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Abstract: Quantum gravity theories rely on a minimal measurable length for their formulations,
which clashes with the classical formulation of the uncertainty principle and with Lorentz invari-
ance from general relativity. These incompatibilities led to the development of the generalized un-
certainty principle (GUP) from string theories and its various modifications. GUP and covariant
formulations of the uncertainty principle are discussed, together with implications for space-time
quantization.
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1. Introduction: general relativity, quantum mechanics and the problem of a minimal
length

General Relativity (GR) and Quantum Mechanics (QM) constitute the two major pil-
lars of modern physics. So far, these two theories in their various formulations have sur-
vived all experimental testing, which supports their role as fundamental theories of na-
ture. While classical GR is a geometric theory for gravitation, classical QM describes phe-
nomena other than gravitation at “Planck scales” by probability theory of states in Hilbert
space. Owing to their fundamentality, one would expect that these two theories could be
combined in a single, unified theory for quantum gravity. However, these two theories
have major incompatibilities starting from their different frameworks, formulations and
principles, which make their merging a daunting task. Nevertheless, attempts to unify
these two fundamental theories have given rise to well-developed quantum gravity theo-
ries such as string theory and loop quantum gravity (LQG) [1,2].

GR is a Lorentz covariant geometric theory for gravitation put forward by Albert
Einstein in 1916 [3], in which a radical conceptual change was introduced to classical grav-
itation. In GR the concept of classical gravitational force disappears and is substituted by
a dynamical space-time geometry given by a pseudo-Riemannian manifold consisting of
three spatial dimensions and a time dimension. The space-time manifold in GR presents
a Lorentzian (- + + +) signature and it is shaped by energy-momentum densities from an
energy-momentum tensor in Einstein’s field equations [3]. GR is also a background inde-
pendent theory in which the space-time metric is the dynamical variable [4]. Space-time
geometries are determined by mass, energy and momentum densities, and particles fol-
low geodesic trajectories in the space-time manifolds, for which position and momentum
are defined with absolute certainty. This is simply not allowed in QM.

QM was developed through a process of tackling several inconsistencies mainly in
particle physics and thermodynamics which could not be solved by classical principles of
physics. Its foundation as a consistent theory rested on a collection of postulates not truly
derived from first principles [5,6], and on three fundamental pillars: Energy quantization,
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the concept and interpretation of the wave function and the uncertainty principle. For the
uncertainty principle, classical QM states that the position and momentum of a particle in
a trajectory cannot be defined with absolute certainty, which is in direct contradiction with
GR. This principle is further completed by a similar statement on energy-time uncertainty.

Classical QM evolved into quantum field theory during the 1930s, and with it the
problem of ultraviolet divergences. These divergences were later taken care of by the de-
velopment of renormalization mathematical techniques [7,8]. But before that, in this con-
text, the idea of a minimal measurable discrete length was put forward with Heisenberg
being one of the main advocates [9]. His main argument was the necessity for a discreet
length to overcome the divergences in quantum field theories, and also for the description
of the range of elementary known particles. The proposals for a minimal measureable
length were met with scepticism, because this concept was in direct contradiction with
Lorenz invariance and general relativity. A minimal discrete length would imply the need
of privileged reference frames. Snyder was the first to show that the two ideas, a minimal
length and Lorentz invariance, could be combined by modifying the canonical commuta-
tors of position/momentum operators [10]. It was also realized relatively early that quan-
tum uncertainties would affect the background space-time, leading to the necessity of its
quantization in a quantum theory of gravity [11,12]. The proposal by Mead that Planck
length constituted such a fundamental minimal length [13] was initially not taken seri-
ously.

The classical uncertainty principle, one of the pillars of quantum mechanics, is not
restricted to a minimal length or a minimal momentum if these are interpreted as uncer-
tainties. Hence, the uncertainty in position or momentum can be arbitrarily small, leading
to troublesome divergencies. Then string theory came in the 1980s by deriving a general-
ized uncertainty principle which stated the impossibility of measuring an arbitrarily small
length [14-16]. In the 1990s a modification of the position/momentum commutator rela-
tions of space-time to a Hopf algebra was introduced [17], and Kempf modified the com-
mutator relations to accommodate a minimal length in quantum field theories [18-21]. The
generalized uncertainty principle could be derived from these modifications [18]. This
generalized uncertainty principle with Planck length as a minimal measureable length
was proposed as a solution to ultraviolet divergencies in quantum gravity at Planck ener-
gies. But another drawback appeared when GR was found to be apparently non-renor-
malizable when formulated as a quantum field theory. The introduction of a Lorentz co-
variant minimal length could be a way forward to tackle this issue [8].

