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In this work, we study gravitational lensing in the weak field limits and the shadow by charged black holes in
non-linear electrodynamics corrections. To find the deflection angle in vacuum (non-plasma) up to the leading
order terms, we compute the optical Gaussian curvature from optical metric and utilize the Gauss-Bonnet theorem
by applying Gibbons and Werner’s technique. Also, we derive the bending angle in plasma and dark matter
mediums and observe that the bending angle increases by increasing the effects of these mediums. Further,
in vacuum and plasma mediums, we investigate the graphical behavior of the bending angle with respect to
the impact parameter v and notice that the bending angle exponentially decreases. Moreover, we calculate the
Hawking temperature using the Gauss-Bonnet theorem and compare it with a standard method of computing the
Hawking temperature. Furthermore, we investigate the bound of the greybody factor and graphically examine
that bound converges to the 1. We relate our obtained results with the results of black holes given in the literature.
Finally, we have considered exploring the effect of NLED, plasma, and dark matter on the black hole’s shadow
radius to broaden the study’s scope. Results for the shadow indicate that the three parameters give different
deviations to the shadow radius. Interestingly, while plasma affects both the photonsphere and shadow, dark
matter only influences the shadow.

PACS numbers: 95.30.Sf, 98.62.Sb, 97.60.Lf
Keywords: general relativity; Gauss-Bonnet theorem; plasma medium; black hole; greybody; Hawking temperature;
shadow cast

I. INTRODUCTION

From the beginning, studying black holes (BHs) has attracted scientific i n terest. I n the general theory o f relativity (GR),
Einstein anticipated the existence of BHs. However, it was not until 1960 that the BHs were given the name we know today. The
Event Horizon Telescope [1-3] took the first picture of the BH; before it, the picture of BH was only in s imulations. A BH, by
definition, is an area in spacetime where the gravitational pull is so powerful that nothing, including the light, can e s cape. A
black hole has three layers the outer event horizon, inner event horizon, and singularity. There are three categories of BHs i.e.,
stellar BHs, supermassive BHs and intermediate BHs. The Schwarzschild, Reissner-Nordstrom, Kerr, and Kerr-Newman BHs are
the four kinds of asymptotically flat BHs [ 4]. Schwarzschild BH is static that does not rotate and has no electric ¢ harge. This
BH is characterized only by its mass. Kerr BH is a rotating BH with no electric charge, Reissner-Nordstrom is the charged and
non-rotating BH, and Kerr-Newman BH is a charged and rotating BH. Black holes do not always stay the same type throughout
their lives. Instead, they can become charged by attracting matter with higher positive or negative charges than the other, and they
can lose their charge by attracting matter with lower positive or negative charges than the other. Similarly, BHs can attain angular
momentum by absorbing matter in a non-spherically symmetric manner [4]. The existence of charged BHs has been discussed
several times. In [5], it is discussed that a BH might have a little electric charge by assuming a balance between the number of
protons and electrons around the BH. Moreover, the Wald [6] solution states that a revolving BH in a uniform magnetic field can
still have an electric charge proportionate to its spin. While in the early universe, avoiding being neutralized by ordinary matter
accreting on the magnetically charged BHs, these BHs are more likely to preserve their magnetic charge. [7].

Black holes are thought to have strong gravitational forces that prevent any radiation or particle from passing over the event
horizon, absorbing everything in their vicinity. In 1974, in the background of quantum field theory, it was confirmed by Hawking
that the BHs carry entropy and can generate a form of radiation known as Hawking radiation [8, 9]. The spectrum of BH radiation
is the same as that of the black body. Since around the BH, spacetime is bent, the spectrum emitted by a BH has changed
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significantly. The curvature of spacetime can behave as a potential barrier, allowing some radiation to be transmitted and reflected.
Accordingly, the greybody factor is determined by considering the transmission amplitude of BH radiation. The higher the
magnitude of the greybody factor, the more likely Hawking radiation can approach to infinity.

Numerous strategies to probe the Hawking temperature were proposed [10-14]. To compute the hawking temperature for
euclidean geometry of the 2-dimensional spacetime without losing the information of 4-dimensional spacetime, Robson et al.
[15] proposed the topological method that is based on the invariants of the topology, i.e., Euler characteristic and Gauss-Bonnet
theorem (GBT). Zhang et al.[16] studied the Hawking temperature of the BTZ BH using the topological approach. By utilizing
the topological technique, Ovgiin et al. [17] attained the Hawking temperature for different BHs. Kruglov [18] investigated the
Hawking temperature for a magnetically charged BH in the background of non-linear electrodynamics via surface gravity and
horizon. Furthermore, a new method for computing the greybody factor that does not rely on approximations developed, which
necessitates the determination of the bound of greybody factor. Some people use alternative approaches to find the greybody factor,
including the WKB approximation and the matching methodology [13, 19-23]. For 1-dimensional potential scattering, Visser
[24] established some extremely broad bounds for transmission and reflection coefficients. Boonserm and Visser [25] investigated
the rigorous bounds of the greybody factor by analyzing the Regge-Wheeler equation for wave mode angular momentum and
arbitrary particle spin for Schwarzschild BHs. Boonserm ez al. [26] calculated the bounds for the greybody factor by considering
the greybody factors related to the Myers-Perry BH scalar field excitation. For the greybody factor, authors [27] examined the
bounds of the Kazakov Solodukhin BH.

