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Abstract: A time integration scheme based on semi-Lagrangian advection and Laplace transform
adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian
scheme makes it possible to use large time steps. However, errors arising from the semi-implicit
scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment
remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical
experiments confirm the superior performance of the Laplace transform scheme relative to the semi-
implicit reference model. The algorithmic complexity of the scheme is comparable to the reference
model, making it computationally competitive, and indicating its potential for integrating weather
and climate prediction models.
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1. Introduction

The accuracy and efficiency of weather and climate models has been greatly enhanced
by the introduction of better numerical algorithms for the solution of the equations of
motion. Two of the most notable advances were the development of the semi-implicit (SI)
scheme for treating the gravity-wave adjustment process and the semi-Lagrangian scheme
for the advection processes. For a general review of recent and emerging time integration
schemes, see [22].

Many modern operational NWP models use a semi-implicit scheme for time integra-
tion, increasing efficiency by enabling the use of a larger time step. But this comes at a
price: while stabilisation is achieved by slowing down the high-frequency gravity waves,
the meteorologically significant components of the flow are also distorted by the time
averaging of the SI scheme. For models that use a semi-Lagrangian advection scheme, the
problem is magnified, as further increases in the time step result in greater errors.

It was pointed out in Lynch & Clancy [20] that the Laplace transform (LT) method
with analytic inversion gives an exact treatment of the linear modes. This is due to the fact
that the LT scheme does not involve time-averaging of the linear terms. Harney & Lynch
[12] described a Laplace transform integration scheme in an Eulerian baroclinic model and
showed that it yields more accurate forecasts than SI.

In this paper, we describe the implementation and performance of an integration
scheme based on semi-Lagrangian advection and Laplace transform adjustment. The
new scheme is incorporated in a spectral baroclinic atmospheric model PEAK, described
in Ehrendorfer’s book [10]. It is validated by comparison with a semi-Lagrangian semi-
implicit scheme. Both schemes have been comprehensively verified against the Eulerian
semi-implicit scheme originally implemented in the model and fully documented in [10].

Table 1 shows four integration schemes. EuSl is the original Eulerian semi-implicit
scheme described in [10]. EuLT is the Eulerian Laplace transform scheme described in
Harney and Lynch, 2019 [12]. The two Lagrangian schemes are denoted LaSI and LaLT.
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Table 1. Four numerical schemes for PEAK. The Eulerian schemes, EuSI and EuLT, are described in
earlier work, [10,12]. The Lagrangian schemes, LaSI and LaLT, are described in this paper.

Semi-implicit Laplace transform

adjustment adjustment
Eulerian EuSI EulLT
advection (Eh12) (HL19)
Lagrangian LaSI LaLT
advection (here) (here)

Numerical tests were carried out to confirm the correctness of the model implementa- 3o
tions. A comparison of their performance in simulating a growing baroclinically unstable 40
disturbance is described in §4.1. The four simulations are quite similar, confirming the
integrity of the codes. a2

The main result of this paper is that the LaLT scheme is clearly superior in accuracy s
to the LaSI scheme for typical time steps used with semi-Lagrangian advection. The LaLT = 44
scheme should provide a valuable means of integrating NWP and climate models. 45

2. Outline of the semi-implicit and Laplace transform schemes 46

Before considering the details of the PEAK model, we describe the general approach to 47
integration using the LaSI and LaLT schemes. The original EuSI scheme is comprehensively  4s

documented by Ehrendorfer [10] and the EuLT scheme by Harney and Lynch [12]. a9
2.1. Outline of the LaSI scheme 50
We consider a general equation written in Lagrangian form 51
X
%+LX+N(X):O (1)

where LX are the linear terms and N(X) are the nonlinear terms. Before we convert this s
grid-point equation to the spectral domain, we discretise it in time using a three time-level  ss
Lagrangian scheme. For a trajectory from departure point D at time (1 — 1)At through s
arrival point A at (n + 1)At, the equations are 55

+ - + -
X4 —Xp +LXA +Xp
2At 2

+N% =0

where nonlinear terms are evaluated at the midpoint M and superscripts —, 0 and + denote  so

values at times (n — 1)Af, nAt and (n + 1) At. We can write the solution at the advanced -

time as 58
X = [I+AtL] ' (I — AtL)Xp, — 2AtNS, ), @)

where the right hand side may be computed from known quantities. We now convert (2) to s
spectral form, multiplying by Y;/*(A, ¢) and integrating over the sphere to get 60

xT = (I+AtL) " {[(I - AtL)x, — 2AtnS,},

where x = xJ!' is the vector of spherical harmonic coefficients of X, and n = n]; is similarly e
related to N. The right hand side may be computed from known quantities. We note that e
the linear operator L commutes with the spectral transform. 63
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2.2. Outline of the LaLT scheme oe

We consider again the general equation in Lagrangian form (1). Before converting this s
grid-point equation to the spectral domain, we take the Laplace transform .# along the s
trajectory starting from the departure point D at time (n — 1)At: o7

< — N§
sX - Xp +LX + —M =0,

where s is the complex variable conjugate to t and X := . X. To get an equation for X we s
have to change the order of the Laplace transform and the linear operator L; in general, o
these do not commute. We define the commutator 70

I:=[%1L=Y%L-LY

so that the term LX = Z{LX} becomes LX + I'(X), and write the transformed equation 7
S . N
sX—X5+LX+l"R4+TM =0.

