentially observable, and the reaction kinetics are unknown. The 209

following conditions influence the design of the algorithm: the information of the matrix 210

ϕ is unknown, the yield coefficients from K are fully known, and the number of qstate, the 211

number of measured state variables is the same or higher than the rank of the matrix K (that 212

is qstate = dim(ξ1) ≥= rank(K)). Hence, consider the general equation of homogeneous 213

reaction systems described by a general nonlinear state space model. 214

dξ

dt
= Kϕ(ξ, t)− Dξ − Q(ξ) + F. (19)

where dim(ξ) = dim(F) = dim(Q) = N, dim(ϕ) = M y dim(K) = N × M. Thus, the 215

general nonlinear model equation (19) can be divided as. 216

dξa

dt
= Kaϕ(ξa, ξb)− Dξa − Qa + Fa, (20)

dξb
dt

= Kbϕ(ξa, ξb)− Dξb − Qb + Fb, (21)

Where the rank of K is p. The submatrix Ka results from a section of K with p × M. The 217

submatrix Kb has the remaining information of K. Finally, the matrices (ξa, ξb), (Qa, Qb) 218

and (Fa, Fb) are the corresponding parts of ξ, Q and F caused by the influence of Ka and 219

Kb. The previous formulation has the following feature. There exists a transformation that 220

considers Zob as a linear combination of Xa and Xb, thus. 221

Zob = A0ξa + ξb. (22)

derived from the previous equation. 222

˙Zob = A0ξ̇a + ξ̇b. (23)

then, using the equation (20) on the equation (23): 223

˙Zob = A0(Kaϕ − DXa − Qa + Fa) + Kbϕ − DXb − Qb + Fb. (24)

solving the last equation. 224

˙Zob = A0Kaϕ − A0DXa − A0Qa + A0Fa + Kbϕ − DXb − Qb + Fb, (25)

then grouping the expressions. 225

˙Zob = −D(A0Xa + Xb) + A0(Fa − Qa) + Fb − Qb + A0Kaϕ + Kbϕ. (26)

finally, using the equation (23) on equation (26), then: 226

˙Zob = −DZob + A0(Fa − Qa) + Fb − Qb + ϕ(A0Ka + Kb)︸ ︷︷ ︸
eliminate

. (27)

Two conditions remove the expression in (27). However ϕ ̸= 0, thus. 227

A0Ka + Kb = 0, (28)

Finally, according to the previous equations, the state space model is equivalent to. 228
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dξa

dt
= Kaϕ(ξa, ξb)− Dξa − Qa + Fa, (29)

dZob
dt

= −DZob + A0(Fa − Qa) + (Fb − Qb). (30)

The expression Fa − Qa = 0 means the partition made by the equations (20) and (21) are 229

appropriate due to the new dynamics on obZ are independent from K and ϕ. On the 230

equation (29) is shown ξ̇a is independent from ϕ (the information of the reaction kinetics). 231

Observer design 232

Using the nonlinear general dynamical model, equations (1) to (6), the following equations 233

describes the decoupled subsystem conducted by the state variables X1, X2, S1 and S2 can 234

be run separately. This representation allows working with a reduced model that can be 235

written as. 236

ξ =


X1
X2
S1
S2

, F =


0
0

DS1in
DS2in

, Q =


0
0
0
0

, K =


1 0
0 1

−k1 0
k2 −K3

, ϕ =

[
µ1X1
µ2X2

]
. (31)

Considering the previous subsystem, the subsequent state equation is structured as follows. 237

d
dt


X1
X2
S1
S2

 =


1 0
0 1

−k1 0
k2 −K3

[ϕ1
ϕ2

]
− D


X1
X2
S1
S2

+


0
0

DS1in
DS2in

. (32)

Then, comparing the previous subsystem with the equivalent generic equations (29) and 238

(30) results in the following conditions. 239

• The main nonlinear state space system is decoupled into two sections; the subsystem 240

equation in (32), and the other one that includes the dynamics of inorganic carbon C 241

and total alkalinity Z. 242

• The information contained on matrices Qa and Qb is located in the dynamic of C. 243