In general, it is assumed that light travels in a straight path in a vacuum. In the context of Newtonian Mechanics, Soldner was
the first to determine the deflection angle of light [28]. However, GR predicted that as the light travels through huge objects
in the universe, it deflects because of the gravitational attraction of these objects, and the gravitational deflection of light by
the Sun gave the first experimental evidence. This phenomenon is called gravitational lensing (GL) or “lensing”. The GL in
literature is classified into two regimes, strong and weak GLs relying on the alignment of the lens, and source [29-34]. Strong
GL happens when the sightline from the viewer to the light source is so close to the lens. In this situation, the lens plane has
a high magnification, multiple images, rings, and arcs. In contrast, the weak GL happens when the lens is far away from the
sightline, producing mild image distortions and small magnifications. The GL by BHs has been extensively investigated in
astronomy, and theoretical physics literature [35-39]. Gibbons and Werner (GW) [40, 41] demonstrated that in weak limits, it is
feasible to determine the bending angle via GBT, and Werner then extended this approach to Kerr BHs via Nazim’s osculating
Riemannian mechanism with Randers-Finsler metric [42]. Gibbons and Werners struggle to developed a method to study the
bending of light. In the Background of Einstein-Maxwell-dilation theory, authors [43] examined the bending of light by charged
wormholes. Recently, it was studied how the GW approach may be utilized to compute the bending angle of a rotating global
monopole spacetime [44], and for regular BHs with cosmic strings, [45]. Further, Ming et al. [46] investigated the weak lensing of
electrically and magnetically charged BHs via the GW method in the context of non-linear electrodynamics. Many other authors
have also utilized GW technique in [47-75].

In the GW approach, considering a region Fr bounded by a ray of light and the circular boundary curve D7 centered at the
lens that meets the ray of light at the source and spectator, both of which are at a coordinate distance 7" from the lens. The GW
technique indicates that the GBT is applied to the optical metric of the asymptotic spectator and source in the weak field limits
given as

[ [ Ras+ ¢ ware 3¢ =2mx(on) ()
Dr 9D j

where, K stands for the optical Gaussian curvature and % is indicating the geodesic curvature, d.S is the optical surface component,
and at the jth vertex €; gives the exterior angle. The following equation can be used to calculate the asymptotic bending angle

6=— / / Kds, 2)
0 Tsl

where, 6 is representing the bending angle, summation of the jump angles > ; € = m and Euler characteristic X (Dr)=1.1tis
important to note that the integral is calculated over the infinite area of the surface bounded by the ray of light, not including the
lens. Moreover, the straight line approximation (7;) will be used to compute the leading order term of the bending angle.

Dark matter (DM) was initially discovered by a Swiss astronomer named Zwicky [76]. Since DM cannot be observed directly,
it was originally referred to as “missing matter.” Dark matter comprises particles that do not reflect, absorb, or emit light and other
forms of electromagnetic radiation. Dark matter consists of 27% of the total mass-energy of the universe [77]. Super-interacting
massive particles, weakly interacting heavy particles, sterile neutrinos, and axions are different forms of DM candidates [78].
Dark matter has been proposed as a composite, similar to the dark atom idea, which can be examined using light deviation.
Only gravitational interactions can identify DM, and we only know that DM is nonbaryonic, nonrelativistic, and has weak
nongravitational interactions. The refractive index determines how fast a wave propagates across a medium. The refractive index
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in the case of DM medium can be defined as [79]:
n(w) =1+ BAg + Asw? (3)

Here, w expresses the photon frequency. It is to be noticed here 3 = -£2—, where py is the mass density of dissipated DM
particles, Ag = —2¢2e? and Ag; > 0. Due to the usefulness of GL for dark matter detection Ovgun [68, 80, 81] studied the weak
GL of wormholes and BHs in DM medium.

The problem of the singularity of an electric field in the origin of charged pointlike particles and the problem of infinite
electromagnetic energy can be solved using non-linear electrodynamics (NLED). Non-linear electrodynamics may be transformed
to Maxwell’s electrodynamics, which can be regarded an approximation of Maxwell’s electrodynamics at weak fields. The
classical electrodynamics must be modified for strong electromagnetic fields because the self-interaction of photons is vital [82].
In the classic linear Maxwell theory, NLED was developed to solve the divergences in self-energy of pointlike charges. The Born
and Infeld’s NLED model was constructed to solve these divergences [83]. A fascinating feature of GR with NLED is that we can
produce BHs without spacetime singularity, such as the Bardeen BH [84]. Various regular BHs have been produced as solutions
in certain NLED theories [85-92].

