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Abstract: A time integration scheme based on semi-Lagrangian advection and Laplace transform 1

adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian 2

scheme makes it possible to use large time steps. However, errors arising from the semi-implicit 3

scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment 4

remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical 5

experiments confirm the superior performance of the Laplace transform scheme relative to the semi- 6

implicit reference model. The algorithmic complexity of the scheme is comparable to the reference 7

model, making it computationally competitive, and indicating its potential for integrating weather 8

and climate prediction models. 9

Keywords: Numerical weather prediction; Time integration; Filtering; Laplace transform; semi- 10

implicit; semi-Lagrangian; Forecast accuracy 11

1. Introduction 12

The accuracy and efficiency of weather and climate models has been greatly enhanced 13

by the introduction of better numerical algorithms for the solution of the equations of 14

motion. Two of the most notable advances were the development of the semi-implicit (SI) 15

scheme for treating the gravity-wave adjustment process and the semi-Lagrangian scheme 16

for the advection processes. For a general review of recent and emerging time integration 17

schemes, see [22]. 18

Many modern operational NWP models use a semi-implicit scheme for time integra- 19

tion, increasing efficiency by enabling the use of a larger time step. But this comes at a 20

price: while stabilisation is achieved by slowing down the high-frequency gravity waves, 21

the meteorologically significant components of the flow are also distorted by the time 22

averaging of the SI scheme. For models that use a semi-Lagrangian advection scheme, the 23

problem is magnified, as further increases in the time step result in greater errors. 24

It was pointed out in Lynch & Clancy [20] that the Laplace transform (LT) method 25

with analytic inversion gives an exact treatment of the linear modes. This is due to the fact 26

that the LT scheme does not involve time-averaging of the linear terms. Harney & Lynch 27

[12] described a Laplace transform integration scheme in an Eulerian baroclinic model and 28

showed that it yields more accurate forecasts than SI. 29

In this paper, we describe the implementation and performance of an integration 30

scheme based on semi-Lagrangian advection and Laplace transform adjustment. The 31

new scheme is incorporated in a spectral baroclinic atmospheric model PEAK, described 32

in Ehrendorfer’s book [10]. It is validated by comparison with a semi-Lagrangian semi- 33

implicit scheme. Both schemes have been comprehensively verified against the Eulerian 34

semi-implicit scheme originally implemented in the model and fully documented in [10]. 35

Table 1 shows four integration schemes. EuSI is the original Eulerian semi-implicit 36

scheme described in [10]. EuLT is the Eulerian Laplace transform scheme described in 37

Harney and Lynch, 2019 [12]. The two Lagrangian schemes are denoted LaSI and LaLT. 38
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Table 1. Four numerical schemes for PEAK. The Eulerian schemes, EuSI and EuLT, are described in
earlier work, [10,12]. The Lagrangian schemes, LaSI and LaLT, are described in this paper.

Semi-implicit
adjustment

Laplace transform
adjustment

Eulerian
advection

EuSI
(Eh12)

EuLT
(HL19)

Lagrangian
advection

LaSI
(here)

LaLT
(here)

Numerical tests were carried out to confirm the correctness of the model implementa- 39

tions. A comparison of their performance in simulating a growing baroclinically unstable 40

disturbance is described in §4.1. The four simulations are quite similar, confirming the 41

integrity of the codes. 42

The main result of this paper is that the LaLT scheme is clearly superior in accuracy 43

to the LaSI scheme for typical time steps used with semi-Lagrangian advection. The LaLT 44

scheme should provide a valuable means of integrating NWP and climate models. 45

2. Outline of the semi-implicit and Laplace transform schemes 46

Before considering the details of the PEAK model, we describe the general approach to 47

integration using the LaSI and LaLT schemes. The original EuSI scheme is comprehensively 48

documented by Ehrendorfer [10] and the EuLT scheme by Harney and Lynch [12]. 49

2.1. Outline of the LaSI scheme 50

We consider a general equation written in Lagrangian form 51

dX
dt

+ LX + N(X) = 0 (1)

where LX are the linear terms and N(X) are the nonlinear terms. Before we convert this 52

grid-point equation to the spectral domain, we discretise it in time using a three time-level 53

Lagrangian scheme. For a trajectory from departure point D at time (n− 1)∆t through 54

arrival point A at (n + 1)∆t, the equations are 55

X+
A − X−D
2∆t

+ L
X+

A + X−D
2

+ N0
M = 0

where nonlinear terms are evaluated at the midpoint M and superscripts−, 0 and + denote 56

values at times (n− 1)∆t, n∆t and (n + 1)∆t. We can write the solution at the advanced 57

time as 58

X+
A = [I + ∆tL]−1{(I − ∆tL)X−D − 2∆tN0

M
}

, (2)

where the right hand side may be computed from known quantities. We now convert (2) to 59

spectral form, multiplying by Ym
n (λ, φ) and integrating over the sphere to get 60

x+ = (I + ∆tL)−1{[(I − ∆tL)x−D − 2∆tn0
M
}

,

where x = xm
n is the vector of spherical harmonic coefficients of X, and n = nm

n is similarly 61

related to N. The right hand side may be computed from known quantities. We note that 62

the linear operator L commutes with the spectral transform. 63
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2.2. Outline of the LaLT scheme 64

We consider again the general equation in Lagrangian form (1). Before converting this 65

grid-point equation to the spectral domain, we take the Laplace transform L along the 66

trajectory starting from the departure point D at time (n− 1)∆t: 67

sX̂ − X−D + L̂X +
N0

M
s

= 0 ,

where s is the complex variable conjugate to t and X̂ := L X. To get an equation for X̂ we 68

have to change the order of the Laplace transform and the linear operator L; in general, 69

these do not commute. We define the commutator 70

Γ := [L , L] = L L− LL

so that the term L̂X = L {LX} becomes LX̂ + Γ(X), and write the transformed equation 71

sX̂ − X−D + LX̂ + Γ0
M +

N0
M

s
= 0 .

