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Abstract: The sustainability of the planet and its inhabitants is in dire danger and is among the
highest priorities on global agendas such as the Sustainable Development Goals (SDGs) of the
United Nations (UN). Solar energy -- among other clean, renewable, and sustainable energies -- is
seen as essential for environmental, social, and economic sustainability. Predicting solar energy ac-
curately is critical to increasing reliability and stability, and reducing the risks and costs of the en-
ergy systems and markets. Researchers have come a long way in developing cutting-edge solar en-
ergy forecasting methods. However, these methods are far from optimal in terms of their accuracies,
generalizability, benchmarking, and other requirements. Particularly, no single method performs
well across all climates and weathers due to the large variations in meteorological data. This paper
proposes SENERGY (an acronym for Sustainable Energy), a novel deep learning-based auto-selec-
tive approach and tool that, instead of generalising a specific model for all climates, predicts the best
performing deep learning model for GHI forecasting in terms of forecasting error. The approach
is based on carefully devised deep learning methods and feature sets through an extensive analysis
of deep learning forecasting and classification methods using ten meteorological datasets from three
continents. We analyse the tool in great detail through a range of metrics and methods for perfor-
mance analysis, visualization, and comparison of solar forecasting methods. SENERGY outper-
forms existing methods in all performance metrics including Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Forecast Skills (FS), Relative Fore-
casting Error, and the normalised versions of these metrics. The proposed auto-selective approach
can be extended to other research problems such as wind energy forecasting and predict forecasting
models based on different criteria (in addition to the minimum forecasting error used in this paper)
such as the energy required or speed of model execution, different input features, different optimi-
sations of the same models, or other user preferences.

Keywords: Deep learning; solar radiation forecasting; model prediction; solar energy; multi cli-
mates data; generalizability; sustainability; Long Short-Term Memory (LSTM); Gated Recurrent
Unit (GRU); Convolutional Neural Network (CNN); Hybrid CNN-Bidirectional LSTM; LSTM Au-
toencoder.

1. Introduction

The last century has seen many technological advancements that have enabled us to
make unimaginable progress, particularly during the last few decades. This progress how-
ever has come at a rapidly increasing price. The sustainability of the planet and its inhab-
itants is in dire danger and is among the highest priorities on global agendas such as the
Sustainable Development Goals (SDGs) of the United Nations (UN). Solar energy, among
other clean, renewable, and sustainable energies, such as wind energy, is essential for en-
vironmental, social, and economic sustainability.
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Solar energy could generate larger than 10,000 times the world's total energy con-
sumption with its Earth strike rate of 173,000 terawatts [1]. Therefore, solar energy has
enormous potential for reducing global carbon emissions. For example, the installation of
113,533 domestic solar systems in California, USA, has lowered or prevented 696,544 met-
ric tons of CO2 emissions [2]. Developing capacity for solar energy production is also crit-
ical for Saudi Arabia, which is among the top few oil producers and consumers in the
world and is ranked sixth in the world in terms of its potential for producing solar energy
[3]. The Sakaka 300-megawatt (MW) solar power station, Saudi Arabia's first utility-scale
solar PV project, was connected to the national grid in November 2019. With a $302 mil-
lion investment, the plant will cover a six-square-kilometer area in AlJouf. This is the first
in a series of projects under Saudi Arabia's national renewable energy program to gener-
ate 9.5GW of renewable energy by 2023 [4].

The need for integrating solar energy into the electrical grid has motivated research-
ers globally to develop advanced methods for solar radiation forecasting. Accurate pre-
diction of solar radiation is vital to ensure hybrid energy systems’ reliability and perma-
nency. Specifically, it reduces the risks and costs of managing the energy market and en-
ergy systems, which are attributed to the influence of climate changes and weather varia-
bility [5], [6]. The applications of solar radiation forecasting in solar energy systems vary
according to the forecasting horizon, which ranges from very short to long term. They
include real-time monitoring, demand and supply balancing, decision making, unit com-
mitment, power plant maintenance scheduling, site selection, solar plant installation, grid
operations planning, and others [7].

Solar energy and its generated electrical energy outputs will always be unsteady due
to the variable and uncertain nature of weather. As a result, solar energy prediction is
critical and difficult, necessitating the development of advanced methods. There are four
types of methods used for this purpose: physical (such as numerical and simulation
weather prediction models), statistical, those based on artificial intelligence (AI), and hy-
brid methods [8], [9]. Because of their ability to discover nonlinear relationships and pro-
vide superior performance, artificial intelligence methods such as machine and deep
learning methods have grown in popularity. Machine learning including deep learning
methods, in particular, have excelled in a wide range of scientific problems and applica-
tions domains, including computer vision and natural language processing [10]-[12],
transportation [13], healthcare [14], education [15], and smart cities [16]. This is also true
for solar energy forecasting, with many deep learning methods emerging in recent years
that outperform the other three types of forecasting methods [10], [17].
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Performance Comparison of Forecasting Models (Different Metrics)

Figure 1. Performance Comparison of Solar Forecasting Models (Different Performance Metrics).

We have performed an extensive literature review (see Section 2 and [17]) on deep
learning-based solar energy forecasting methods and have identified the key research
gaps in this field. We explain the research gaps using Figure 1. The figure provides a per-
formance comparison of different deep learning models. The compared works include
Kumari and Toshniwal [18], Lima et al. [19], AlKandari and Ahmad [20], Gao et al. [21],
Fouilloy et al. [22], Lago et al. [23], Lee et al. [24], Yagli et al. [25], Srivastava and Lessmann
[26], and Bouzgou and Gueymard [27]. We will elaborate on the reasons for the selection
of these methods in the later sections. Note in the figure that performance for different
methods is plotted using different performance metrics as originally used by the authors
in their published works. The metrics used in these works include Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nor-
malized RMSE (nRMSE), Relative RMSE (rRMSE), and Normalised MAE (nMAE). Each
work is plotted as a box plot, labelled with the authors’ names, the performance metric
used by the authors, and the total number of datasets used in their work. For example,
Lima et al. [19] reported the performance of their proposed methods using MAPE with
two datasets; it is labelled as Lima et al. (MAPE, 2). Ideally, the box plot should be closest
to the x-axis to reflect a small value for the error metric. Also, the box plot should be ver-
tically small to reflect small variations in the error metrics for different datasets.

The figure shows that different works have used different metrics and different num-
bers of datasets and that there is a large variation in their performances. The use of differ-
ent metrics makes it difficult to compare the performance of different methods. A larger
number of datasets may indicate better generalisability and validation of results; however,
this is not necessarily true because it depends on the size of the datasets, variability in the
climates and data characteristics, and the metrics used to measure the performance, and
other factors. Even if the same performance metric was used by these works, comparing
their performance in terms of RMSE or other existing metrics is difficult because these
metrics do not always exhibit the variability in the input data such as variations in the
types of climates, the proportion, and unpredictability of sunny and cloudy weather, var-
iations in GHI (Global Horizontal Irradiance), etc. For example, although both Lima et al.
[19], and AlKandari and Ahmad [20] used two datasets, it is hard to fairly compare them
because the error metrics used by them are different (MAPE versus nMAE). Similarly, it
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is hard to compare the results reported by Kumari and Toshniwal [18], and Srivastava and
Lessmann [26], due to the large difference between the number of datasets (3 versus 21)
despite the fact that both of them reported their results using the same metric (RMSE).
Note that a large number of datasets do not necessarily show variations in the input data;
one needs to look at the size of the datasets, the dataset climates, the variations in data,
etc.

The challenges described above call for new approaches from the community for
novel forecasting and evaluation methods. There is a need for independent and transpar-
ent evaluation and extensive testing of the published models [10], similar to what has been
done in other fields such as computer vision. Some researchers have suggested the use of
a single statistical index called the global performance indicator to overcome the difficulty
of comparing different performance metrics [28], [29]. Moreover, some independent
benchmarking exercises or conferences in the renewable energy fields have started to
emerge. An example is the Global Energy Forecasting Competition in the USA, which to
date has been organized three times in 2012, 2014, and 2017 [30]. While all of these works
and proposals demonstrate that the community has made significant progress in devel-
oping high-performance solar energy forecasting methods. Much more sustained effort is
required to improve forecasting model accuracies and generalizability, as well as exten-
sive, transparent, and fair benchmarking of these models. Because of the large variations
in meteorological data, no single forecasting method performs well across all climates and
weathers. There is a need to close this gap so that forecasting methods can perform opti-
mally across varying climates and data.

This paper proposes a novel deep learning-based auto-selective approach and tool
that, instead of generalising a specific model for all climates, predicts the best performing
deep learning model for GHI forecasting. We call this approach and tool SENERGY, an
acronym for Sustainable Energy. The approach is based on carefully devised deep learn-
ing methods and feature sets through an extensive analysis of deep learning forecasting
and classification methods using ten meteorological datasets from three continents. The
models that we have used in this work include Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), Convolutional Neural Network (CNN), Hybrid CNN-Bidirec-
tional LSTM, and LSTM Autoencoder. We analyse the tool in great detail through a range
of metrics and methods for performance analysis, visualization, and comparison of solar
forecasting methods. SENERGY outperforms existing methods in all performance metrics
including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Forecast Skills (FS), Relative Forecasting Error, and the normal-
ised versions of these metrics.

Data Deep Learning-Based Best- Forecast Variables of Interest
Performing Model Prediction

Month, Day, Hoar

¢ GHI, DNI, DHI Next-Hour GHI Value
g Temperature GRU -
] = =
= i =
o Zenith Angle Oeep
.
2 .

—)

Learning

Wind Speed & Direction

i “1 Humidity

e Barometric Pressure

Other Models

Other Data

Figure 2. SENERGY: A High-Level Overview.
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Figure 2 shows a higher-level overview of the SENERGY approach. The figure shows
that various forecasting temporal information (month, day, hour) along with the previous
values of Global Horizontal Irradiation (GHI) and weather variables is supplied to the
tool as inputs and the tool recommends the best forecasting model and uses this model to
provide forecasted GHI. A detailed explanation of the design of the SENERGY approach
and tool is given in Section 3.

The approach proposed in this paper to use machine or deep learning to automati-
cally predict a best-performing model or configuration is not new and has been used in
our earlier work for computations of Sparse Matrix-Vector (SpMV) products [31]-[33].
However, to the best of our knowledge, this is the first time that such an approach has
been used in solar energy forecasting and is implemented in a tool for this purpose. The
proposed auto-selective approach currently considers minimum forecasting error to pre-
dict the best performing deep learning model for GHI forecasting. It can be extended to
predict forecasting models based on different additional criteria such as the energy re-
quired or speed of model execution, different input features, different optimisations of the
same models, or other user preferences. Additional deep learning models for classification
(to auto-select) or forecasting solar radiation can be incorporated into the tool to improve
the performance and diversity of the tool. The approach is extensible also to other renew-
able energy sources and problems such as wind energy forecasting.

The contributions of this paper can be summarised as follows.

1. This paper proposes a novel approach and tool that uses deep learning to auto-
matically predict the best-performing solar energy forecasting model. The ap-
proach is extensible to other performance metrics or user preferences and is ap-
plicable to other energy sources and problems.

2. We provide an in-depth analysis of five deep learning models for solar energy
forecasting using ten datasets from three continents. This is the first time that
such a combination of models, datasets, and analyses has been reported. Partic-
ularly, none of the earlier works have reported forecasting based on five deep
learning-based models with such many locations in Saudi Arabia and provided
a comparison with locations abroad (Toronto and Caracas).

3. We highlight the need for standardisation in performance evaluation of machine
and deep learning modelling in solar forecasting by providing extensive analysis
and visualisation of the tool and its comparison with other works using several
performance metrics. We have not seen such an extensive evaluation of work
earlier in solar energy forecasting. This paper is expected to open new avenues
for higher depth and transparency in benchmarking of solar energy forecasting
methods.

This paper is organized as follows: Section Error! Reference source not found. re-
views the related works. Section Error! Reference source not found. presents the meth-
odology used in the work including subsections describing the SENERGY development
process, the data collection, data pre-processing, feature importance, and five forecasting
model structures. Section Error! Reference source not found. also includes a description
of the performance evaluation metrics and implementation of the models. In Section Er-
ror! Reference source not found., the results are discussed and analysed in detail. Section
Error! Reference source not found. concludes and provides future directions.

2. Literature Review

Deep learning models” promising achievements have attracted researchers to apply
them in the field of solar radiation and solar energy forecasting. Their advantages include
the ability to discover nonlinear relationships among inputs, generalization capability,
and unsupervised feature learning in addition to superior performance. In our earlier
work [17], we have done an extensive review of solar and wind energy forecasting
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methods based on deep learning and proposed a taxonomy of this research field as shown
in Figure 3. The most used deep learning-based architectures in the literature are the hy-
brid models followed by Recurrent Neural Network models including LSTM model and
GRU and then, CNN in the third place. Based on numerous studies included in the review,
we found that deep learning-based forecasting models always achieve relatively higher
accuracies and generalization ability compared to other machine learning models and sta-
tistical methods, especially when they are combined with other algorithms in hybrid mod-
els. However, a definite conclusion cannot be drawn about the forecaster that has the best
performance unless extensive testing is done using datasets from different climates and
topographies that contain data about all seasons and weather conditions. Although deep
learning models have proven their ability to provide competitive results in terms of fore-
casting accuracy, there is still room for improvement in terms of models’ generalization
and stability. More studies should focus on developing general forecasting models since
developing a model for each location is infeasible. Few studies proposed forecasting mod-
els for a whole region as [34]-[38]. However, general forecasting models should be able to
provide forecasting to locations from different climatic zones not only similar regions.