Due to the GL of light, the area between the spectator and the BH is excluded from the definition of the BHs shadow, which is
the spectator’s dark sky without any light sources. A dark circular disc represents the shadow of a spherically symmetric BH.
The Event Horizon Telescope Collaboration’s [1, 93] experimental findings not only conclusively demonstrate the existence of
BHs but also enable us to see BH shadows directly. Black hole shadows have been studied theoretically for a very long time.
For the first time, Synge studied the shadows for Schwarzschild BHs [94] and later, Luminet [95] provided a formula for the
shadow’s angular radius. Generally, a revolving BH’s shadow is longer than a non-rotating one due to spacetime dragging impacts,
but a non-rotating spinning BH’s shadow is frequently a conventional circle [96]. Gyulchev et al. [97]-[98] investigated the
shadows formed by various traversable wormholes. It’s interesting to note that the BHs shadow determines the geometry of the
near horizon. However, the plasma around the BH impacts light’s course. The Kerr geometry’s shadow changes in geometric
size and configuration as a result [99]. Dark matter, as an astrophysical environment, also leaves its signature on the black hole
spacetime, and various researches went into this direction [100-105].

Inspired by these prior researches, we will examine the bending angle of a charged BH within NLED in the weak field
approximations using the GBT. Further, it would be interesting to study the effect of plasma and DM mediums on the bending
angle of light by a charged BH in the context of NLED. Moreover, we compute the Hawking temperature and greybody bound of
the charged BH in the background of NLED. Graphical behavior will also be studied.

This paper is ordered as follows. In Sect. II, we discuss the charged BH within NLED. In Sect. III, we work for the bending
angle of light within the vacuum and examine its graphical behavior. In Sect. IV, we study the deflection angle of light of BH in
the presence of plasma medium and also observe the deflection angle graphically. In section Sect. V, we focus on the calculations
of the deflection angle of BH in DM medium. Sect. VI is based on the calculations of the Hawking temperature of charged BH in
NLED. In Sect. VII, we investigate the rigorous bound of the greybody factor of the charged BH and also discuss the graphical
analysis of the bounds. Sect. VIII is based on the discussion of our findings. Natural units are also used as G = ¢ = 1, and the
metric signature is (—, +, +, +) throughout the paper.

II. CHARGED BLACK HOLES IN NONLINEAR ELECTRODYNAMICS

The action of NLED in the general theory of relativity can be expressed as [106, 107],

Gy, Al = / d'zy/=g L];T — L(F, 9)] , )

where, R stands for the Ricci scalar computed from metric g,,,,, £(F,G) is representing an arbitrary function in terms of F
and G, where F = 1 F,, " and G = i}'w,]:'“”. Here, F,,, = 0,A, — 0, A, is representing the strength field tensor of
electromagnetic field and fuu = %ewabF b indicates the Hodge dual of F - Supposing that the Lagrangian in Eq. (4) is to be
free of a cosmological constant. The spherically symmetric form of the magnetic field can be defined as

1
ifwda:“ A dx¥ = qsinfdf A do, 5)

where, ¢ denotes the constant magnetic charge. The spherically symmetric solution is defined as [107]
1

ds® = g, dz"dz” = — f(r)dt® +
gM f( ) f(’]")

dr? + r?(d6* + sin®0d¢?), (6)
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where

2
Here, in metric function Q? = 47q? and a dimensionless parameter & is Tfz. constant M represents the mass of the gravitating
body and « is the 4-dimensional parameter . One can observe that the metric in Eq. (6) takes the form of the Reissner-Nordstrom

metric by considering @ = 0. Also, the metric in Eq. (6) reduces to the Schwarzschild case by taking charge () = 0.

III. BENDING ANGLE IN VACCUM

This section primarily focuses on the computation of the bending angle of charged BH within NLED using GBT with optical
metrics given by GW. For this purpose, due to spherical symmetry, we utilize the equatorial plane (¢ = 7) and null geodesics
(ds = 0) without affecting generality. The spacetime can be reduced to the orbital plane rays of light, i.e.,

1 2
dt? = gapda®da® = ———dr? + -

(f(r)? f(r)

where g,y is the optical metric and a, b € {1, 2}. Now, we calculate the non-zero Christoffel symbols of the optical metric as

de?, (7)

o —20Mr® + Q? (20r* — 6M*a)
T 10r5(—2M 4+ 1) + Q2 (1005 — Mira)’

_ 2002 2M*Q%*a
T _ _ v _ - v -
Tho =3M = == —r+ —7F—,

. 10r°(—=3M +r) +4Q? (57* — M*a)

T

I, = :
"0 1008 (—2M + 1) + Q2 (10r° — M4ra)

We work out for the Ricci scalar by utilizing the above non-zero Christoffel symbols of the optical metric to calculate the Gaussian
optical curvature. The Ricci scalar can be computed as

4Q* 12MQ2+6M2 6Q% 4M  18M*Q*a

R = 16 5 A A 3 T g0
38M°Q%a  21M*Q%*a 6M3Q*a?
59  5rd 25714 ©

The Gaussian curvature of the optical metric of the charged BH within NLED can be computed by utilizing the following relation