For computation of the commutator, see Appendix A. 7
We now convert to spectral form, integrating over the sphere, to get 73

0
n
s?—xB—i—Li—i—'y?w—i-TM:O,

where & = 27" is the vector of spherical harmonic coefficients of X, xp, are the coefficients of 74
X, and ¢y = 7} and n = n} are the coefficients of I' and N. The solution may be written 7z

0
ny

= (sI+L)"! (xD — 9% - )

S

where, after inverse transformation to the time domain, the right hand side may be com- 7
puted from known quantities. 77

2.3. Accuracy Analysis 78

An accuracy analysis of the Laplace transform (LT) and semi-implicit (SI) schemes was 7o
presented in [12]. The main conclusions are reviewed here. Considering a simple oscillation  so

equation 81

%{ — iwX + N(X) 3

that represents a component of the full system used in numerical weather prediction, the s
analysis showed that LT is more accurate than SI for both the linear and nonlinear terms. s
Assuming that the nonlinear term varies slowly, we take it to be a constant N. The exact s
solution of (3) at time (1 + 1)At is then a5

4)

Xt = {exp(ZiwAt)] X+ [WAt)—l]N

iw
where X~ is the solution at time (n — 1)At. 86
The SI approximation to (3) is 87
Xt —X" Xt+X" =
=iw i +N

2At 2
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4
Solving for the new value X', we have
1+iwAtY ,_ 1 —
XtT=(—F—=]X — |2A
(1 —iwAt) * (1 —iwAt) N ©)

Comparing this with the exact solution (4), we find that both the linear and nonlinear
components of the solution are misrepresented. For the exact solution (4), X~ is multiplied
by exp(2iwAt), while for the SI solution (5) the multiplier is

14 iwAt
1—iwAt|’

Thus, although there is no amplification, the phase error increases with wAt. For the
nonlinear term, the SI scheme has both modulus and phase errors; for details, see [12, §2].
The errors in the SI scheme are significant when the time step is large.

We now apply the Laplace Transform .Z to equation (3), taking the origin of time to
be (n — 1)At. The transform of (3) is

sX — X~ :iwi—l—g.
The solution for X follows immediately:

X N

X=—"—+ .
s—iw  s(s—iw)

(6)

The inverse Laplace transform .#~! with time set to 2At yields X* equal to the exact
solution (4) at time (1 + 1)At. Thus, to the extent that the nonlinear term can be regarded
as constant, the LT scheme is free from error.

2.4. Filtering with the LT Scheme

The LT scheme filters high frequency components by using a modified inversion
operator .Z*: this can be done numerically by distorting the Bromwich contour for the
inversion integral to a closed curve excluding poles associated with the high frequencies,
asin [2,3,17,18,28]. In the persent study, as in those of Lynch and Clancy [20] and Harney
and Lynch [12], we invert the transform analytically, explicitly eliminating components
with frequency greater than a specified cut-off frequency w.

Filtering may be done with a sharp cut-off at w,, or with a smooth function such as a
Butterworth filter having frequency response function

1

@) = T o7t

@)

Formally, we can define the modified inversion operator as the composition of the filter and

the inverse Laplace transform: .#* = #~! o H. In the numerical tests reported in §4 we set

L = 16 and choose the cut-off period 7. = 1h and w, = 271/ 1.. Assuming that |w| < w,
the inverse Laplace transform of (6) at time (n + 1)At gives

. 2iwAt) — 11—

X+ = [exp(2iwAt)| X~ + {eXp( l;‘; ) } N.

®)

This agrees with the exact analytic result (4) for both the linear and nonlinear terms.
Equation (8) is formally identical to equation (4) in Cox and Matthews [6], for which
the local truncation error is 1 At?(dN/dt),,. Assuming that the nonlinear term varies slowly,
we have dN/dt = O(At), and the local truncation error is third order in time. We note that
(8) is also equivalent to a component of the vector equation (2) in Clancy and Pudykiewicz
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[4]. For the relationship between Laplace transform integration and exponential integrators, 1
see Appendix B. 120

3. Laplace transforming the PEAK Equations 121

We now describe the application of the Laplace transform scheme to the PEAK model 22
equations. We begin with the equations (9.38)—(9.41) in §9.3 of Ehrendorfer [10], but written 12s

in Lagrangian form: 124

d
€ - Ko ©)
dé -
I Fs — V3 (RTm 4 ®g+ GT) — o (10)
i—f = Fr—Hé—¢cT (11)
dI1

PTW = —p'o (12)

The notation is generally conventional and equations similar to these have appeared 12
frequently, going back to Hoskins and Simmons [13]. The dependent variables are vorticity 1z
(0), divergence (J), temperature (T) and log surface pressure m = log(ps/poo), where 127
poo = 10° Pa is the reference pressure. All variables are in the spectral domain but, for 12s
compactness, we suppress the spectral indices so that, for example, {' is written simply as {. 12
Bold-face variables are vectors with values at all M model levels, which are equally spaced 130
in o-coordinates. The explicit expressions for the matrices G and H are given in Ehrendorfer 1s:
[10] and vectors are defined as follows: pT = (Acy, Aoy, ... Aop), I = (7,7, ..., 7) and 13
T = (T,T,...,T). Linear damping with coefficient ¢ may be applied to all variables except s
the surface pressure. The surface orography is represented by ®s. 134