• Matrices Q1 and Q2 are the reaction rates r1 and r2. 244

Based on the previous information, ξa and ξb represents the measurable and no measurable 245

states, thus. 246

ξa =

[
S1
S2

]
, ξb =

[
X1
X2

]
(33)

therefore. 247

Zob =

[
Zob1
Zob2

]
=

[
A0ξa + ξb

]
=

[
1

K1
0

K2
K1K3

1
K3

][
S1
S2

]
+

[
X1
X2

]
(34)

using Z = A1ξ1 + A2ξ2 to compare with the previous structure in equation (34) results in. 248

A2 = I (35)

then, as a consequence, in order to find A0. 249

A0 = −KbK−1
a (36)

Using the equation (36) and the information above, then it originates the following matrices. 250
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Kb =

[
1 0
0 1

]
, Ka =

[
−K1 0
K2 −K3

]
. (37)

The next step is to separate the non-measurable states in order to estimate the variables Zob1 251

and Zob2 , and the measurable states S1 and S2. Using the equation (22) and solving for ξb. 252

ξb = Zob − A0ξa (38)

At this point, we have the matrices of ξa, A0 and Zob. 253

ξb =

[
X1
X2

]
, Zob =

[
Zob1
Zob2

]
, A0 =

[
1
k1

0
k2

k1k3
1
k3

]
, ξb =

[
S1
S2

]
(39)

The states X1 and X2 are unknown, and Zob1 and Zob2 represent the new dynamics inde- 254

pendent from the reaction kinetics contained on ϕ. The matrix A0 has the yield coefficients, 255

and the state variables S1 and S2 are the estimation space. Then, Fa and Fb are. 256

Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
(40)

Finally, using the previous equations, the expression of Żob is as follows. 257

dZob
dt

= −DZob + A0(Fa − Qa) + (Fb − Qb) (41)

3.3. Kinetic Parameter Reaction Estimator 258

This section presents an additional tool that complements the lack of measurements inside 259

a reactor. The focus is to estimate the kinetic reactions coming from the reaction system. 260

Figure 4 shows the structure proposed to achieve all information needed to feed the 261

mathematical model on the control scheme strategy. 262

Figure 4. The structure proposed; an asymptotic observer and a kinetic parameter estimator on an
anaerobic digestion reactor.

The discontinuous line represents the information generated by the observer algorithms 263

making it possible to transfer the information needed to run the mathematical model. The 264

discontinuous line ends with the information generated by the controller and delivered by 265

the actuator. In order to design the kinetic estimator algorithm, considers the following 266

nonlinear equation that represents the system. 267

ξ̇ = Kϕ − Dϕ − Q + F (42)

The equation (42) assumes the coefficients from K are known, and the dilution rate D, the 268

input flows F, and the gas output flows Q are measured in real-time. Additionally, it is 269

assumed that ξ is fully-known because the un-measured dynamics are reconstructed by 270
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the asymptotic observer designed in the previous section. The vector ϕ is partially known 271

and is divided into two terms as follows. 272

ϕ = Hρ, (43)

The matrix H contains the information of the known kinetic reactions, and ρ contains the 273

remaining information, the unknown kinetic reactions. Thus, using the equation (43) on 274

(42) results on. 275

ξ̇ = KHρ − Dϕ − Q + F. (44)

Thus, the estimation of reaction kinetics, r1 and r2, is equivalent to focus the estimation 276

contained in ρ. Hence, the new dynamic system is presented as follows. 277

˙̂ξ =KHρ̂ − Dξ − Q + F − Ω(ξ − ξ̂), (45)
˙̂ρ =(KH)TΓ(ξ − ξ̂), (46)