Multistep
Deterministic

One step
\ Approach B
. L Multistep
By N\ : Probabilistic
. _Deepleaming One step
SAE /? w
ven /| \
—/ 5\ f
Dthetd®/ [ 4 ] f < Hour
’ - ¢| Forecasting —_ y Ultrashort
Decemposition f——— \\ Short 146 72 Hours
S /
Feature Extraction ._}% Hybrid _/ 1 Nt 3107 Days
Data Correction / |
= Long > Week
Machine Leaming . \
' ™\ /
Statstical Methods > Ensemble J
Physical Methods /‘ Meteorological
Time Series Power
Solar
Data Irradiance
Metrics .
Deep Learning- Spatial
Runtime Based Solar Syl
images
Statistical Testing Energ_‘{
Forecasting
Benchmarks
Weather Types i Normalization
Input Timesteps Evaluation Imputation
Data Resolution Cleaning /  Outlier Treatment

Data Fusion
Decomposition

Data Variation
Generalisability
Multiple Climates / Locations

Hyperparameter Tuning
Parameter Tuning
Overfitting

Training Acceleration

Inactive Times
Changing Resolution

Transformation

Correlation Analysis
Clustering

Graph
Modelling
Optimization Gid

Decomposition

Feature Selection

Figure 3. Deep learning-based solar energy forecasting taxonomy.

The current efforts focused on improving the generalizability of deep learning-based
forecasters in the literature are still limited. Some researchers suggest ensemble learning
to improve generalization. Ensemble learning takes the average prediction of several fore-
casting models instead of finding a single best-performing one. For example, Lima et al.
[19] used ensemble learning along with a new integration technique based on Portfolio
Theory. Their proposed solar irradiance ensemble forecasting model integrates the Mul-
tilayer Perceptron network (MLP) model, Support Vector Regression (SVR) model, Radial
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Basis Function model, and LSTM model. Weights are assigned adaptively to each model
before calculating the final forecasting result. Such a self-adaptive model structure is a
way to improve the forecasting performance in terms of accuracy and generalizability.
The authors also compared their model performance using datasets collected from Brazil
and Spain. Likewise, Khan et al. [39] combined Artificial Neural Network (ANN), LSTM,
and eXtreme Gradient Boosting (XGBoost) in their ensemble model to improve the gener-
alization of solar forecasting. Their method achieved more stable performance in several
case studies than using ANN, LSTM, or bagging alone. AlKandari & Ahmad [20] pro-
posed a solar power forecasting model employing an ensemble approach, which com-
bines GRU, LSTM, and Theta models. They found that the ensemble technique of both
machine learning and statistical models achieved better prediction accuracy than single
models. They also compared their model performance using datasets from Kuwait and
USA. Wang et al. [40] utilized classification along with ensemble learning in their pro-
posed PV power ensemble forecasting framework. The classification is done to identify
the daily pattern label of the forecasting day to improve the forecasting accuracy per-
formed by multiple LSTM models. Singla et al. [41] utilized wavelet transform (WT) to
decompose the input time series data into different sub-series, then, trained a bidirectional
LSTM model for each one. The forecasted values of each sub-series from BiLSTM models
are combined to deliver the final 24-h ahead GHI forecast. Pan and Tan [42] cluster anal-
ysis on data to get weather regimes before employing Random Forests to acquire predic-
tion from different weather regimes. El-Kenawy et al. [43] developed an ensemble model
for solar radiation forecasting, which consists of LSTM, NN, and SVM. This model’s en-
semble weights are optimized by Advanced Sine cosine algorithm that shows perfor-
mance superiority over the average and K-Nearest Neighbors ensemble methods.

Comparing the performance of a proposed model using several datasets collected
from locations with different climates is a practice in the literature that aims to improve
forecasting models” performance generalization and stability. For example, Kumari and
Toshniwal trained and tested their ensemble model, which consists of XGB Forest and
Deep Neural Network (DNN) for hourly GHI forecasting using data collected from three
locations in India that have humid subtropical, hot semi-arid, and subtropical climates
[18]. Similarly, Gao et al. [21] tested their proposed CNN and LSTM hybrid model for
hourly solar irradiance forecasting using four datasets from locations with Mediterra-
nean, semi-arid, rainforest, and desert climates. Likewise, Kapa et al. [44] compared the
performance of a DNN model for daily GHI forecasting on datasets collected from thirty-
four cities in Turkey, which belong to very wet, humid, semi-humid, and semi-dry cli-
mates. Fouilloy et al. [22] also compared eleven machine learning and statistical models
for solar irradiation forecasting using three datasets with different meteorological charac-
teristics. The datasets sources are two locations in France Odeillo in the mountains and
Ajaccio near the Mediterranean Sea in addition to Tilos island in Greece. Lago et al. [23]
proposed a generalized model based on DNN for solar irradiance forecasting using data
from twenty-five locations in the Netherlands while Lee et al. [24] compared several en-
semble models using datasets from six distinct locations in the USA. Yagli et al. [25] eval-
uated sixty-eight machine learning algorithms using data from five climate zones for
hourly solar forecasting. Srivastava and Lessmann [26] compared LSTM performance in
twenty-one locations in Europe and USA from ten climate types to another three methods.
Jeon and Kim [45] proposed a global LSTM model for the next-day solar irradiance pre-
diction by training the model with data collected from Cape Town, Canberra, Colorado,
and Paris, then evaluating it with data from Inchon. Bouzgou and Gueymard [27] trained
an Extreme Learning Machine (ELM) model using data from twenty locations that belong
to four different climates.

Table 1 highlights the approach used to improve forecasting performance generali-
zation in each paper covered in this section along with the results and main findings. Since
most of the researchers in this field are more concerned with improving forecasters’ accu-
racies as their main goal, there is a need to explore new methods to improve generalization
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as a way toward achieving higher accuracy. In this paper, we combined two methods: the
knowledge gained from comparing multiple forecasting models” performance on differ-
ent climate data along with classification to recommend the best forecasting model for

certain data inputs.

Table 1. Summary of the literature review.

B 2 g
) o 2
Ref# § '8 = g Results Main findings
g E S =
= o
The ensemble model (XGBF-DNN) performed
better than Smart Persistence, SVR, Random The ensemble model (XGBE-DNN)) attained RMSE
Forest (RF), XGBoost, and DNN models for all . .
[18] v v 5 . . =53.79 for Jaipur, RMSE = 51.35 for New Delhi,
three locations Jaipur, New Delhi, and Gang-
. . . and RMSE=89.13 for Gangtok
tok. Hence, it can be generalized to predict
hourly GHI for other geographical locations.
Errors resulting from the integration of fore-
cast techniques (LSTM, MLP, RBF, SVR) hada  The ensemble model of LSTM, MLP, RBF, and
[19] v v better performance than the individual errors SVR achieved MAPE =5.36% for Spain and 4.52% for
of each model for Brazil and Spain in hour- Brazil
ahead PV power forecasting.
The ensemble model of ANN, LSTM, and The ensemble model of ANN, LSTM, and XGBoost
(39] v XGBoost performed better than ANN and achieved RMSE= 0.74 and MAE=0.47 with 15-min
LSTM models alone in PV energy generation data resolution and RMSE= 0.78 and MAE=0.59 with
forecast. 1-hour data resolution.
The ensemble model of GRU, LSTM, and Theta
The ensemble model of GRU, LSTM, and achieved nMAE= 0.0317 for Shagaya location in
Theta achieved better performance with Kuwai while LSTM model alone achieved
Shagaya dataset than with Cocoa because it nMAE=0.0739 for Cocoa location in USA, which is
[20] v v contains relative weather data. The ensemble slightly better than the ensemble model
model achieved better accuracy than any performance with nMAE=0.0877. Based on nMSE
single ML algorithm and theta model in day- results, the ensemble model achieved better
ahead solar power generation forecast. performance than individual models for both
datasets.
The ensemble model of LSTMs with time
corre.lat.lon under a partlal.dally pattern The ensemble model of LSTMs with time correlation
[40] v prediction framework attained better under a partial daily pattern prediction framework
performance than BPNN model, SVM model, . P yp P
K . attained RMSE=5.68.
and persistent model in day-ahead PV power
forecasting.
The results show that the ensefnk.ﬂe n}odel of The results show that the ensemble model of
wavelet transform (WT) and bidirectional e
. R wavelet transform (WT) and bidirectional LSTM
[41] v LSTMoutperformed the naive predictor, outperforms the naive predictor, LSTM, GRU
LSTM, GRU, BILSTM and two different WT P ep st
based BiLSTM in 24-h ahead solar irradianc BiLSTM and two different WT based BiLSTM with
5 eacso ©  annual average RMSE= 45.61and MAPE=6.48%.
forecast.
The ensemble model of RF with cluster
analysis for day-ahead solar forecasting The ensemble model of RF with cluster analysis for
4 v performed better than RF alone and gradient day-ahead solar forecasting performed better than
[42] boosted regression trees. Classify the weather RF alone and gradient boosted regression trees with
regimes with cluster analysis improved the nRMSE=8.8
model accuracy.
The ensemble model of LSTM, NN, and SVM The ensemble model of LSTM, NN, and SVM for
for solar radiation forecasting outperformed solar radiation forecasting outperformed all the
[43] v all the reference models. The best optimizing reference models with RMSE=0.0018. The best
ensemble weights method is Advanced Sine optimizing ensemble weights method is Advanced
and Cosine algorithm. Sine and Cosine algorithm.
The proposed hybrid model of complete The proposed hybrid model of complete ensemble
21] v ensemble empirical mode decomposition empirical mode decomposition adaptive noise

adaptive noise (CEEMD), CNN, and LSTM to
forecast hourly irradiance performed better

(CEEMD), CNN, and LSTM achieved annual
RMSE= 42.84 for Tamanrasset, 43.98 for Hawaii’s
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[44]

[22]

[23]

[24]

[25]

[26]

[45]

[27]

compared to the single LSTM, BPNN, SVM,
the hybrid CEEMDAN-LSTM, CEEMDAN-
BPNN, and CEEMDAN-SVM models.

The proposed DNN for daily GHI prediction
showed good performance with 34 cities,
which represent all possible climatic
conditions in Turkey. Using all inputs
(extraterrestrial radiation, sunshine duration,
cloud cover, maximum temperature, and
minimum temperature) gave the best results.
Statistical models performance of hourly solar
irradiation forecasting with low to medium
meteorological variabilities data is efficient
while with high variability or longer
forecasting horizons (4-hours ahead and
more), bagged regression tree and RF
approaches performed better than statistical
models.

The proposed global DNN for hourly GHI
forecasting, which was trained using data
from 25 locations in the Netherlands (satellite-
based measurements and weather-based
forecasts) has a better average performance
than other four local models.

The ensemble models (Boosted Trees, Bagged
Trees, RF, and Generalized RF) for short-term
prediction of solar irradiance offered superior
prediction performance compared to Gaussian
process regression and SVR.

For the task of hourly solar forecasting, tree-
based methods were found superior in
average nRMSE under all-sky conditions,
whereas variants of MLP and SVR were the
best performers under clear-sky conditions. RF
with Quantile Regression performed well
under overcast skies at all 7 locations.

The LSTM model outperformed Gradient
Boosting Regression, FFNN, and Persistence
methods in day-ahead GHI forecasting

The global LSTM model, which was trained
with international data for next-day GHI
prediction, achieved RMSE=30 with Inchon in
Korea

ELM model, which was trained with data from
20 locations, has good performance for 15-min
ahead, 1-h ahead, and 24-h ahead forecasting

Big Island, 40.60 for Denver, and 27.09 for Los
Angeles.

The proposed DNN for daily GHI prediction
achieved RMSE ranges from 0.52 to 1.29 for 34 cities,
which represent all possible climatic conditions in
Turkey.

For a medium and low variability dataset (Tilos and
Ajaccio), the best results for an hour-ahead
forecasting come from SVR model with MAE=71.27
and 54.58. For a high variability dataset (Odeillo),
the best results for an hour-ahead forecasting come
from RF.

The proposed global DNN for hourly GHI
forecasting, which was trained using data from 25
locations in the Netherlands has a better average
performance with relative RMSE=31.31% than other
four local models. The lowest relative RMSE=29.24
for Hoek v. H. site and the highest relative
RMSE=34.55 for Deelen site

The ensemble model Generalized RF achieved the
best MAPE results for 4 out of 6 datasets (MAPE
equals to 19.76, 42.27, 31.79, and 58.58 for CA, TX,
WA, and MN respectively)

Tree-based methods are superior compared to other
machine learning algorithms for all-sky conditions
with nRMSE ranges from 15.46% to 33.36% based
on location.