Diffusion is generally required to control spurious oscillations. Explicit diffusion 1ss
schemes may become unstable for large time steps. To avoid this problem, we may use a 136
scheme that is fully implicit. However, when combined with the Laplace transform scheme, a7
this leads to additional complications. To circumvent these, we employ an operator splitting — 1ss
method. In the first stage, the inviscid equations, (9)—(12) with ¢ = 0, are advanced to 130
time (1 + 1)At. This is then followed by a second stage in which the damping terms are 140

integrated analytically (see §3.8). 141
3.1. Lagrangian Departure Points and Values 142
The Cartesian coordinates of a grid point at latitude ¢ and longitude A are 143

X4 =rcosAcos¢, Y, =rsinAcos¢, Zy =rsing. (13)

We compute (X4,Ya,Z4) for each grid-point and store them; they are independent of the  1ss
model level. We use a method described by McGregor [21] to determine the departure 1ss
points (Xp, Yp, Zp). The inverse transformation is 146

r=\/X5+Y3+22, ¢ =arcsinZp/r, A = arctan(Yp/Xp) . (14)

(We use the FORTRAN function atan2(Yp, Xp) here). The inverse transform must be done  1a7
every timestep, as the departure points change. They also depend on the model level. 148

Values of the variables at the departure points are obtained by interpolation in (A, ¢) 14
space. A bicubic interpolation scheme is used. To facilitate interpolation, the grid point 1so
arrays are extended by two rows or columns around the boundaries. In the east-west s
direction, the extension is cyclic. At the poles, we repeat the two boundary rows, reversing sz
their order and shifting the longitude by 180° to allow for crossing the poles [21]. 153
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3.2. Orography 150

Preliminary tests with real data produced instabilities that were insensitive to damp- 1ss
ing and to spectral truncation. The problem first became manifest over the Andes and  1ss
Himalayas. As is well known, orography can lead to problems with semi-Lagrangian 1s
integration schemes. Ritchie and Tanguay [27] proposed a modification that alleviates this 1se
problem. An orographic term is subtracted from the pressure, yielding a much smoother s
field that is more accurately interpolated to the departure points. 160

The method of Ritchie and Tanguay is used in the IFS model and described in the e
documentation [9]. The variable 7t = log ps/poo in (12) is separated into a constant part e

involving the orography and a variable part independent of orography: 163
T=T+ (15)

where T = —®g/RT is, by definition, the value for an isothermal hydrostatic atmosphere. 1

Thus, V7T = —(1/RT)V®s. We can then write 165

d dr’ !
(drt[)k: <£>k+(F”)k' where (pn)k:_[mvk.vops}. (16)

The term F; involving the gradient of orography is computed in an Eulerian manner, and  1e6

the continuity equation (12) becomes 167
dr’ T
o =P (Ex—9)
The advected variable 7t is much smoother than the original variable 7 since the underlying e
orography has been extracted. 169
3.3. Inviscid stage 170

We integrate the equations using a split scheme, where the diffusion is omitted in the 17
first stage and integrated analytically in the second. The nonlinear terms are evaluated at 172
the central time and averaged between the departure and arrival points: 173

Fy = 3(Fp + F)).

This averaging is similar to the approach adopted in the ECMWF IFS model [9]. 174
We now take the Laplace transform of (10), (11) and (12), after applying (15) to change 7s
the pressure variable. Since the Laplace operator . does not commute with the spacial 176

Laplacian V(ZT, we introduce the commutator 177
I :=5%[%, V2)(RT7' +GT) (17)
The factor s? is included here to ensure that I' is independent of s (see Appendix A). The 17s
transformed equations may be written 179
s6 = (F5)%/s—T%/s*+ 6, — V2(RTR + GT) (18)
sT = (Fr)%/s—Hé+ T (19)
st = pll(F2)% — 8]+ p'I0;, (20)
Using the equations for T and 7/, these quantities are eliminated from the divergence s
equation to obtain an equation for a single variable, ¢: 181
25 _ 0 2 (RTes! T 0 -
s°0 = (Fs5)y— V5 (RTs7t' + GsT) — Ty, /s +sdp

= (Fs)}— Vo[-RTp'5+p'11}; )]
~VEIG((Fr)}y/s = HE + Tp)] = T3 /s + s,
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7
We transfer all terms involving J to the left: 182
[$*l — V2(RTp' +GH)]é 1)
= (F5)% — T /s + 6, — V2[RTp 11}, + G(Fr)%,/s + GTj)]
3.4. Transforming to Vertical Eigenmodes 183
We now define the vertical structure matrix 108
B:= RTp' +GH.
Since B is symmetric, its eigenstructure can be written 185
BE=EA or E'BE=A or B=EAE'
We now transform to vertical eigenmodes by multiplying (21) by ET: 186
s>l — VZ(ETBE)] (ET9) = (22)

ET{(FJ)S)VI — 1% /s+s0p — VA[RTp Iy + G(Fr)%,/s + GTD]} .