. R
K=3. ®)
By using the value of R in Eq.((9)), the optical Gaussian curvature up to the leading order terms is calculated as
. 3Q* 2M  6Q°M  3M?  21aQ?M*
g 3@ 2M QM _2W0GTMT o5, QP ). (10)

rd r3 rd r 1078

The bending angle 6 will be computed using the result above. One can notice that the Gaussian optical curvature K is in the direct
relation with the mass m, charge () and parameter @, but this information is nothing to do with our work. Consider Dy to be a
non-singular region of an orientated 2-dimensional surface S with the optical metric and boundaries 0 D = ~y4 U Fr. Considering
the Gaussian optical curvature and geodesic curvature, the Gauss-Bonnet Theorem is then written as follows in terms of the
construction above [41]:

/ Kds +7{ kdt +) " €; = 21X (Dr). (11)
DT BDT ]
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The regular domain in the optical plane is selected to be outside of the light beam. This domain is assumed to have the topology
of a disc with the Euler characteristic number X' (D) = 1. Taking start with a smooth curve described as v := {t} — Dy, with
the geodesic curvature determined as follows:

k=g(Vy¥,9). 12)

In addition, the condition of unit speed is g(¥,*) = 1, where 4 indicates the unit acceleration vector. Now, take a very large but
finite radial distance 7" — o0, so that two jump angles at the source and viewer give g + 6o — 7. It is noted that the geodesic
curvature for the beam of light -y, eliminates by definition k(v,) = 0. By computing only the contribution to the curve Frr and we
may deduce the following result from GBT

w40 dt R
lim k— dp =m — lim // KdS. (13)
T—oo Jo d¢ Fr T— o0 Dy
The geodesic curvature for a curve F'r placed at a T' (coordinate distance) from the coordinate system can be determined as
K(Fr) =| V, Fr | . (14)
The radial component for geodesic curvature is specified as [41]
(Vi Fr)" = FR0sFF) + Ty (F7)%. (15)
The unit speed condition and optical metric of charged BH can be used to demonstrate that

1

A RE) = i [ Vi Fr 1= 7o (1o
On the other hand, from the charged BH’s optical metric, we obtain
lim dt — Td¢. (17)
T—o00

We may conclude that our charged BH optical metric is asymptotically Euclidean. By combining the above two equations, we get

d
Jim (k(FT)d;> =1. (18)

u
sin ¢

é:—/w/m Kds, (19)
0 Ju

sin &

Using Eq.(13) and the straight line approximation, r = where, u is the impact parameter. The bending angle 6 can be

defined as

where dS = \/detgdrd¢. Now by using the Eqgs.(10) and (19), the bending angle 6 of the charged BH up to the leading order
terms is calculated as

. %+8M3 3M2r  T5M*r
u 3u3 4u? 64u4
SMQ?  SM3Q? 37Q% 45M27Q?
3us ud 42 32u
1225M47Q?  TM*nQ%a
O(M?, Q3 a%). 20
566 T gae  TOML@LAY) 20)

The attained angle Eq. (20) depends on the mass M of a gravitating body, charge (), dimensionless parameter & and the impact
parameter u. We examine that by ignoring the term which contains & in obtained angle, one can get the deflection angle of
Reissner-Nordstrom BH. We also observe that by neglecting charge () in bending angle Eq. (20) one can obtain the deflection
angle of the Schwarzschild BH up to the fourth order of mass M in vacuum.
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FIG. 1: The variation of the bending angle 6 as a function of impact parameter u.

A. Graphical behavior in Vaccum

This subsection focuses primarily on a graphical analysis of BH’s angle of deflection 0 with respect to the impact parameter u
in non-plasma medium for the various values of () by taking M and & equal to 1 and 0 < u < 20. Fig. 1 depicts the behavior of
bending angle 6 with respect to 1mpact parameter u for 0 < @ < 1. We find that for the small values of u, the bendlng angle 6
is positive. The bending angle 0 approaches zero as the values of u increase. We also inspect that bending angle 0 obtains its
maximum value and then exponentially decreases as the value of charge increases () — 1. For @) = 0, one can get the behavior
of the Schwarzschild BH’s bending angle (indicated by the black line), i.e., exponentially decreases and approaches zero. The
positive angle at these values of () indicates the deflection is in the upward direction. The behavior of bending angle g is physically
stable.

IV. PLASMA’S IMPACT ON BENDING ANGLE

This section aims to investigate the plasma medium’s effect on the bending angle 6. In a vacuum, lensing does not include
the photon’s dispersive properties, while in a plasma medium, gravitational deflection causes refraction to include additional
deflection, which encodes the information in the refraction index. [108]. To account for the impacts of plasma, we assume the
photon goes from vacuum to a hot, ionized gas medium, with v equal to the speed of light through the plasma. The refractive
index, n(r), may therefore be stated as follows:

1
n(r) = % = W’ where c¢=1. 21

The refractive index for the charged BH within NLED is obtained as [89]

- (f(r)), (22)

T2
wOO

where, in refractive index w, and w, stand for the electron plasma frequency and photon frequency, respectively, observed from

infinity by a spectator. Considering, a 2-dimensional Riemannian manifold (M°P*; g??*) with the optical metric g;" = fgi Jkl-
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Then, the line-element in Eq. (6) in the optical space Eq. (7) in the case of plasma medium takes the form

