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1. Introduction: general relativity, quantum mechanics and the problem of a minimal 
length 

General Relativity (GR) and Quantum Mechanics (QM) constitute the two major pil-
lars of modern physics. So far, these two theories in their various formulations have sur-
vived all experimental testing, which supports their role as fundamental theories of na-
ture. While classical GR is a geometric theory for gravitation, classical QM describes phe-
nomena other than gravitation at “Planck scales” by probability theory of states in Hilbert 
space. Owing to their fundamentality, one would expect that these two theories could be 
combined in a single, unified theory for quantum gravity. However, these two theories 
have major incompatibilities starting from their different frameworks, formulations and 
principles, which make their merging a daunting task. Nevertheless, attempts to unify 
these two fundamental theories have given rise to well-developed quantum gravity theo-
ries such as string theory and loop quantum gravity (LQG) [1,2].  

GR is a Lorentz covariant geometric theory for gravitation put forward by Albert 
Einstein in 1916 [3], in which a radical conceptual change was introduced to classical grav-
itation. In GR the concept of classical gravitational force disappears and is substituted by 
a dynamical space–time geometry given by a pseudo-Riemannian manifold consisting of 
three spatial dimensions and a time dimension. The space-time manifold in GR presents 
a Lorentzian (- + + +) signature and it is shaped by energy-momentum densities from an 
energy-momentum tensor in Einstein´s field equations [3]. GR is also a background inde-
pendent theory in which the space–time metric is the dynamical variable [4]. Space-time 
geometries are determined by mass, energy and momentum densities, and particles fol-
low geodesic trajectories in the space-time manifolds, for which position and momentum 
are defined with absolute certainty. This is simply not allowed in QM. 

QM was developed through a process of tackling several inconsistencies mainly in 
particle physics and thermodynamics which could not be solved by classical principles of 
physics. Its foundation as a consistent theory rested on a collection of postulates not truly 
derived from first principles [5,6], and on three fundamental pillars: Energy quantization, 
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the concept and interpretation of the wave function and the uncertainty principle. For the 
uncertainty principle, classical QM states that the position and momentum of a particle in 
a trajectory cannot be defined with absolute certainty, which is in direct contradiction with 
GR. This principle is further completed by a similar statement on energy-time uncertainty. 

Classical QM evolved into quantum field theory during the 1930s, and with it the 
problem of ultraviolet divergences. These divergences were later taken care of by the de-
velopment of renormalization mathematical techniques [7,8]. But before that, in this con-
text, the idea of a minimal measurable discrete length was put forward with Heisenberg 
being one of the main advocates [9]. His main argument was the necessity for a discreet 
length to overcome the divergences in quantum field theories, and also for the description 
of the range of elementary known particles. The proposals for a minimal measureable 
length were met with scepticism, because this concept was in direct contradiction with 
Lorenz invariance and general relativity. A minimal discrete length would imply the need 
of privileged reference frames. Snyder was the first to show that the two ideas, a minimal 
length and Lorentz invariance, could be combined by modifying the canonical commuta-
tors of position/momentum operators [10]. It was also realized relatively early that quan-
tum uncertainties would affect the background space-time, leading to the necessity of its 
quantization in a quantum theory of gravity [11,12]. The proposal by Mead that Planck 
length constituted such a fundamental minimal length [13] was initially not taken seri-
ously.  

The classical uncertainty principle, one of the pillars of quantum mechanics, is not 
restricted to a minimal length or a minimal momentum if these are interpreted as uncer-
tainties. Hence, the uncertainty in position or momentum can be arbitrarily small, leading 
to troublesome divergencies. Then string theory came in the 1980s by deriving a general-
ized uncertainty principle which stated the impossibility of measuring an arbitrarily small 
length [14-16]. In the 1990s a modification of the position/momentum commutator rela-
tions of space-time to a Hopf algebra was introduced [17], and Kempf modified the com-
mutator relations to accommodate a minimal length in quantum field theories [18-21]. The 
generalized uncertainty principle could be derived from these modifications [18]. This 
generalized uncertainty principle with Planck length as a minimal measureable length 
was proposed as a solution to ultraviolet divergencies in quantum gravity at Planck ener-
gies. But another drawback appeared when GR was found to be apparently non-renor-
malizable when formulated as a quantum field theory. The introduction of a Lorentz co-
variant minimal length could be a way forward to tackle this issue [8]. 