We note that, for a specific spectral component with total wavenumber /, the Laplacian has  1er

a simple form —V2 = /(£ +1)/a?. Then, defining Q% := —V2A, the matrix on the left e

hand side of (22) is 180
21 — VZ(ETBE)] = [s%1 — V2A] = [$% + O7]

Since this is a diagonal matrix, the equation falls into M separate scalar equations, one for s

each vertical mode. We group the right hand terms of (22) according to powers of s: 101
RHS=E"{Axs+Bx1+Cx(1/s)} (23)
where the vectors A, BB and C are 102
A = 6§,
B = (Fs)y— Vo(RTp'I}, +GTp)
C = —V3(G(Fr)y) — Ty + V5(RTFz)) .
Multiplying (22) by the inverse of the diagonal matrix s?| + )2, the equation for the k-th 10
component is 104
~ 1 1
E8 )k = | s | (E"A) + | 5—— | ETB)s + | ————5 | (ETC)r (24
( A)k 52+Q% ( )k SZ+Q% ( )k S(SZ+Q%) ( )k ( )

We apply the operator .£* to (24), noting that the vertical transform and Laplace transform 1os
commute. The terms can be inverted using standard results from Laplace transform theory e

[7]. The value at time (n + 1)At is denoted by a + superscript: 107
(ETJI);{ = [H(Qk) Ccos ZQkAf](ET.A)k (25)
H () sin 20 At 1 — H (O ) cos 20 At
L[ M) K ] (ETB); + ( k)2 KAL) ETEy,
Oy o

The filter response function # (w) was defined in equation (7) above. 108
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3.5. Inverse Vertical Transformation

Let us define four diagonal matrices

Ay = diag(H () cos 20 At)

Ap = d1ag<H( X sm2()kAt>

Ae = d1ag<1 H( Qk)COSZQkAt>
<zakm— Qk)stQkAt)

Ap =

(Ap will be needed below). Then (25) can be written
ETo} = AAETA+ AgETB + AcE'C (26)
We can now calculate the divergence at the advanced time,
0k =E(ET5}) = EAAETA+EARETB+EACE'C
For compactness, we define the propagation matrices:

P4 =EA4E" Pg = EARET
Pc = EACE" Pp = EApET

(Pp will be used below). Then we can write the solution as
05 =PaA+PpB+P:C (27)

The P-matrices can be pre-computed and stored, since they do not depend on the model
variables.

3.6. Temperature and Pressure
We return to equations (19) and (20):

-~

sT = (Fr)%/s—Hé+Tjg
st! = p'[(Fo)% — 8]+ p'T;

Noting that #*{1/s} = 1 and .#*{1/s?} = t, dividing these equations by s and applying
the operator .£* at time 2At, we have

T = Tp+28t(Fp)}, —He {8/s) (28)
n = plIny +2atpT [(F,T)OA - g*{ﬁ/s}]. (29)

Both (28) and (29) require computation of
5= .,2”*{3/5}. (30)

This term involves a convolution integral that may be approximated by the trapezoidal rule

N 20t S- 4+ ot _
,,sf*{a/s} :/O (SdtzZAt(’J;"‘) — 2AfS

201

202

204

212
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where § is the average of old and new values of 6. However, this method was found not to
perform in a satisfactory manner. We therefore employed an alternative strategy: the term
(30) was computed by noting that

5= .,sf*{ﬁ/s} - E.,sf*{ETS/s} . (31)
We divide (24) by s to give
ETS 1 T 1 - -
%) = E —— _|(E - | 2
( S >k s2 + Qi ( A)k + S(Sz 4 Q%)‘| ( B)k + 52(52 +Q%)] ( C)k (3 )

We invert this using standard results for Laplace transforms to obtain

TS ; _
g*{Esé‘} _ [H(Qk)(s)mZQkAt] (ETA), + [1 H(Qk())zcosZQkAt} (ETB),
k k i

N [zakm — H(Q) sin 20 At (E70),

3
Qk

Then using the A-matrices, we can write
JETS T T T
Z S = AgE .AJrAcE B+ ApE'C

Noting (31) and using the P-matrices, we can now write
5 =PpA+PcB+PpC. (33)

Finally, using (28) and (29), the values of T} and 7, are

TL = Tp+2At[(Fr)% — H8/2At] (34)
nf = pTIy +2AtpT [(Fn)g - '5/2At} . (35)

3.7. Integrating the Vorticity

To complete the inviscid stage of the time step, we take the Laplace transform of the
vorticity equation (9) R
sC={p+ (F)%/s
Dividing by s and applying .Z* at 2At yields

0 =10p+20HF),, (36)

which is a standard centred Lagrangian step along the trajectory. As the poles are ats = 0,
the Laplace transform has no filtering effect here.

As is usual with the leapfrog model, a Robert-Asselin filter is applied to the prognostic
variables to prevent separation of the solutions at odd and even time steps. The coefficient
is fixed at € = 0.03 in all cases.