Where ρ̂ represents the real-time estimation of ρ. The value of the equation 46, ξ − ξ̂ = 0, 278

means that the system achieved the desired result. In contrast, the behaviour showed 279

by the equation (45), when ξ − ξ̂ = 0 on equation (46) means that ˙̂ρ = 0, resulting in a 280

convergence to desirable reaction kinetics values ρ̂ = ρ. There is a mandatory condition; 281

the term ΣTΓ + ΓΣ has to be definite negative due the other term that is part of the equation 282

(46) is (KH)TΓ. 283

284

The equation (45), that represents the reaction kinetic estimator, has an equivalent structure 285

to the Luenberger observer used on homogeneous reaction systems [1]. 286

˙̂ξ = Aξ̂ + Bu︸ ︷︷ ︸
1∗

+Ω(ξ − ξ̂). (47)

The highlighted section 1∗ on the previous equation, is equivalent to the one shown on the 287

equation (45). 288

˙̂ξ = KHρ̂ − Dξ − Q + F︸ ︷︷ ︸
1∗

−Ω(ξ − ξ̂). (48)

The previous equation (48) represents the non-linear system, however the equation (47) is 289

the equivalence of the linearized system. 290

291

Some conditions must be fulfilled to perform the implementation. First, the matrix Γ should 292

be squared and could be dependent on ξ; however, it must be stable for all ξ. Second, the 293

current values on ξ are the same used on the equation (45). The data comes from direct 294

measurements over the anaerobic reactor and data estimation. Finally, the current value of 295

ρ, unknown at the time, is being replaced by the same equivalent estimated ρ̂. The equation 296

(46) shown the formula. Ω is the gain matrix used to influence the convergence of ρ̂. 297

298

Matrices Ω and Γ are design parameters that affect the stability properties. A typical value 299

selection is to take. 300

Ω = diag{−wi}, para i = 1, ..., N (49)

with. 301

Γ = diag{γj}, para j = 1, ..., r (50)
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3.3.1. Observer Design 302

Only one reference must be followed to design the kinetic reaction estimator; the measured 303

and estimated states on ξ̇. The term ξ − ξ̂ is used as a reference to monitor and follow 304

the estimator’s performance. The aim is that the value of ξ̂ converges to ξ as soon as 305

possible (ξ ≈ ξ̂). The dynamic of ˆ̇ξ depends on the evolution of the dynamic of the error 306

ė = (A − ΩL)e. Thus, the references (the known values) that assist in tuning the kinetic 307

reaction estimator are ξ, ξ̂, K, and H. Following some definitions are proposed. 308

• e = ξ − ξ̂ → Observation error 309

• ρ̃ = ρ − ρ̂ → Tracking error 310

Hence, using the following equations. 311

˙̂ξ =KHρ̂ − Dξ − Q + F − Ω(ξ − ξ̂) (51)

ξ̇ =Kϕ − Dξ − Q + F (52)

And deriving in both sides of the observation error and the tracking error, it results in 312

ė = ξ̇ − ˙̂ξ and ˙̃ρ = ρ̇ − ˙̂ρ. Taking the equations (51) and (57) and replacing them on the 313

dynamic of ė. 314

ė =Kϕ − Dξ − Q + F − KHρ̂ + Dξ + Q − F + Ω(ξ − ξ̂) (53)

ė =Kϕ − KHρ̂ + Ωe (54)

ė =KHρ − KHρ̂ + Ωe (55)

ė =KH(ρ − ρ̂) + Ωe (56)

ė =KHρ̃ + Ωe (57)

In the same way the dynamic of the tracking error is as follows. 315

˙̃ρ = −(KH)TΓe +
dρ

dt
. (58)

Putting the equations (57) and (58) on the same structure results in the following dynamic 316

system. 317[
ė
˙̃ρ

]
=

[
KHρ̃ + Ωe

−(KH)TΓe + dρ
dt

]
(59)

After organizing the previous dynamic system results on the following equation system. 318[
ė
˙̃ρ

]
=

[
Ω KH

−HTKTΓ 0

][
e
ρ̃

]
+

[
0
dρ
dt

]
, (60)

using the following matrices. 319

A =

[
Ω KH

−HTKTΓ 0

]
(61)