Here we review the uncertainty principle and its main modifications for adaptation 
to a minimal length element and to Lorentz covariance.  

2. The uncertainty principle 
The uncertainty principle originally proposed by Heisenberg is a general property of 

wave systems, and as such it is considered a fundamental law of nature. Heisenberg put 
forward this principle for the canonical conjugated variables of momentum and position 
in 1927 [22], which was later generalized as an inequality by Kennard for any arbitrary 
wave function [23]. In 1945 Mandelshtam and Tamm derived a similar non-relativistic 
uncertainty principle between energy and time in the form of the Madelshtam-Tamm in-
equality [24]. In this latter inequality, time still remains as an independent privileged var-
iable. The current classical uncertainty principle thus consists of two inequalities: 

                                     |∆𝒑𝒑||∆𝒙𝒙| ≥
ℏ
𝟐𝟐

    , |∆𝑬𝑬||∆𝒕𝒕| ≥
ℏ
𝟐𝟐

 .                                                   (𝟏𝟏) 

where, ∆𝒑𝒑 represents the change in magnitude of momentum parametrized by co-
ordinate time;  ∆𝒙𝒙 is the change in magnitude of the position vector; ∆𝑬𝑬 and ∆𝒕𝒕 repre-
sent the change in magnitude of energy and time, respectively; ħ is the reduced Plank 
constant.  
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These two uncertainty relations are considered a fundamental principle in nature 
behind many quantum phenomena [25-27]. And although Heisenberg utilized the “ob-
server effect” as an intuitive interpretation, this principle is fundamentally intrinsic to any 
wave system [27-29]. The momentum/position classical uncertainty principle is conven-
iently represented by the Heisenberg commutator algebra, which is a reflection of the non-
commutability of momentum and position operators: 

                                             [𝒑𝒑�𝒊𝒊,𝒙𝒙�𝒋𝒋] = −𝒊𝒊ℏ𝜹𝜹𝒊𝒊𝒊𝒊.                                                                        (𝟐𝟐)     

where the indices, denoted by latin letters, take on the values 1, 2 and 3; 𝒑𝒑�𝒊𝒊,𝒙𝒙�𝒋𝒋 rep-
resent momentum and position operators, and 𝜹𝜹𝒊𝒊𝒊𝒊, the Kronecker delta function.  

The momentum/position commutator and the classical inequalities of the uncer-
tainty principle were reinterpreted as standard deviations in momentum and position 
(𝝈𝝈𝒑𝒑,𝝈𝝈𝒙𝒙 ) by Kennard for any wave function [23,30]: 

                                                  𝝈𝝈𝒑𝒑𝝈𝝈𝒙𝒙 ≥
ℏ
𝟐𝟐

.                                                                                      (𝟑𝟑) 

 
One key consequence of the uncertainty relations in QM is that momentum-position 

phase space is quantized. However, this does not directly imply the existence of a minimal 
length because in inequalities (1) and (3) the actual uncertainty in position is unrestricted 
(Figure 1A). Uncertainty in position can be arbitrarily small, leading also to divergence in 
momentum, which is highly problematic. This was soon shown to be in conflict with 
quantum gravity theories such as string theories [31] and LQG [1,32]. Their formulations 
require a minimal length proportional to Planck length (ℓ𝑝𝑝) [33-35]:  

 

                                                              ℓ𝑝𝑝 = �ℏ𝐺𝐺
𝑐𝑐3

 .                                                                                       (4) 

 
where G and c represent the universal gravitational constant and the speed of light, 

respectively. 