Here we review the uncertainty principle and its main modifications for adaptation
to a minimal length element and to Lorentz covariance.

2. The uncertainty principle

The uncertainty principle originally proposed by Heisenberg is a general property of
wave systems, and as such it is considered a fundamental law of nature. Heisenberg put
forward this principle for the canonical conjugated variables of momentum and position
in 1927 [22], which was later generalized as an inequality by Kennard for any arbitrary
wave function [23]. In 1945 Mandelshtam and Tamm derived a similar non-relativistic
uncertainty principle between energy and time in the form of the Madelshtam-Tamm in-
equality [24]. In this latter inequality, time still remains as an independent privileged var-
iable. The current classical uncertainty principle thus consists of two inequalities:

h h
|ApllAx| =5, |AE|IAt] 2 5 1)

where, Ap represents the change in magnitude of momentum parametrized by co-
ordinate time; Ax is the change in magnitude of the position vector; AE and At repre-
sent the change in magnitude of energy and time, respectively;  is the reduced Plank
constant.
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These two uncertainty relations are considered a fundamental principle in nature
behind many quantum phenomena [25-27]. And although Heisenberg utilized the “ob-
server effect” as an intuitive interpretation, this principle is fundamentally intrinsic to any
wave system [27-29]. The momentum/position classical uncertainty principle is conven-
iently represented by the Heisenberg commutator algebra, which is a reflection of the non-
commutability of momentum and position operators:

[P, %] = —ihsY. (2)

where the indices, denoted by latin letters, take on the values 1, 2 and 3; pix/ rep-
resent momentum and position operators, and §Y, the Kronecker delta function.

The momentum/position commutator and the classical inequalities of the uncer-
tainty principle were reinterpreted as standard deviations in momentum and position
(0p, Oy ) by Kennard for any wave function [23,30]:

Oy

N| 3

O, =

: (3)

One key consequence of the uncertainty relations in QM is that momentum-position
phase space is quantized. However, this does not directly imply the existence of a minimal
length because in inequalities (1) and (3) the actual uncertainty in position is unrestricted
(Figure 1A). Uncertainty in position can be arbitrarily small, leading also to divergence in
momentum, which is highly problematic. This was soon shown to be in conflict with
quantum gravity theories such as string theories [31] and LQG [1,32]. Their formulations
require a minimal length proportional to Planck length (¢,,) [33-35]:

hG

‘fp= C_3 (4)

where G and c represent the universal gravitational constant and the speed of light,
respectively.

For string theories, £, is already a fundamental length element for strings-particles
[2,14,36]. LQG is a quantum theory for gravitation that starts from classical GR in its ADM
formulism, in which space-time is foliated and then space lattice quantization is intro-
duced [37]. As a consequence, this lattice quantization leads to a minimum length, and for
example, LQG area and volume operators are quantized and proportional to t’pzand t’p3,
respectively. But this concept of a fixed, measurable minimal length not only clashed with
the original formulation of Heisenberg’s uncertainty principle, but also with Lorentz co-
variance. Nevertheless, the uncertainty principle provided a means to introduce a mini-
mal length in relativity. As the gravitational field in classical GR depends on energy and
momentum densities, the uncertainty principle would be expected to alter the back-
ground space-time geometry and introduce constraints to the classical space-time metric.
Indeed, these constraints could be identified with a minimal length in quantum gravity.
The starting point constitutes the extension of the position/momentum commutator rela-
tion from inequality (2) to the background Minkowski space-time. These modified com-
mutator relations introduce a Lorentzian signature in the commutator, and are valid as a
local projection of momentum and position operators on asymptotically non-curved tan-
gent space [38]:

[p*, %"] = —ihn"". ©)
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Where the indices denoted by Greek letters take on the values 0 (time), 1, 2 and 3
(space) following standard tensor notation; 7*¥ represents Minkowski space-time met-
ric.

Hence, one of the first issues was to reconcile the classical uncertainty principle with

the necessity for a measurable minimal length in quantum gravity theories. This gave rise
to the generalized uncertainty principle and its variants.

