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Abstract: The sustainability of the planet and its inhabitants is in dire danger and is among the 

highest priorities on global agendas such as the Sustainable Development Goals (SDGs) of the 

United Nations (UN). Solar energy -- among other clean, renewable, and sustainable energies -- is 

seen as essential for environmental, social, and economic sustainability. Predicting solar energy ac-

curately is critical to increasing reliability and stability, and reducing the risks and costs of the en-

ergy systems and markets. Researchers have come a long way in developing cutting-edge solar en-

ergy forecasting methods. However, these methods are far from optimal in terms of their accuracies, 

generalizability, benchmarking, and other requirements. Particularly, no single method performs 

well across all climates and weathers due to the large variations in meteorological data. This paper 

proposes SENERGY (an acronym for Sustainable Energy), a novel deep learning-based auto-selec-

tive approach and tool that, instead of generalising a specific model for all climates, predicts the best 

performing deep learning model  for GHI forecasting in terms of forecasting error. The approach 

is based on carefully devised deep learning methods and feature sets through an extensive analysis 

of deep learning forecasting and classification methods using ten meteorological datasets from three 

continents. We analyse the tool in great detail through a range of metrics and methods for perfor-

mance analysis, visualization, and comparison of solar forecasting methods. SENERGY outper-

forms existing methods in all performance metrics including Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Forecast Skills (FS), Relative Fore-

casting Error, and the normalised versions of these metrics. The proposed auto-selective approach 

can be extended to other research problems such as wind energy forecasting and predict forecasting 

models based on different criteria (in addition to the minimum forecasting error used in this paper) 

such as the energy required or speed of model execution, different input features, different optimi-

sations of the same models, or other user preferences. 

Keywords: Deep learning; solar radiation forecasting; model prediction; solar energy; multi cli-

mates data; generalizability; sustainability; Long Short-Term Memory (LSTM); Gated Recurrent 

Unit (GRU); Convolutional Neural Network (CNN); Hybrid CNN-Bidirectional LSTM; LSTM Au-

toencoder. 

 

1. Introduction 

The last century has seen many technological advancements that have enabled us to 

make unimaginable progress, particularly during the last few decades. This progress how-

ever has come at a rapidly increasing price. The sustainability of the planet and its inhab-

itants is in dire danger and is among the highest priorities on global agendas such as the 

Sustainable Development Goals (SDGs) of the United Nations (UN). Solar energy, among 

other clean, renewable, and sustainable energies, such as wind energy, is essential for en-

vironmental, social, and economic sustainability.  
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Solar energy could generate larger than 10,000 times the world's total energy con-

sumption with its Earth strike rate of 173,000 terawatts [1]. Therefore, solar energy has 

enormous potential for reducing global carbon emissions. For example, the installation of 

113,533 domestic solar systems in California, USA, has lowered or prevented 696,544 met-

ric tons of CO2 emissions [2]. Developing capacity for solar energy production is also crit-

ical for Saudi Arabia, which is among the top few oil producers and consumers in the 

world and is ranked sixth in the world in terms of its potential for producing solar energy 

[3]. The Sakaka 300-megawatt (MW) solar power station, Saudi Arabia's first utility-scale 

solar PV project, was connected to the national grid in November 2019. With a $302 mil-

lion investment, the plant will cover a six-square-kilometer area in AlJouf. This is the first 

in a series of projects under Saudi Arabia's national renewable energy program to gener-

ate 9.5GW of renewable energy by 2023 [4]. 

The need for integrating solar energy into the electrical grid has motivated research-

ers globally to develop advanced methods for solar radiation forecasting. Accurate pre-

diction of solar radiation is vital to ensure hybrid energy systems’ reliability and perma-

nency. Specifically, it reduces the risks and costs of managing the energy market and en-

ergy systems, which are attributed to the influence of climate changes and weather varia-

bility [5], [6]. The applications of solar radiation forecasting in solar energy systems vary 

according to the forecasting horizon, which ranges from very short to long term. They 

include real-time monitoring, demand and supply balancing, decision making, unit com-

mitment, power plant maintenance scheduling, site selection, solar plant installation, grid 

operations planning, and others [7]. 