LSTM model outperformed Gradient Boosting
Regression, FFNN, and Persistence methods in day-
ahead GHI forecasting with RMSE ranges from 23.6
to 37.78 for 21 locations

The global LSTM model, which was trained with
international data achieved RMSE=30 with Inchon
in Korea

ELM model achieved average RMSE=
93.82 for 20 locations for 1-h ahead forecasting

2.1. Research Gap

The literature review presented in this section (also see [17]) identified the major re-
search gaps in deep learning-based solar energy forecasting methods research. Despite
significant progress in developing high-performance solar energy forecasting methods,
much more sustained effort is required to improve forecasting model accuracies and gen-
eralizability, as well as extensive, transparent, and fair benchmarking of these models.
Because meteorological data varies so greatly, no single forecasting method performs well
across all climates and weathers. There is a need to close this gap so that forecasting meth-
ods can perform optimally across varying climates and data. This paper proposes a novel
approach and tool for automatically predicting the best-performing solar energy forecast-
ing model using deep learning. The method is adaptable to other performance metrics or
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user preferences, as well as other energy sources and problems. To our knowledge, this is
the first time such an approach has been used in solar energy forecasting and has been
implemented in a tool for this purpose.

Using ten datasets from three continents, we conduct an in-depth analysis of five
deep learning models for solar energy forecasting. None of the previous works reported
such an integration of models, datasets, and analyses. None of the works reported fore-
casting based on five deep learning-based models with such a large number of locations
in Saudi Arabia, nor did they provide a comparison with locations elsewhere (Toronto
and Caracas). We highlight the need for standardisation in the performance evaluation of
machine and deep learning modelling in solar forecasting by providing in-depth analysis
and visualization of the tool, as well as comparisons with other works using various per-
formance metrics. We have not seen a thorough evaluation of work in solar energy fore-
casting before. We anticipate that this work will pave the way for greater depth and trans-
parency in benchmarking solar energy forecasting methods.

3. SENERGY: Methodology and Design

We first briefly describe the SENERGY development process on a high level in Sec-
tion3.1, then move to the detailed steps in later sections. The datasets development pro-
cess is described in Section 3.2, which includes data collection and data preprocessing for
forecasting and model prediction. In Section 3.3, we discuss four feature importance meth-
ods: Pearson’s correlation, Mutual Information, Forward Feature Selection and Backward
Feature Elimination in Section, and LASSO feature selection. Then, five deep learning
models, which are used in SENERGY, are explained in Section 3.4: Long Short-Term
Memory, Gated Recurrent Unit, Convolutional Neural Network in Section, Hybrid CNN
and Bidirectional Long Short-Term Memory, and Long Short-Term Memory Autoen-
coder. Finally, a description of the performance evaluation metrics is given in Section 3.5
and SENERGY implementation in Section 3.6.

3.1. Tool Development Process

The SENERGY development process is displayed in Figure 4, which starts with col-
lecting datasets from multiple locations that have different climates, followed by data pre-
processing, such as filling missing values, creating lagged features, and normalization.
Then, the process continues with feature selection through Pearson’s correlation, mutual
information, forward feature selection, backward feature elimination, and LASSO meth-
ods. Afterward, preprocessed data is used for training and testing five deep learning-
based forecasters. The forecasters” performance on the datasets is compared using several
performance evaluation metrics. Based on performance comparison, the best model label
is obtained, which is the forecaster that achieves the least forecasting error. Then, the best
model label is added to become the target variable, and all the datasets are combined to
train and test the best forecaster recommendation model. After completing the develop-
ment process of SENERGY, the tool is able to receive new inputs, recommend the best
forecaster based on inputs, and use the chosen forecaster to predict the next hour GHL


https://doi.org/10.20944/preprints202208.0345.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2022 d0i:10.20944/preprints202208.0345.v1

Developer

Multiple
Datasets

Y

Best Model
Lable

Model Prediction

Combined j ;
Dataset { Foene {Tminlng)

SENERGY

f / flogel Forecasting GHi
New Data Prediction - Engine. Forecasting

Figure 4. SENERGY development process.

3.2. Datasets Development

Here in this section, we describe first the data collection process (3.2.1), then, data
preprocessing and feature engineering done for forecasting (3.2.2) and model prediction
3.2.3).

3.2.1. Data Collection

We used a total of ten datasets. Eight of them were collected from Solar monitoring
stations in Saudi Arabia and the remaining two are Toronto dataset and Caracas dataset.
The used datasets represent three different climates and contain records of five years,
which ensure the inclusion of all various weather types, such as sunny, cloudy, rainy, etc.
The datasets of Saudi Arabian locations were provided by King Abdullah City for Atomic
and Renewable Energy (K.A.CARE)[46]. They contain the measurements of three compo-
nents of solar radiation: Direct Normal Irradiance (DNI), Global Horizontal Irradiance
(GHI), and Diffuse Horizontal Irradiance (DHI), in addition to related meteorological pa-
rameters. The datasets cover the period from 1 January 2016 to 31 December 2020. Ideally,
each dataset should contain the observations of 1827 days (5 years) averaged into one-
hour intervals. However, some days’ observations are not available because of device mal-
function or maintenance scheduling. The ground-based measurements were taken at
eight Tier 1 solar monitoring stations with a resolution of 1 minute. Tier 1 stations provide
the highest quality data, with the uncertainty of +/- 2% (sub-hourly). Table 2 presents in-
formation about these solar monitoring stations including the station name, latitude, lon-
gitude, and elevation. The climate classification of all locations is hot desert climate (BWh)
according to Koppen classification obtained from ClimateCharts.net [47]. Figure 5 shows
the solar stations” location on the Saudi Arabia map.
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Table 2. Saudi Solar monitoring stations information.

Station # Station Name Latitude (N) Longitude (E) Elevation (m)
1 Al-Baha University 20.1794 41.6357 1680
2 Al-Jouf College of Technology 29.77634 40.02318 680
3 Saline Water Conversion 28.50676 48.45513 13

Corporation (Al-Khafji)
4 Arar Technical Institute 31.0274 40.90642 583
5  Hail College of Technology 27.65261 41.70826 928
6 Tabuk University 28.38287 36.48396 781
7 Taif University 21.43278 40.49173 1518
8  Wadi-Addawasir College of 20.43008 44.89433 671
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Figure 5. Solar monitoring stations’ locations on Saudi Arabia map.

The datasets of Toronto, Canada; and Caracas, Venezuela were collected from Na-
tional Solar Radiation Database accessed through the National Renewable Energy Labor-
atory (NREL) website [48]. These datasets were gathered by geostationary satellites unlike
Saudi datasets, which were collected from ground stations. The climate classification of
Toronto is humid continental (Dfb) and of Caracas is tropical (A) according to Képpen
classification. Table 3 provides the source information of both datasets and Figure 6 shows
Caracas and Toronto locations on the map.

Table 3. External datasets source information.

Location Latitude (N) Longitude (E) Elevation (m) Climate Class
Caracas, Venezuela 10.49 -66.9 942 A
Toronto, Canada 43.65 -79.38 93 Dfb
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Figure 6. Toronto and Caracas locations on the map.

3.2.2. Datasets for Forecasting

In this section, a description of data preprocessing for forecasting is given. First, the
data variables and the relationships among them are clarified, then, creating lagged fea-
tures and Temporal features steps are explained. Next, filling missing values, deleting
night hours records, and data normalization steps are described. Finally, detailed infor-
mation about each dataset is given.

For GHI forecasting, researchers usually use historical values of GHI alone as inputs
to make a prediction or include other meteorological variables, such as wind speed and
air temperature. Sometimes forecasted values of the meteorological variables and GHI are
also used as inputs, such as Numerical weather prediction (NWP) models” outputs [17].
In our work, the following nine measurements are chosen as inputs to GHI forecasting
models. Figure 7 shows the relationship between GHI and the nine measurements in three
datasets only as an example (Al-Baha, Al-Jouf, and Hail datasets).

e  GHLI: the total amount of shortwave radiation received from above by a surface hor-
izontal to the ground. It is calculated using the following equation, which explains
how GHI is related to DHI, DNI, and the Zenith Angle (ZA) [49].

GHI = DNI x cos(ZA) + DHI 1)

e DHI: solar radiation that does not arrive on a direct path from the sun, but has been
scattered by molecules and particles in the atmosphere and comes equally from all
directions

e  DNI: solar radiation that comes in a straight line from the direction of the sun at its
current position in the sky. On a sunny day, GHI consists of 20% DHI and 80% DNI
[49].
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e  ZA: the angle between the sun’s rays and the vertical.

e  Air Temperature (AT). It has a positive correlation with solar radiation [50] as can be
seen in Figure 7

e  Wind Speed (WS) and Wind Direction (WD) at 3 meters

e  Barometric Pressure (BP)

¢  Relative Humidity (RH). It has a negative correlation with solar radiation [50] as
shown in Figure 7

£
Air Temperature

00 W00 300
Wind Direction at 3m Barometric Pressure Reiative Humidity

(a)

. . i "
30 540 w0 o0 5 50 w10
Barometnc Pressure Relative Humidity

0 P © 0 5 W I
Air Temperature Wind Speed at 3m

00 200 200 510 S0 0 5 50 ™0
Air Temperature Wind Speed at 3m Wind Direction at Im Barometric Pressure Relative Humidity

Figure 7. The relationship between GHI and the meteorological variables in: (a) Al-Baha; (b) Al-Jouf;
and (c) Hail.

Using the previous three hours measurements (lag= 3 hours), we created a set of
twenty-seven features. Table 4 shows the list of these features along with their unit. To
create the lagged features, we used the shift method in Pandas library. Table 5 shows an
example of using the shift method with GHI values to create lagged features. To guide the
decision about the lag, we utilized the Autocorrelation Function (ACF) and Partial Auto-
correlation Function (PACF) for GHI as presented in Figure 8. The ACF shows a correla-
tion of GHI with its 3 past values while the PACF shows a high correlation of GHI with
its first lag only. However, such functions can measure only the linear relationship be-
tween an observation at time t and the observations at previous times.

Table 4. Forecasting datasets features.

Time t features Time t-1 fea- Time t-2 fea-  Time t-3 fea- Unit
tures tures tures
GHI (output) GHI_lagl GHI_lag2 GHI_lag3 Wh/m2

Hour_sin (HS) DNI_lagl DNI_lag2 DNI _lag3 Wh/m2
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Hour_cos (HC) DHI_lagl DHI_lag2 DHI_lag3 Wh/m2
Day_sin (DS) AT lagl AT _lag2 AT lag3 °C
Day_cos (DC) ZA lagl ZA lag?2 ZA lag3 °

Month_sin (MS) WS_lagl WS_lag2 WS_lag3 m/s

Month_cos (MC) WD_lagl WD_lag?2 WD_lag3 °
RH_lagl RH_lag?2 RH_lag3 %

BP_lagl BP_lag2 BP_lag3 Pa (Saudi data)/

Millibar (others)

* Wh: watt-hour; m: meter; C: Celsius; s: second; Pa: pascal.

Table 5. Example of creating lagged features of GHI.

Tim stamp e GHI at t GHI at t-1 GHI at t-2 GHI at t-3
01/01/2016 7:00 0 0 0 0
01/01/2016 8:00 35.3 0 0 0
01/01/2016 9:00 236.2 35.3 0 0
01/01/2016 10:00 468.8 236.2 35.3 0
01/01/2016 11:00 609.6 468.8 236.2 35.3
01/01/2016 12:00 688.7 609.6 468.8 236.2
01/01/2016 13:00 686.8 688.7 609.6 468.8
01/01/2016 14:00 635.6 686.8 688.7 609.6
01/01/2016 15:00 522.7 635.6 686.8 688.7
01/01/2016 16:00 361.3 522.7 635.6 686.8
01/01/2016 17:00 166.2 361.3 522.7 635.6
01/01/2016 18:00 15.6 166.2 361.3 522.7
Autocorrelation Partial Autocorrelation
1.00 100 1
075 0.75
050 050 1
025 aas
000 . | [ 1 l 0.00 I o ¢ I r I T | S
-0.25 l [ 021 1
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Figure 8. (a) Autocorrelation Function; (b) Partial Autocorrelation Function of GHI and its lagged readings.

Temporal variables (month, day, hour) of the forecasting time (t) are also important
inputs. Since they have cyclical nature, we decided to encode them into sine and cosine
using the following equations [51]. The result of this transformation is additional six fea-
tures (hour sine, hour cosine, day sine, day cosine, month sine, month cosine). The total
features used for training the forecasting models are thirty-three as shown in Table 4.