V =

[
0
dρ
dt

]
(62)

results in. 320[
ė
˙̃ρ

]
= A

[
e
ρ̃

]
+ V (63)
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According to the information described above, the equations 51 and 57 are divided into the 321

correspondent submatrices to start classifying the estimation procedure as follows. 322

Ka =

[
−k1 0
k2 −k3

]
, Kb =

[
1 0
0 1

]
, Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
. (64)

The next step is to calculate the matrix A0 that comes from the equation (25), then. 323

A0 = −KbK−1
a . (65)

Following, the system is divided into the dynamic states that want to be estimated and 324

using the data estimated by the asymptotic observer, Z1 and Z2, and the measured data S1 325

and S2. Solving ξb from the equation (22), then. 326

ξb = Z − A0ξa. (66)

The previous equation able to calculate the following matrices. 327

K =

[
Kb
Ka

]
, H =

[
1 0
0 1

]
, ξ =

ξb
S1
S2

, F =

[
Fb
Fa

]
(67)

Finally, all information needed to supply the equations (45) and (46) are obtained above. 328

4. Nonlinear Model Predictive Controller (MPC) 329

As it is shown on Figure 4 the observer structure calculates the non-measurable dynamic 330

states, X1 and X2 (with the asymptotic observer), and the kinetic reaction rates r1 and r2 331

(with the reaction rates observer). Once the information of both measurements and virtual 332

sensors has been delivered to the MPC controller, the operational and physical instructions, 333

as well as the control objectives, are delivered too. 334

4.1. Controller design 335

According to the industrial requirements, essential to trace the deployment of the technol- 336

ogy around the anaerobic digestion in the industry; the subsequent conditions are required 337

to take into consideration. 338

• The reactor has to be balanced against perturbations, always working within physical 339

and operational constraints. 340

• Methane production needs to be maximized all the time. 341

• Environmental regulations should be followed according to local regulations crite- 342

ria; S1(t) + S2(t) ≤ Ktd. Ktd denotes the maximum effluent concentration of both 343

substrates considered. 344

• The reactor has to be protected against failures due to unexpected variations on VFA 345

and, therefore, periodically drops on pH. Once it happens, there is no available route 346

to bring the reactor back towards a regular operation. The following equation emerges 347

as a condition to contain, during operation, the amount of VFA with a sufficient 348

amount of Z. It is called the buffer capacity; the ability to regulate the values of S2 and 349

Z to maintain the system under operation. 350

S2(t)
Z(t)

= λ (68)

Researchers suggest that the range values of λ usually have to be within 0.1 and 0.3 351

[13]. 352

4.2. Structure of the controller 353

The control structure proposed is shown in Figure 5. The dilution rate D is the manipu- 354

lated variable, and the outputs selected are the biogas flow rate (qm), the organic substrate 355
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concentration (S1), the VFA concentration (S2), and the total alkalinity (Z). All information 356

from reactor; measurements, nmed, pH, and the estimated dynamic states, X1, and X2, as 357

well as the kinetic reaction rates, r1 and r2. The optimization algorithm, using all inputs 358

and based on the mathematical model, calculate the optimal dilution rate D based on a 359

prediction of the future over a horizon. 360

361

Using the mathematical model that describes the anaerobic digestion (AD) process, this 362

paper proposes the following optimal controller algorithm. 363

Figure 5. MPC controller with the observer structure.

max
u(k),...,u(k+Nc)

J(u(k), y(k), w(k)) (69)

sujeto a:

x(k + 1) = f (x(k), u(k)),

y(k) = g(x(k), u(k)),

xmin ⩽ x(k), ∀k = 1, ..., Np (70)

umin ⩽ u(k) ⩽ umax, ∀k = 1, ..., Nu

S2(k)
Z(k)

⩽ λ, ∀k = 1, ..., Np

where J(·), x(k), y(k), w(k), g(·) and f (·) are the functional cost that contains the control 364

objectives, the dynamics of the system, the outputs, the reference signal the function of the 365

output and the mathematical model of the system respectively [16]. The following is the 366

functional cost proposed. 367
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J(u(k), y(k), w(k)) =
209