For computation of the commutator, see Appendix A. 72

We now convert to spectral form, integrating over the sphere, to get 73

sx̂− x−D + Lx̂ + γ0
M +

n0
M
s

= 0 ,

where x̂ = x̂m
n is the vector of spherical harmonic coefficients of X̂, x−D are the coefficients of 74

X−D, and γ = γm
n and n = nm

n are the coefficients of Γ and N. The solution may be written 75

x̂ = (sI + L)−1

(
x−D − γ0

M −
n0

M
s

)

where, after inverse transformation to the time domain, the right hand side may be com- 76

puted from known quantities. 77

2.3. Accuracy Analysis 78

An accuracy analysis of the Laplace transform (LT) and semi-implicit (SI) schemes was 79

presented in [12]. The main conclusions are reviewed here. Considering a simple oscillation 80

equation 81

∂X
∂t

= iωX + N(X) (3)

that represents a component of the full system used in numerical weather prediction, the 82

analysis showed that LT is more accurate than SI for both the linear and nonlinear terms. 83

Assuming that the nonlinear term varies slowly, we take it to be a constant N. The exact 84

solution of (3) at time (n + 1)∆t is then 85

X+ =

[
exp(2iω∆t)

]
X− +

[
exp(2iω∆t)− 1

iω

]
N (4)

where X− is the solution at time (n− 1)∆t. 86

The SI approximation to (3) is 87

X+ − X−

2∆t
= iω

X+ + X−

2
+ N
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Solving for the new value X+, we have 88

X+ =

(
1 + iω∆t
1− iω∆t

)
X− +

(
1

1− iω∆t

)
2∆tN (5)

Comparing this with the exact solution (4), we find that both the linear and nonlinear 89

components of the solution are misrepresented. For the exact solution (4), X− is multiplied 90

by exp(2iω∆t), while for the SI solution (5) the multiplier is 91

ρ =

[
1 + iω∆t
1− iω∆t

]
.

Thus, although there is no amplification, the phase error increases with ω∆t. For the 92

nonlinear term, the SI scheme has both modulus and phase errors; for details, see [12, §2]. 93

The errors in the SI scheme are significant when the time step is large. 94

We now apply the Laplace Transform L to equation (3), taking the origin of time to 95

be (n− 1)∆t. The transform of (3) is 96

sX̂− X− = iωX̂ +
N
s

.

The solution for X̂ follows immediately: 97

X̂ =
X−

s− iω
+

N
s(s− iω)

. (6)

The inverse Laplace transform L −1 with time set to 2∆t yields X+ equal to the exact 98

solution (4) at time (n + 1)∆t. Thus, to the extent that the nonlinear term can be regarded 99

as constant, the LT scheme is free from error. 100

2.4. Filtering with the LT Scheme 101

The LT scheme filters high frequency components by using a modified inversion 102

operator L ∗: this can be done numerically by distorting the Bromwich contour for the 103

inversion integral to a closed curve excluding poles associated with the high frequencies, 104

as in [2,3,17,18,28]. In the persent study, as in those of Lynch and Clancy [20] and Harney 105

and Lynch [12], we invert the transform analytically, explicitly eliminating components 106

with frequency greater than a specified cut-off frequency ωc. 107

Filtering may be done with a sharp cut-off at ωc, or with a smooth function such as a 108

Butterworth filter having frequency response function 109

H(ω) =
1

1 + (ω/ωc)L . (7)

Formally, we can define the modified inversion operator as the composition of the filter and 110

the inverse Laplace transform: L ∗ = L −1 ◦ H. In the numerical tests reported in §4 we set 111

L = 16 and choose the cut-off period τc = 1 h and ωc = 2π/τc. Assuming that |ω| � ωc, 112

the inverse Laplace transform of (6) at time (n + 1)∆t gives 113

X+ = [exp(2iω∆t)]X− +

[
exp(2iω∆t)− 1

iω

]
N . (8)

This agrees with the exact analytic result (4) for both the linear and nonlinear terms. 114

Equation (8) is formally identical to equation (4) in Cox and Matthews [6], for which 115

the local truncation error is 1
2 ∆t2(dN/dt)n. Assuming that the nonlinear term varies slowly, 116

we have dN/dt = O(∆t), and the local truncation error is third order in time. We note that 117

(8) is also equivalent to a component of the vector equation (2) in Clancy and Pudykiewicz 118
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[4]. For the relationship between Laplace transform integration and exponential integrators, 119

see Appendix B. 120

3. Laplace transforming the PEAK Equations 121

We now describe the application of the Laplace transform scheme to the PEAK model 122

equations. We begin with the equations (9.38)–(9.41) in §9.3 of Ehrendorfer [10], but written 123

in Lagrangian form: 124

dζ

dt
= Fζ − ςζ (9)

dδ

dt
= Fδ −∇2

σ(RTπ + ΦS + GT)− ςδ (10)

dT
dt

= FT −Hδ− ςT (11)

pT dΠ

dt
= −pTδ (12)

The notation is generally conventional and equations similar to these have appeared 125

frequently, going back to Hoskins and Simmons [13]. The dependent variables are vorticity 126