3.8. Diffusion stage

The governing equation for a spectral component of any of the variables §, { or T may

be written in the form -
— =F—¢c¥Y
ar 6

216

217

219

220
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10

We split the right hand side into two parts and integrate them separately. We first integrate 2as

the inviscid equation 234
d¥
o _r
dt
over a time interval 2At with initial condition ¥~ and denote the result as ¥*. We then =35
integrate the equation 236
oY
B
a - °
analytically with the initial condition ¥* to get 237

Y = exp(—2Atg)Y*

which is the required solution at time (n + 1)At. This second stage is applied to the 2ss

divergence, vorticity and temperature; the surface pressure is not damped in this way. 239

The parameter ¢ depends only upon the horizontal scale. The diffusion is assumed to 240

be of the form 5 241
eT? = 1LV2Q + 15V Q (37)

In the spectral domain, the damping coefficient becomes 242

0(0+1) 0e+1)\°
6= [”2(az) +"6<az
We note that the spectral equations are unchanged in form by the addition of the hyper- 2
diffusion term (vg); only the value of the coefficient is changed. The vg-term more strongly  zss

damps the smaller scales. Having applied diffusion, we have all the model variables at the 245
advanced time, and a new time step can be taken. 246

4. Numerical Evaluation of the Integration Schemes 247

In this section we describe a series of tests comparing simulations using the Laplace  zas
transform scheme (LaLT) and the semi-implicit scheme (LaSI). The LaSI and LaLT models 24
were run with 20, 40 and 60 minute time steps. For LaLT, a cut-off value 7. = 1h was set  2s0
for all time steps. In most cases, the reference forecast was an integration of the LaSI model 251
with a time step At = 10 minutes. 252

Eulerian models are subject to a Courant-Friedrichs-Lewy stability condition. For an  2ss
advection speed u# = 100m/s, the non-dimensional stability ratio #Af/Jx is unity for a  2sa
time step At = 1500s or 25 minutes. In fact, both the Eulerian models, EuSI and EuLT, were =2ss
found to be unstable for a time step of 24 minutes. The Lagrangian models are not subject  2s6
to this limitation. 257

The horizontal resolution of the model was at triangular truncation T85. The colocation  2ss
grid corresponding to this has 256 x 129 grid points, with a grid interval of approximately 2s
150km. In all cases, there were 20 vertical levels, uniformly spaced in o-coordinates. 260

The default setting of the diffusion coefficient was v, = 7 x 10° m?s~!: the damping 2e:
of a component of total wavenumber / is ¢ = v/(£ + 1) /a?s~!. The default value implies s
an e-folding time of 2.2 hours for the shortest waves represented at truncation T85. Sixth 263
order diffusion (15 = 10" m?s~!) was also applied for runs with a 60 minute time step. We  26s
note that LaLT consistently required less explicit diffusion than LaSL 265

4.1. Initial Validation Tests 266

Numerous tests were carried out to confirm the correct operation of the model codes. 267
For short time steps, the Eulerian and Lagrangian advection produced similar results, as  zes
did the semi-implicit and Laplace Transform adjustment. As an example of the performance e
of the four models, simulations of a growing baroclinically unstable disturbance [25] are 270
shown in Figure 1. The initial field is a zonally symmetric flow with a small perturbation 27
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on the Greenwich meridian. The four models were integrated for 12 days, each with a time 272
step At = 5min. The damping coefficient was v, = 7 x 10° and all other parameter settings 27
were equal for the four runs. The four simulations are quite similar, although we noticea 274
slight damping for the Lagrangian runs, associated with the interpolations involved in the 27
treatment of advection. 2760

Vorticity (Lev 20), EuSI, DD+12 Vorticity (Lev 20), EuLT, DD+12

0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315
Vorticity (Lev 20), LaSI, DD+12 Vorticity (Lev 20), LaLT, DD+12
75 75
60 60
45 45
30 30
15 15
0 0
0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315

Figure 1. Vorticity field at model level 20 for 12-day forecasts with four integration schemes. Top left: EuSI. Top right: EuLT.
Bottom left: LaSI. Bottom right: LaLT. All runs had timestep 5 minutes.

4.2. Kelvin Waves 278

Kelvin waves are eastward propagating waves that play an important role in atmo- 27
spheric dynamics. Clancy & Lynch [2] showed that the LT scheme had a significantly zs0
smaller phase error than the semi-implicit scheme for the integration of these waves. Exact zs:
Kelvin Wave initial conditions can be generated using the method of Kasahara [16]. In  2s2
this study, we use a simple analytical approximation described in [11]. We examine the zs
solutions for zonal wave numbers 1 and 4. The wave amplitude is 100 m in both cases. The  2es
theoretical period for the Kelvin wave with zonal wavenumber m = 1 is about 32 hours zss
and for m = 4 is about 8.3 hours [16, Fig. 9]. Figure 2 shows that the root mean square zs6
errors for wavenumber 1 for LaLT (blue lines) are significantly smaller than for LaSI (red  2e-
lines). Forecasts were run with time steps of 20, 40 and 60 minutes (solid, dashed and  zss
dotted lines respectively). 289

For the LaSI forecast of wave number 4 (Fig. 3) with a 20 minute step, the propagation 200
of the wave lags by a full wavelength by the end of the integration, reducing the rms error. ze:
The errors for the LaSI scheme with the larger time steps oscillate wildly as the wave moves 22
into and out of phase with the reference solution. The errors for LaLT are much smaller o3
and behave in a more realistic and steady manner. 208
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Figure 2. RMS errors for six integrations of Kelvin waves Figure 3. RMS errors for six integrations of Kelvin waves
with m = 1. Red: LaSI scheme. Blue: LaLT scheme. with m = 4. Red: LaSI scheme. Blue: LaLT scheme.