A B
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Figure 1. Classical uncertainty principle and GUP. (A) Plot of the classical uncertainty momentum-
position inequality as shown on top, indicating the allowed region. Uncertainties in position and
momentum diverge to infinity. (B) Graph plot of a GUP representation of the uncertainty principle
as shown on top. A minimum in the function is reached representing a minimal measurable length,
|Ax|min. The allowed region by the inequality is shown. Plots are represented in relative units.

3. Generalized uncertainty principle (GUP) and its modifications

The uncertainty principle inequalities as originally formulated (inequality 1) imply
a quantized momentum-position phase space, and subsequently, a quantized space as
discussed above. However, the momentum-position uncertainty relation as shown in in-
equality (1) is not constrained to a minimal length (if considered as a non-zero uncertainty
in position) and thus subject to ultraviolet divergences (Figure 1A). In this classical for-
mulation, the space length represented as the uncertainty in position can asymptotically
approach zero, making momentum diverge to infinity. This uncertainty relation is there-
fore unbound both in position and momentum uncertainties. This is in direct contrast with
the need for a minimal length element, which is a common feature of gravity theories
including string theory [1,14,31,36,39], LQG [2,32] and doubly special relativity [40].

Collisions of strings at Planckian energies also required a minimal length leading to
a modification of the classical uncertainty inequalities into what is known as the general-
ized uncertainty principle (GUP)[14-16,41-44]. GUP formulations included boundaries to
both momentum and position [14,44]. But the simplest forms of GUP led to corrections in
inequality (1) that bounded only uncertainties in position by adding quadratic forms of
momentum [19,45] :

h h , N
|ApllAx] = 5 + 5 BAP® +5 7. (6)
where B and y represent functions dependent on the expectation value of momen-
tum and position [18]. This re-formulation of the uncertainty principle presents a mini-
mum of uncertainty in position, below which the uncertainty relation is not allowed (Fig-
ure 1B). By modelling string collisions at Planck energies, an explicit p-quadratic GUP
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formulation arises with expressions dependent on a fundamental quadratic length on
Planck scale (8(,,2) [14,41-43,46]:

h G h
|Ax| 2—+a—Ap , |Ax| = ——+ 88,%Ap. (7
20p 3 2Ap P

where @ and & represent constants.

An uncertainty relation in the framework of quantum geometry theory can be de-
rived for any accelerating particle in the absence of a gravitational field. The uncertainty
relation perturbs the background Minkowski space-time through acceleration, and the
particle experiences gravitation via a perturbation over the background Minkowski metric
[38]. This perturbation can be reflected by local quantum deviations from the background
flat space at high energy collisions, for example:

Xq

3
g#v = 7]’“, + huv = (1 + 047) . (8)

where v Ny huv represent the co-variant pseudo-Riemannian metric tensor,

Minkowski metric tensor and a metric perturbation, respectively; X%, X, represent con-
travariant and covariant components of acceleration; and A represents maximal accelera-
tion. By incorporating the perturbed metric from equation (8) into the canonical position-
momentum commutator in Minskowski space, GUP in the p-quadratic form is recovered
as a function of the particle mass, m, the maximal proper acceleration, A, and the quadratic
form of a space-time length element, 0s [38]:

h hc?
x| >y — " Ap. 9)
2Ap m?A2%6s?

This re-formulation of the uncertainty principle is equivalent to GUP as shown by
inequality (7) by equating &s to the particle’s Compton length [38].

The inequality formulations for GUP can be expressed as commutator relationships
between momentum and position operators by introducing functions of quadratic mo-
mentum f(p )?as follows:

[p' %] = —ihs"(1 + f(B)?). (10)

If we consider as an example the following commutator where the quadratic mo-
mentum is multiplied by a function, f3, then the smallest uncertainty in position that could
be related to a minimum length (AX,,;,,) would be given by [18,19]:

[P, %] = —ih6Y(1 + BB)?) , AXpin = h/B (11)

This minimal length can then be related to quadratic length elements on the order of
Planck length as shown in inequality (7).
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4. Relativistic formulations of GUP

The second main issue to be solved was the apparent incompatibility between a min-
imal measurable length and Lorentz co-variance. However, it had already been shown by
Snyder that quantizing space-time does not necessarily imply the breaking of Lorentz co-
variance [10].