For string theories, 𝓵𝓵𝒑𝒑 is already a fundamental length element for strings-particles 
[2,14,36]. LQG is a quantum theory for gravitation that starts from classical GR in its ADM 
formulism, in which space-time is foliated and then space lattice quantization is intro-
duced [37]. As a consequence, this lattice quantization leads to a minimum length, and for 
example, LQG area and volume operators are quantized and proportional to 𝓵𝓵𝒑𝒑

𝟐𝟐and 𝓵𝓵𝒑𝒑
𝟑𝟑, 

respectively. But this concept of a fixed, measurable minimal length not only clashed with 
the original formulation of Heisenberg´s uncertainty principle, but also with Lorentz co-
variance. Nevertheless, the uncertainty principle provided a means to introduce a mini-
mal length in relativity. As the gravitational field in classical GR depends on energy and 
momentum densities, the uncertainty principle would be expected to alter the back-
ground space-time geometry and introduce constraints to the classical space-time metric. 
Indeed, these constraints could be identified with a minimal length in quantum gravity. 
The starting point constitutes the extension of the position/momentum commutator rela-
tion from inequality (2) to the background Minkowski space-time. These modified com-
mutator relations introduce a Lorentzian signature in the commutator, and are valid as a 
local projection of momentum and position operators on asymptotically non-curved tan-
gent space [38]: 

 
                                                               [𝒑𝒑�𝝁𝝁,𝒙𝒙�𝝂𝝂] = −𝒊𝒊ℏη𝝁𝝁𝝁𝝁.                                                                         (𝟓𝟓) 
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Where the indices denoted by Greek letters take on the values 0 (time), 1, 2 and 3 
(space) following standard tensor notation; η𝝁𝝁𝝁𝝁 represents Minkowski space-time met-
ric. 

Hence, one of the first issues was to reconcile the classical uncertainty principle with 
the necessity for a measurable minimal length in quantum gravity theories. This gave rise 
to the generalized uncertainty principle and its variants.   

 

Figure 1. Classical uncertainty principle and GUP. (A) Plot of the classical uncertainty momentum-
position inequality as shown on top, indicating the allowed region. Uncertainties in position and 
momentum diverge to infinity. (B) Graph plot of a GUP representation of the uncertainty principle 
as shown on top. A minimum in the function is reached representing a minimal measurable length, 
|∆𝒙𝒙|𝒎𝒎𝒎𝒎𝒎𝒎. The allowed region by the inequality is shown. Plots are represented in relative units. 

3. Generalized uncertainty principle (GUP) and its modifications 

The uncertainty principle inequalities as originally formulated (inequality 1) imply 
a quantized momentum-position phase space, and subsequently, a quantized space as 
discussed above. However, the momentum-position uncertainty relation as shown in in-
equality (1) is not constrained to a minimal length (if considered as a non-zero uncertainty 
in position) and thus subject to ultraviolet divergences (Figure 1A). In this classical for-
mulation, the space length represented as the uncertainty in position can asymptotically 
approach zero, making momentum diverge to infinity. This uncertainty relation is there-
fore unbound both in position and momentum uncertainties. This is in direct contrast with 
the need for a minimal length element, which is a common feature of gravity theories 
including string theory [1,14,31,36,39], LQG [2,32] and doubly special relativity [40].  

Collisions of strings at Planckian energies also required a minimal length leading to 
a modification of the classical uncertainty inequalities into what is known as the general-
ized uncertainty principle (GUP)[14-16,41-44]. GUP formulations included boundaries to 
both momentum and position [14,44]. But the simplest forms of GUP led to corrections in 
inequality (1) that bounded only uncertainties in position by adding quadratic forms of 
momentum [19,45] :   