4.3. The Five-day Wave

The Five-day Wave RO(1,2) is the gravest symmetric rotational Hough mode of zonal 2e7
wavenumber 1. It is closely related to the initial state chosen by Lewis Fry Richardson 2ss
for his preliminary shallow-water forecast experiment [19, §4.1]. The initial conditions =zes
for a three-dimensional Five-day Wave were implemented in PEAK. The initial pressure o0
amplitude was 10hPa, with mean pressure 1000hPa. As no zonal mean flow was included, o
the wave has a period close to 5 days. Figure 4 shows the root mean square errors in o2
surface pressure for the LaSI scheme (red) and the LaLT scheme (blue), with time steps of 20 303
minutes (solid lines), 40 minutes (dashed lines) and 60 minutes (dotted lines). The reference  sos
is an SI forecast with time step of 10 minutes. The error level for LaLT is significantly less  sos
than that of the LaSI scheme, especially for the longer time step. The scores for vorticity soe
(not shown) confirm the superior performance of LaLT. 307

Five Day Wave RMS Error PMSL (hPa) RH Wave RMS Error PMSL (hPa)

035 o~ Las! 20min 33 e Las! 20miny.
0.3[1 " LaSI 40min ] 3} @ LaSl 40min | Q
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0.25 |~ Lal¥. 20min o N 1 25~-LalT 20min| F
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0.2/ 4 L4l T 60riin| 2]+ LalLT 60mi | L SR
E ol L8

DAYS

Figure 4. Five-day wave RO(1,2). RMS errors of surface
pressure (hPa) for 6 day forecasts.

Figure 5. Rossby-Haurwitz wave RH(4,5). RMS errors of
surface pressure (hPa) for 6 day forecasts.

4.4. Rossby-Haurwitz Wave

309

Rossby-Haurwitz (RH) waves are exact solutions of the nonlinear barotropic vorticity s
equation. While they are not eigenfunctions of the shallow water equations, they have 31
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Mountain Case RMS Error PMSL (hPa)

frequently been used as test cases. Following Phillips [24], the RH(4,5) wave was chosen as
Test Case 6 by Williamson et al. [30]. This test case has been extended to three dimensions;
the initial vorticity field is as in the barotropic case, the divergence is zero and a vertical
temperature profile and surface pressure field are defined; for details, see [14].

The LaSI and LaLT schemes, with time steps of 20, 40 and 60 minutes, were compared
to a reference run of LaSI using a time step of 10s. No diffusion was used for the reference
or LaLT runs, but the LaSI runs were unstable. This was overcome by applying horizontal
diffusion with a coefficient v; = 3 x 10°m?s~!. Figure 5 shows the root mean square
errors in surface pressure for the LaSI scheme (red) and the LaLT scheme (blue). The error
level for LaLT is substantially less than for the LaSI scheme. Scores for vorticity near the
tropopause (model level 5, o = 0.225, not shown) are similar in pattern, confirming the
superior accuracy of the LaLT scheme.

4.5. Flow over a Mountain

Test Case 5 of Williamson et al. [30] treats a zonal flow over an isolated mountain.
The mountain is centred at (90°E, 30°N) with maximum height 2000 metres. No analytic
solution is known so, as usual, we take the LaSI run with At = 10 minutes as a reference.
Figure 6 shows the root mean square errors in surface pressure for the LaSI scheme (red)
and LaLT scheme (blue), with time steps of 20 minutes (solid), 40 minutes (dashed) and 60
minutes (dotted lines). The error levels for the two schemes are very close in value.

Polvani BClI Wave. RMS Error MSL Pressure (hPa)

-©-LaSI| 20min

©- LaSI| 40min -+- LaSI| 40min

“©-LaSI 60min “+LaS| 60min &
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=+ LalLT 40min =** LaLT 40min

“+LalLT 60min

4 .
——LaSI| 20min

"*LalLT 60min

_______

6 8 10 12

d0i:10.20944/preprints202208.0389.v1

331

DAYS

Figure 6. RMS errors in surface pressure for Test Case 5 Figure 7. RMS errors in surface pressure for baroclinic wave
(Williamson et al. [30]). Red lines: LaSI. Blue lines: LaLT. (Polvani et al. [25]). Red lines: LaSI. Blue lines: LaLT.

4.6. A Baroclinically Unstable Wave 332

Polvani et al. [25] devised a test case for baroclinic instability. The initial conditions sas
consist of a non-divergent zonal flow with constant surface pressure. A small perturbation sz
is added to the temperature to trigger the development of baroclinic instability. The test sss
case of Polvani et al. was used by Ehrendorfer [10] to validate the PEAK model. With a 336
fixed value for the diffusion coefficient, the initial conditions are ‘numerically convergent’ ss-
as shown in [25] using two different numerical models. A test case quite similar to that of ~s3s
Polvani et al. was constructed by Jablonowski and Williamson [15]. 330

We use the test case of Polvani et al. [25] to show that the LaLT scheme can accurately a0
simulate baroclinic development. Using this case, Harney and Lynch [12] showed that :a
the EuLT scheme can accurately simulate baroclinic development. In Figure 1 above, we a2
showed the 12-day forecasts for all four schemes all with a small time step At = 5min. There a3
was no substantive difference between the four schemes. They are also indistinguishable s
from the results plotted in [25, Fig. 4]. Thus, all four schemes are capable of forecasting sas
baroclinic development with high precision. 346
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Quantitative scores confirm that the differences in performance are small: Figure 7 ez
shows the root mean square errors in surface pressure (hPa) for forecasts with the LaSI  sas
scheme (red) and LaLT scheme (blue), with time steps 20, 40 and 60 minutes. As usual, the 340
reference forecast is LaSI with a 10 minute time step. It is clear that the time truncation sso
error grows with forecast range. It is also clear that the error is greater for larger time steps. ss:
The important point is that the errors for the two integration schemes are very similar in  ss=
magnitude. 353