Solar energy and its generated electrical energy outputs will always be unsteady due 

to the variable and uncertain nature of weather. As a result, solar energy prediction is 

critical and difficult, necessitating the development of advanced methods. There are four 

types of methods used for this purpose: physical (such as numerical and simulation 

weather prediction models), statistical, those based on artificial intelligence (AI), and hy-

brid methods [8], [9]. Because of their ability to discover nonlinear relationships and pro-

vide superior performance, artificial intelligence methods such as machine and deep 

learning methods have grown in popularity. Machine learning including deep learning 

methods, in particular, have excelled in a wide range of scientific problems and applica-

tions domains, including computer vision and natural language processing [10]–[12], 

transportation [13], healthcare [14], education [15], and smart cities [16]. This is also true 

for solar energy forecasting, with many deep learning methods emerging in recent years 

that outperform the other three types of forecasting methods [10], [17]. 
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Figure 1. Performance Comparison of Solar Forecasting Models (Different Performance Metrics). 

We have performed an extensive literature review (see Section 2 and [17]) on deep 

learning-based solar energy forecasting methods and have identified the key research 

gaps in this field. We explain the research gaps using Figure 1. The figure provides a per-

formance comparison of different deep learning models. The compared works include 

Kumari and Toshniwal [18], Lima et al. [19], AlKandari and Ahmad [20], Gao et al. [21], 

Fouilloy et al. [22], Lago et al. [23], Lee et al. [24], Yagli et al. [25], Srivastava and Lessmann 

[26], and Bouzgou and Gueymard [27]. We will elaborate on the reasons for the selection 

of these methods in the later sections. Note in the figure that performance for different 

methods is plotted using different performance metrics as originally used by the authors 

in their published works. The metrics used in these works include Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nor-

malized RMSE (nRMSE), Relative RMSE (rRMSE), and Normalised MAE (nMAE). Each 

work is plotted as a box plot, labelled with the authors’ names, the performance metric 

used by the authors, and the total number of datasets used in their work. For example, 

Lima et al. [19] reported the performance of their proposed methods using MAPE with 

two datasets; it is labelled as Lima et al. (MAPE, 2). Ideally, the box plot should be closest 

to the x-axis to reflect a small value for the error metric. Also, the box plot should be ver-

tically small to reflect small variations in the error metrics for different datasets.  

The figure shows that different works have used different metrics and different num-

bers of datasets and that there is a large variation in their performances. The use of differ-

ent metrics makes it difficult to compare the performance of different methods. A larger 

number of datasets may indicate better generalisability and validation of results; however, 

this is not necessarily true because it depends on the size of the datasets, variability in the 

climates and data characteristics, and the metrics used to measure the performance, and 

other factors. Even if the same performance metric was used by these works, comparing 

their performance in terms of RMSE or other existing metrics is difficult because these 

metrics do not always exhibit the variability in the input data such as variations in the 

types of climates, the proportion, and unpredictability of sunny and cloudy weather, var-

iations in GHI (Global Horizontal Irradiance), etc. For example, although both Lima et al. 

[19], and AlKandari and Ahmad [20] used two datasets, it is hard to fairly compare them 

because the error metrics used by them are different (MAPE versus nMAE). Similarly, it 
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is hard to compare the results reported by Kumari and Toshniwal [18], and Srivastava and 

Lessmann [26], due to the large difference between the number of datasets (3 versus 21) 

despite the fact that both of them reported their results using the same metric (RMSE). 

Note that a large number of datasets do not necessarily show variations in the input data; 

one needs to look at the size of the datasets, the dataset climates, the variations in data, 

etc.  

The challenges described above call for new approaches from the community for 

novel forecasting and evaluation methods. There is a need for independent and transpar-

ent evaluation and extensive testing of the published models [10], similar to what has been 

done in other fields such as computer vision. Some researchers have suggested the use of 

a single statistical index called the global performance indicator to overcome the difficulty 

of comparing different performance metrics [28], [29]. Moreover, some independent 

benchmarking exercises or conferences in the renewable energy fields have started to 

emerge. An example is the Global Energy Forecasting Competition in the USA, which to 

date has been organized three times in 2012, 2014, and 2017 [30]. While all of these works 

and proposals demonstrate that the community has made significant progress in devel-

oping high-performance solar energy forecasting methods. Much more sustained effort is 

required to improve forecasting model accuracies and generalizability, as well as exten-

sive, transparent, and fair benchmarking of these models. Because of the large variations 

in meteorological data, no single forecasting method performs well across all climates and 

weathers. There is a need to close this gap so that forecasting methods can perform opti-

mally across varying climates and data. 