∑
i=1

X2(i)µ2(i)k6 (71)

The equation above is the sum, along the simulation, of the total volume of methane pro- 368

duced by the anaerobic digestion. xmin are the lower boundaries of the dynamics states. 369

umin and umax are the control action variable’s lower and upper boundary limits, the dilu- 370

tion rate D, between 0 and 1. The last condition, the buffering capacity, will be programmed 371

with different values to test the performance of the system. 372

373

Two variations of the proposed MPC controller are considered for testing the main charac- 374

teristics. The emphasis relates to the maximization of the volume of methane produced 375

to evaluate controllers’ performance. The first MPC controller is programmed to run 376

without any operational restrictions. Used as a reference, this alternative aims to explore 377

improvements and drawbacks, checking the progress of leading indicators under stressful 378

operational situations. The second MPC controller uses all operational restrictions shown 379

on (70). Both configurations are tested with and without multi-start. In order to evaluate the 380

improvement achieved by the MPC controller proposed, the volume of methane produced 381

and other phenomenological effects will be tested with traditional PID industrial controllers 382

[17]. 383

5. Simulation results and analysis 384

First of all, this chapter evaluates the estimation of both; the non-measurable state dynamic 385

variables and the kinetic reaction rate parameters. The results achieved established a 386

link of confidence between the variables measured and the information required by the 387

mathematical model. Second, once the flow of information is considered reliable, the MPC 388

controller proposed is ready to be tested by traditional implementations in the industry 389

[16]. 390

5.1. Simulation conditions 391

This section employs the same profile inputs and initial conditions used in the parametric 392

identification procedure. In the following Table 3 the initial conditions of the state dynamics 393

are shown. 394

Table 3. Initial conditions of state variables.

X1(0) X2(0) S1(0) S2(0) Z(0) C(0)
Valor 0.55 0.5 17 3.4 10.7 8

Unidades [g/L] [g/L] [g/L] [mmol/L] [mmol/L] [mmol/L]

Figure 6 shows the profile inputs used along the 209 days of simulation. 395

5.2. Asymptotic observer 396

There is one significant problem due to the use of control and monitoring systems; it is 397

not yet possible to achieve all measurements online to feed the mathematical model and 398

run a controller. In order to confront this, the first step is to start the operation of an 399

asymptotic observer to estimate the dynamic state variables concentration of acidogenic 400

X1 and methanogenic X2 bacterias. This category of observers is named asymptotically 401

because it estimates the non-existing measurable states based on two conditions; the system 402

is still not exponentially observable, and the reaction kinetics are unknown. 403

404

Figure 7 shown the results obtained by the algorithm. To test the performance of the 405

observer, the values of the estimations were compared with the dynamic measured directly 406

from the mathematical model. The starting point of the observer and the mathematical 407

model were different in order to confirm the dynamics will converge sometime. 408
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5.3. Kinetic parameter reaction estimator 409

The good performance of the estimated state variables X1 and X2, achieved by the asymp- 410

totic observer, far exceeds the minimum standard requirements to make its use possible. 411

Then, is it possible to unlock the algorithm that estimates the kinetic parameters, r1 and r2, 412

because they depend on the information coming from all dynamic state variables. These 413

variables are used as a reference to determine the convergence of the estimator, see Figure 414

7. A practical test of the estimator makes the initial conditions of the kinetic parameter 415

estimator and the mathematical model different. The convergence of both determines the 416

degree of accuracy. At the same changes on dilution rate D, at days 50 and 100, both the 417

measured dynamics and the estimates, X1 and X2 follow in the same course and tendency 418

[18,19]. 419

(a) (b)

(c) (d)
Figure 6. Data profile inputs used on influent. (a) volatile fatty acids (VFA); (b) chemical oxygen
demand (COD); (c) level of pH; (d) alkalinity (Z).