4.7. Real Data Test 354

The simple wave tests described above indicate superior accuracy for the LT scheme  sss
compared to the semi-implicit scheme. The ultimate conclusion on superiority of the sse
scheme must involve comprehensive comparisons for a large range of meteorological s
conditions. As a first step, a single test using real atmospheric data is described here. 358

Data was retrieved from the European Centre for Medium-Range Weather Forecasts  sso
MARS archive. The date chosen was 00 UTC on 15th October, 2017, the day before a major  seo
storm, Ophelia, reached Ireland. This data comprised temperature, divergence and vorticity e
fields on 25 pressure levels, surface pressure and the relevant orography field. These fields e
where interpolated onto the 20 sigma levels and reduced to the spectral resolution T85 16
used for the PEAK forecasts. The process of interpolation introduced noise, which was  ses
removed by initialization, as described by Harney and Lynch [12]. Using initialized data, ses
six forecasts were performed using the LaSI and LaLT schemes with time steps of 10, 20  ses
and 40 minutes. 367

Figure 8 shows the root mean square error for surface pressure. The reference is a ses
forecast using LaSI with a time step of 5 minutes. The red curves are for LaSI and the e
blue ones for LaLT. For the 10 minute step, the errors are comparable for the two models, 37
although the error during the initial day is smaller for LaLT. For the larger time steps, s~
the Laplace transform scheme is clearly superior to the semi-implicit scheme. Scores for sz
mid-troposphere vorticity (not shown) confirm this advantage for LaLT. 373

Ophelia: RMS Error PMSL (hPa)
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Figure 8. Real data: rms error for surface pressure (hPa) over 3 days for LaSI forecasts (red) and LaLT
forecasts (blue) with time steps 10, 20 and 40 minutes.

374
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5. Conclusions 375

An integration scheme using a Laplace transform for adjustment combined with a semi- 376
Lagrangian advection scheme (LaLT) has been found to yield results at least as accurate as 37z
the popular semi-implicit semi-Lagrangian scheme. The numerical tests described in §4 s7s
clearly indicate the superior accuracy for the LaLT scheme compared to the semi-implicit 37
scheme LaSI. The single experiment with real data reinforces this advantage. 380

Ultimate conclusions on the superiority of the LaLT scheme require more compre- se:
hensive comparisons for a large range of meteorological conditions. The potential for s
operational implementation of LaLT would depend upon more exhaustive testing with = ses
higher spatial resolution and incorporating a full package of physical processes. 384

There are well-known advantages of using a two time level scheme for Lagrangian = sss
advection. There appear to be no difficulties in principle combining such a scheme with s
Laplace transform adjustment. 387

The efficient formulation of the LaLT scheme, with analytical inversion of the Laplace sss
transform, is made possible through the use of a spectral model. An active debate on the e
future of spectral models has been ongoing for decades. The global simulation of an entire 100
season of the Earth’s atmosphere, with a 1 km grid and upper boundary of 80 km [29], 30
suggests that spectral models will continue to be competitive in the future. 302

For practical reasons, the semi-Lagrangian method used in this study was applied only  ses
to the horizontal advection. However, there is no difficulty to include vertical advection in  ses
the scheme. The algorithmic complexity of the LaLT scheme is comparable to that of LaSI, es
so the scheme is computationally competitive. 396

In summary, the main result of this study is that the LaLT scheme is clearly superior in  ser
accuracy to the LaSI scheme for the large time steps typically used with semi-Lagrangian ses
advection. The evidence presented gives a clear indication of the practical potential of the 00
LaLT scheme for integrating weather and climate prediction models. 400

Acknowledgments: My sincere thanks go to Martin Ehrendorfer for his comprehensive documenta- o1
tion of the PEAK model in his book [10] and for making the model code freely available. I also thank 402
Colm Clancy and Eoghan Harney of Met Eireann for several valuable scientific discussions on Zoom  aos

during the Covid lockdown. 404
Abbreviations 405
The following abbreviations are used in this manuscript: 406

EuSI  Eulerian advection and semi-implicit adjustment scheme

EuLT  Eulerian advection and Laplace transform adjustment scheme
LaSI  Lagrangian advection and semi-implicit adjustment scheme
LaLT Lagrangian advection and Laplace transform adjustment scheme

408

Appendix A. Calculating the Commutator 400

It was assumed in earlier work on implementing the Laplace Transform Integration 410
Scheme in a Semi-Lagrangian context that the Laplace Transform operator .Z along a an
trajectory commutes with spatial differential operators such as the gradient operator Va2
and Laplacian V2. This is not the case, as may be shown by simple counter-examples. In a1
this appendix we derive expressions for the commutator of the Laplace transform with the a1
Laplacian operator V2. 415

Two Laplace Transforms 416

For a function f(x,t) of space and time, we define two distinct Laplace transforms. -
The Euler-Laplace transform (ELT) is evaluated at a fixed point in space a18

LIf](x0,5) = /Oj e~ f(xo, ) dl (A1)
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Here, Cyp is a line in the x-t space parallel to the time axis and passing through the point 41

(XO ’ 0) . 420
The Lagrange-Laplace transform (LLT) is evaluated along a trajectory of the motion: a2
LU0, = [ e flx(t), . (A2
0Co
Here, C is the trajectory of the motion starting at the point (xo, 0). a2
The Euler-Laplace transform commutes with spatial operators like dy and V2. This is 423
not the case for the Lagrange-Laplace transform. We write a2

SV =VL+ L,V

and, to replace £V by V.Z, we require an expression for the commutator [.Z, V|

(ZV - V.2). aze
Evaluating the Commutator [.£,V?] az7
t
Cm
y
XM

O
Figure A1. Trajectories (solid) and pseudo-trajectories (dashed) in (x, y, t)-space. See text for details.