(ζ), divergence (δ), temperature (T) and log surface pressure π = log(pS/p00), where 127

p00 = 105 Pa is the reference pressure. All variables are in the spectral domain but, for 128

compactness, we suppress the spectral indices so that, for example, ζm
` is written simply as ζ. 129

Bold-face variables are vectors with values at allMmodel levels, which are equally spaced 130

in σ-coordinates. The explicit expressions for the matrices G and H are given in Ehrendorfer 131

[10] and vectors are defined as follows: pT = (∆σ1, ∆σ2, . . . ∆σM), Π = (π, π, . . . , π) and 132

T = (T, T, . . . , T). Linear damping with coefficient ς may be applied to all variables except 133

the surface pressure. The surface orography is represented by ΦS. 134

Diffusion is generally required to control spurious oscillations. Explicit diffusion 135

schemes may become unstable for large time steps. To avoid this problem, we may use a 136

scheme that is fully implicit. However, when combined with the Laplace transform scheme, 137

this leads to additional complications. To circumvent these, we employ an operator splitting 138

method. In the first stage, the inviscid equations, (9)–(12) with ς = 0, are advanced to 139

time (n + 1)∆t. This is then followed by a second stage in which the damping terms are 140

integrated analytically (see §3.8). 141

3.1. Lagrangian Departure Points and Values 142

The Cartesian coordinates of a grid point at latitude φ and longitude λ are 143

XA = r cos λ cos φ , YA = r sin λ cos φ , ZA = r sin φ . (13)

We compute (XA, YA, ZA) for each grid-point and store them; they are independent of the 144

model level. We use a method described by McGregor [21] to determine the departure 145

points (XD, YD, ZD). The inverse transformation is 146

r =
√

X2
D + Y2

D + Z2
D , φ = arcsin ZD/r , λ = arctan(YD/XD) . (14)

(We use the FORTRAN function atan2(YD, XD) here). The inverse transform must be done 147

every timestep, as the departure points change. They also depend on the model level. 148

Values of the variables at the departure points are obtained by interpolation in (λ, φ) 149

space. A bicubic interpolation scheme is used. To facilitate interpolation, the grid point 150

arrays are extended by two rows or columns around the boundaries. In the east-west 151

direction, the extension is cyclic. At the poles, we repeat the two boundary rows, reversing 152

their order and shifting the longitude by 180◦ to allow for crossing the poles [21]. 153
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3.2. Orography 154

Preliminary tests with real data produced instabilities that were insensitive to damp- 155

ing and to spectral truncation. The problem first became manifest over the Andes and 156

Himalayas. As is well known, orography can lead to problems with semi-Lagrangian 157

integration schemes. Ritchie and Tanguay [27] proposed a modification that alleviates this 158

problem. An orographic term is subtracted from the pressure, yielding a much smoother 159

field that is more accurately interpolated to the departure points. 160

The method of Ritchie and Tanguay is used in the IFS model and described in the 161

documentation [9]. The variable π = log pS/p00 in (12) is separated into a constant part 162

involving the orography and a variable part independent of orography: 163

π = π + π′ (15)

where π = −ΦS/RT is, by definition, the value for an isothermal hydrostatic atmosphere. 164

Thus,∇π = −(1/RT)∇ΦS. We can then write 165(
dπ

dt

)
k
=

(
dπ′

dt

)
k
+ (Fπ)k , where (Fπ)k = −

[
1

RT
V k ·∇ΦS

]
. (16)

The term Fπ involving the gradient of orography is computed in an Eulerian manner, and 166

the continuity equation (12) becomes 167

dπ′

dt
= pT(Fπ − δ) .

The advected variable π′ is much smoother than the original variable π since the underlying 168

orography has been extracted. 169

3.3. Inviscid stage 170

We integrate the equations using a split scheme, where the diffusion is omitted in the 171

first stage and integrated analytically in the second. The nonlinear terms are evaluated at 172

the central time and averaged between the departure and arrival points: 173

F0
M = 1

2 (F0
D + F0

A) .

This averaging is similar to the approach adopted in the ECMWF IFS model [9]. 174

We now take the Laplace transform of (10), (11) and (12), after applying (15) to change 175

the pressure variable. Since the Laplace operator L does not commute with the spacial 176

Laplacian∇2
σ, we introduce the commutator 177

Γ := s2[L ,∇2
σ](RTπ′ + GT) (17)

The factor s2 is included here to ensure that Γ is independent of s (see Appendix A). The 178

transformed equations may be written 179

sδ̂ = (Fδ)
0
M/s− Γ0

M/s2 + δ−D −∇
2
σ(RTπ̂′ + GT̂) (18)

sT̂ = (FT)
0
M/s−Hδ̂ + T−D (19)

sπ̂′ = pT[(Fπ)
0
A − δ̂] + pTΠ−D (20)

Using the equations for T̂ and π̂′, these quantities are eliminated from the divergence 180

equation to obtain an equation for a single variable, δ̂: 181

s2δ̂ = (Fδ)
0
M −∇2

σ(RTsπ̂′ + GsT̂)− Γ0
M/s + sδ−D

= (Fδ)
0
M −∇2

σ[−RT pTδ̂ + pTΠ′−D )]

−∇2
σ[G((FT)

0
M/s−Hδ̂ + T−D)]− Γ0

M/s + sδ−D
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We transfer all terms involving δ̂ to the left: 182

[s2I − ∇2
σ(RT pT + GH)]δ̂ (21)

= (Fδ)
0
M − Γ0

M/s + sδ−D −∇
2
σ[RT pTΠ′−D + G(FT)

0
M/s + GT−D]

3.4. Transforming to Vertical Eigenmodes 183

We now define the vertical structure matrix 184

B := RT pT + GH .