(a) (b)
Figure 7. Asymptotic observer for state dynamic variables X1 and X2 estimated compared with
measured values.
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Both, the observed and measured kinetic reaction parameters, r1 and r2, are shown on 420

Figure 8. Due to a scale factor, it is not possible to take a closer look at the difference in initial 421

conditions. However, the figure allows a straightforward comparison of the magnitudes of 422

the kinetic reaction rate parameter from the mathematical model and the correspondent 423

estimation. Similarly, on days 50 and 100, the change in dynamics is appreciated. The 424

value of the dilution rate D changed from 0.03 to 0.07. However, the important thing is to 425

appreciate the convergence between the values. Figure 9 take a deeper look at the results. 426

As expected, after a few days, the magnitudes become very similar. 427

(a) (b)
Figure 8. Asymptotic observer for reaction kinetic r1 and r2. (b) Influent alkalinity results using the
algorithm step-ahead.

The results of all dynamic state variables considered by the observer are shown in Figure 10. 428

As expected, due to the dynamic states S1 and S2 being measured, these magnitudes are the 429

same compared to the estimated ones. However, dynamic states and the estimated values 430

(X1 and X2) effectively converge a few days later. Finally, Figure ?? shows the relative 431

errors associated with the previous results. 432

(a) (b)
Figure 9. Scale augmentation on Figure 8 in order to validate details over the convergence process.

5.4. PID Controller Performance on Aanerobic Digesters 433

This section explores the performance of PID controllers used in the anaerobic digestion 434

industry in order to establish a baseline that assists the objective of quantifying the im- 435

provements achieved by the MPC controllers proposed in this paper. 436

437

The PID control scheme proposed is tested in a wide range of operational scenarios to 438

evaluate its robustness against different circumstances. The control actions calculated 439

will depend on the following changes on the reference; moderate, medium, and extreme 440

variations on the total volume of CH4 produced, see Figure . The changes were conducted 441

on the day 50 and remained constant for 50 days until day 100. Next, the reference goes 442
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back to the previous value to check the system’s capacity to recover the previous stability 443

conditions (see black line). The discontinuous blue line represents the volume of methane 444

produced by the reactor using the profile inputs from Figure 6. The objective is to use the 445

result as a reference in the background to contrast the performance of the PID controller 446

(discontinuous red line). Figures 12a and 12b show the capacity of controller to follow the 447

reference with small oscillations. In two stages, the controller stays around on a stable 448

region (when the values change to 18 m3/d and 28 m3/d respectively). Nevertheless, Figure 449

12c show that the controller is not capable to follow up the desired reference (when the 450

values change to 43 m3/d). The system falls into a destabilization region, where methane 451

production dropped below even when the reference returned to the previous state. Thus, 452

the information on the physical and operational conditions of the anaerobic digester are 453

not inserted into the controller algorithm; the allowed bio-chemical restrictions are not 454

considered; consequently, the system works outside the permissible range. 455

(a) (b)

(c) (d)
Figure 10. Kinetic reaction estimator to state variables considered. (a) volatile fatty acids (VFA); (b)
chemical oxigen demand (COD); (c) level of pH; (d) alkalinity (Z).

The correspondent value of dilution rate D is shown on Figure 13. Figures ?? and ?? show 456

normal operation until day 100, when the system crashed, because the value of D dropped 457

below zero and go beyond operational regions over limits. Figure 14 shown the value of pH 458

for the correspondent cases. Once again, the values of pH linked using the PID controller 459

operate beyond the right limits. The previous analysis induces to prepare future actions to 460

oppose resistance drawbacks related to unusual values of S2. 461

462

Figure 15 shows the value of λ along the simulation for the three correspondent cases. 463

Below the limit recommended (0.8) by some authors on literature, fortunately, λ in the 464

first two cases (Figures and ) correspond to a correct values. However, when the limits are 465

exceeded, Figure shows that the value of S2 far exceeds the limits, having values of λ close 466

to 4. As was stated in previous results, the PID controller cannot manage the system within 467

physical and operational boundaries. Based on previous results, the alternative proposed 468
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in this paper, the MPC controller, becomes a reasonable alternative because its algorithm 469

considers some valuable characteristics of the homogeneous reactions system [20]. 470

5.5. Controlador MPC sin restricciones 471

5.5.1. Sin función multistart 472

Figures 16 and 17 shown the results obtained due the operation of MPC controller without 473

the restriction buffering capacity (λ). 474

(a) (b)

(c) (d)
Figure 11. Error during the estimation process of reaction kinetics for. (a) volatile fatty acids (VFA);
(b) chemical oxigen demand (COD); (c) level of pH; (d) alkalinity (Z).