In Fig. A1 we show the trajectory Cy, starting at point x), along which the transform a2
Z{f(xo)} is evaluated (superscript 0 indicates the initial time t = 0). Also shown are the a2
trajectories Cp starting from x% and Cy starting from x3,. The contours C and C_ are not a3

trajectories, but are parallel to Cp, shifted to x; = xg + Ax? and x_ = xp — Ax’. a3
The transform of 9, [f(xo)] is given by a32
Lf(xp) = ZL{f(x=
ZL{0x[f(x0)]} = { +x)0} 0 )} +H.O.T. (A3)
P~ XM

(H.0.T. denotes higher order terms). The derivative of the transform .Z{f(xo)} is given by ass

_ L)} = L{f(xm)}

9x[Z{f(x0)}] -~ +H.O.T. (A4)
P M
We expand the variables as follows 434
f+ =fxy) = fg"'(“OfX“'UOfy)Ot
fo = fx) = 2+ (uofx +o0fy) t
foo =fxp) = fQ+ (upfe+opfy)’t
fu = FfOam) = f+ (umfs+omfy)t
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Using these expansions in (A3) and (A4) we get 435
1 /oudf ovdf\
0y (222 ZY2)
[£,0:]f (x0,5) = 52 (E)x 0x + dx oy )0' (AS)
It is easy now to obtain the following commutators: 436
1
2, V|f = _Si[uxfx +0xfy, tyfr+0yfylf
1 437
(L, V- |Vf= —S—z[uxfxx+vxfxy+uyfxy+vyfyy]8 (A6)
We can also establish the identity 438
(2, V] =2,V |Vf+V.[ZV|f
which leads to the result 439
2 1 °
[gzv ]f:_57 2 uxfxx+vxfxy+uyfxy+vyfyy + uxxfx+vxxfy+uyyfx+vyyfy 0- (A7)
Appendix B. LTI and Exponential Integrators 440

The LT method with analytic inversion gives an exact treatment of the linear modes. 4
This is due to the fact that the LT scheme does not involve time-averaging of the linear s
terms. An alternative way of achieving accuracy is to use an exponential integrator (see, 4as
for example, [23,26]. In this appendix we demonstrate the relationship between Laplace 4a

transform integration and exponential integrators. ass
We may write the model equations in the form 446
0X
5 = LX + N(X). (A8)

where the matrix L has an orthogonal eigenvector matrix E with LE = EA. Assuming that s
the solution of (A8) at time ¢, = nAt is known, the Laplace transform with this initial time 4ss
is 449

X —X"=LX+N

where £{X} = X is the Laplace transform of the state vector. Solving for this, we get as0
X = (sl—L)"'X" +N]. (A9)

We note that 451
(sl— L)' = E(sl — A)LET

and also note the transforms 452
(sl = A)7t = L{exp(At)} and (sl =)t = L{exp(Lt)}.
We can write the nonlinear term as 453
(sl —L)7IN = L{exp(Lt)} - L{N}.

The convolution theorem allows this to be written 454

(sl—L)"IN = £{/t: exp(L(t — T)N(71) dr} .
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The transformed equation (A9) now becomes ass
N t
X = L{exp(Lt) }X" + C{/ exp(L(t—1)N(T) dT}
tn
We invert this at time t,, 11 = t, + At to get 456
tn
X1 = gLty bt / e LN(1) dt (A10)
tn

We note that (A10) is formally identical to Equation (8) of Peixoto and Schreiber [23], which  4s-
they call the variation-of-constants formula. We have thus established a close relationship s
between the Laplace transform scheme and exponential integrators. aso

Approximating the Nonlinear Term a60

The convolution term must be evaluated by approximate means, since it involves e
unknown quantities. Suppose we evaluate the nonlinear term at time t, and assume that 42
it is constant throughout the time step (t,,t,+1). Then the convolution integral can be  aes
evaluated, giving a64

tn
= etraX 4 (—L) [ — exp(LAHIN".

tnyl
Xn+1 — eLtn+lxn <|>6,LtnJrl (/ n+ E_LT dT) N

Assuming a small time-step, this reduces to a65
X" = ethriX™ 4+ AN

This is perhaps the simplest version of an exponential integrator. There is a wide range of  4ss
more sophisticated and accurate approximations of the convolution integral. For example, 467
we might estimate N at the centre of the time step by extrapolation N"*1/2 = (3N" —  4es
N"~1)/2. Many other possibilities exist. a0

The time-averaging of the SI scheme also results in an error in the nonlinear term, a7
even when this term is constant (see Harney & Lynch [12, Eq. 3]). In this ideal case, the LT 47

scheme has no error in the nonlinear term [12, Eq. 4]. a72
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