                                                        |∆𝒑𝒑||∆𝒙𝒙| ≥
ℏ
𝟐𝟐

+
ℏ
𝟐𝟐

 𝜷𝜷∆𝒑𝒑𝟐𝟐 +
ℏ
𝟐𝟐
𝜸𝜸.                                                         (𝟔𝟔) 

where 𝜷𝜷 and 𝜸𝜸 represent functions dependent on the expectation value of momen-
tum and position [18]. This re-formulation of the uncertainty principle presents a mini-
mum of uncertainty in position, below which the uncertainty relation is not allowed (Fig-
ure 1B). By modelling string collisions at Planck energies, an explicit p-quadratic GUP 
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formulation arises with expressions dependent on a fundamental quadratic length on 
Planck scale (𝜹𝜹𝓵𝓵𝒑𝒑

𝟐𝟐) [14,41-43,46]: 

                                

                                                                                            |∆𝒙𝒙| ≥
ℏ
𝟐𝟐∆𝒑𝒑

+
𝜶𝜶𝜶𝜶
𝒄𝒄𝟑𝟑

∆𝒑𝒑  ,   |∆𝒙𝒙| ≥
ℏ
𝟐𝟐∆𝒑𝒑

+ 𝜹𝜹𝓵𝓵𝒑𝒑
𝟐𝟐∆𝒑𝒑 .                                                (𝟕𝟕) 

where 𝜶𝜶 and 𝜹𝜹 represent constants. 

An uncertainty relation in the framework of quantum geometry theory can be de-
rived for any accelerating particle in the absence of a gravitational field. The uncertainty 
relation perturbs the background Minkowski space-time through acceleration, and the 
particle experiences gravitation via a perturbation over the background Minkowski metric 
[38]. This perturbation can be reflected by local quantum deviations from the background 
flat space at high energy collisions, for example: 

                                                    𝒈𝒈𝝁𝝁𝝁𝝁 =  η𝝁𝝁𝝁𝝁 + 𝒉𝒉𝝁𝝁𝝁𝝁 = �𝟏𝟏 + 𝒄𝒄𝟒𝟒
𝒙̈𝒙𝜶𝜶𝒙̈𝒙𝜶𝜶
𝑨𝑨𝟐𝟐

�  .                                                   (𝟖𝟖) 

where 𝒈𝒈𝝁𝝁𝝁𝝁,η𝝁𝝁𝝁𝝁,𝒉𝒉𝝁𝝁𝝁𝝁  represent the co-variant pseudo-Riemannian metric tensor, 
Minkowski metric tensor and a metric perturbation, respectively; 𝒙̈𝒙𝜶𝜶, 𝒙̈𝒙𝜶𝜶 represent con-
travariant and covariant components of acceleration; and A represents maximal accelera-
tion. By incorporating the perturbed metric from equation (8) into the canonical position-
momentum commutator in Minskowski space, GUP in the p-quadratic form is recovered 
as a function of the particle mass, m, the maximal proper acceleration, A , and the quadratic 
form of a space-time length element, δs [38]:  

    

                                                      |∆𝒙𝒙| ≥
ℏ
𝟐𝟐∆𝒑𝒑

+
ℏ𝒄𝒄𝟐𝟐

𝒎𝒎𝟐𝟐𝑨𝑨𝟐𝟐𝜹𝜹𝜹𝜹𝟐𝟐
∆𝒑𝒑 .                                                               (𝟗𝟗) 

This re-formulation of the uncertainty principle is equivalent to GUP as shown by 
inequality (7) by equating 𝜹𝜹𝜹𝜹 to the particle´s Compton length [38]. 

The inequality formulations for GUP can be expressed as commutator relationships 
between momentum and position operators by introducing functions of quadratic mo-
mentum 𝒇𝒇(𝒑𝒑��⃗  )𝟐𝟐as follows: 

                                                       [𝒑𝒑�𝒊𝒊,𝒙𝒙�𝒋𝒋] = −𝒊𝒊ℏ𝜹𝜹𝒊𝒊𝒊𝒊(𝟏𝟏 + 𝒇𝒇(𝒑𝒑��⃗  )𝟐𝟐).                                                         (𝟏𝟏𝟏𝟏) 