Since B is symmetric, its eigenstructure can be written 185

BE = EΛ or ETBE = Λ or B = EΛET

We now transform to vertical eigenmodes by multiplying (21) by ET: 186[
s2I−∇2

σ(E
TBE)

]
(ETδ̂) = (22)

ET
{
(Fδ)

0
M − Γ0

M/s + sδ−D −∇
2
σ[RT pTΠ′−D + G(FT)

0
M/s + GT−D]

}
.

We note that, for a specific spectral component with total wavenumber `, the Laplacian has 187

a simple form −∇2
σ = `(`+ 1)/a2. Then, defining Ω2 := −∇2

σΛ, the matrix on the left 188

hand side of (22) is 189

[s2I−∇2
σ(E

TBE)] = [s2I−∇2
σΛ] = [s2I+ Ω2]

Since this is a diagonal matrix, the equation falls intoM separate scalar equations, one for 190

each vertical mode. We group the right hand terms of (22) according to powers of s: 191

RHS = ET{A× s + B × 1 + C × (1/s)
}

(23)

where the vectors A, B and C are 192

A = δ−D
B = (Fδ)

0
M −∇2

σ(RT pTΠ′−D + GT−D)

C = −∇2
σ(G(FT)

0
M)− Γ0

M +∇2
σ(RTFπ)

0
A .

Multiplying (22) by the inverse of the diagonal matrix s2I+ Ω2, the equation for the k-th 193

component is 194

(ETδ̂
+
A)k =

[
s

s2 + Ω2
k

]
(ETA)k +

[
1

s2 + Ω2
k

]
(ETB)k +

[
1

s(s2 + Ω2
k)

]
(ETC)k (24)

We apply the operator L ∗ to (24), noting that the vertical transform and Laplace transform 195

commute. The terms can be inverted using standard results from Laplace transform theory 196

[7]. The value at time (n + 1)∆t is denoted by a + superscript: 197

(ETδ+
A)k = [H(Ωk) cos 2Ωk∆t](ETA)k (25)

+

[
H(Ωk) sin 2Ωk∆t

Ωk

]
(ETB)k +

[
1−H(Ωk) cos 2Ωk∆t

Ω2
k

]
(ETC)k

The filter response functionH(ω) was defined in equation (7) above. 198
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3.5. Inverse Vertical Transformation 199

Let us define four diagonal matrices 200

ΛA = diag(H(Ωk) cos 2Ωk∆t)

ΛB = diag
(
H(Ωk) sin 2Ωk∆t

Ωk

)
ΛC = diag

(
1−H(Ωk) cos 2Ωk∆t

Ω2
k

)

ΛD = diag

(
2Ωk∆t−H(Ωk) sin 2Ωk∆t

Ω3
k

)

(ΛD will be needed below). Then (25) can be written 201

ETδ+
A = ΛAE

TA+ ΛBE
TB + ΛCE

TC (26)

We can now calculate the divergence at the advanced time, 202

δ+
A = E(ETδ+

A) = EΛAE
TA+ EΛBE

TB + EΛCE
TC

For compactness, we define the propagation matrices: 203

PA = EΛAE
T PB = EΛBE

T

PC = EΛCE
T PD = EΛDE

T

(PD will be used below). Then we can write the solution as 204

δ+
A = PAA+ PBB + PCC (27)

The P-matrices can be pre-computed and stored, since they do not depend on the model 205

variables. 206

3.6. Temperature and Pressure 207

We return to equations (19) and (20): 208

sT̂ = (FT)
0
M/s−Hδ̂ + T−D

sπ̂′ = pT[(Fπ)
0
A − δ̂] + pTΠ−D

Noting that L ∗{1/s} = 1 and L ∗{1/s2} = t, dividing these equations by s and applying 209

the operator L ∗ at time 2∆t, we have 210

T+
A = T−D + 2∆t(FT)

0
M −HL ∗

{
δ̂/s

}
(28)

π′+A = pTΠ′−D + 2∆tpT
[
(Fπ)

0
A −L ∗

{
δ̂/s

}]
. (29)

Both (28) and (29) require computation of 211

δ̃ = L ∗
{

δ̂/s
}

. (30)

This term involves a convolution integral that may be approximated by the trapezoidal rule 212

L ∗
{

δ̂/s
}
=
∫ 2∆t

0
δ dt ≈ 2∆t

(
δ−D + δ+

A
2

)
= 2∆tδ
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where δ is the average of old and new values of δ. However, this method was found not to 213

perform in a satisfactory manner. We therefore employed an alternative strategy: the term 214

(30) was computed by noting that 215

δ̃ = L ∗
{

δ̂/s
}
= EL ∗

{
ETδ̂/s

}
. (31)

We divide (24) by s to give 216(
ETδ̂

s

)
k

=

[
1

s2 + Ω2
k

]
(ETA)k +

[
1

s(s2 + Ω2
k)

]
(ETB)k +

[
1

s2(s2 + Ω2
k)

]
(ETC)k (32)

We invert this using standard results for Laplace transforms to obtain 217

L ∗
{
ETδ̂

s

}
k

=

[
H(Ωk) sin 2Ωk∆t

Ωk

]
(ETA)k +

[
1−H(Ωk) cos 2Ωk∆t

Ω2
k

]
(ETB)k

+

[
2Ωk∆t−H(Ωk) sin 2Ωk∆t

Ω3
k

]
(ETC)k

Then using the Λ-matrices, we can write 218

L ∗
{
ETδ̂

s

}
= ΛBE

TA+ ΛCE
TB + ΛDE

TC

Noting (31) and using the P-matrices, we can now write 219

δ̃ = PBA+ PCB + PDC . (33)