(23)

dt2 _ g,‘;ftdmkda:l _ n2 |: dr? 7’2d¢2:|

20 T

The non-zero Christoffel symbols of the charged BH in case of plasma medium by using the components of metric Eq. (23) is
calculated as

(f (rw — 2w3)) (£ (r)we + wZ) f'(r)

b = 2f(r)wi, !
r r))3w? rw? f'(r
o= g (LR ) g+ LD )

a1 (f)Pwl ()

NS rw 2f(r)

The Gaussian optical curvature K for charged BH in the case of plasma medium is calculated by using the relation in Eq. (9)

K= rd riw? o P32 gb
MQAE | BM? 1202 | 32QMW? 1207
row? ré rw?, rbw2 row?,
21aQ’M*  39Q*M*aw?
— ¢+ O(M°, Q3 a%. 24
10r% 105z T O QN 24)

From the above result, one can observe that the Gaussian optical curvature K also directly relates to the electron plasma frequency

and inverse with photon frequency. With the help of GBT given in Eq. (19), one can calculate the bending angle 0 of the charged
BH within the plasma medium as

A AM 8M3  3M?*n  T5Mim

b = U * 3u? 4u? 64ut
8MQ2  8M3Q® 3702  45M27Q2
o3 W 4 32t
1225M47 Q% TM*rQ%a  Q*mw?  2Mw?  2Q*Mw?
B 256uS 64uS  2ulw? | uw?, udw?,
M?*mw?  3M2Q%*mw?  2G3M3w?  AMB3Q?w?
20202, Sutw?, 3utwl, 3udwZ,

3M*rw?  T5M*7rw?

16utw?,  128uSw?,

3M Q% aw?
32ubw?,

+O(M°,Q*, a%). (25)

The bending angle obtained in Eq. (25) depends on the mass M of a gravitating body, charge (), dimensionless parameter @,
impact parameter v and plasma terms. We also observe that the angle in Eq. (25) in the absence of plasma effect reduces to the
angle (20). By considering & = 0, the angle reduces to the deflection angle of Reissner-Nordstrom BH up to the fourth order of
M in plasma medium. The bending angle 0 of the charged BH reduces to the bending angle of Schwarzschild BH by considering
@ = 0. It is to be observed that the bending in plasma medium angle Eq. (25) is greater than the case without plasma effect. The
deflection angle § increases as the photon frequency viewed by a static observer at infinity decreases, keeping the electron plasma
frequency constant.
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FIG. 2: The variation of the bending angle 6 as a function of impact parameter v

A. Graphical behavior in Plasma Medium

This subsection aims to study the graphical analysis of BH’s deflection angle 6 with respect to the impact parameter v in
plasma medium for various values of ) by taking M and @ equalto 1,0 < u < 20 and 2= = 0.1. Fig. 2 depicts the behavior

Woo

of the bending angle 6 with respect to the impact parameter u for 0 < ) < 1. We examine that for the small values of u, the
bending angle 6is positive. The bending angle 6 approaches zero as the values of u increase. We also inspect that bending angle
6 obtained its maximum value and then exponentially decreases as the values of charge increase () — 1. For () = 0, one can get
the behavior of the Schwarzschild BH’s bending angle (indicated by the black line) i.e. exponentially decreases and goes to zero.
One can attain the positive angle for these values of (), which indicates that the deflection is in the upward direction. The behavior

of bending angle g is physically stable. One can observe that the bending angle (é) graphically shows a similar behavior in both
mediums.

V. BENDING ANGLE IN DARK MATTER MEDIUM

Sect. In this section, we will compute the deflection angle of a ray of light propagating through a charged BH embedded in a
DM medium with various configurations of the BH. In this regard, the refractive index for the charged BH in the DM medium is
defined as [109]

n(w) =1+ Ay + Asw?. (26)

The 2-dimensional optical geometry of the charged BH within NLED is defined in Eq. (23). Now, by using the value of the
refractive index in (26), the Gaussian optical curvature K of the charged BH in terms of DM medium is calculated as

i~ 3Q° B oM - 6MQ?
B 7”4(1 —|—A2w2 —|—A05)2 r3(l—|—A2w2 —|—A0B)2 7”5(1 —|—A2w2 —|—A0ﬂ)2
M? 21aM4Q?
+ 5 oM@ S5 +O(M°, Q% a%). 27)