Figure 16a shows the volume of methane produced by both the reference (black line), the 475

system with the input profiles from Figure 6 and the MPC controller without operational 476

restrictions (discontinuous red line). Figure 16a shows a significant increase in the volume 477

of methane produced almost always along the reference. Figure 16b shows the profile 478

assumed as a reference (black line). The discontinuous red line shows the control actions 479

calculated by the MPC controller. The oscillation is severe along the simulation; however, 480

the results are reliable and work well. Figures 16c and 16d shown the results of the level 481

of pH and S2. As is expected, the oscillation of values (discontinuous red line) are intense 482

around the reference (black line) but not attractive for control purposes. Finally, Figure 483

17a shown the evolution of the non restricted parameter λ. As expected, the maximum 484

value of λ (discontinuous blue line) was exceeded once. According to previous description, 485

Figure shown the relation between the state variables S2 and Z [1,13]. 486

5.5.2. With multistart function 487

On the other hand, Figures 18 and 19 show the results of adding the multi-start function, 488

which is supposed to be an improvement of the previous algorithm. Figure 18a shown an 489

increase in the volume of methane produced in comparison with Figure 16a. 490

491

The system had to increase the strength of movements around the input controlled variable 492

D (see Figure 18b), and the oscillation is severe between limits 0 and 0.1. In the same way, 493
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(a) (b)

(c)
Figure 12. Three different references to follow of methane produced using a PID controller.

(a) (b)

(c)
Figure 13. Dilution rate D results related to the volume of methane (CH4) produced by PID controller.
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(a) (b)

(c)
Figure 14. Evaluation of the pH level over the three different scenarios using a PID controller.

(a) (b)

(c)
Figure 15. Value of λ over the three different scenarios considered.
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the level of pH had severe changes even beyond feasible operational regions (see Figure 494

18c); hence it causes similar variations in the value of the amount of acid produced S2, see 495

Figure 18d. Figure 19a, shown the value of λ along the simulation. It goes beyond the 496

limit repeatedly. Figure ?? shows even the value of alkalinity Z even when it exceeded the 497

value of S2, meaning that the value of λ goes beyond 1. Given the previous results, the 498

maximization of the volume of methane produced leads the system towards no feasible 499

operational regions, it is necessary to include operative restrictions to avoid inhibitions 500

produced by the presence of acids. 501

(a) (b)

(c) (d)
Figure 16. Results of the MPC controller without restrictions maximizing the amount of CH4

produced.

(a) (b)
Figure 17. Results of the MPC controller without restrictions maximizing the amount of CH4

produced.
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5.6. MPC controller with restrictions 502

5.6.1. Without multistart function 503

In the following figures the algorithm of the MPC controller includes the operation restric- 504

tion of buffering capacity λ. 505

(a) (b)

(c) (d)
Figure 18. Results of the MPC controller without restrictions with multistart maximizing the amount
of volume ofCH4.

(a) (b)
Figure 19. Results of the MPC controller without restrictions with multistart function maximizing the
amount CH4 produc ed.