This paper proposes a novel deep learning-based auto-selective approach and tool 

that, instead of generalising a specific model for all climates, predicts the best performing 

deep learning model for GHI forecasting. We call this approach and tool SENERGY, an 

acronym for Sustainable Energy. The approach is based on carefully devised deep learn-

ing methods and feature sets through an extensive analysis of deep learning forecasting 

and classification methods using ten meteorological datasets from three continents. The 

models that we have used in this work include Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), Convolutional Neural Network (CNN), Hybrid CNN-Bidirec-

tional LSTM, and LSTM Autoencoder. We analyse the tool in great detail through a range 

of metrics and methods for performance analysis, visualization, and comparison of solar 

forecasting methods. SENERGY outperforms existing methods in all performance metrics 

including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Forecast Skills (FS), Relative Forecasting Error, and the normal-

ised versions of these metrics.  

 

 

 

Figure 2. SENERGY: A High-Level Overview. 
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Figure 2 shows a higher-level overview of the SENERGY approach. The figure shows 

that various forecasting temporal information (month, day, hour) along with the previous 

values of Global Horizontal Irradiation (GHI) and weather variables is supplied to the 

tool as inputs and the tool recommends the best forecasting model and uses this model to 

provide forecasted GHI.  A detailed explanation of the design of the SENERGY approach 

and tool is given in Section 3.  

The approach proposed in this paper to use machine or deep learning to automati-

cally predict a best-performing model or configuration is not new and has been used in 

our earlier work for computations of Sparse Matrix-Vector (SpMV) products [31]–[33]. 

However, to the best of our knowledge, this is the first time that such an approach has 

been used in solar energy forecasting and is implemented in a tool for this purpose. The 

proposed auto-selective approach currently considers minimum forecasting error to pre-

dict the best performing deep learning model for GHI forecasting. It can be extended to 

predict forecasting models based on different additional criteria such as the energy re-

quired or speed of model execution, different input features, different optimisations of the 

same models, or other user preferences. Additional deep learning models for classification 

(to auto-select) or forecasting solar radiation can be incorporated into the tool to improve 

the performance and diversity of the tool. The approach is extensible also to other renew-

able energy sources and problems such as wind energy forecasting.         

The contributions of this paper can be summarised as follows. 

1. This paper proposes a novel approach and tool that uses deep learning to auto-

matically predict the best-performing solar energy forecasting model. The ap-

proach is extensible to other performance metrics or user preferences and is ap-

plicable to other energy sources and problems.   

2. We provide an in-depth analysis of five deep learning models for solar energy 

forecasting using ten datasets from three continents. This is the first time that 

such a combination of models, datasets, and analyses has been reported. Partic-

ularly, none of the earlier works have reported forecasting based on five deep 

learning-based models with such many locations in Saudi Arabia and provided 

a comparison with locations abroad (Toronto and Caracas). 

3. We highlight the need for standardisation in performance evaluation of machine 

and deep learning modelling in solar forecasting by providing extensive analysis 

and visualisation of the tool and its comparison with other works using several 

performance metrics. We have not seen such an extensive evaluation of work 

earlier in solar energy forecasting. This paper is expected to open new avenues 

for higher depth and transparency in benchmarking of solar energy forecasting 

methods. 

This paper is organized as follows: Section Error! Reference source not found. re-

views the related works. Section Error! Reference source not found. presents the meth-

odology used in the work including subsections describing the SENERGY development 

process, the data collection, data pre-processing, feature importance, and five forecasting 

model structures. Section Error! Reference source not found. also includes a description 

of the performance evaluation metrics and implementation of the models. In Section Er-

ror! Reference source not found., the results are discussed and analysed in detail. Section 

Error! Reference source not found. concludes and provides future directions. 