T = sin (%) @)
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As mentioned earlier, there are missing records for many days in the Saudi datasets.
To consider that during input-output construction, we eliminated any hour record that
does not have the previous three consecutive hours' records [52]. Records of the years
2016, 2017, and 2018 were used for training while records of the years 2019 and 2020 were
used for validation and testing respectively. However, for Arar, Al-Khafji, and Tabuk da-
tasets, the number of missing days is large. Therefore, records of the year 2020 and the
first four months of 2021 were used for testing sets of these locations. In Wadi-Addawasir,
Arar, and Al-Baha dataset, a few DHI values are missing, and they were filled by Equation
(1). Many values of wind direction and wind speed are missing in Wadi-Addawasir,
Tabuk, and Taif datasets. However, the interpolation method cannot be used to fill these
values because they are for consecutive hours. For such situation, usually, researchers in
this field either use a regression model to predict the missing values or use another source
of data, like nearby station [53]-[55]. Since regression model accuracy might affect the data
quality, we decided to use a nearby station data to fill the missing wind speed/direction
values in Wadi-Addawasir and Taif datasets. The source of such data is King Abdullah
Petroleum Studies and Research Center (KAPSARC) [56]. The number of hourly records
filled in Wadi-Addawasir dataset is 11978 hours while it is 7630 in Taif datasets. On the
other hand, Tabuk dataset has only 529 missing hours’ records. Therefore, we decided to
eliminate these records since the year 2021 records are added to the dataset to compensate
for the shortage. Comparing methods for filling missing values and studying their impact
on the forecasting results, as done in [57], [58], would be an opportunity for future work.

Preprocessing steps also include deleting the records in which GHI equals zero,
which represent nighttime hours. Moreover, all features were normalized to the range of
[0,1] by min-max scaler, then denormalized to the normal range after the training process
was completed. Table 6 presents information about each dataset including the total hourly
records used for training, validation, and testing in addition to the number of missing
days out of five years. It also indicates the mean, Standard Deviation (SD), and Variance
(Var) of GHI of training, validation, and testing datasets.

(a) (b)

Figure 9 shows the percentage of cloudy and sunny hours of all datasets on the left
chart while GHI mean and GHI SD are shown on the right chart.

Table 6. Forecasting datasets information.

Location Total Hourly =~ Missing GHI GHI GHI
Records Days Mean SD Var
Train: 6227 574.67 323.90 104896.29
Al-Baha Val: 3056 635 days 552.10 325.90 106176.30
Test: 2247 582.09 311.16 96780.11
Train: 8600 554.11 307.66 94643.25
Al-Jouf Val: 2991 363 days 547.92 306.49 93901.92
Test: 2554 528.14 296.47 87858.12
Train: 4618 970 days 504.81 288.56 83245.88
Al-Khafji Val: 2363 (Year 2019) 555.17 308.66 95231.29
Test: 2110 486.59 275.73 75991.13

Arar Train: 8339 575 days 546.71 310.06 96128.23
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Val: 3589 537.73 300.20 90097.23
Test: 1357 485.46 295.04 86983.40
Train: 8723 552.26 311.69 97140.65
Hail Val: 3260 271 days 544.05 310.67 96486.20
Test: 2561 543.77 303.82 92270.30
Train: 7576 593.27 310.35 96307.42
Tabuk Val: 3100 542 days 579.62 303.93 92342.88
Test: 1937 498.03 261.73 68465.05
Train: 8618 580.83 321.62 103424.30
Taif Val: 3386 272 days 562.14 308.42 95094.37
Test: 2543 567.62 308.47 95115.01
. Train: 9199 584.98 309.00 9547422
Wa‘j:::i‘jda' Val: 3450 242 days 579.24 306.12 93684.80
Test: 2551 578.02 301.69 90982.42
Train: 10112 499.28 284.48 80922.07
Caracas Val: 3428 0 days 505.95 288.71 83327.90
Test: 3428 524.82 297.12 88255.24
Train: 9892 381.15 273.39 7473291
Toronto Val: 3392 0 days 336.74 266.95 71242.70
Test: 3388 366.77 278.11 77322.36
Train: 81904
All Val: 32015 3870 days - - -
Test: 24676
Percentage of Hours (Sunny Vs. Cloudy) GHI (Mean and SD)

!

m Cloudy sunny s GHISD ®mGHImean

(a) (b)

Figure 9. (a) Percentage of hours (sunny Vs. cloudy) of 10 datasets; (b) GHI (mean and SD) of 10 datasets.

3.2.3. Datasets for Model Prediction

Preparing data for Auto-Selective Model Prediction Engine starts by combining all
the ten datasets into one dataset, then adding a new column called “Best model” to the
thirty-three features listed in Table 4. To determine the “Best model” for each record, first,
we calculated the forecasting error of each model using Equation (4), which represents the
absolute value of the difference between the actual GHI and the forecasted GHI. The best
forecasting model for each record will be the model that achieves the least forecasting
error.


https://doi.org/10.20944/preprints202208.0345.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2022 d0i:10.20944/preprints202208.0345.v1

Forecasting error = |actual GHI — forecast GHI| 4)

Figure 10 shows a snapshot of a few data records after adding “Best model” feature
to the thirty-three features used for forecasting. Then, we used label encoding to convert
this column to numeric values (0 for the CNN-BiLSTM model, and 1 for the LSTM-AE
model). The total records used with the Auto-Selective Model Prediction Engine is 24576
(80% of them used for training and 20% for testing). The class distribution is 23% and 77%
for the CNN-BiLSTM model, and LSTM-AE model respectively.

Figure 10. Snapshot of data inputs of Best Forecaster Recommendation model.
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3.3. Feature Importance

Nonlinearity and the “black-box” nature of deep learning models make it difficult to
explain them and rank features based on importance. In this section, we use four conven-
tional methods for feature selection: Pearson’s correlation (3.3.1), Mutual Information
(3.3.2), Forward Feature Selection and Backward Feature Elimination (3.3.3), and LASSO
(3.3.4). However, we did not eliminate any feature listed in Table 4 based on the results of
these four methods since there is no agreement among them. For example, a feature that
is considered insignificant by a method would be selected as an important feature by an-
other. Therefore, we used such methods to understand the relationship between variables
and provide insight into the data. In Section 4.1.1, the effect of the lagged features on fore-
casting is studied by training the models using only the first lagged features, then repeat-
ing training after adding the second and third lagged features. To present the results of
feature importance methods, four or five datasets out of ten were selected for the sake of
brevity.

3.3.1. Pearson’s Correlation

Pearson’s correlation coefficient measures the linear relationship between two vari-
ables [59]. Figure 11 displays the correlation matrix for Al-Jouf while the same is displayed
for Al-Khafji in Figure 12. The correlation matrices for Caracas and Toronto are shown in
Figure 13 and Figure 14. Table 7 lists the most significant correlations between GHI and
other features of the five datasets. The strongest positive correlation is between GHI and
its last hour value while the strongest negative correlation is between GHI and hour cosine
except for Toronto dataset, which is with Zenith Angel of lag 1. From Table 7, it is noticed
that almost the same set of important features appear in the five datasets and thus, loca-
tion or climate has a slight impact on feature correlation. For example, DNI of lag 2 is more
important in Toronto dataset than in other datasets.
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Figure 11. Al-Jouf dataset correlation matrix
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Figure 12. Al-Khafji dataset correlation matrix.
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Figure 13. Caracas dataset correlation matrix.
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Figure 14. Toronto dataset correlation matrix.

Table 7. Significant Pearson’s correlation (PC) between GHI and other features.

Al-Jouf Al-Khafji Wadi-Addawasir Caracas Toronto
Feature PC Feature PC Feature PC Feature PC Feature PC
GHI lagl 0.88 GHI lagl 0.87 HC -0.91 HC -0.80 GHI lagl 0.87

HC -0.82 HC -0.81 GHI_lagl 0.86 GHI lagl 076 ZA_lagl -0.68
ZA_lagl -0.82 ZA_lagl -078 ZA_lagl -0.80 ZA_lagl -0.61 DNI_lagl 0.64

DNI_lagl 0.59 DNI_lagl 0.63 HS 0.53 HS 0.58 GHI_ lag2 0.64
HS 0.47 HS 0.51 DNI lagl 053 DNI lagl 049 DNI lag2 0.54
GHI lag2 047 GHI lag2 047 HC -0.51

3.3.2. Mutual Information

Mutual Information (MI) measures the reduction in uncertainty for one variable
given a known value of the other variable [60]. Figure 15 shows the MI values of all fea-
tures for five datasets (Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). The most
significant features for GHI prediction are GHI lagged observations and Zenith Angle
lagged observations. Hour sine and cosine are also important in GHI prediction based on
MI values. As in the case of Pearson’s correlation, location or climate has a slight impact
on MI values since the same set of features show significance in the five datasets with
small variation. For example, Hour sine and cosine are less important in Toronto dataset

Lrd

(1]
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than others. GHI and Zenith Angle lagged observations are more important in Saudi lo-
cations than in Caracas or Toronto.

Mutual Information Values (all Features)
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Figure 15. MI values of all features for Al-Jouf, Al-Khafji, Wadi-Addwasir, Caracas, and Toronto datasets.

3.3.3. Forward Feature Selection (FFS) and Backward Feature Elimination (BFE)

Forward feature selection is an iterative method, which starts with no feature in the
model. In each iteration, the feature which best improves the model is added till an addi-
tion of a new variable does not improve the performance of the model. Backward feature
elimination on the other hand starts with all the features and removes the least significant
feature at each iteration. This process is repeated until no improvement is observed with
feature removal [61]. Table 8 shows ten selected features by FFS & BFE for five datasets
(Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). Features selected by both meth-
ods for the same dataset are italicized. From Table 8, we can see that some features are
selected in all datasets, such as Hour sine, DHI, DNI, and GHI lagged observations while
other features are rarely selected like Wind Speed, Relative Humidity, Barometric Pres-
sure, and Air Temperature.

Table 8. Selected features by FFS & BFE.

Al-Jouf Al-Khafji Wadi-Addawasir Caracas Toronto

FES BFE FFS BFE FFS BFE FES BFE FFS BFE

HS HS HS HS HS HS HS HS MS HS

HC HC WS_lagl  DHI lagl HC HC HC HC HS DHI_lagl
DHI_lagl DHI lagl DHI_lagl DNI_lagl DHI lagl DHI lagl DHI lagl DHI_lagl GHI lagl DNI_lagl
DNI_lagl DNI_lagl DNI_lagl GHI lagl DNI lagl DNI _lagl DNI lagl DNI lagl ZA_lagl GHI lagl
GHI_lagl GHI lagl GHI lagl BP_lagl GHI_lagl GHI lagl GHI lagl GHI lagl WS_lagl AT lagl
ZA_lagl ZA_lagl ZA lagl DHI lag2 DHI lag2 DHI lag2 RH_lagl RH_lagl WS_lag3 ZA _lag?
DHI lag2 DHI lag2 DHI lag2 DNI lag2 ZA_lag3 ZA _lag3 GHI lag2 DNI lag2 DNI lag2 DHI lag3
DNI lag2 DNI_lag2 DHI lagd GHI lag2 GHI lag3 GHI lag2 ZA_lag2 ZA _lag2  GHI lag3 DNI lag3
GHI lag3 GHI lag2 DNI_lagd ZA_lag2 ZA _lagl ZA_lag2 WS_lag3  WS_lag3 ZA _lag3  GHI lag3
ZA_lag3 AT lagl GHI lag3 GHI lag3 RH lagl DNIlag2 AT lagd AT lag3 RH_ lag3 AT lag3

3.3.4. LASSO Feature Selection

The LASSO method regularizes model parameters by shrinking the regression coef-
ficients, reducing some of them to zero. The feature selection phase occurs after the shrink-
age, where every non-zero value is selected to be used in the model [62]. Figure 16 shows
the selected features based on the LASSO method for five datasets (Al-Jouf, Al-Khafji,
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Wadi-Addawasir, Caracas, Toronto). The most significant features in all five datasets are
GHI lagged observations, especially the last hour value (GHI_lagl), and last hour Zenith
Angle value (ZA_lagl). DHI and DNI lagged observations are less important. Relative
Humidity seems to have importance in Caracas dataset. Surprisingly, time-related fea-
tures are insignificant in all five datasets.

Featurs imporiarce g Lasso Magel Fifurs umporiarce g Lasso Madel Faature importarce esng Lasso Madel
Feature mgertasc usng Lasio Madel ol | — gt | gt —
gl — B | — e g2 | [ g —
o il L] | ) Wl | ] L [}
WO gl 1 gt W gt | L gt
0 1 L Wt | 0wl |

" e il )| ol

13 15

LA Wil | il |

W g =l |

Bt |

g Bl

L™ "

A g LI

L e gt |

Hag o gt

B e - ag

gl L

Mgt o]

gl At |

gt g

M gl

- 8 gt [ ] -
e g - g - -
oM g} - gt - ]
oM jngl — gl ol =
o Loyl — o gl -_— —
Rt — gl [ e
o gt — g1 | ; LA _
gl | e ] a 1 e n 1% 5 o 5 5
0 Aan e LU T R
(a) (b) (©) (@

Figure 16. Selected features based on the LASSO method: (a) Al-Jouf; (b) Al-Khafji; (d) Caracas; (e) Toronto.

3.4. Models Development

In this section, five deep learning models have been explained: Long Short-Term
Memory (3.4.1), Gated Recurrent Unit (3.4.2), Convolutional neural network (3.4.3), Hy-
brid CNN and Bidirectional LSTM (3.4.4), and LSTM Autoencoder (3.4.5). All five models
are used for next-hour GHI forecasting while only LSTM model is used also for classifica-
tion to serve as Auto-Selective Model Prediction Engine.