If we consider as an example the following commutator where the quadratic mo-
mentum is multiplied by a function, 𝛽𝛽, then the smallest uncertainty in position that could 
be related to a minimum length (∆𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎) would be given by [18,19]: 

                                         [𝒑𝒑�𝒊𝒊,𝒙𝒙�𝒋𝒋] = −𝒊𝒊ℏ𝜹𝜹𝒊𝒊𝒊𝒊(𝟏𝟏 + 𝜷𝜷(𝒑𝒑��⃗  )𝟐𝟐)  ,   ∆𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 = ℏ�𝜷𝜷                                      (𝟏𝟏𝟏𝟏) 

This minimal length can then be related to quadratic length elements on the order of 
Planck length as shown in inequality (7).  
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4. Relativistic formulations of GUP 

The second main issue to be solved was the apparent incompatibility between a min-
imal measurable length and Lorentz co-variance. However, it had already been shown by 
Snyder that quantizing space-time does not necessarily imply the breaking of Lorentz co-
variance [10].  

One way to obtain relativistic, Lorentz covariant formulations implies modifications 
of the commutator relations in Minkowski space-time (equation 5). One first step is its 
generalization to curved space through a differential local perturbation over the Minkow-
ski metric [38]: 

 

                                      [𝒑𝒑�𝝁𝝁,𝒙𝒙�𝝂𝝂] = −𝒊𝒊ℏ𝒈𝒈𝝁𝝁𝝁𝝁   , 𝒈𝒈𝝁𝝁𝝁𝝁 =  η𝝁𝝁𝝁𝝁 +  𝒉𝒉𝝁𝝁𝝁𝝁.                                               (𝟏𝟏𝟏𝟏) 
   

Such perturbation approaches have been used in semi-classical quantum gravity. For 
example by defining a metric tensor operator decomposed into a pseudo-Riemannian 
metric tensor plus a fluctuating tensor operator of quantum origin (𝛿𝛿𝑔𝑔�𝜇𝜇𝜇𝜇) that can be iden-
tified with a classical energy-momentum tensor (𝑇𝑇𝜇𝜇𝜇𝜇) [47]:  

 
                                            𝑔𝑔�𝜇𝜇𝜇𝜇 = 𝑔𝑔𝜇𝜇𝜇𝜇 + 𝛿𝛿𝑔𝑔�𝜇𝜇𝜇𝜇    ,      〈𝛿𝛿𝑔𝑔�𝜇𝜇𝜇𝜇〉 ≡ 𝑇𝑇𝜇𝜇𝜇𝜇 .                                                    (13) 

 
The necessity for a fixed, measurable minimal space–time length in quantum gravity 

theories clashes with Lorentz-covariance, an inherent property of relativity [48,49]. Quan-
tum gravity theories thus operate under a privileged frame of reference, which have re-
stricted the application of GUP mainly to non-relativistic problems. While in some in-
stances, the minimal length in LQG can be considered a free parameter subject to Lorentz 
covariance [50,51], the need for a covariant formulation for GUP has led to correcting its 
canonical commutator for Minkowski space [51]. For example, Quesne and Tkachuk gen-
eralized Kempf´s deformed commutator algebra in D-dimensions [18,52] to make it Lo-
rentz covariant [53]. In this procedure, the quadratic forms of momentum and products 
of momentum and position were replaced by their contracted tensor formulations. The 
resulting commutator algebra is invariant under classical Lorentz transformations, and 
used to solve the relativistic Dirac oscillator [53,54]: 

 
 [𝑝̂𝑝𝜇𝜇 ,𝑥𝑥�𝜈𝜈] = 𝑖𝑖ℏ[(1 − 𝛽𝛽𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼)𝑔𝑔𝜇𝜇𝜇𝜇 − 𝛽𝛽´𝑝𝑝𝜇𝜇𝑝𝑝𝜈𝜈]   ;   