Finally, using (28) and (29), the values of T+
A and π′+A are 220

T+
A = T−D + 2∆t[(FT)

0
M −Hδ̃/2∆t] (34)

π′+A = pTΠ′−D + 2∆tpT
[
(Fπ)

0
A − δ̃/2∆t

]
. (35)

3.7. Integrating the Vorticity 221

To complete the inviscid stage of the time step, we take the Laplace transform of the 222

vorticity equation (9) 223

sζ̂ = ζ−D + (Fζ)
0
M/s

Dividing by s and applying L ∗ at 2∆t yields 224

ζ+A = ζ−D + 2∆t(Fζ)
0
M , (36)

which is a standard centred Lagrangian step along the trajectory. As the poles are at s = 0, 225

the Laplace transform has no filtering effect here. 226

As is usual with the leapfrog model, a Robert-Asselin filter is applied to the prognostic 227

variables to prevent separation of the solutions at odd and even time steps. The coefficient 228

is fixed at ε = 0.03 in all cases. 229

3.8. Diffusion stage 230

The governing equation for a spectral component of any of the variables δ, ζ or T may 231

be written in the form 232

dΨ
dt

= F− ςΨ
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We split the right hand side into two parts and integrate them separately. We first integrate 233

the inviscid equation 234

dΨ
dt

= F

over a time interval 2∆t with initial condition Ψ− and denote the result as Ψ∗. We then 235

integrate the equation 236

∂Ψ
∂t

= −ςΨ

analytically with the initial condition Ψ∗ to get 237

Ψ+ = exp(−2∆tς)Ψ∗

which is the required solution at time (n + 1)∆t. This second stage is applied to the 238

divergence, vorticity and temperature; the surface pressure is not damped in this way. 239

The parameter ς depends only upon the horizontal scale. The diffusion is assumed to 240

be of the form 241

∂Q
∂t

= ν2∇2Q + ν6∇6Q (37)

In the spectral domain, the damping coefficient becomes 242

ς =

[
ν2

(
`(`+ 1)

a2

)
+ ν6

(
`(`+ 1)

a2

)3
]

We note that the spectral equations are unchanged in form by the addition of the hyper- 243

diffusion term (ν6); only the value of the coefficient is changed. The ν6-term more strongly 244

damps the smaller scales. Having applied diffusion, we have all the model variables at the 245

advanced time, and a new time step can be taken. 246

4. Numerical Evaluation of the Integration Schemes 247

In this section we describe a series of tests comparing simulations using the Laplace 248

transform scheme (LaLT) and the semi-implicit scheme (LaSI). The LaSI and LaLT models 249

were run with 20, 40 and 60 minute time steps. For LaLT, a cut-off value τc = 1 h was set 250

for all time steps. In most cases, the reference forecast was an integration of the LaSI model 251

with a time step ∆t = 10 minutes. 252

Eulerian models are subject to a Courant-Friedrichs-Lewy stability condition. For an 253

advection speed u = 100 m/s, the non-dimensional stability ratio u∆t/δx is unity for a 254

time step ∆t = 1500s or 25 minutes. In fact, both the Eulerian models, EuSI and EuLT, were 255

found to be unstable for a time step of 24 minutes. The Lagrangian models are not subject 256

to this limitation. 257

The horizontal resolution of the model was at triangular truncation T85. The colocation 258

grid corresponding to this has 256× 129 grid points, with a grid interval of approximately 259

150km. In all cases, there were 20 vertical levels, uniformly spaced in σ-coordinates. 260

The default setting of the diffusion coefficient was ν2 = 7× 105 m2s−1: the damping 261

of a component of total wavenumber ` is ς = ν2`(`+ 1)/a2 s−1. The default value implies 262

an e-folding time of 2.2 hours for the shortest waves represented at truncation T85. Sixth 263

order diffusion (ν6 = 107 m2s−1) was also applied for runs with a 60 minute time step. We 264

note that LaLT consistently required less explicit diffusion than LaSI. 265

4.1. Initial Validation Tests 266

Numerous tests were carried out to confirm the correct operation of the model codes. 267

For short time steps, the Eulerian and Lagrangian advection produced similar results, as 268

did the semi-implicit and Laplace Transform adjustment. As an example of the performance 269

of the four models, simulations of a growing baroclinically unstable disturbance [25] are 270

shown in Figure 1. The initial field is a zonally symmetric flow with a small perturbation 271
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on the Greenwich meridian. The four models were integrated for 12 days, each with a time 272

step ∆t = 5 min. The damping coefficient was ν2 = 7× 105 and all other parameter settings 273

were equal for the four runs. The four simulations are quite similar, although we notice a 274

slight damping for the Lagrangian runs, associated with the interpolations involved in the 275

treatment of advection. 276

Figure 1. Vorticity field at model level 20 for 12-day forecasts with four integration schemes. Top left: EuSI. Top right: EuLT.
Bottom left: LaSI. Bottom right: LaLT. All runs had timestep 5 minutes.