3.4.1. Long Short-Term Memory (LSTM)

LSTM is a special type of Recurrent Neural Network (RNN) capable of learning long-
term dependencies and tends to work much better than traditional RNN on a variety of
tasks. In addition to the hidden state, LSTMs have the cell state that carries the relevant
information from the earlier steps to later steps. Along the way, the new information is
added to or removed from the cell state via input and forget gates. The output gate deter-
mines if the current memory cell will be output. More details about LSTM can be found
in [5], [63].

An LSTM model for the next hour GHI forecasting is implemented as shown in Fig-
ure 17. It consists of three LSTM layers for feature extraction and one dense layer to make
GHI prediction. Each LSTM layer has 128 hidden states. Another LSTM model with a sim-
ilar structure is implemented to work as Auto-Selective Model Prediction Engine with two
differences. First, two dense layers are used for classification instead of regression with 8
and 2 neurons respectively. Second, the criterion function is Cross-entropy loss instead of
Mean Squared Error loss (MSE).
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Figure 17. LSTM forecasting model.

3.4.2. Gated Recurrent Unit (GRU)

GRU is like LSTM, it also captures long-term dependencies, but it does it using reset
and update gates without any cell state. While the update gate determines how much of
the past information needs to be kept, the reset gate decides how much of the past infor-
mation to forget. GRUs are often faster and require less memory than LSTMs because they
require less computation [64].

A GRU model for the next hour GHI forecasting is implemented as shown in Figure
18. It consists of three GRU layers for feature extraction and one dense layer to make GHI
prediction. Each GRU layer has 128 hidden states.

GRU Layer GRU Layer GRU Layer
Hidden States: 128 Hidden States: 128 Hidden States: 128

Input Layer

TIIITTT]

Figure 18. GRU forecasting model.
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3.4.3. Convolutional neural network (CNN)

CNN is a type of neural network that is widely known in the computer vision field.
It consists of several convolutional and pooling layers followed by fully connected layers.
In convolutional layers, feature maps are created by applying convolution filters on inputs
while these feature maps are down-sampled in pooling layers. After several convolution
and down-sampling operations, features are flattened into 1D and passed to one or more
fully connected layers to generate the output. More details about CNN can be found in
[65], [66].

A CNN model for the next hour GHI forecasting is implemented as shown in Figure
19. It consists of two 1D-convolutional layers, one max-pooling layer, and two dense lay-
ers. In the first convolutional layer, 10 feature maps are created using a kernel of size 2
and stride of 2 while in the second convolutional layer, 5 feature maps are created. The
max-pooling layer uses a kernel of size 2 and a stride of 1.

Input 1D-CNN Layer Max-Pooling

1D-CNN Layer Flatten Layer
Layer Layer

Dense Layer

O Dense Layer

B 1 O O Output
O —~ 1—~@

©

33 Features

T 5 Flters
Kernel size= 2 O
Kernel size= 2 Stride=1
Stride=1

10 Filters
Kernel size= 2 —
Stride=2 —

Figure 19. CNN forecasting model.

3.4.4. Hybrid CNN-Bidirectional LSTM (CNN-BiLSTM)

Bidirectional-LSTM (BiLSTM) is an adjusted version of LSTM that contains two lay-
ers: one to process inputs in a forward direction, and another to process inputs in a back-
ward direction. This structure allows learning from past and future information. More
details about BiLSTM can be found in [67], [68].

In CNN and BiLSTM structure, convolutional and pooling layers are followed by
BiLSTM layers, then one or more dense layers to generate the output [69].

A CNN BiLSTM model for the next hour GHI forecasting is implemented as shown
in Figure 20. It has the same design as the CNN model illustrated previously with an ad-
ditional BiLSTM layer placed before the dense layers.
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Figure 20. CNN-BiLSTM forecasting model.

3.4.5. LSTM Autoencoder (LSTM-AE)

Autoencoder is a neural network that consists of two parts encoder and decoder. The
encoder receives inputs and compresses them into a feature vector called latent space
while the decoder decompresses the feature vector into an output. This data reconstruc-
tion process helps the model extract the most important features. LSTM Autoencoder
model is an Autoencoder in which both the encoder and decoder consist of LSTM layers
to learn temporal dependencies in sequence data. More about LSTM-AE can be found in
[70], [71].

An LSTM-AE model for the next hour GHI forecasting is implemented as shown in
Figure 21. Both the encoder and decoder have two LSTM layers, followed by a dense layer
to make GHI prediction.

Encoder Decoder

Input Layer

HED-EN:
R

Figure 21. LSTM-AE forecasting model.

3.5. Performance Evaluation Metrics
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In this paper, six performance evaluation metrics are used to evaluate the forecasting
models.

Mean Absolute Error (MAE) is the mean of the absolute values of the individual fore-
cast errors on overall examples (N) in the test set. Each forecasting error is the difference
between the actual value (actual GHI) and the forecast value (forecast GHI). A lower value
of MAE is better. It is calculated as follows [72].

N
1
MAE = N2|actual GHI; — forecast GHI;| 5)
i=1
Root Mean Square Error (RMSE) is the standard deviation of the residuals or the fore-
cast errors. It measures how spread out the residuals are and how the data is concentrated

around the line of regression. A lower value of RMSE is better. It is calculated as follows
[72].

N
1
RMSE = NZ(actual GHI, — forecast GHI,)? ©6)

i=1

Coefficient of determination (R?) is a statistical measure that determines the proportion
of variance in the dependent variable that can be explained by the independent variable.
It shows how well the data fit the regression model. R? value ranges from 0 to 1 and a
higher coefficient indicates a better fit for the model. It is calculated as follows [72].

N ,(actual GHI; — forecast GHI;)?

RZ=1- —
N, (actual GHI; — GHI)2

?)

Mean Absolute Percentage Error (MAPE) is a measure of forecasting accuracy. This per-
centage indicates the average difference between the forecasted value and the actual
value. The smaller the MAPE the better the forecast. It is calculated as follows [73].

x 100% (8)

N
1 actual GHI; — forecast GHI;
MAPE = — Z |
N ¢ - actual GHI;
i=

Normalized Metric (nMetric) is used to compare multiple forecasting methods applied
to different datasets. The GHI range in a particular location affects the forecast results
significantly. nMetric takes this fact into account by dividing the obtained Metric by the
mean of GHI of the test dataset as shown in the equation below, which could allow a fairer
comparison [6]. Normalization could be applied to any metric, such as MAE, RMSE, and
MAPE.

Metric

GHI
Forecast Skills (FS) is used to compare a proposed forecasting model performance
metric with a reference model performance metric. A commonly used reference model in

the literature is the persistence method. The evaluation metric could be RMSE, MAE, or
others. FS is calculated as follows [6].

©)

nMetric =

Metric proposed

FS =1 100 % (10)

B Metric persistence
Note that for performance analysis in Section 4, we have used both standard and
normalized versions of MAE, RMSE, and MAPE.
3.6. Tool Implementation

In this paper, PyTorch, which is an open-source machine learning framework devel-
oped by Facebook's Al Research lab, was used as the platform to create deep learning
models, where Python3 was employed as the programming language. The experiments
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were performed on a laptop with Intel Core i7-11800 H CPU, NVIDIA GeForce RTX 3070
GPU, and 16 GB memory. However, all deep learning models were developed using GPU.
The hyperparameters used in each model are listed in Table 9 in addition to the optimiza-
tion methods.

Table 9. Models hyperparameter.

Learning Number
Model Batch size Layers rate of Optimization
epochs
. . . Dropout= 0.2, ReLU func-
LSTM 256 O h;‘:iesrt‘altaezeisgz:;ﬁi;d’ 0.001 100 tion, Weight decay =
/ 0.000001, Adam
Dropout= 0.2, ReLU func-
3 hidden layers with 128 hid- tion,
GRU 256 den states,1 dense layer 0.001 100 Weight decay = 0.000001,
Adam
2 conv layers with 10 and 5 Dropout= 0.2, ReLU func-
CNN 64 filters, 1 max-pooling layer, 2 0.001 100 tion, Adam, batch normal-
dense layers ization
CNN- 2 conv layers with 10 and 5 Dropout= 0.2, ReLU func-
. 64 filters, 1 max-pooling layer, 1 0.001 100 tion, Adam, batch normal-
BiLSTM . o
BiLSTM layer, 2 dense layers ization
4 LSTM layers with 128 hid- ReLU function, weight
LSTM-AE 256 den states, 1 dense layer 0.001 100 dcay=0.000001, Adam

4. SENERGY: Results and Evaluation

The performance of the two SENERGY components, Forecasting Engine and Auto-
Selective Model Prediction Engine are evaluated in Section 4.1. and 4.2 respectively. The
evaluation of both components is analyzed from several aspects, such as climate and lo-
cation, sunny and cloudy weathers, and summer and winter seasons. Then, the achieved
gain and loss in forecasting performance using SENERGY is discussed in Section 4.3. Fi-
nally, a comparison of SENERGY performance with other related works is provided in
Section 4.4.

4.1. SENERGY: Forecasting Engine Performance

In this section, first, the effect of the lagged features on forecasting is analyzed (4.1.1).
Then, the forecasting results of five deep learning models, which are described earlier in
Section 3.4 are analyzed here. The analysis is provided using four aspects: climate and
location (4.1.2), sunny and cloudy weather (4.1.3), summer and winter seasons (4.1.4), and
forecasting error results (4.1.5). The results reported are the average of the evaluation met-
rics for fifty simulations, which were calculated for unseen data (testing datasets). The size
of each testing dataset is given in Table 6 and the used performance evaluation metrics
are described in Section 3.5.

4.1.1. Effect of Lagged Features on Forecasting

In Section 3.2.2, we explained how lagged features were created and why we decided
to use lag equal to 3 (the last three hours of observations). In this Section, we use Toronto
dataset to study the effect of using lag equals 1, 2, and 3 to examine the effect of such
different lags on the forecasting results. Figure 22 shows the difference in MAE, RMSE,
and MAPE for the five forecasting models when using lag equals to 1, 2, and 3 with To-
ronto dataset. With LSTM, GRU, and CNN-BiLSTM model, it is noticed that using lag 3
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made the results slightly worse, except with MAPE, which had improved. In contrast, the
LSTM-AE model achieved better results in all error metrics with lag 2 over lag 1 and the
best results with lag 3. Given the fact that GHI is only highly correlated with GHI for lag
1 (see Table 7), using lag equals 1 would give satisfactory results, especially if dimension-
ality might affect the model efficiency. Otherwise, it is worth trying different lagged fea-
tures to see if that would result in better performance as in the case of the LSTM-AE model,
especially because the climate in the data source might have an effect as well.

Effect of Lagged Features (Toronto)
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Figure 22. The effect of the lagged features on Toronto dataset.

4.1.2. Effect of Climate and Location on Forecasting

The performance of five deep learning-based forecasting models (LSTM, GRU, CNN,
CNN-BiLSTM, and LSTM-AE) is compared in this Section for all the ten datasets for the
task of next-hour GHI prediction. Forecasting results using MAE metric and its normal-
ized value are plotted in Figure 23. From the figure, we can see that the best MAE and
nMAE values are associated with Wadi-Addwasir while the worst values are associated
with Caracas and Toronto, except for LSTM-AE model. The high performance related to
Wadi-Addwasir dataset might be attributed to the completeness of this dataset compared
to other Saudi datasets since it has the least number of missing days and the largest train-
ing set size. In contrast, the low performance associated with Caracas and Toronto da-
tasets might be attributed to the high percentage of cloudy hours (or unclear sky condi-
tion) compared to other Saudi locations. The best model according to MAE and nMAE
values is LSTM-AE model, which achieves nMAE equal to 0.02 with Wadi-Addwasir and
Toronto datasets. This excellent performance is attributed to the ability of the model to
reconstruct the inputs into a better representation in addition to extracting the temporal
features. On the other hand, the worst performance is associated with CNN model with
Saudi datasets while CNN-BiLSTM model is the worst for Caracas and Toronto. With
time-series data, the temporal features are the most important features, which cannot be
captured by the CNN model.
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Figure 23. Forecasting results of 5 models for all datasets (a) MAE; (b) nMAE.

Forecasting results using RMSE metric and its normalized value are plotted in Figure
24. From the figure, we can see that the best RMSE and nRMSE values are associated with
Wadi-Addwasir for all five models. This is also observed earlier with MAE and nMAE
results. On the other hand, the worst values are associated with Caracas and Toronto for
all models, except for LSTM-AE, which achieved the worst nRMSE value equal to 0.08
with Al-Khafji dataset. We mentioned earlier the advantage of Wadi-Addwasir dataset
compared to other Saudi data and the disadvantage of Caracas and Toronto. Regarding
Al-Khafji dataset, it has missing data equal to one year, which might explain the low per-
formance of LSTM-AE model here. However, LSTM-AE model is the best model for all
locations while CNN is the worst with Saudi datasets and CNN-BiLSTM model is the
worst with Caracas and Toronto data. As mentioned earlier, the ability of LSTM-AE to
reconstruct the inputs into a better representation in addition to extracting the temporal
features might be the reason behind its superior performance.