[𝑥𝑥�𝜇𝜇 ,𝑥𝑥�𝜈𝜈] = 𝑖𝑖ℏ(𝑝𝑝𝜇𝜇𝑝𝑝𝜈𝜈 − 𝑝𝑝𝜈𝜈𝑝𝑝𝜇𝜇)
2𝛽𝛽 − 𝛽𝛽´ − (2𝛽𝛽 + 𝛽𝛽´)𝛽𝛽𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼

1 − 𝛽𝛽𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼
   ;  

 [𝑝̂𝑝𝜇𝜇 , 𝑝̂𝑝𝜈𝜈] = 0.                                                                                                                                                (14) 
 
Where in the context of these equations, 𝛽𝛽,𝛽𝛽´ correspond to non-negative deforming 

parameters. In this modified relativistic GUP the smallest uncertainty in position is given 
by: 

 
                                           (∆𝑥𝑥𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚 = ℏ�(𝐷𝐷𝐷𝐷 + 𝛽𝛽´)[1 − 𝛽𝛽〈(𝑃𝑃0)2〉].                                                 (15) 

 
Where D corresponds to the number of dimensions. 

 
A similar strategy was undertaken by Todorinov et al to comply with Lorentz covar-

iance in Minkowski space-time [25,51]:  

                            [𝒑𝒑�𝝁𝝁,𝒙𝒙�𝝂𝝂] = −𝒊𝒊ℏ�𝟏𝟏 + (𝜺𝜺 − 𝜶𝜶)𝝀𝝀𝟐𝟐𝒑𝒑𝝆𝝆𝒑𝒑𝝆𝝆�𝜼𝜼𝝁𝝁𝝁𝝁 − 𝒊𝒊ℏ(𝜷𝜷 + 𝟐𝟐𝟐𝟐)𝝀𝝀𝟐𝟐𝒑𝒑𝝁𝝁𝒑𝒑𝝂𝝂.                      (𝟏𝟏𝟏𝟏) 
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Where in the context of this equation α, 𝛽𝛽, 𝜀𝜀 and 𝜉𝜉 are dimensionless parameters to 
be adjusted to the specific problem, and 𝜆𝜆 a parameter with dimensions of inverse mo-
mentum. This formulation was applied to three relativistic systems: the Klein-Gordon 
equation for the hydrogen atom, the Schrödinger equation for a particle in a box and a 
linear harmonic oscillator, and the Dirac equation [51]. For these examples, GUP correc-
tions were obtained only for the Schrödinger equation. 

Recently, an approximation towards a GUP formulation in pseudo-Riemannian 
curved spaces has recently been proposed, using normal coordinates defined in tangent 
space as follows [55]: 

 
                                                    [𝑥𝑥𝑎𝑎 , 𝑝̂𝑝𝑏𝑏] = 𝑖𝑖ℏ(α𝐾𝐾   𝑏𝑏

𝑎𝑎 − 𝑢𝑢𝑎𝑎𝑢𝑢𝑏𝑏).                                                               (17) 
 
Where 𝑥𝑥𝑎𝑎 corresponds to normal coordinates; α is a constant; 𝐾𝐾   𝑏𝑏

𝑎𝑎  represents com-
ponents of the extrinsic curvature tensor associated with the equi-geodesics; 𝑢𝑢𝑎𝑎,𝑢𝑢𝑏𝑏 repre-
sent contravariant and covariant components of the proper velocity 4-vector. 

 
 

5. Covariant reformulation of the classical uncertainty principle. 
To make the uncertainty principle compatible with GR, we recently tried a generali-

zation of the classical uncertainty principle inequalities strictly from covariant tensor for-
mulations. We assumed that the following (or modified) statement could be a starting 
point: 

 
                                                      �∆𝑃𝑃𝜇𝜇∆𝑥𝑥𝜇𝜇� ≥ 𝑓𝑓(ℏ).                                                                     (18) 