277

4.2. Kelvin Waves 278

Kelvin waves are eastward propagating waves that play an important role in atmo- 279

spheric dynamics. Clancy & Lynch [2] showed that the LT scheme had a significantly 280

smaller phase error than the semi-implicit scheme for the integration of these waves. Exact 281

Kelvin Wave initial conditions can be generated using the method of Kasahara [16]. In 282

this study, we use a simple analytical approximation described in [11]. We examine the 283

solutions for zonal wave numbers 1 and 4. The wave amplitude is 100 m in both cases. The 284

theoretical period for the Kelvin wave with zonal wavenumber m = 1 is about 32 hours 285

and for m = 4 is about 8.3 hours [16, Fig. 9]. Figure 2 shows that the root mean square 286

errors for wavenumber 1 for LaLT (blue lines) are significantly smaller than for LaSI (red 287

lines). Forecasts were run with time steps of 20, 40 and 60 minutes (solid, dashed and 288

dotted lines respectively). 289

For the LaSI forecast of wave number 4 (Fig. 3) with a 20 minute step, the propagation 290

of the wave lags by a full wavelength by the end of the integration, reducing the rms error. 291

The errors for the LaSI scheme with the larger time steps oscillate wildly as the wave moves 292

into and out of phase with the reference solution. The errors for LaLT are much smaller 293

and behave in a more realistic and steady manner. 294
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Figure 2. RMS errors for six integrations of Kelvin waves
with m = 1. Red: LaSI scheme. Blue: LaLT scheme.

Figure 3. RMS errors for six integrations of Kelvin waves
with m = 4. Red: LaSI scheme. Blue: LaLT scheme.

295

4.3. The Five-day Wave 296

The Five-day Wave RO(1,2) is the gravest symmetric rotational Hough mode of zonal 297

wavenumber 1. It is closely related to the initial state chosen by Lewis Fry Richardson 298

for his preliminary shallow-water forecast experiment [19, §4.1]. The initial conditions 299

for a three-dimensional Five-day Wave were implemented in PEAK. The initial pressure 300

amplitude was 10hPa, with mean pressure 1000hPa. As no zonal mean flow was included, 301

the wave has a period close to 5 days. Figure 4 shows the root mean square errors in 302

surface pressure for the LaSI scheme (red) and the LaLT scheme (blue), with time steps of 20 303

minutes (solid lines), 40 minutes (dashed lines) and 60 minutes (dotted lines). The reference 304

is an SI forecast with time step of 10 minutes. The error level for LaLT is significantly less 305

than that of the LaSI scheme, especially for the longer time step. The scores for vorticity 306

(not shown) confirm the superior performance of LaLT. 307

Figure 4. Five-day wave RO(1,2). RMS errors of surface
pressure (hPa) for 6 day forecasts.

Figure 5. Rossby-Haurwitz wave RH(4,5). RMS errors of
surface pressure (hPa) for 6 day forecasts.

308

4.4. Rossby-Haurwitz Wave 309

Rossby-Haurwitz (RH) waves are exact solutions of the nonlinear barotropic vorticity 310

equation. While they are not eigenfunctions of the shallow water equations, they have 311
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frequently been used as test cases. Following Phillips [24], the RH(4,5) wave was chosen as 312

Test Case 6 by Williamson et al. [30]. This test case has been extended to three dimensions; 313

the initial vorticity field is as in the barotropic case, the divergence is zero and a vertical 314

temperature profile and surface pressure field are defined; for details, see [14]. 315

The LaSI and LaLT schemes, with time steps of 20, 40 and 60 minutes, were compared 316

to a reference run of LaSI using a time step of 10s. No diffusion was used for the reference 317

or LaLT runs, but the LaSI runs were unstable. This was overcome by applying horizontal 318

diffusion with a coefficient ν2 = 3× 106 m2s−1. Figure 5 shows the root mean square 319

errors in surface pressure for the LaSI scheme (red) and the LaLT scheme (blue). The error 320

level for LaLT is substantially less than for the LaSI scheme. Scores for vorticity near the 321

tropopause (model level 5, σ = 0.225, not shown) are similar in pattern, confirming the 322

superior accuracy of the LaLT scheme. 323

4.5. Flow over a Mountain 324

Test Case 5 of Williamson et al. [30] treats a zonal flow over an isolated mountain. 325

The mountain is centred at (90◦E, 30◦N) with maximum height 2000 metres. No analytic 326

solution is known so, as usual, we take the LaSI run with ∆t = 10 minutes as a reference. 327

Figure 6 shows the root mean square errors in surface pressure for the LaSI scheme (red) 328

and LaLT scheme (blue), with time steps of 20 minutes (solid), 40 minutes (dashed) and 60 329

minutes (dotted lines). The error levels for the two schemes are very close in value. 330

Figure 6. RMS errors in surface pressure for Test Case 5
(Williamson et al. [30]). Red lines: LaSI. Blue lines: LaLT.

Figure 7. RMS errors in surface pressure for baroclinic wave
(Polvani et al. [25]). Red lines: LaSI. Blue lines: LaLT.

331

4.6. A Baroclinically Unstable Wave 332

Polvani et al. [25] devised a test case for baroclinic instability. The initial conditions 333

consist of a non-divergent zonal flow with constant surface pressure. A small perturbation 334

is added to the temperature to trigger the development of baroclinic instability. The test 335

case of Polvani et al. was used by Ehrendorfer [10] to validate the PEAK model. With a 336

fixed value for the diffusion coefficient, the initial conditions are ‘numerically convergent’ 337

as shown in [25] using two different numerical models. A test case quite similar to that of 338

Polvani et al. was constructed by Jablonowski and Williamson [15]. 339

We use the test case of Polvani et al. [25] to show that the LaLT scheme can accurately 340

simulate baroclinic development. Using this case, Harney and Lynch [12] showed that 341

the EuLT scheme can accurately simulate baroclinic development. In Figure 1 above, we 342

showed the 12-day forecasts for all four schemes all with a small time step ∆t = 5 min. There 343

was no substantive difference between the four schemes. They are also indistinguishable 344

from the results plotted in [25, Fig. 4]. Thus, all four schemes are capable of forecasting 345

baroclinic development with high precision. 346
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Quantitative scores confirm that the differences in performance are small: Figure 7 347

shows the root mean square errors in surface pressure (hPa) for forecasts with the LaSI 348

scheme (red) and LaLT scheme (blue), with time steps 20, 40 and 60 minutes. As usual, the 349

reference forecast is LaSI with a 10 minute time step. It is clear that the time truncation 350

error grows with forecast range. It is also clear that the error is greater for larger time steps. 351