RMSE [all Datasets) nAMSE {all Datasets)

" . . " il ¥ i 1 1t 1 14 i 23 :

(a) (b)

Figure 24. Forecasting results of 5 models for all datasets (a) RMSE; (b) nRMSE.

Forecasting results using the MAPE metric and its normalized values are plotted in
Figure 25. From the figure, we can see that the location effect on MAPE and nMAPE values
are different from what was observed earlier with MAE and RMSE results. For example,
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the best nMAPE value for LSTM is 0.04 achieved with Al-Baha, Tabuk, and Wadi-
Addwasir while for GRU model it is also 0.04 achieved with Tabuk and Wadi-Addwasir.
For CNN, the best nMAPE value is 0.13 achieved with Caracas. For CNN-BiLSTM, the
best nMAPE value is 0.02 achieved with Tabuk and Wadi-Addwasir. For LSTM-AE, the
best nMAPE value is 0.02 achieved with Hail, Taif, and Caracas. On the other hand, the
worst values for all models are associated with Toronto, except for LSTM-AE model,
which achieved the worst value, which is 0.07 with Al-Khafji. Comparing models perfor-
mances, the best is LSTM-AE model for five datasets (Al-Baha, Hail, Taif, Caracas, To-
ronto) and CNN-BiLSTM model for four datasets (Al-Khafji, Arar, Tabuk, Wadi-
Addwasir). Otherwise, the worst is CNN model for all locations. MAPE (refer to Equation
(8)) is different from other metrics because it gives the forecasting error relative to the
actual GHI, which might explain the different results observed with this metric.

MAPE {all Datasets] AMAPE (all Datasets)

b ]\ ihidilh ] ] ll L Wik ‘

(a) (b)
Figure 25. Forecasting results of 5 models for all datasets (a) MAPE; (b) nMAPE.

Figure 26 shows the FS results based on MAE and RMSE for all the forecasting mod-
els, which represent the performance improvement compared to the persistence method.
The best FS results are achieved by the LSTM-AE model, which is 93% in MAE with Hail
and Wadi-Addawasir datasets while it is 92% in RMSE with Toronto dataset.
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Figure 26. Forecasting results of 5 models for all datasets (a) FSmak; (b) FSrumse.


https://doi.org/10.20944/preprints202208.0345.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2022 d0i:10.20944/preprints202208.0345.v1

In summary, looking at the performance from the models’ perspective (refer to Fig-
ure 23, Figure 24, and Figure 25), itis evident that the LSTM-AE model achieved the lowest
nMAE, nRMSE, and nMAPE, which is equal to 0.02. This excellent performance, as men-
tioned earlier, is attributed to the ability of the model to reconstruct the inputs into a better
representation in addition to extracting the temporal features. The LSTM and GRU mod-
els come in second place while the CNN model achieved the worst results. With time-
series data, the temporal features are the most important features, which cannot be cap-
tured by the CNN model. However, CNN-BiLSTM is the worst model for Caracas and
Toronto according to MAE and RMSE results. In contrast, according to nMAPE metric,
the CNN-BiLSTM model outperformed the LSTM-AE with four out of ten datasets (Al-
Khafji, Arar, Tabuk, and Wadi-Addwasir) and both models achieved the same value with
Al-Jouf.

Looking at the performance from the locations’ perspective (refer to Figure 23, Figure
24, and Figure 25), we can notice that the best nMAE, nRMSE, and nMAPE results for all
models are mostly associated with Wadi-Addwasir dataset. On the other hand, the worst
results are linked with Toronto and Caracas datasets. As mentioned earlier, the high per-
formance related to Wadi-Addwasir dataset might be attributed to the completeness of
this dataset compared to other Saudi datasets since it has the least number of missing days
and the largest training set size (see Table 6). The second-best performance is associated
with Tabuk dataset. Despite the high number of missing records, it has the highest per-
centage of sunny hours and the lowest percentage of cloudy hours among other datasets
(see Figure 9). In contrast, the low performance associated with Toronto and Caracas da-
tasets might be attributed to the high percentage of cloudy hours (or unclear sky condi-
tion) compared to other Saudi locations (see Figure 9). This in turn means GHI varies from
time to time and is hard to predict. We can infer that the most important factor that affects
models’ performance is the climate in the dataset source, followed by the completeness of
the dataset to help the model learn the GHI variations accurately.

4.1.3. Effect of Sunny and Cloudy Weather on Forecasting

To examine the effect of weather type on models’ performance, we plot in Figure 27
the actual vs. predicted GHI of one sunny and one cloudy day by all the five models for
five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, and Toronto. The first three-
hour of GHI values after sunrise were used as inputs to the models. Therefore, the predic-
tion starts from 11:00 am or 10:00 am depending on the sunrise time in the location of the
data source. Similarly, the last time is 18:00 or 17:00 depending on the sunset time, which
is the last time for GHI prediction of the day. From Figure 27, we can observe that predict-
ing GHI on sunny days is more accurate than on cloudy days. It is also noticed that the
LSTM-AE model is the most accurate model on sunny and cloudy days. Even if it is not
very accurate as in the case of Toronto cloudy day, it is able to capture the trend line
closely. In contrast, the CNN-BiLSTM model sometimes achieves a closer prediction than
the LSTM-AE model, but it could not capture the trend line accurately like the LSTM-AE
model as shown in the case of Toronto cloudy day. On the other hand, the CNN model
achieves the worst prediction, especially on cloudy days.
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Figure 27. Sunny vs. Cloudy -- Actual Vs. predicted GHI of 5 models for: (a) Al-Jouf sunny; (b) Al-Jouf cloudy; (c) Al-Khafji sunny;
(d) Al-Khafji cloudy; () Wadi-Addwasir sunny; (f) Wadi-Addwasir cloudy; (g) Caracas sunny; (h) Caracas cloudy; (i) Toronto
sunny; (j) Toronto cloudy
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4.1.4. Effect of Summer and Winter Seasons on Forecasting

To examine the effect of seasons on models’ performance, we first show, in Figure 28,
the actual vs. predicted GHI of the coldest and hottest months (January and August) by
all models for five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, and Toronto.
Like sunny and cloudy results, we found that the LSTM-AE model is the most accurate in
January and August while CNN is the worst model. It is noticed also that the CNN-
BiLSTM model performs poorly with specific datasets as in the case of Caracas and To-
ronto because the GHI readings are not stationary. Figure 29 shows the MAE for summer
and winter for each dataset. The MAE metric is selected for no specific reason, we could
have plotted RMSE and other metrics, or all the metrics considered in this paper. How-
ever, we plot one metric for the sake of brevity. We divided the year into two seasons for
simplification and because Saudi Arabia does not experience four seasons. Summer in-
cludes May, June, July, August, September, and October while winter includes the re-
maining months. From Figure 29, we can see that winter MAE is higher than summer in
all datasets, except for Taif, Caracas, and Toronto where MAE is higher in summer. An-
other observation is that the CNN model and CNN-BiLSTM model have the largest dif-
ference in MAE from summer to winter while the LSTM-AE model has a very slight dif-
ference.
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Figure 29. MAE of Summer Vs. Winter for 5 models for: (a) Al-Baha; (b) Al-Jouf; (c) Al-Khafji; (d) Arar; (e) Hail; (f) Tabuk; (g) Taif;
(h) Wadi-Addwasir; (i) Caracas; (j) Toronto.
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4.1.5. Digging Deeper into Forecasting Error for Each GHI Prediction

The forecasting error is defined earlier (see Equation (4)). To depict the forecasting
error distribution and outliers of the five models for all datasets, a Boxplot of the forecast-
ing error is displayed in Figure 30. Note that the plot for each location contains forecasting
errors for each data item in the testing dataset that is used for prediction (see Table 6 for
details about the testing sets sizes). All models’ forecasting error interquartile range is
below 100 except for Caracas dataset. It is clear from the figure that the forecasting error
of the LSTM-AE model has the smallest interquartile range with the fewest outliers.
Model-wise, the forecasting error of the CNN-BiLSTM model has the highest outliers
while dataset-wise, Toronto and Taif datasets have the highest outliers.
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Figure 30. Boxplot of GHI forecasting error of 5 models for 5 models for: (a) Al-Baha; (b) Al-Jouf; (c) Al-Khafji; (d) Arar; (e) Hail; (f)
Tabuk; (g) Taif; (h) Wadi-Addwasir; (i) Caracas; (j) Toronto.

The forecasting error is used to determine the “best model” label of each record in
the testing datasets of all locations. The best model is the model that achieves the least
forecasting error for each record. Figure 31 shows the achieved percentage of all the five
models as the "best model" based on the forecasting error. The percentage is calculated by
dividing the number of records in which a model is the best by the total number of records.
It is clear from the pie chart that LSTM-AE model is the best model for 54% of the records
while CNN-BiLSTM comes in second place with 17%. LSTM and GRU models achieved
the least forecasting error for 11% of the records whereas CNN does so for 7% only.

Best Model Percentage

11% LSTM
11% ® GRU
7% ECNN
: _ ® CNN-BiLSTM
.L%I m LSTM-AE

Figure 31. The achieved percentage of the models as "best model" based on the forecasting error.

4.2. SENERGY: Auto-Selective Model Prediction Engine Performance

In Section 4.1, we compared the five forecasters’ performances on ten datasets and
found that according to MAE and RMSE results, the LSTM-AE model is the best forecaster
without competition. However, according to the MAPE metric, the LSTM-AE model is the
best forecaster with half of the datasets while CNN-BiLSTM is the best with the other half.
We also compared the five forecasters” performances using the forecasting error of each
individual record (see Equation (4)) and we found that LSTM-AE model is the best model
for 54% of the total records while CNN-BiLSTM is the best for 17%. The remaining models
CNN, GRU, and LSTM together achieved 29% only (see Figure 31). This imbalance in the
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data that comes from the forecasting models’ performance variation would affect the clas-
sifier training negatively. Considering both the overall performance of the forecasters rep-
resented in MAPE metric and item-wise performance represented in the forecasting error,
we decided to use only two models: LSTM-AE, and CNN-BiLSTM in SENERGY tool to
mitigate the imbalanced data issue. Accordingly, we built an Auto-Selective Model Pre-
diction Engine that chooses one out of the best two models based on the same inputs used
for forecasting. We will incorporate in the tool additional models for GHI forecasting in
the future. A description of the Auto-Selective Model Prediction Engine structure is given
in Section 3.4.1. Figure 32 shows the confusion matrix of the Engine. As shown in the ma-
trix, correctly classified CNN-BiLSTM records account for 8.4% while LSTM-AE records
account for 72.57%.

Confusion Matrix
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& True CNN-BIiLSTM False LSTM-AE
m 294 515
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Figure 32. Auto-Selective Model Prediction Engine confusion matrix.

Table 10 presents the classification report of the Auto-Selective Model Prediction En-
gine. It shows the precision, recall, F1-score, and support of both models CNN-BiLSTM
and LSTM-AE separately, then, the classification accuracy of the engine. The total number
of records used for testing the engine is 3500 as shown in Support column. Out of which,
CNN-BiLSTM model accounts for 23% (809/3500), and LSTM-AE model accounts for 77%
(2691/3500). The percentage of correctly classified records of each model is shown in Recall
column. CNN-BiLSTM model recall is 36% while LSTM-AE model recall is 94%. This large
difference between both models’ accuracy is mainly attributed to data imbalance, which
in turn renders the overall engine accuracy to 81% (F1-score in the third row).

Table 10. Auto-Selective Model Prediction Engine classification report.

Precision Recall F1-score Support
CNN-BiLSTM 66% 36% 47% 809
LSTM-AE 83% 94% 88% 2691
Accuracy 81% 3500
Macro average 75% 65% 68% 3500
Weighted average 79% 81% 79% 3500

Figure 33 shows the feature importance using the Random Forest classifier method.
Random Forest is used here not to make a prediction or eliminate features, but rather to
provide insights about features ranking. The most important feature for classification is
the solar zenith angle followed by DHI value of lag 1. The least important features are
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time-related features, such as DS, DC, MS, MC, and HS. In contrast, HS and HC are
important features for forecasting (refer to Section 3.3).
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Figure 33. Feature importance using Random Forest classifier.

Our objective in this paper is to introduce our deep learning-based auto-selective
approach to predicting the best performing machine learning model for GHI forecasting.
We will investigate and improve the data balancing and other approaches in the future to
improve the performance of the proposed auto-selective approach.

In the coming sections, the classification results are analyzed from three aspects:
climate and location (4.2.1), sunny and cloudy weathers (4.2.2), and summer and winter
seasons (4.2.3).

4.2.1. Model Prediction: Climate and Location

To further analyze the classification results, we first calculated the Auto-Selective
Model Prediction Engine accuracy for each location as presented in Figure 34. The number
of total records is also incorporated in the figure to see its effect on accuracy. The highest
classification accuracy is 90% associated with Caracas and Toronto due to a large number
of records for both locations while the lowest classification accuracy is 69% associated
with Tabuk for which the low number of records plays a role in addition to the close fore-
casting performance between both forecasting models for this location (see Section 4.1.2).
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Figure 34. Classification accuracy of Model Prediction Engine based on location with total records.