 

2. Literature Review 

Deep learning models’ promising achievements have attracted researchers to apply 

them in the field of solar radiation and solar energy forecasting. Their advantages include 

the ability to discover nonlinear relationships among inputs, generalization capability, 

and unsupervised feature learning in addition to superior performance. In our earlier 

work [17], we have done an extensive review of solar and wind energy forecasting 
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methods based on deep learning and proposed a taxonomy of this research field as shown 

in Figure 3. The most used deep learning-based architectures in the literature are the hy-

brid models followed by Recurrent Neural Network models including LSTM model and 

GRU and then, CNN in the third place. Based on numerous studies included in the review, 

we found that deep learning-based forecasting models always achieve relatively higher 

accuracies and generalization ability compared to other machine learning models and sta-

tistical methods, especially when they are combined with other algorithms in hybrid mod-

els. However, a definite conclusion cannot be drawn about the forecaster that has the best 

performance unless extensive testing is done using datasets from different climates and 

topographies that contain data about all seasons and weather conditions. Although deep 

learning models have proven their ability to provide competitive results in terms of fore-

casting accuracy, there is still room for improvement in terms of models’ generalization 

and stability. More studies should focus on developing general forecasting models since 

developing a model for each location is infeasible. Few studies proposed forecasting mod-

els for a whole region as [34]–[38]. However, general forecasting models should be able to 

provide forecasting to locations from different climatic zones not only similar regions.  

 

 

 

Figure 3. Deep learning-based solar energy forecasting taxonomy. 

The current efforts focused on improving the generalizability of deep learning-based 

forecasters in the literature are still limited. Some researchers suggest ensemble learning 

to improve generalization. Ensemble learning takes the average prediction of several fore-

casting models instead of finding a single best-performing one. For example, Lima et al. 

[19] used ensemble learning along with a new integration technique based on Portfolio 

Theory. Their proposed solar irradiance ensemble forecasting model integrates the Mul-

tilayer Perceptron network (MLP) model, Support Vector Regression (SVR) model, Radial 
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Basis Function model, and LSTM model. Weights are assigned adaptively to each model 

before calculating the final forecasting result. Such a self-adaptive model structure is a 

way to improve the forecasting performance in terms of accuracy and generalizability. 

The authors also compared their model performance using datasets collected from Brazil 

and Spain. Likewise, Khan et al. [39] combined Artificial Neural Network (ANN), LSTM, 

and eXtreme Gradient Boosting (XGBoost) in their ensemble model to improve the gener-

alization of solar forecasting. Their method achieved more stable performance in several 

case studies than using ANN, LSTM, or bagging alone. AlKandari & Ahmad [20] pro-

posed a solar power forecasting model employing an ensemble approach, which com-

bines GRU, LSTM, and Theta models. They found that the ensemble technique of both 

machine learning and statistical models achieved better prediction accuracy than single 

models. They also compared their model performance using datasets from Kuwait and 

USA. Wang et al. [40] utilized classification along with ensemble learning in their pro-

posed PV power ensemble forecasting framework. The classification is done to identify 

the daily pattern label of the forecasting day to improve the forecasting accuracy per-

formed by multiple LSTM models. Singla et al. [41] utilized wavelet transform (WT) to 

decompose the input time series data into different sub-series, then, trained a bidirectional 

LSTM model for each one. The forecasted values of each sub-series from BiLSTM models 

are combined to deliver the final 24-h ahead GHI forecast. Pan and Tan [42] cluster anal-

ysis on data to get weather regimes before employing Random Forests to acquire predic-

tion from different weather regimes. El-Kenawy et al. [43] developed an ensemble model 

for solar radiation forecasting, which consists of LSTM, NN, and SVM. This model’s en-

semble weights are optimized by Advanced Sine cosine algorithm that shows perfor-

mance superiority over the average and K-Nearest Neighbors ensemble methods.   

Comparing the performance of a proposed model using several datasets collected 

from locations with different climates is a practice in the literature that aims to improve 

forecasting models’ performance generalization and stability. For example, Kumari and 

Toshniwal trained and tested their ensemble model, which consists of XGB Forest and 

Deep Neural Network (DNN) for hourly GHI forecasting using data collected from three 

locations in India that have humid subtropical, hot semi-arid, and subtropical climates 

[18]. Similarly, Gao et al. [21] tested their proposed CNN and LSTM hybrid model for 

hourly solar irradiance forecasting using four datasets from locations with Mediterra-

nean, semi-arid, rainforest, and desert climates. Likewise, Kapa et al. [44] compared the 

performance of a DNN model for daily GHI forecasting on datasets collected from thirty-

four cities in Turkey, which belong to very wet, humid, semi-humid, and semi-dry cli-

mates. Fouilloy et al. [22] also compared eleven machine learning and statistical models 

for solar irradiation forecasting using three datasets with different meteorological charac-

teristics. The datasets sources are two locations in France Odeillo in the mountains and 

Ajaccio near the Mediterranean Sea in addition to Tilos island in Greece. Lago et al. [23] 

proposed a generalized model based on DNN for solar irradiance forecasting using data 

from twenty-five locations in the Netherlands while Lee et al. [24] compared several en-

semble models using datasets from six distinct locations in the USA. Yagli et al. [25] eval-

uated sixty-eight machine learning algorithms using data from five climate zones for 

hourly solar forecasting. Srivastava and Lessmann [26] compared LSTM performance in 

twenty-one locations in Europe and USA from ten climate types to another three methods. 