(14 Asw? 4+ AgB)2 10r83(1 + Asw? + Agf)
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Using Eq.(19), the bending angle can be computed as

i~ 4M N SM?
a1+ Aw? 4+ ApB)? T Bud(1 + Asw? 4 App)?
n 3M?*r n 5M47
4u?(1+ Aow? 4+ ApB)?  64ut(1 + Asw? + Apf)?
8SMQ? SM3Q?
© 3ul(1+ Agw? + Af)2 uB(1+ Agw? + Agf)?
31Q? 45M37Q?
T 4u2(1+ Agw? + Agf)? 320t (1 + Agw?® + Agf)?
1225 M4 Q? TM*m Q%
©256uS(1 4 Asw? + Agf)? * 64uS (1 4+ Agw? + Agf)?
+ 3M27TA20J2 + 75M47TA2(U2
2u2(1 4+ Asw? + ApB)?  32ut(1 + Asw? + ApB)?
16GMQ? Ayw? 16M3Q? Ayw?
© 3ud(1+ Agw? + AgB)? uB(1+ Axw? + Agf)?
3rQ? Ayw? A5 M2 1 Q% Asw?
C2u2(1+ Agw? + AB)2 16u(1 4 Asw? + Agf)?
1225M47TQ2A20J2 8MA20J2
C128uS(1 4 Asw? + AgB)? | u(l + Ayw? + Agf)?
+ 1617 Aow” -+ O(M®, Q% 0% ). (28)

3ud(1 + Asw? + Aof)

The bending angle in Eq. (28) depends on the mass M of a gravitating body, charge (), dimensionless parameter &, impact
parameter » and DM terms. Thus, one can obtain the expression for Reissner-Nordstrom BH’s deflection angle by taking & = 0
and for the Schwarzschild BH by considering () = 0 in DM medium. Due to the DM’s effect, we examine that the deflection
angle of the charged BH is larger than the angle obtained in vacuum. The deflection angle in Eq. (28) reduces to the deflection
angle in Eq. (20) obtained in a vacuum by ignoring the effect of the DM medium.

VI. HAWKING RADIATION

The main aim of this section is to calculate the Hawking radiation of charged BH within NLED via a topological method.
The topological technique uses the 2-dimensional Euler characteristic and GBT to compute the BH temperature. For this, the
spherically symmetric solution can be defined as [107]

1
ds®> = —f(r)dt* + mdﬁ +12(d6? + sin*0dg?). (29)
r
By utilizing the Wick rotation, we can rewrite the 4-dimensional spherically symmetric metric into 2-dimensional as
1
ds? = —f(r)dt® + dr?. (30)
A 5

The event horizon r}, of the charged BH in NLED is defined as

o= GM+/(M)? - @Q?
+ aQ*M* (zo(M /M2 - Q23 (M G1)

+ VOIE- @M - @)+ 0@,
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The formula to compute the Hawking temperature of the charged BH in NLED is defined as follows [15, 17]

Ty =

d 32
4 Xkp < h VaRdr, G2

where, h represents the Plank constant, c indicates the speed of light, kg is the Boltzmann’s constant, g is the determinant of
the 2-dimensional metric. Besides, r;, indicates the horizon with ith Killing horizon. For simplicity, we consider all physical
constants equal to unity. After putting the values of all the constants, we get

1
Ty = ——
W= / h VIRdr, (33)

while, the value of g is 1 and the Ricci scalar R is calculated as

AM 6Q?  21M4Q%a
2 X v a 4
R=—3 T +—% (34)

After putting the Ricci scalar, and the determinant of metric and then taking integration along the horizon, the Hawking temperature
of the charged BH in NLED is computed as

B 3M4Q2 M*Q%a =7
T = o, <M+f+ 0 1 V)P <M+ﬂ>—@2>)
@ M'Q*a -
(M+f+ 0V 1 VP <M+ﬂ>@2>>
% M4Q%a -
" <M+f+ 0 + VP (M <M+ﬂ>—cz2>) ’ 3

where, 1) = M? — Q2. One can observe that the obtained Hawking temperature in Eq. (35) depends on the M, @, and &. We also
examine that the Hawking Temperature derived via GBT is identical to the standard form of deriving the Hawking temperature

using horizon function (T = (T’L)) By taking a = 0, the Hawking temperature of Reissner-Nordstrom BH can be obtained,
and by considering @ = 0, one can get the Hawking temperature of Schwarzschild BH (T = ¢ Mﬂ)

VII. BOUNDING GREYBODY FACTOR

In this section, we examine the rigorous bound of the greybody factor of charged BH in NLED. The spherically symmetric
metric of the charged BH in NLED is given in Eq. (6) and the corresponding greybody factor bound can be written as [25]

1 oo
T > Sech? <2w/ Qd?“*> , (36)

VIREOP + 02 = V() - 1)
2h(ry) ’

where

Q:

where, h(r,) representing the positive function satisfies the condition h(—oc0) = h(400) = w. The Schrodinger-like equation in
terms of the tortoise coordinate r, takes the following form

d2
Liz—w G )}wzo, (37)

here, dr, = ﬁdr and V(r) indicates potential and is defined as

vy = ) |24 LD

r 72 (38)
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The potential for the charged BH in NLED is calculated as

2Q? oM | 3M*Q%a
- Q2 oM M*Q%*a\ |I(1+1) (*Ts+rz+ 57 )
142 2 39
V() = < + r 10r6 r2 + r (39)
The lower bound on the transmission probability 7" for h = w is defined as
1 [V
7> Secr? [ = [ Vg, (40)
2w Jp, [f(r)

The greybody bound by charged BH within NLED after putting the value of f/(r) in Eq.(40) and using the value of horizon, the
bound can be evaluated as

7 s Tl (v +f+20M+\f)]\(44C(2;;+x/@)—Q2)>7
’ 1024 -3
S sz vaa).
+ <M+f+ M+\F)]\(44C(2;j+ﬂ)@)>_
( <M+f+ M+\ﬁ)]\(446(2;;+\/@)_622)>]. @)

where, ¢ = M? — Q2. The obtained bound in Eq. 41) depends on the M, ) and &. By considering & = 0, one can also get the
expression of Reissner-Nordstrom BH’s greybody bound, and by taking ) = 0, the greybody bound of Schwarzschild BH’s can
be attained.