 
Where 𝑓𝑓(ℏ) represents a function of the reduced Planck constant. Such a formula-

tion would introduce a Lorentz covariant constraint through a contraction of the change 
in relativistic momentum and position 4-vectors. However, it turned out that such formu-
lation did not recover the two classical inequalities. Hence, we decided to re-express the 
classical inequalities in a covariant form, allowing its application as a mathematical con-
straint over GR geodesics [56,57]. This formulation extended the uncertainty inequality to 
a differential length of relativistic proper space-time line element (𝑑𝑑𝜏𝜏2) as a function of 
Planck length, ℓ𝑝𝑝 , and a geodesic-related scalar (𝐺𝐺geo) as follows: 

 
                                                            �𝐺𝐺geo 𝑑𝑑𝜏𝜏2� ≥ (1 + 𝛾𝛾) ℓ𝑝𝑝2  .                                                          (19) 

 
where the gamma factor γ and 𝐺𝐺geo are defined in terms of the total energy of the 

particle (E), its mass (m) and Christoffel connectors (Γ 𝛼𝛼𝛽𝛽
  𝜇𝜇  ) in units of c set to 1: 

 

                                                   𝛾𝛾 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≡
𝐸𝐸
𝑚𝑚

    ,                                                                               

                                         𝐺𝐺geo ≡ 2𝐺𝐺𝐺𝐺 �𝑢𝑢0Γ 𝛼𝛼𝛼𝛼
  0

 
𝑢𝑢𝛼𝛼𝑢𝑢𝛽𝛽  � + 2𝐺𝐺𝐺𝐺 �𝑢𝑢𝑗𝑗Γ 𝛼𝛼𝛼𝛼

 𝑗𝑗

 
𝑢𝑢𝛼𝛼𝑢𝑢𝛽𝛽  � .                          (20) 

 
This covariant reformulation of the classical uncertainty principle sets a length limit 

for the quadratic proper space-time line element. Its application as a constraint to Min-
kowski space, required the introduction of a time-dependent differential perturbation 
(𝜀𝜀) to the g00 component of the metric [56,57]: 

 
                     𝑔𝑔00 = η00 + ℎ00 = −1 − 𝜀𝜀(𝑡𝑡) .                                                            (21)  

 This correction to the metric established a limit to the space-time quadratic distance 
in terms of energy fluctuations (𝑬̇𝑬 = 𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅
) arising from the uncertainty principle as follows:  
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                                                |𝒅𝒅𝒅𝒅𝟐𝟐| ≥
𝟐𝟐𝒄𝒄𝟓𝟓𝓵𝓵𝒑𝒑 

𝟐𝟐

𝑮𝑮�𝑬̇𝑬�
.                                                                                         (𝟐𝟐𝟐𝟐)  

 
When applied to the metric of an expanding universe, as represented by the FRW 

metric [58-60], the quadratic space-time line element was calculated in terms of two func-
tions [57]. The first one derived from energy fluctuations from the uncertainty principle 
(𝐸𝐸𝑢𝑢𝑢𝑢) and the second from the expansion rate of the universe (𝐻𝐻𝑒𝑒𝑒𝑒): 

 

                       𝐸𝐸𝑢𝑢𝑢𝑢 ≡ 𝑢𝑢0𝑢𝑢𝑜𝑜 𝜀𝜀̇     , 𝐻𝐻𝑒𝑒𝑒𝑒 ≡ 6𝑢𝑢1𝑢𝑢1𝐻𝐻   , 

                       |𝑑𝑑𝑑𝑑2| ≥ (1 + 𝛾𝛾)
ℓ𝑝𝑝  
2

𝐺𝐺𝑝𝑝0|𝐻𝐻𝑒𝑒𝑒𝑒 − 𝐸𝐸𝑢𝑢𝑢𝑢|  .                                                         (23) 

 where  𝜺̇𝜺 represents energy fluctuations of quantum origin, and the dot indicating 
derivation by coordinate time. This covariant expression was applied to other geometries, 
such as that of Schwarzschild´s metric for a point mass. This metric was chosen as it con-
tains a singularity at radial position 0 [59,61-63]. The imposition of the covariant formula-
tion of the classical uncertainty principle defined an exclusion zone around the singularity 
at R=0 below which no GR geodesic is allowed [56]. This condition ensured a minimal 
non-zero uncertainty in radial distance right at the singularity which corresponded to: 