Jeon and Kim [45] proposed a global LSTM model for the next-day solar irradiance pre-

diction by training the model with data collected from Cape Town, Canberra, Colorado, 

and Paris, then evaluating it with data from Inchon. Bouzgou and Gueymard [27] trained 

an Extreme Learning Machine (ELM) model using data from twenty locations that belong 

to four different climates. 

Table 1 highlights the approach used to improve forecasting performance generali-

zation in each paper covered in this section along with the results and main findings. Since 

most of the researchers in this field are more concerned with improving forecasters’ accu-

racies as their main goal, there is a need to explore new methods to improve generalization 
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as a way toward achieving higher accuracy. In this paper, we combined two methods: the 

knowledge gained from comparing multiple forecasting models’ performance on differ-

ent climate data along with classification to recommend the best forecasting model for 

certain data inputs.   

Table 1. Summary of the literature review. 

Ref#  
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Results Main findings 

[18]   

The ensemble model (XGBF-DNN) performed 

better than Smart Persistence, SVR, Random 

Forest (RF), XGBoost, and DNN models for all 

three locations Jaipur, New Delhi, and Gang-

tok. Hence, it can be generalized to predict 

hourly GHI for other geographical locations.  

The ensemble model (XGBF-DNN) attained RMSE 

=53.79 for Jaipur,   RMSE = 51.35 for New Delhi, 

and RMSE=89.13 for Gangtok  

[19]   

Errors resulting from the integration of fore-

cast techniques (LSTM, MLP, RBF, SVR) had a 

better performance than the individual errors 

of each model for Brazil and Spain in hour-

ahead PV power forecasting. 

The ensemble model of LSTM, MLP, RBF, and  

SVR achieved MAPE =5.36% for Spain and 4.52% for  

Brazil  

[39]   

The ensemble model of ANN, LSTM, and 

XGBoost performed better than ANN and 

LSTM models alone in PV energy generation 

forecast. 

The ensemble model of ANN, LSTM, and XGBoost 

achieved RMSE= 0.74 and MAE=0.47 with 15-min 

data resolution and RMSE= 0.78 and MAE=0.59 with 

1-hour data resolution. 

[20]   

The ensemble model of GRU, LSTM, and 

Theta achieved better performance with 

Shagaya dataset than with Cocoa because it 

contains relative weather data. The ensemble 

model achieved better accuracy than any 

single ML algorithm and theta model in day-

ahead solar power generation forecast. 

The ensemble model of GRU, LSTM, and Theta 

achieved nMAE= 0.0317 for Shagaya location in 

Kuwai while LSTM model alone achieved 

nMAE=0.0739 for Cocoa location in USA, which is 

slightly better than the ensemble model 

performance with nMAE=0.0877. Based on nMSE 

results, the ensemble model achieved better 

performance than individual models for both 

datasets. 

[40]   

The ensemble model of LSTMs with time 

correlation under a partial daily pattern 

prediction framework attained better 

performance than BPNN model, SVM model, 

and persistent model in day-ahead PV power 

forecasting. 

The ensemble model of LSTMs with time correlation 

under a partial daily pattern prediction framework 

attained RMSE= 5.68. 

[41]   

The results show that the ensemble model of 

wavelet transform (WT) and bidirectional 

LSTM outperformed the naïve predictor, 

LSTM, GRU, BiLSTM and two different WT 

based BiLSTM in 24-h ahead solar irradiance 

forecast.  

The results show that the ensemble model of 

wavelet transform (WT) and bidirectional LSTM 

outperforms the naïve predictor, LSTM, GRU, 

BiLSTM and two different WT based BiLSTM with 

annual average RMSE= 45.61and MAPE=6.48%.  

[42]   

The ensemble model of RF with cluster 

analysis for day-ahead solar forecasting 

performed better than RF alone and gradient 

boosted regression trees. Classify the weather 

regimes with cluster analysis improved the 

model accuracy. 