A. Graphical Analysis of Greybody Bound

This part depicts the graphical behavior of the bound of greybody factor and the potential (we set f)(r) = V/(r)) of charged BH
within NELD for the different values of charge (), and taking angular momentum ! = 0, 1, 2

Fig. 3 we examine that for [/ = 0 and 0 < ) < 1 potential decreases and becomes zero as far as r increases, and the
corresponding bound increases and remains 1 as the value of w approaches the infinity. Fig. 4, we examine that the potential
with value [ = 1 and 0 < @ < 1 exponentially decreases and approaches zero as far as r increases, and the corresponding bound
increases as the value of w approaches infinity and shows the convergent behavior by converging to 1. Fig. 5, It is to be mentioned
here that for [ = 2 the potential and the greybody bound show a similar behavior as for [ = 1.

VIII. SHADOW CAST BEHAVIOR

In this section, we will investigate the shadow behavior of the charged black hole in non-linear electrodynamics and how it is
influenced by plasma or the dark matter refractive index, as mentioned in this study. We know that a non-spinning black hole
produces a shadow that is a perfect circle. While it is instructive to plot it, a line plot of the shadow radius curve will give us more
information about its behavior based on where the observer is located relative to the black hole.

The Hamiltonian for light rays, with the non-magnetized cold plasma frequency w,(r) [110], is given as

Hzlgikp-p B - o + s + wp(r)? (42)
27 PR T o\ A T B T Cr) P '

In this equation, we will analyze plasma’s influence as perceived by a static observer at s and 0,57 /2, which is chosen since
the metric has spherical symmetry along ¢ and phi coordinates. Due to this, the equations of motion (EoS) can be derived through
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FIG. 3: The potential with [ = 0 is shown in (i), and the corresponding bound of greybody factor of charged BH is shown in (ii).
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FIG. 4: The potential with [ = 1 is shown in (i), and the corresponding bound of greybody factor of charged BH is shown in (ii).
the following:
. OH 0H
oy’ Pi i’ (43)
which enables one to derive also the two constants of motion
dt d
E=amL L —cm. (44)

57
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FIG. 5: The potential with [ = 2 is shown in (i), and the corresponding bound of greybody factor of charged BH is shown in (ii).
It is useful to define the impact parameter:
L C(r)deo
b=—== —. 45
E- A dt )
In the metric, ds? = 0 can also describe null geodesics, and using Eq. (44), we can derive the orbit equation as
dr\*  C(r) (h(r)?
dr\" _C() (hr)” ’ 46)
do B(r) b2
where [110]
C(r) C(r) w?
h(r)? = 2= 1- == 47
0 = 2™ = 2y (1 240)) @7

if one assumes a non-gravitating and homogeneous plasma [111]. Note that it easily reduces to the Schwarzschild case if n(r) = 0.
Next, the photonsphere radius can be determined if one evaluates 4/(r) = 0 and solve r:

w?

(—;AW - A(r)) C'(r) + O A(r) = 0. 48)

wo

Considering the metric function in Eq. (7), we can only determine the photonsphere radius, either affected by plasma or not,
through numerical considerations. For instance, if n(r) = 0, the photonsphere radii can be found via

15M7r® 570
aMiQ? + TT —5Q2%4 — % ~0. (49)
Consider the black hole at O, then a static observer at a distance rqps and fops = 7/2. A simple geometrical construction will

define the shadow’s angular radius as [110]

) (50)

T=Tobs

tan(osh)

Ay O\ de
= lim — = —
Az—0 Az B(r) dr
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FIG. 6: Plot of the shadow radius for a charged black hole with NLED correction & varies. The plot shows the cases where the BH is immersed
or not in a plasma medium.

which simplifies to

2 b2 it
S (O[Sh) = m. (51)

2
Here, the critical impact parameter can be derived from the orbit equation. That is, if we take gQLd) = 0 which, for our result, yields

Tgh [@M‘pog - 30Mp7°p5h +10p 27“3}1 +20(p — 1)r§h

b2i = — — 9 (52)
et 2aM*Q? — IOMTEh + lﬂrgh
where p = z—g Then the shadow radius can be sought off as
0
2 [ =ar40,0)2 5 2,4 6 1/2
no_ Ton |@M*pQ= — 30Mpr, + 10pQ=r, + 20(p — 1)rph] <1 oM Q2 dM4Q2) 53
s 2aM*Q? — 10Mr, + 1015, Tobs T 1078,

The result of Eq. (53) is shown in Fig. 6, where we considered p = 10~!. We also plotted the Schwarzschild and the RN cases
for comparison. We observed how the shadow radius changed as the static observer increased its distance from the black hole.
Near the horizon, we can see that the effect of & is negligible since the differences are very small. The NLED correction begins
to manifest around rops = 3M and greater. With how the curve behaves, we can say that it follows the general trend of the
Schwarzschild case. For the RN case, the existence of the charge () = 0.25M decreases the shadow. When the NLED correction
@ increases, its effect on the shadow is to increase it. Finally, when the plasma parameter p is considered, it decreases the shadow
radius overall. These effects are quite small, even at rops — 00 as hinted by the inset plot.