The important point is that the errors for the two integration schemes are very similar in 352

magnitude. 353

4.7. Real Data Test 354

The simple wave tests described above indicate superior accuracy for the LT scheme 355

compared to the semi-implicit scheme. The ultimate conclusion on superiority of the 356

scheme must involve comprehensive comparisons for a large range of meteorological 357

conditions. As a first step, a single test using real atmospheric data is described here. 358

Data was retrieved from the European Centre for Medium-Range Weather Forecasts 359

MARS archive. The date chosen was 00 UTC on 15th October, 2017, the day before a major 360

storm, Ophelia, reached Ireland. This data comprised temperature, divergence and vorticity 361

fields on 25 pressure levels, surface pressure and the relevant orography field. These fields 362

where interpolated onto the 20 sigma levels and reduced to the spectral resolution T85 363

used for the PEAK forecasts. The process of interpolation introduced noise, which was 364

removed by initialization, as described by Harney and Lynch [12]. Using initialized data, 365

six forecasts were performed using the LaSI and LaLT schemes with time steps of 10, 20 366

and 40 minutes. 367

Figure 8 shows the root mean square error for surface pressure. The reference is a 368

forecast using LaSI with a time step of 5 minutes. The red curves are for LaSI and the 369

blue ones for LaLT. For the 10 minute step, the errors are comparable for the two models, 370

although the error during the initial day is smaller for LaLT. For the larger time steps, 371

the Laplace transform scheme is clearly superior to the semi-implicit scheme. Scores for 372

mid-troposphere vorticity (not shown) confirm this advantage for LaLT. 373

Figure 8. Real data: rms error for surface pressure (hPa) over 3 days for LaSI forecasts (red) and LaLT
forecasts (blue) with time steps 10, 20 and 40 minutes.

374
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5. Conclusions 375

An integration scheme using a Laplace transform for adjustment combined with a semi- 376

Lagrangian advection scheme (LaLT) has been found to yield results at least as accurate as 377

the popular semi-implicit semi-Lagrangian scheme. The numerical tests described in §4 378

clearly indicate the superior accuracy for the LaLT scheme compared to the semi-implicit 379

scheme LaSI. The single experiment with real data reinforces this advantage. 380

Ultimate conclusions on the superiority of the LaLT scheme require more compre- 381

hensive comparisons for a large range of meteorological conditions. The potential for 382

operational implementation of LaLT would depend upon more exhaustive testing with 383

higher spatial resolution and incorporating a full package of physical processes. 384

There are well-known advantages of using a two time level scheme for Lagrangian 385

advection. There appear to be no difficulties in principle combining such a scheme with 386

Laplace transform adjustment. 387

The efficient formulation of the LaLT scheme, with analytical inversion of the Laplace 388

transform, is made possible through the use of a spectral model. An active debate on the 389

future of spectral models has been ongoing for decades. The global simulation of an entire 390

season of the Earth’s atmosphere, with a 1 km grid and upper boundary of 80 km [29], 391

suggests that spectral models will continue to be competitive in the future. 392

For practical reasons, the semi-Lagrangian method used in this study was applied only 393

to the horizontal advection. However, there is no difficulty to include vertical advection in 394

the scheme. The algorithmic complexity of the LaLT scheme is comparable to that of LaSI, 395

so the scheme is computationally competitive. 396

In summary, the main result of this study is that the LaLT scheme is clearly superior in 397

accuracy to the LaSI scheme for the large time steps typically used with semi-Lagrangian 398

advection. The evidence presented gives a clear indication of the practical potential of the 399

LaLT scheme for integrating weather and climate prediction models. 400
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Abbreviations 405

The following abbreviations are used in this manuscript: 406

407

EuSI Eulerian advection and semi-implicit adjustment scheme
EuLT Eulerian advection and Laplace transform adjustment scheme
LaSI Lagrangian advection and semi-implicit adjustment scheme
LaLT Lagrangian advection and Laplace transform adjustment scheme

408

Appendix A. Calculating the Commutator 409

It was assumed in earlier work on implementing the Laplace Transform Integration 410

Scheme in a Semi-Lagrangian context that the Laplace Transform operator L along a 411

trajectory commutes with spatial differential operators such as the gradient operator∇ 412

and Laplacian ∇2. This is not the case, as may be shown by simple counter-examples. In 413

this appendix we derive expressions for the commutator of the Laplace transform with the 414

Laplacian operator ∇2. 415

Two Laplace Transforms 416

For a function f (x, t) of space and time, we define two distinct Laplace transforms. 417

The Euler-Laplace transform (ELT) is evaluated at a fixed point in space 418

L[ f ](x0, s) =
∫ ∞

0 C00

e−st f (x0, t)dt . (A1)
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Here, C00 is a line in the x-t space parallel to the time axis and passing through the point 419

(x0, 0). 420

The Lagrange-Laplace transform (LLT) is evaluated along a trajectory of the motion: 421

L [ f ](x0, s) =
∫ ∞

0 C0

e−st f (x(t), t)dt . (A2)

Here, C0 is the trajectory of the motion starting at the point (x0, 0). 422

The Euler-Laplace transform commutes with spatial operators like ∂x and ∇2. This is 423

not the case for the Lagrange-Laplace transform. We write 424

L∇ = ∇L + [L ,∇]

and, to replace L∇ by ∇L , we require an expression for the commutator [L ,∇] = 425

(L∇−∇L ). 426

Evaluating the Commutator [L ,∇2] 427

Figure A1. Trajectories (solid) and pseudo-trajectories (dashed) in (x, y, t)-space. See text for details.