The ensemble model of RF with cluster analysis for 

day-ahead solar forecasting performed better than 

RF alone and gradient boosted regression trees with 

nRMSE=8.8 

[43]   

The ensemble model of LSTM, NN, and SVM 

for solar radiation forecasting outperformed 

all the reference models. The best optimizing 

ensemble weights method is Advanced Sine 

and Cosine algorithm. 

The ensemble model of LSTM, NN, and SVM for 

solar radiation forecasting outperformed all the 

reference models with RMSE=0.0018. The best 

optimizing ensemble weights method is Advanced 

Sine and Cosine algorithm. 

[21]   

The proposed hybrid model of complete 

ensemble empirical mode decomposition 

adaptive noise (CEEMD), CNN, and LSTM to 

forecast hourly irradiance performed better 

The proposed hybrid model of complete ensemble 

empirical mode decomposition adaptive noise 

(CEEMD), CNN, and LSTM achieved annual  

RMSE= 42.84 for Tamanrasset, 43.98 for Hawaii’s 
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compared to the single LSTM, BPNN, SVM, 

the hybrid CEEMDAN-LSTM, CEEMDAN-

BPNN, and CEEMDAN-SVM models. 

Big Island, 40.60 for Denver, and 27.09 for Los 

Angeles. 

[44]   

The proposed DNN for daily GHI prediction 

showed good performance with 34 cities, 

which represent all possible climatic 

conditions in Turkey. Using all inputs 

(extraterrestrial radiation, sunshine duration, 

cloud cover, maximum temperature, and 

minimum temperature) gave the best results. 

The proposed DNN for daily GHI prediction 

achieved RMSE ranges from 0.52 to 1.29 for 34 cities, 

which represent all possible climatic conditions in 

Turkey. 

[22]   

Statistical models performance of hourly solar 

irradiation forecasting with low to medium 

meteorological variabilities data is efficient 

while with high variability or longer 

forecasting horizons (4-hours ahead and 

more), bagged regression tree and RF 

approaches performed better than statistical 

models. 

For a medium and low variability dataset (Tilos and 

Ajaccio), the best results for an hour-ahead 

forecasting come from SVR model with MAE= 71.27 

and 54.58. For a high variability dataset (Odeillo), 

the best results for an hour-ahead forecasting come 

from RF. 

[23]   

The proposed global DNN for hourly GHI 

forecasting, which was trained using data 

from 25 locations in the Netherlands (satellite-

based measurements and weather-based 

forecasts) has a better average performance 

than other four local models.  

The proposed global DNN for hourly GHI 

forecasting, which was trained using data from 25 

locations in the Netherlands has a better average 

performance with relative RMSE= 31.31% than other 

four local models. The lowest relative RMSE=29.24 

for Hoek v. H. site and the highest relative 

RMSE=34.55 for Deelen site 

[24]   

The ensemble models (Boosted Trees, Bagged 

Trees, RF, and Generalized RF) for short-term 

prediction of solar irradiance offered superior 

prediction performance compared to Gaussian 

process regression and SVR. 

The ensemble model Generalized RF achieved the 

best MAPE results for 4 out of 6 datasets (MAPE 

equals to 19.76, 42.27, 31.79, and 58.58 for CA, TX, 

WA, and MN respectively)  

[25]   

For the task of hourly solar forecasting, tree-

based methods were found superior in 

average nRMSE under all-sky conditions, 

whereas variants of MLP and SVR were the 

best performers under clear-sky conditions. RF 

with Quantile Regression performed well 

under overcast skies at all 7 locations. 

Tree-based methods are superior compared to other 

machine learning algorithms for all-sky conditions 

with nRMSE ranges from 15.46%  to 33.36% based 

on location. 

[26]   

The LSTM model outperformed Gradient 

Boosting Regression, FFNN, and Persistence 

methods in day-ahead GHI forecasting  

LSTM model outperformed Gradient Boosting 

Regression, FFNN, and Persistence methods in day-

ahead GHI forecasting with RMSE ranges from 23.6 

to 37.78 for 21 locations 

[45]   

The global LSTM model, which was trained 

with international data for next-day GHI 

prediction, achieved RMSE=30 with Inchon in 

Korea  

The global LSTM model, which was trained with 

international data achieved RMSE=30 with Inchon 

in Korea 

[27]   

ELM model, which was trained with data from 

20 locations, has good performance for 15-min 

ahead, 1-h ahead, and 24-h ahead forecasting 

ELM model achieved average RMSE= 

93.82 for 20 locations for 1-h ahead forecasting  

 

 

2.1. Research Gap 

The literature review presented in this section (also see [17]) identified the major re-

search gaps in deep learning-based solar energy forecasting methods research. Despite 

significant progress in developing high-performance solar energy forecasting methods, 

much more sustained effort is required to improve forecasting model accuracies and gen-

eralizability, as well as extensive, transparent, and fair benchmarking of these models. 