One way to obtain relativistic, Lorentz covariant formulations implies modifications
of the commutator relations in Minkowski space-time (equation 5). One first step is its
generalization to curved space through a differential local perturbation over the Minkow-
ski metric [38]:

[p", %] = —ihg™ , g = 7"+ h*. (12)

Such perturbation approaches have been used in semi-classical quantum gravity. For
example by defining a metric tensor operator decomposed into a pseudo-Riemannian
metric tensor plus a fluctuating tensor operator of quantum origin (§g,,) that can be iden-
tified with a classical energy-momentum tensor (T},,) [47]:

gﬂv = 9w + 5guv ’ (5guv) = Tuv . (13)

The necessity for a fixed, measurable minimal space—time length in quantum gravity
theories clashes with Lorentz-covariance, an inherent property of relativity [48,49]. Quan-
tum gravity theories thus operate under a privileged frame of reference, which have re-
stricted the application of GUP mainly to non-relativistic problems. While in some in-
stances, the minimal length in LQG can be considered a free parameter subject to Lorentz
covariance [50,51], the need for a covariant formulation for GUP has led to correcting its
canonical commutator for Minkowski space [51]. For example, Quesne and Tkachuk gen-
eralized Kempf's deformed commutator algebra in D-dimensions [18,52] to make it Lo-
rentz covariant [53]. In this procedure, the quadratic forms of momentum and products
of momentum and position were replaced by their contracted tensor formulations. The
resulting commutator algebra is invariant under classical Lorentz transformations, and
used to solve the relativistic Dirac oscillator [53,54]:

[p*, 2"] = ir[(1 - ﬂp“pa)ggv - ﬁ'pup(vz] ; )

p— [ + ’ a .
2, 2] = ih(php” — prpr) L — ;pap/)’ Bp°p
[p*,p"] = 0. a

Where in the context of these equations, f, " correspond to non-negative deforming
parameters. In this modified relativistic GUP the smallest uncertainty in position is given
by:

(AxYmin = b/ (DB + BI[1 = B((PO)2)]. (15)
Where D corresponds to the number of dimensions.

A similar strategy was undertaken by Todorinov et al to comply with Lorentz covar-
iance in Minkowski space-time [25,51]:

[p*, 2] = —ih(1 + (£ — @)A%pPp, )™ — ih(B + 2§)A*p"p". (16)
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Where in the context of this equation o, f§, € and ¢ are dimensionless parameters to
be adjusted to the specific problem, and A a parameter with dimensions of inverse mo-
mentum. This formulation was applied to three relativistic systems: the Klein-Gordon
equation for the hydrogen atom, the Schrodinger equation for a particle in a box and a
linear harmonic oscillator, and the Dirac equation [51]. For these examples, GUP correc-
tions were obtained only for the Schrédinger equation.

Recently, an approximation towards a GUP formulation in pseudo-Riemannian
curved spaces has recently been proposed, using normal coordinates defined in tangent
space as follows [55]:

[x%, Dp] = iR(aK® — uuy). 7

Where x¢ corresponds to normal coordinates; a is a constant; K%, represents com-
ponents of the extrinsic curvature tensor associated with the equi-geodesics; u®,u; repre-
sent contravariant and covariant components of the proper velocity 4-vector.

5. Covariant reformulation of the classical uncertainty principle.

To make the uncertainty principle compatible with GR, we recently tried a generali-
zation of the classical uncertainty principle inequalities strictly from covariant tensor for-
mulations. We assumed that the following (or modified) statement could be a starting
point:

|AP#Ax, | > f(R). (18)

Where f(h) represents a function of the reduced Planck constant. Such a formula-
tion would introduce a Lorentz covariant constraint through a contraction of the change
in relativistic momentum and position 4-vectors. However, it turned out that such formu-
lation did not recover the two classical inequalities. Hence, we decided to re-express the
classical inequalities in a covariant form, allowing its application as a mathematical con-
straint over GR geodesics [56,57]. This formulation extended the uncertainty inequality to
a differential length of relativistic proper space-time line element (d7?) as a function of
Planck length, ¢, and a geodesic-related scalar (Gge,) as follows:

|Ggeo dT?| = (1 +¥) £3. (19)

where the gamma factor y and Gy, are defined in terms of the total energy of the
particle (E), its mass (m) and Christoffel connectors (I" / p ) inunits of c set to 1:

dt _E
Voar~—m
Ggeo = 2GM |u0F ;’B uub | +2Gm |ujl"iﬁ uub | (20)

This covariant reformulation of the classical uncertainty principle sets a length limit
for the quadratic proper space-time line element. Its application as a constraint to Min-
kowski space, required the introduction of a time-dependent differential perturbation
(€) to the g component of the metric [56,57]:

9oo = Ngo T Moo = —1— (1) (21)

This correction to the metric established a limit to the space-time quadratic distance
in terms of energy fluctuations (E = %) arising from the uncertainty principle as follows:
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2c¢5¢2
GIE|

|dt?| > (22)

When applied to the metric of an expanding universe, as represented by the FRW
metric [58-60], the quadratic space-time line element was calculated in terms of two func-
tions [57]. The first one derived from energy fluctuations from the uncertainty principle
(Eyn) and the second from the expansion rate of the universe (H,,):

Ewn=uu, é ,  Hy =6u'wH
lde?| = (1 +7y) i (23)
% > y)—————.
GpolHex_ unl

where & represents energy fluctuations of quantum origin, and the dot indicating
derivation by coordinate time. This covariant expression was applied to other geometries,
such as that of Schwarzschild’s metric for a point mass. This metric was chosen as it con-
tains a singularity at radial position 0 [59,61-63]. The imposition of the covariant formula-
tion of the classical uncertainty principle defined an exclusion zone around the singularity
at R=0 below which no GR geodesic is allowed [56]. This condition ensured a minimal
non-zero uncertainty in radial distance right at the singularity which corresponded to:

£ .

2 _
dR = i

(24)

where M corresponds to the mass of the black hole. This minimal uncertainty avoids
the singularity of the classical Schwarzschild solution to GR field equations. If interpreted
as a standard deviation, the average R coordinate position of a particle at the singularity
will still be 0, but allowing a radius of uncertainty that would counteract the information
paradox at the singularity [31,64]. A calculation of this minimal uncertainty of dR for a
stellar mass black hole provides a value within the range of 101> to 106 cm. The uncertainty
principle had been previously proposed to be the source of a repulsion force that prevents
particles from reaching the singularity within the framework of LGQ and string theory.
The matter contained within a black hole would form a “fuzzball” [65] or a “Planck star”
[66]. The repulsion force by the uncertainty principle as described by LQG would occur
when reaching Planck density [67], and this leads the radius of a Planck star to be:

n

M
R~ (m—p> 2,. (25)

where in the context of this equation, M corresponding to the mass of the Planck star
and m,, to Planck mass. Considering scenarios where n=1/3 or 1, the radius of a Planck
star would be comprised between 10 to 10 cm [66], close to our calculations for a min-
imal radial uncertainty at the singularity [56].

6. Lorentz invariance violations (LIV) and space-time quantization

Current gravity theories such as string theory and LQG predict Lorentz invariance
violations due to the discreet nature of space-time and a minimal measurable length. For
example, in vacuo dispersion of photons and neutrinos, or deviations of polarization over
astronomical distances [1,14] [68-73]. The experimental detection of LIV and the energy
scales in which LIVs might be detected could help to either refine quantum gravity theo-
ries by setting up appropriate mathematical constraints, or at least discard scenarios in-
compatible with the experimental data [68]. Detection (or not) of LIVs could help with
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lattice quantization in LQG, the time problem and the choice for privileged reference
frames [8,32,74,75]. If proven, LIVs could demonstrate space-time quantization, and set
up the proper length scales and energies for quantum gravity [73].

However, the experimental detection of LIV is controversial. Several studies have
attempted to quantify upper limits to LIV constraints [69-72]. Measurement of energy and
helicity-dependent photon propagation velocities over astronomical distances could un-
cover quantum gravity effects such as space quantization [66]. By measuring deviations
of GRB 041219A gamma ray burst photons, an upper limit on the vacuum birefringence
of 1.1 10-* was estimated which would correspond to spatial volume units of less than 10-
2 m3 [71]. While a number of recent studies are reporting LIV violations at different energy
orders, other studies estimate very stringent constraints, or even fail to detect LIVs
[68,70,71,76,77].

Nevertheless, space-time quantization can be compatible with a minimal, Lorentz-
covariant length element, as shown by GUP and other covariant formulations including
ours [56,57]. Hence, it is yet unclear whether LIVs could be definitely detected within our
current energy scales.

7. Conclusion

The concept of a fixed, measurable minimal length in quantum mechanics was orig-
inally brought up as a possible way to counteract troublesome ultraviolet divergences ap-
pearing in quantum field theories. However, the implementation of a Lorentz covariant
minimal length element that can be applied to curved spaces might be a way forward to
unify quantum mechanics and general relativity.
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