Now, the value of the operational limit λ is restricted to 0.8. Figures 20 and 21 shown the 506

results. Although the algorithm is restricted, the amount of methane CH4 produced is 507

higher than the reference. Figure 20a shown the control actions calculated. However, as 508

seen on Figures 20c and 20d the oscillations are extreme on the level of pH and S2 compared 509

with previous results. 510

511

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2022                   doi:10.20944/preprints202208.0393.v2

https://doi.org/10.20944/preprints202208.0393.v2


24 of 27

Figure 21a shows how operational restrictions work adequately over the feasible region, 512

where the value of λ works below 0.8. Figure 21b evidence the aforementioned behavior. 513

The previous condition helped the system to have enough space to allow the control 514

algorithm to increase the value of dilution rate D if required. In the following section, the 515

objective is to improve the results by increasing the probability of finding the best values 516

for the methane produced with the multi start function. 517

(a) (b)

(c) (d)
Figure 20. Results of the MPC controller with restrictions maximizing the volume of the CH4

produced.

(a) (b)
Figure 21. Results of the MPC controller with restrictions maximizing the flow of methane CH4

produced.
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5.6.2. With multistart function 518

Figures 22 and 23 shown the potential to produce methane under restricted scenarios with 519

multi-start function. As shown in Figure 22a, the discontinuous red line is higher than the 520

results shown in the previous section. 521

(a) (b)

(c) (d)
Figure 22. Results of the MPC controller with restrictions using the multistart function maximizing
the volume of CH4 produced.

The rest of Figures 22b, 22c and 22d shown a similar behaviour as the previous results, 522

however, with only a slight difference but an increase in performance. Figure 23a shows 523

that control actions calculated by MPC have been taken to extremes but maintaining the 524

parameter λ under the limits. 525

Table 4. Improvement on performance over production of CH4 for the MPC control schemes.

Sin restricciones Con restricciones
Sin multistart Con multistart Sin multistart Con multistart

% Mejora 17.40 24.41 18.82 20.85

Finally, Table 4 shows a condensed vision of the previous results. The results, used as 526

a reference, are the volume of methane CH4 produced, shown by the black line along 527

the four MPC performance tests. In the case of the MPC controller that works without 528

operational restrictions, the improvement achieved was 17.40% and 24.41% both, with and 529

without using the multi-start function, respectively. However, the reactor must operate 530

under feasible operational restrictions (where inhibitions and drawbacks caused by acids 531

are avoidable), no matter whether the performance is compromised. The improvement 532

achieved by the MPC controller that works with operational restrictions was 18.82% and 533

20.85% both with and without using the multi-start function. Although performance is 534

reduced significantly because of the insertion of restrictions in the algorithm (due to the 535
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revenue produced by the amount of methane CH4 produced decreases), the operation of 536

the reactor does not be unbroken anymore, and it runs constantly. 537

(a) (b)
Figure 23. Results of the MPC controller with restrictions and multi-start function maximizing the
volume of CH4 produced.

6. Conclusions 538

The main results of this paper were to make it possible to put together the three leading 539

solutions that come together and result in a successful operation of a monitor and control 540

system structure in concise and fluidized operation. The first element is the core of the 541

algorithm; the way and connections used to construct (or represent) the phenomenon, the 542

mathematical model with parameters identified over experimental data using optimization- 543

based algorithms. The second element is the observer structure of state dynamics and 544

kinetic reaction parameters that reconstruct non-measured data due to drawbacks from the 545

absence of reliable sensors. Finally, the third element is an MPC controller with restrictions 546

over the reaction system that guarantees straight operation far from unfeasible scenarios of 547

inhibition due to the presence of acids. In addition to the above, it was possible that a high 548

increment in the volume of methane CH4 produced using this scheme. 549

550

With close monitoring of the main contributions aforementioned, the parameter identi- 551

fication algorithm’s success resulted from using the step-ahead strategy. Using genetic 552

algorithms was the first step in adjusting the mathematical model so close to the data 553

from the experiment. Finally, the structure composed by an asymptotic observer demon- 554

strates a valuable tool to recover the lack of data from the concentration of acidogenic 555

and methanogenic populations of bacterias. It was established to lay the first stone of the 556

structure capable of estimating the kinetic reaction parameters, be of prime importance to 557

following the variation of the kinetic reactions, previously considered as static; one of the 558

main problems in the implementation of MPC control systems. 559
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