We also calculated the recall of both models CNN-BiLSTM and LSTM-AE for each
location as shown in Figure 35. The recall percentage for LSTM-AE model is 90% or higher
for all locations except for Al-khafji, which equals 59%. On the other hand, the recall per-
centage for CNN-BiLSTM ranges from 9% to 44% except for Al-khafji, which equals to
86%. The reason for the superiority of CNN-BiLSTM model accuracy over LSTM-AE
model associated with Al-khafji data is the imbalance in both models with 133 versus 97,
unlike other datasets in which the total records of LSTM-AE is always higher than CNN-
BiLSTM. This, in turn, is explained by the high variation in forecasting performance be-
tween CNN-BiLSTM model with MAPE of around 16% and LSTM-AE with MAPE

Recall of Forecasting Models

around 35% for Al-khafji dataset (see Figure 25).

Hail ait Wadi-Addawasir Caracas
Figure 35. Recall of the two forecasting models in Model Prediction Engine.
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4.2.2. Model Prediction: Sunny and Cloudy Weathers

The classification accuracy of the Model Prediction Engine on sunny days is 75% and
86% for cloudy days while the total record for sunny days is higher than cloudy by 28%.
These results contradict forecasting results in which forecasting on sunny days is more
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accurate than on cloudy days. The reason for that is the close prediction for both forecast-
ing models CNN-BiLSTM and LSTM-AE in sunny weather, which makes it difficult for
the classifier to pick one model. On the other hand, LSTM-AE shows superior perfor-
mance on cloudy days, which the classifier learned from the data. Figure 36 shows the
recall for each model in sunny versus cloudy weather. Notably, CNN-BiLSTM recall in
cloudy weather is better than sunny with 38% while LSTM-AE recall in sunny weather is
2% better than cloudy. As explained earlier, on sunny days CNN-BiLSTM and LSTM-AE
have a close prediction that causes the classifier to misclassify CNN-BiLSTM records as

LSTM-AE.
Recall of Forecasting Models (Sunny Vs. Cloudy)
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Figure 36. Recall of the two forecasting models (sunny Vs. cloudy) in Model Prediction Engine.

4.2.3. Model Prediction: Summer and Winter Seasons

The classification accuracy of the Model Prediction Engine in summer is 82% and
80% for winter even though the total number of records for summer is less than winter by
14%. This slight difference in the performance between seasons is aligned with the same
trend found in the forecasting results. Figure 37 shows the recall for each model in sum-
mer versus winter. It is notable that CNN-BiLSTM recall in summer is better than in win-
ter with a 7% difference while LSTM-AE recall is almost the same.
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Figure 37. Recall of the two forecasting models (summer Vs. winter) in Model Prediction Engine.

4.3. SENERGY: Performance Gain and Loss
4.3.1. Actual Gains and Losses

To understand the benefit of using SENERGY, we calculated the performance gain
(G) or loss (L) for the tool versus a model (m) as follows: the difference between the fore-
casting error of a model (CNN-BiLSTM, LSTM-AE) and the forecasting error of the model
chosen by the tool.

GorL= FE, — FE, (1)

A positive value indicates a gain, and a negative value indicates a loss. The gain or
loss is calculated for each record in the testing set of Model Prediction Engine (total of
3500 records) using Equation (11). Table 11 shows an example of gain or loss calculation
for three real records. As shown in the first row, the forecasting error of CNN-BiLSTM is
67.73 and for LSTM-AE is 4.83. The tool is able to choose the best model correctly for this
record, thus, the achieved forecasting error is 4.83. To measure the gain over CNN-
BiLSTM model, we calculate the difference between 67.73 and 4.83, which is 62.90. There-
fore, we can say that the tool achieved gain in performance equals 62.90 over CNN-
BiLSTM for this record. On the other hand, no gain was achieved for the tool over LSTM-
AE model because it is the best anyway. Similarly, in the second record, the forecasting
error of CNN-BiLSTM is 128.60 and for LSTM-AE is 44.41. The tool failed to choose the
best model correctly for this record, thus, the achieved forecasting error is 128.60. There is
no gain for the tool over CNN-BiLSTM model in this case. The difference between the
forecasting error of LSTM-AE model and the forecasting error of the wrong best model
chosen by the tool is 84.19. It is a negative number; thus, it is a loss in tool performance
for LSTM-AE model for this record.

Table 11. An example of Gain/Loss of SENERGY over two models.

FE FE FE G/L G/L
CNN-BiLSTM LSTM-AE Best Model CNN-BiLSTM LSTM-AE
67.73 4.83 4.83 62.90 0

128.60 44.41 128.60 0 -84.19
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Figure 38 shows the gain or loss of SENERGY versus CNN-BiLSTM model for each
record. The gain is positive and hence above to zero line and the loss is negative and hence
below the zero line. Locations’ records are differentiated by colors. As noted, the gain is
large in general because LSTM-AE model provides highly better forecasting than CNN-
BiLSTM model. In contrast, the loss is small because when CNN-BiLSTM model achieves
better forecasting than LSTM-AE model, the difference is small. Looking at gain or loss
from a location perspective, the largest gains are achieved with Caracas and Toronto da-
tasets while the smallest gains are achieved with Wadi-Addawasir, which is compatible
with forecasting results discussed in Section 4.1.2.

Gain/Loss versus CNN-BILSTM

Figure 38.Gain/loss of SENERGY versus CNN-BiLSTM.

Figure 39 shows the gain or loss of SENERGY versus LSTM-AE model for each rec-
ord. Locations’ records are differentiated by colors. The gain is small in general because
as we mentioned earlier when CNN-BiLSTM model achieves better forecasting than
LSTM-AE model, the difference is small. In contrast, misclassifying records for which the
best model is LSTM-AE as CNN-BiLSTM comes with a large loss because LSTM-AE ac-
complishes smaller forecasting error in general (refer to Table 11-second row for an exam-
ple). Looking at gain or loss from a location perspective, the largest gains are achieved
with Saudi datasets while the largest losses are achieved with Caracas and Toronto da-
tasets, which is compatible with forecasting results discussed in Section 4.1.2.

Note that despite the large losses, the SENERGY tool still offers gains over the LSTM-
AE method. These low gains and high losses are because the LSTM-AE method provides
significantly better performance compared to any other method causing the LSTM-AE
forecasting method to own most of the labels in the classification dataset (2691 out of 3500)
as the best performing forecasting method, and this created a major data imbalance prob-
lem causing poor classification accuracy. Partly, to some extent, the performance of the
LSTM-AE method could be attributed to the fact that we used a relatively optimized
lagged feature for the LSTM-AE method giving LSTM-AE an advantage over the other
four forecasting methods (see Section 4.1.1). It is possible to incorporate in SYNERGY a
set of different features (e.g., Lagl, Lag2, Lag3) and treat each pair of a distinct feature
(from this feature set) and a forecasting model as a separate forecasting engine (or model)
and train the SYNERGY model prediction engine to predict a feature-model pair. This will
allow SYNERGY to predict the best combination of a feature and model for a given GHI
prediction instead of pre-defined fixed input features. The same approach can be
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extended to hyperparameter optimisations and other parameters in the machine learning
forecasting pipeline. These feature-related and parameter-related aspects of the SYN-
ERGY approach should be investigated further before robust conclusions can be drawn.
In addition, the use of additional meteorological datasets with high climate and data di-
versity and additional forecasting methods, coupled with solutions for data imbalance
problems could create a more balanced classification dataset and allow improvements in
the classification error leading to significantly better forecasting accuracies and gains.

The next section explains through graphical data what is potentially possible with
the proposed SENERGY approach if the data imbalance problem can be solved. The ex-
citing fact about the tool is that it would provide higher gains for higher diversity datasets
while usually, the opposite is true for a single forecasting method. Also, as explained ear-
lier, the approach allows selecting different models optimized for different climates rather
than optimizing a model for multiple climates that may provide an optimally average
performance for diverse climates. Moreover, further investigations into this approach
could allow further understanding of optimal models for specific climates and weather
leading to a better understanding of climates and forecasting methods and eventually de-
veloping better renewable energy forecasting approaches.

Gain/Loss versus LSTM-AE
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Figure 39. Gain or loss of SENERGY versus LSTM-AE.

Figure 40 displays the average gain or loss of the SENERGY tool for each record.
Locations’ records are differentiated by colors. The average is calculated by summing both
models’ gain/loss values and dividing the sum by 2.
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Figure 40. Average gain/loss of SENERGY.

4.3.2. Potential Performance

In the previous section, we demonstrated the gain and loss of SENERGY, which can
choose the best forecasting model among the two models only. However, in an ideal situ-
ation, SENERGY would choose the best forecaster of the five models included in this work
or even more models in the future. Therefore, the potential gain or loss is calculated here
assuming that SENERGY can choose the best out of five forecasting models with 100%
classification accuracy.

Figure 41 shows the gain of SENERGY over LSTM and GRU models in an ideal situ-
ation. There is no loss here because as mentioned before, the classification accuracy is
100%. It is noted that the gain over both models is almost the same for all locations because
the forecasting performances of both models are convergent (refer to Section 4.1.2 ). loca-
tion-wise, the largest gains of both models come with Caracas and Toronto datasets while
the lowest gains are achieved with Al-Khafji and Wadi-Addawsir.

(a) (b)

Figure 41. Gain of SENERGY over:(a) LSTM; (b) GRU.

Figure 42 shows the gain of SENERGY over CNN and CNN-BiLSTM models in ideal
situation. There is no loss here because as mentioned before, the classification accuracy is
100%. Gain over CNN model is like gain over CNN-BiLSTM model although the latter
has more outliers. Looking at the gain from a location perspective, the largest gains are
achieved with Caracas and Toronto datasets while the lowest gains are achieved with Al-
Khafji and Wadi-Addawsir.
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(a) (b)
Figure 42. Gain of SENERGY over:(a) CNN; (b) CNN-BiLSTM.

Figure 43 (a) shows the gain of SENERGY over LSTM-AE model. Unlike other mod-
els, the largest gains are achieved with Al-Khafji. On the other hand, the lowest gains are
related to Wadi-Addawsir like other models. Figure 43 (b) shows the gain of SENERGY
over all the five models as a boxplot. It is obvious that the largest gain is achieved with
CNN and CNN-BiLSTM models. Also, gain over LSTM and GRU models is similar while
gain over LSTM-AE is very small since it is the best forecaster for most of the records
anyway.

SENERGY Gain aver LSTM-AE SENERGY Gain
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Figure 43. Gain of SENERGY:(a) over LSTM-AE; (b) as a boxplot for the five base models.
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4.4. SENERGY: Comparison with other Works

To the best of our knowledge, no work in the literature suggests a similar tool to
combine deep learning for forecasting and classification to improve solar radiation fore-
casting performance and generalizability. Therefore, the comparison here will be mainly
based on the forecasting results. The works that we have selected in this section for com-
parison with our tool SENERGY are based on two criteria. Firstly, these compared works
propose models for forecasting next-hour GHI, and, secondly, they use multiple datasets
from different climates. For the reasons explained, the works such as [23], [39]-[43], [74],
[75] are excluded from the comparison because the datasets used are for one climate only.
The works such as [20], [26], [44], [45], [69], [76]-[79] are also excluded from the compari-
son because they propose forecasting models for different time horizons such as day
ahead or monthly GHI compared to the next-hour GHI that is the focus of our work in
this paper.
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Comparison in this section includes MAE, RMSE, MAPE results, and their normal-
ized values of all locations datasets used in each work whenever they are reported. The
comparison also includes the forecasting skill metric FSmae and FSrmse. Equations of all
these metrics are provided in Section 3.5. Moreover, GHI mean and standard deviation
are added to the comparison to show the variation among locations.

Table 12 presents the comparison of SENERGY to six works, which met the afore-
mentioned selection criteria. The comparison in the table is based first on information that
shows the data variation aspect: data source location, GHI mean and standard deviation,
climate classification of the location, and the use of weather parameters in addition to
historical values of GHI in inputs. The second aspect of comparison is the model used for
forecasting. For example, in reference [18], data from three locations in India are used,
which represent three different climate classes (Cwa, Cwb, Bsh). GHI mean and SD are
not provided. Weather data in addition to GHI historical values are used to develop the
proposed ensemble model of XGBF-DNN. The third aspect of comparison is performance
metric results, which are compared later in multiple figures.

Table 12. Comparison of SENERGY to related works.