We close this section by considering the dark matter effect, as described by the index of refraction n(w), to the shadow of
the BH with NLED correction. Our calculation revealed that with this model for dark matter, the photonsphere radius remains
independent to n(w), and still can be found through Eq. (49). Then, we find the critical impact parameter to be dependent to n.(w):

2,8

2 10n(w)*ry, 54)
T1t — ?

¢ aM*Q? — 5Mry, + 5rf,

which reveals that the shadow radius should be proportional to n(w):

1071(0))2T§h oM Q2 dM4Q2 1/2
R =14 —2r102 5 o\ 1- o - 6 ~ (55)
aM*Q? — 5Mrph + 5rph Tobs T 107

obs obs
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Indeed, this result shows that the dark matter astrophysical environment can affect the size of the shadow as photons travels
through such medium form 7y, to 7ops. Although 7, remains unaffected by the dark matter medium, this is not the case for Ryy.

IX. CONCLUSION

This research is based on the study of the charged BH within NLED by utilizing the Gibbons and Werner approach to calculate
the deflection angle 6 in vacuum Eq. (20), plasma in Eq. (25), and DM in Eq. (28) mediums. The bending angle in these mediums
is shown to be dependent on the mass M of a gravitating body, charge (), dimensionless parameter & and the impact parameter u.

In a plasma medium, we have obtained that the deflection angle in Eq. (25) depends on the plasma terms, and due to the plasma
effect, the deflection angle is greater than the angle obtained in a vacuum. We also investigated that by reducing the photon
frequency viewed by a static observer at infinity while keeping the electron plasma frequency constant, the bending angle in the
plasma medium increases. In the case of DM medium, we examined that the effect of the DM increases the deflection angle of the
charged BH.

In all the above mediums, it is worth noting that the bending angle 0 of a charged BH reduces to the bending angle of
Reissner-Nordstrom BH when @ = 0, and in the absence of @, the angle reduces to the deflection angle of Schwarzschild BH up
to the fourth order of M. Further, we have examined that by eliminating the plasma and DM terms, the deflection angle in Eq.
(25) and Eq. ((28) reduces to the deflection angle in Eq. (20).

Moreover, we have analyzed the bending angle graphically in both vacuum and plasma mediums. For this purpose, we
examined the bending angle  w.r.t the impact parameter u at the various values of Q). For 0 < @ < 1, we have observed that
at the small value of impact parameter u, the bending angle 0 is positive. The bending angle 6 approaches zero as the value of
impact parameter u increases. We have also inspected that the bending angle 6 gets its maximum value and then exponentially
decreases as the values of charge increase () — 1. It is observed that for @) = 0, the bending angle exponentially decreases and
approaches zero, which is the case of Schwarzschild BH. Moreover, we have observed that the graphical behavior of the bending
angle 0 is the same in plasma and non-plasma cases.

The Hawking temperature of the charged BH within NLED is calculated, and the resulting temperature satisfies the standard

form of the Hawking Temperature (Ty = %) The obtained Hawking temperature in Eq. (35) depends on the M, @ and &.
By considering & = 0, one can get the Hawking temperature of the Reissner-Nordstrom BH and the expression of Schwarzschild
BH’s Hawking temperature by taking Q) = 0.

Furthermore, we have computed the rigorous bond of the greybody factor of the charged BH within NLED and observed that the
obtained bound in Eq. (41) depends on the M, Q and &. Assuming & = 0, one can also get the expression of Reissner-Nordstrom
BH’s greybody bound and Schwarzschild BH bound by taking @) = 0.

We have also investigated the potential’s graphical behavior and bound off the greybody factor for 0 < @ < land! =0,1,2.
We have observed that for [ = 0, the potential of the charged BH within NLED decreases and becomes zero as the value of r
increases. On the other hand, the corresponding bound increases and remains 1 as far as w approaches infinity. For [ = 1,2, we
have observed that the potential exponentially decreases and approaches zero and the greybody factor bound shows the convergent
behavior, which converges to 1.

Finally, we also explored the effects of NLED with or without plasma and the dark matter parameter n(w) on the black hole’s
shadow radius. The NLED parameter & enhances the shadow size relative to the RN case, and we believe this effect is the same
for other values of (). The plasma effect, however, is meant to decrease the shadow size considerably. We also do not see any
deviation from the general trend as it is the same as the Schwarzschild case. Finally, we have also seen the difference between the
plasma and dark matter cases. While the plasma can affect both the photonsphere and shadow radii, dark matter only affects the
shadow size, and the photonsphere remains independent.
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