In Fig. A1 we show the trajectory C0, starting at point x0
0, along which the transform 428

L { f (x0)} is evaluated (superscript 0 indicates the initial time t = 0). Also shown are the 429

trajectories CP starting from x0
P and CM starting from x0

M. The contours C+ and C− are not 430

trajectories, but are parallel to C0, shifted to x+ = x0 + ∆x0 and x− = x0 − ∆x0. 431

The transform of ∂x[ f (x0)] is given by 432

L {∂x[ f (x0)]} =
L { f (x+)} −L { f (x−)}

x0
P − x0

M
+ H.O.T. (A3)

(H.O.T. denotes higher order terms). The derivative of the transform L { f (x0)} is given by 433

∂x[L { f (x0)}] =
L { f (xP)} −L { f (xM)}

x0
P − x0

M
+ H.O.T. (A4)

We expand the variables as follows 434

f+ = f (x+) ≈ f 0
+ + (u0 fx + v0 fy)

0 t

f− = f (x−) ≈ f 0
− + (u0 fx + v0 fy)

0 t

fP = f (xP) ≈ f 0
+ + (uP fx + vP fy)

0 t

fM = f (xM) ≈ f 0
− + (uM fx + vM fy)

0 t
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Using these expansions in (A3) and (A4) we get 435

[L , ∂x] f (x0
0, s) = − 1

s2

(
∂u
∂x

∂ f
∂x

+
∂v
∂x

∂ f
∂y

)0

0
. (A5)

It is easy now to obtain the following commutators: 436

[L ,∇] f = − 1
s2 [ux fx + vx fy, uy fx + vy fy]

0
0

437

[L ,∇·]∇ f = − 1
s2 [ux fxx + vx fxy + uy fxy + vy fyy]

0
0 (A6)

We can also establish the identity 438

[L ,∇2] = [L ,∇·]∇ f +∇ · [L ,∇] f

which leads to the result 439

[L ,∇2] f = − 1
s2

[
2
(

ux fxx + vx fxy + uy fxy + vy fyy

)
+

(
uxx fx + vxx fy + uyy fx + vyy fy

)]0

0
. (A7)

Appendix B. LTI and Exponential Integrators 440

The LT method with analytic inversion gives an exact treatment of the linear modes. 441

This is due to the fact that the LT scheme does not involve time-averaging of the linear 442

terms. An alternative way of achieving accuracy is to use an exponential integrator (see, 443

for example, [23,26]. In this appendix we demonstrate the relationship between Laplace 444

transform integration and exponential integrators. 445

We may write the model equations in the form 446

∂X
∂t

= LX + N(X) . (A8)

where the matrix L has an orthogonal eigenvector matrix E with LE = EΛ. Assuming that 447

the solution of (A8) at time tn = n∆t is known, the Laplace transform with this initial time 448

is 449

sX̂− Xn = LX̂ + N̂

where L{X} = X̂ is the Laplace transform of the state vector. Solving for this, we get 450

X̂ = (sI− L)−1[Xn + N̂] . (A9)

We note that 451

(sI− L)−1 = E(sI−Λ)−1ET

and also note the transforms 452

(sI−Λ)−1 = L{exp(Λt)} and (sI− L)−1 = L{exp(Lt)} .

We can write the nonlinear term as 453

(sI− L)−1N̂ = L{exp(Lt)} · L{N} .

The convolution theorem allows this to be written 454

(sI− L)−1N̂ = L
{∫ t

tn
exp(L(t− τ)N(τ)dτ

}
.
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The transformed equation (A9) now becomes 455

X̂ = L{exp(Lt)}Xn + L
{∫ t

tn
exp(L(t− τ)N(τ)dτ

}
We invert this at time tn+1 = tn + ∆t to get 456

Xn+1 = eLtn+1 Xn + eLtn+1

∫ tn+1

tn
e−LτN(τ)dτ (A10)

We note that (A10) is formally identical to Equation (8) of Peixoto and Schreiber [23], which 457

they call the variation-of-constants formula. We have thus established a close relationship 458

between the Laplace transform scheme and exponential integrators. 459

Approximating the Nonlinear Term 460

The convolution term must be evaluated by approximate means, since it involves 461

unknown quantities. Suppose we evaluate the nonlinear term at time tn and assume that 462

it is constant throughout the time step (tn, tn+1). Then the convolution integral can be 463

evaluated, giving 464

Xn+1 = eLtn+1 Xn + eLtn+1

(∫ tn+1

tn
e−Lτ dτ

)
Nn

= eLtn+1 Xn + (−L)−1[I− exp(L∆t)]Nn .

Assuming a small time-step, this reduces to 465

Xn+1 = eLtn+1 Xn + ∆tNn .

This is perhaps the simplest version of an exponential integrator. There is a wide range of 466

more sophisticated and accurate approximations of the convolution integral. For example, 467

we might estimate N at the centre of the time step by extrapolation Nn+1/2 = (3Nn − 468

Nn−1)/2. Many other possibilities exist. 469

The time-averaging of the SI scheme also results in an error in the nonlinear term, 470

even when this term is constant (see Harney & Lynch [12, Eq. 3]). In this ideal case, the LT 471

scheme has no error in the nonlinear term [12, Eq. 4]. 472
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