Ref HI HI Weath
N Location G G Climate eather Model
# mean SD data
Jaipur e Cwa
[18]  New Delhi NA NA o Cwb v Ensemble r[’[)‘;c;\erl of XGBE-
Gangtok ¢ Bsh
Los Angeles 217.37  291.73 Ceb
[ S ,
[21] D??Vef 20333 276.40 « BSk Hybrid model of
Hawal11 S(flg I o012 307.79 o Af CEEMDAN-CNN-LSTMv
an e BWk
Tamanrasset 26998 361.83
Ajaccio C ARMA
. e Csa
[22] OTC;IQISI NA NA . Ceb x RE
eillo
CA e BSk
TX e Cfa
WA
[24] NA NA * Cfb v Generalized Random Forest
FL e Am
PA e Dfb
MN e Dfa
Bondville 398.04 284.66
Desert Rock 517.72 31473 o
e Cfa
Fort Peck 368.17 277.33
G(z)ro dvevcin e BWk 68 machine learning algo-
[25] Creek 442.77 289 ¢ BSk x rithms (Cubist model is the
ree o Cfb best in most cases)
Penn. State Uni  384.31 277.24 « Dfa
Sioux Falls 40694 277.55
Table Moun- 1) 19 28797
tain
Tucson 532.5 ¢ Bsh
27 A ELM
[27] Bermuda 417.1 N e Cfa *
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Brasilia 475.6 e A
Sonnblick 347.2 e Dfc
Solar Village 580.9
Golden 459.4
Darwin 516.4
Ny-Alesund 184.3
Toravere 256.9
Lerwick 198.3
Al-Baha 582.09 311.16
Al-Jouf, 528.14 296.47
Al-Khafji 486.59 275.73
Arar 48546  295.04 LSTM
This Hail 543.77  303.82 e BWh GRU
wor Tabuk 498.03 261.73 e A v CNN
k Taif 567.62  308.47 e Dfb CNN-BiLSTM
Wadi-Adda- 570 1) 301.60 LSTM-AE
wasir
Caracas 366.77  271.11
Toronto 524.82  297.12

Ref [27] has 20 locations, we present data about 10 locations from various climates for simplicity.
NA: Not available.

A fair comparison of models’ performances in the literature is a challenging task be-
cause first, there is great variation in the results reported by researchers. Also, it is difficult
to find best-performing model by comparing various statistical measures at the same time,
such as RMSE, MAE, MAPE, etc. For example, to compare six works included in this sec-
tion, we need multiple figures (Figure 44, Figure 45, Figure 46, Figure 47). Some metrics
are reported in these six papers and others are not. Sometimes normalized metrics’ results
are not given in a paper, but the GHI mean of each location is given. Therefore, we calcu-
lated normalized metrics in this case. Therefore, we could not include all the six works in
these figures. This highlights the need to standardize the performance metrics used to
report results. Each box plot in the following figures represents a performance metric re-
sult of several locations. Performance metrics results are averages calculated for a whole
dataset. The desirable outcome is a low box to show small error and a short box to show
small variation among different locations. The number of locations is ten for this work,
and it is shown beside the authors’ names in the legend for other works. SENERGY results
reported in the next figures are calculated assuming it can choose the best out of five fore-
casting models with 100% classification accuracy. To elaborate, our proposed approach
has the potential to provide better performance than any forecasting model alone, there-
fore, we reported the results for the ideal situation.

In Figure 44 (a), MAE results from Gao et al. [21] and Fouilloy et al. [22] are compared
to MAE results of five forecasting models and SENERGY in this work. It is noted that
reference [22] has the worst MAE results in terms of high value and large variation among
the three locations. On the other hand, LSTM-AE model and SENERGY show the best
performance in terms of both the lowest MAE values and low variations for ten locations.
The work of Gao et al. [21] appears to show the next best performance, however, it is
because the results are for four locations only. In Figure 44 (b), nMAE results are com-
pared. Reference [22] is excluded because nMAE is not reported there. We see how nor-
malization made the box of Gao et al. [21] bigger and thus, it is fair to say that LSTM, GRU,
LSTM-AE, and SENERGY show better performance even with a larger number of loca-
tions. Both for MAE and nMAE, LSTM-AE model and SENERGY show the same perfor-
mance because according to these metrics (averaged over each of the ten location da-
tasets), the best model is always LSTM-AE for all locations (refer to Figure 23).
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MAE Comparison nMAE Comparison

(a) (b)
Figure 44. Comparison of multiple works based on: (a) MAE; (b) nMAE.

In Figure 45 (a), RMSE results of four works: Kumari & Toshniwal [18], Gao et al.
[21], Lee et al. [24], and Bouzgou & Gueymard [27] are compared to RMSE results of the
five forecasting models and SENERGY results in this work. LSTM-AE model and SEN-
ERGY achieved the best performance in terms of lowest RMSE and smallest variation
among ten locations. The work of Gao et al. reference [21] comes in the second place, how-
ever, it includes four locations only compared to six and twenty in other works. The worst
performance in terms of value is associated with the work of Bouzgou & Gueymard ref-
erence [27], while the worst based on variation among locations is associated with the
work of Lee et al. reference [24] with six locations. In Figure 45 (b), nRMSE results of this
work are compared to four works. Since nRMSE is not reported in references [18] and [24],
they are excluded in (b) and another two works are added: Fouilloy et al. reference [22]
and Yagli et al. reference [25]. The best NRMSE results are achieved by LSTM-AE model
and SENERGY while the worst are related to Yagli et al. reference [25] in terms of low
value and Fouilloy et al. reference [22] in terms of large variation among locations. Com-
paring (a) and (b), we can see the benefit of normalization in providing a fair comparison.
For example, in (a) Gao et al. reference [21] box is smaller and lower than LSTM, GRU,
CNN, and CNN-BiLSTM models, but after normalization, it becomes higher than all of
them. In both (a) and (b), LSTM-AE model and SENERGY achieved the best performance
in terms of lowest value and smallest variation. Again, SENERGY shows the same perfor-
mance as LSTM-AE model because according to RMSE and nRMSE results, the best model
is always LSTM-AE for all locations (refer to Figure 24).
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Figure 45. Comparison of multiple works based on: (a)RMSE; (b)nRMSE.

In Figure 46 (a), MAPE results of Lee et al. reference [24], and Bouzgou & Gueymard
reference [27] are compared to the five forecasting models and SENERGY results in this
work. SENERGY achieved the lowest error with the smallest variation among ten loca-
tions while CNN model is the worst. In Figure 46 (B), the comparison is based on nMAPE
results and the same observation about the best and worst performance is true. The work
of Lee et al. reference [24] is eliminated in (b) since GHI mean is not reported and thus
nMAPE cannot be calculated. From (a) and (b), we can see the normalization effect on the
work of Bouzgou & Gueymard reference [27]. In (a), it shows better performance than
LSTM, GRU, and CNN-BiLSTM models while in (b) it becomes worse than all of them in
value or variation among locations. Unlike MAE and RMSE results, SENERGY outper-
forms LSTM-AE model based on MAPE and nMAPE because the latter is not the best
model for all locations according to these metrics (refer to Figure 25).

MAPE Comparison nMAPE Comparison

(@) (b)

Figure 46. Comparison of multiple works based on: (a) MAPE; (b) nMAPE.

In Figure 47 (a), FSmat results of Gao et al. [21] are compared to the five forecasting
models and SENERGY results in this work. In this figure, the highest value is the best. It
is noticed that LSTM-AE model and SENERGY have the highest value and the lowest
variation among locations while CNN model is the worst in terms of value and CNN-
BiLSTM is the worst in terms of variation among locations. In (b), FSruse results of three
works: Gao et al. [21], Fouilloy et al. [22], and Bouzgou & Gueymard [27] are compared to
the five forecasting models and SENERGY results in this work. Again, LSTM-AE model
and SENERGY have the highest value and the lowest variation among locations. The sec-
ond best performance is achieved by the work of Gao et al. [21]. However, it only includes
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the results of four locations compared to ten and twenty in other works. On the other
hand, Bouzgou & Gueymard reference [27] has the worst value and the largest variation
among locations since it includes twenty results. Like MAE and RMSE results, SENERGY
does not show better performance than LSTM-AE model in (a) or (b) because on both
metrics, the latter is the best model for all locations (refer to Figure 26).

FS5y4c Comparison FSuuay COmparison
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Figure 47. Comparison of multiple works based on: (a) FSmat; (b) FSrwmst.

Figure 48 compares the SENERGY performance with the five forecasting models in
terms of the forecasting error (refer to Equation (4)). As we mentioned earlier, the com-
parison in this section is based on the assumption that SENERGY can choose the best
among the five forecasting models with 100% accuracy. In this figure, the forecasting error
is calculated and represented for each data item in the testing datasets of all locations
together. (a total of 24676 records as shown in Table 6). Therefore, the number of outliers
for each model is higher compared to the earlier figures in this section (those figures plot
average statistics for each dataset). No other work is compared in this figure because we
do not have results available at this precision from other researchers published works.
From (a), we can see the improvement of SENERGY performance over the five models
comes from the ability of the tool to choose one of the five models that achieves the least
error for each data input. Similarly, in (b) the forecasting error is divided by actual GHI to
get the relative error. Both in (a) and (b), SENERGY has the least error with fewer outliers
and CNN model is the worst.

Forecasting Error Comparison Relative Forecasting Error Comparison

-

il

™ B GAu I CNN onn-al 5T I LSTMGAE I SENERGY

=L

Oustv WMo W ons B cnweal

(a) (b)

Figure 48. Comparison of SENERGY to other models based on: (a) forecasting error; (b) relative forecasting error.

From all the figures shown in this section, it is evident how difficult it is to compare
works when different metrics are reported and not all the needed information for a fair
comparison is given. There is a need to improve, consolidate, and standardize
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international efforts on transparent and extensive testing of the proposed models for re-
newable energy forecasting [10]. One approach could be that researchers make the com-
plete results data openly available for comparison purposes. The box plot used in this
work provides the results at a higher granularity compared to the aggregate or average
metrics. Particularly, the box plots for the forecasting error and the relative forecasting
error provide a more detailed account of the performance because these results are plotted
for each GHI prediction compared to the other performance metrics that show perfor-
mance at a lower granularity of dataset levels.

5. Conclusions and Future work

This work introduced SENERGY, a novel tool for solar radiation forecasting. SEN-
ERGY utilizes the knowledge gained from the performance of deep learning-based fore-
casting models with different datasets collected from multiple locations and the meteoro-
logical data variables of these locations to recommend the best forecasting model suitable
for data features. Using the recommended forecasting model by SENERGY with new data
inputs would save time and effort in running experiments in addition to the gain in fore-
casting accuracy. To build the knowledge base of the models” performances, we trained
and tested five forecasting models: LSTM, GRU, CNN, CNN-BiLSTM, and LSTM-AE with
eight datasets collected from different locations in Saudi Arabia that have hot desert cli-
mate in addition to datasets from Toronto and Caracas, which have humid continental
and tropical climate respectively. To provide the best forecasting model recommendation,
an LSTM model was developed.

Future work would aim to make improvements in different aspects of the SENERGY
tool design. One area is to improve the knowledge base. We used data from three different
climates only. In the future, more datasets from different countries and climates would be
used to enrich the knowledge base. This would allow SENERGY to provide more accurate
recommendations to any meteorological data irrespective of the climate changes. Addi-
tionally, the SENERGY knowledge base contains only the performance of two forecasting
models. Another way to improve it is to use more competitive forecasting models, specif-
ically the models proven to provide high performance in the literature. Another aspect is
to improve the model prediction engine performance. Currently, the classification accu-
racy is 81%, which should be enhanced in the future. One idea is to add a weather classi-
fication step (sunny, cloudy, etc.) to improve accuracy. Moreover, SENERGY predicts the
best model based on models’ performance in terms of forecasting accuracy only. Another
performance option could be added to the tool, which is the model computation time.
Model auto-selection would be provided based on both performance measures upon user
preferences. A third aspect is to improve forecasting. Future work will also include im-
proving the used forecasting models through a rigorous optimization process, such as
hyperparameters tuning, and through inputs, such as using the forecast of meteorological
variables or satellite data in addition to the historical measurements data to improve the
GHI prediction.

The current performance of the SENERGY tool is limited because the LSTM-AE
method outperforms all other methods, causing the LSTM-AE forecasting method to own
the majority of the labels in the classification dataset as the best performing forecasting
method, resulting in a major data imbalance problem and poor classification accuracy.
The LSTM-AE method's performance could be attributed in part to the fact that we used
a relatively optimized lagged feature for the LSTM-AE method, giving LSTM-AE an ad-
vantage over the other four forecasting methods. It is possible to include a set of different
features (for example, Lagl, Lag?2, Lag3) in SYNERGY and treat each pair of a distinct
feature (from this feature set) and a forecasting model as a separate forecasting engine (or
model) and train the SYNERGY model prediction engine to predict a feature-model pair.
Instead of pre-defined fixed input features, SYNERGY will be able to predict the best
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combination of a feature and model for a given GHI prediction. The same approach can
be used to optimize hyperparameters and other parameters in the machine learning fore-
casting pipeline. These feature- and parameter-related aspects of the SYNERGY approach
should be investigated further before drawing firm conclusions. Furthermore, the use of
additional meteorological datasets with high climate and data diversity, as well as addi-
tional forecasting methods, in conjunction with solutions to data imbalance problems,
could result in a more balanced classification dataset and allow improvements in classifi-
cation error, resulting in significantly better forecasting accuracies and gains.

Finally, in order to predict the best performing deep learning model for GHI fore-
casting, the proposed auto-selective approach currently considers minimum forecasting
error. It can be extended to predict forecasting models based on additional criteria such
as the amount of energy required or the speed with which the model is executed, different
input features, different optimisations of the same models, or other user preferences. To
improve the tool's performance and diversity, additional deep learning models for classi-
fication (to auto-select) or forecasting solar radiation can be incorporated. The method can
be applied to other renewable energy sources and problems, such as wind energy fore-
casting.
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