                                                               𝒅𝒅𝑹𝑹𝟐𝟐 =
𝟐𝟐𝟐𝟐𝟐𝟐 

 

𝒎𝒎𝒎𝒎𝟏𝟏
𝓵𝓵𝒑𝒑 
𝟐𝟐  .                                                                         (𝟐𝟐𝟐𝟐) 

 
where M corresponds to the mass of the black hole. This minimal uncertainty avoids 

the singularity of the classical Schwarzschild solution to GR field equations. If interpreted 
as a standard deviation, the average R coordinate position of a particle at the singularity 
will still be 0, but allowing a radius of uncertainty that would counteract the information 
paradox at the singularity [31,64]. A calculation of this minimal uncertainty of dR for a 
stellar mass black hole provides a value within the range of 10-15 to 10-16 cm. The uncertainty 
principle had been previously proposed to be the source of a repulsion force that prevents 
particles from reaching the singularity within the framework of LGQ and string theory. 
The matter contained within a black hole would form a “fuzzball” [65] or a “Planck star” 
[66]. The repulsion force by the uncertainty principle as described by LQG would occur 
when reaching Planck density [67], and this leads the radius of a Planck star to be: 

                                                                       𝑅𝑅~ �
𝑀𝑀
𝑚𝑚𝑝𝑝

�
𝑛𝑛

ℓ𝑝𝑝 .                                                                      (25) 

 where in the context of this equation, M corresponding to the mass of the Planck star 
and 𝒎𝒎𝒑𝒑 to Planck mass. Considering scenarios where n=1/3 or 1, the radius of a Planck 
star would be comprised between 10-10 to 10-14 cm [66], close to our calculations for a min-
imal radial uncertainty at the singularity [56].  

6. Lorentz invariance violations (LIV) and space-time quantization 
Current gravity theories such as string theory and LQG predict Lorentz invariance 

violations due to the discreet nature of space-time and a minimal measurable length. For 
example, in vacuo dispersion of photons and neutrinos, or deviations of polarization over 
astronomical distances [1,14] [68-73]. The experimental detection of LIV and the energy 
scales in which LIVs might be detected could help to either refine quantum gravity theo-
ries by setting up appropriate mathematical constraints, or at least discard scenarios in-
compatible with the experimental data [68]. Detection (or not) of LIVs could help with 
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lattice quantization in LQG, the time problem and the choice for privileged reference 
frames [8,32,74,75]. If proven, LIVs could demonstrate space-time quantization, and set 
up the proper length scales and energies for quantum gravity [73]. 

 
However, the experimental detection of LIV is controversial. Several studies have 

attempted to quantify upper limits to LIV constraints [69-72]. Measurement of energy and 
helicity-dependent photon propagation velocities over astronomical distances could un-
cover quantum gravity effects such as space quantization [66]. By measuring deviations 
of GRB 041219A gamma ray burst photons, an upper limit on the vacuum birefringence 
of 1.1 10-14 was estimated which would correspond to spatial volume units of less than 10-

42 m3 [71]. While a number of recent studies are reporting LIV violations at different energy 
orders, other studies estimate very stringent constraints, or even fail to detect LIVs 
[68,70,71,76,77]. 

Nevertheless, space-time quantization can be compatible with a minimal, Lorentz-
covariant length element, as shown by GUP and other covariant formulations including 
ours [56,57]. Hence, it is yet unclear whether LIVs could be definitely detected within our 
current energy scales. 

 

7. Conclusion 

 The concept of a fixed, measurable minimal length in quantum mechanics was orig-
inally brought up as a possible way to counteract troublesome ultraviolet divergences ap-
pearing in quantum field theories. However, the implementation of a Lorentz covariant 
minimal length element that can be applied to curved spaces might be a way forward to 
unify quantum mechanics and general relativity.    
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