Because meteorological data varies so greatly, no single forecasting method performs well 

across all climates and weathers. There is a need to close this gap so that forecasting meth-

ods can perform optimally across varying climates and data. This paper proposes a novel 

approach and tool for automatically predicting the best-performing solar energy forecast-

ing model using deep learning. The method is adaptable to other performance metrics or 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2022                   doi:10.20944/preprints202208.0345.v1

https://doi.org/10.20944/preprints202208.0345.v1


 

 

 

user preferences, as well as other energy sources and problems. To our knowledge, this is 

the first time such an approach has been used in solar energy forecasting and has been 

implemented in a tool for this purpose. 

Using ten datasets from three continents, we conduct an in-depth analysis of five 

deep learning models for solar energy forecasting. None of the previous works reported 

such an integration of models, datasets, and analyses. None of the works reported fore-

casting based on five deep learning-based models with such a large number of locations 

in Saudi Arabia, nor did they provide a comparison with locations elsewhere (Toronto 

and Caracas). We highlight the need for standardisation in the performance evaluation of 

machine and deep learning modelling in solar forecasting by providing in-depth analysis 

and visualization of the tool, as well as comparisons with other works using various per-

formance metrics. We have not seen a thorough evaluation of work in solar energy fore-

casting before. We anticipate that this work will pave the way for greater depth and trans-

parency in benchmarking solar energy forecasting methods. 

 

3. SENERGY: Methodology and Design 

We first briefly describe the SENERGY development process on a high level in Sec-

tion3.1, then move to the detailed steps in later sections. The datasets development pro-

cess is described in Section 3.2, which includes data collection and data preprocessing for 

forecasting and model prediction. In Section 3.3, we discuss four feature importance meth-

ods: Pearson’s correlation, Mutual Information, Forward Feature Selection and Backward 

Feature Elimination in Section, and LASSO feature selection. Then, five deep learning 

models, which are used in SENERGY, are explained in Section 3.4: Long Short-Term 

Memory, Gated Recurrent Unit, Convolutional Neural Network in Section, Hybrid CNN 

and Bidirectional Long Short-Term Memory, and Long Short-Term Memory Autoen-

coder. Finally, a description of the performance evaluation metrics is given in Section 3.5 

and SENERGY implementation in Section 3.6.  

3.1. Tool Development Process  

The SENERGY development process is displayed in Figure 4, which starts with col-

lecting datasets from multiple locations that have different climates, followed by data pre-

processing, such as filling missing values, creating lagged features, and normalization. 

Then, the process continues with feature selection through Pearson’s correlation, mutual 

information, forward feature selection, backward feature elimination, and LASSO meth-

ods. Afterward, preprocessed data is used for training and testing five deep learning-

based forecasters. The forecasters’ performance on the datasets is compared using several 

performance evaluation metrics. Based on performance comparison, the best model label 

is obtained, which is the forecaster that achieves the least forecasting error. Then, the best 

model label is added to become the target variable, and all the datasets are combined to 

train and test the best forecaster recommendation model. After completing the develop-

ment process of SENERGY, the tool is able to receive new inputs, recommend the best 

forecaster based on inputs, and use the chosen forecaster to predict the next hour GHI. 
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Figure 4. SENERGY development process. 

3.2. Datasets Development  

 Here in this section, we describe first the data collection process (3.2.1), then, data 

preprocessing and feature engineering done for forecasting (3.2.2) and model prediction 

3.2.3). 

 

3.2.1. Data Collection 

 We used a total of ten datasets. Eight of them were collected from Solar monitoring 

stations in Saudi Arabia and the remaining two are Toronto dataset and Caracas dataset. 

The used datasets represent three different climates and contain records of five years, 

which ensure the inclusion of all various weather types, such as sunny, cloudy, rainy, etc. 

The datasets of Saudi Arabian locations were provided by King Abdullah City for Atomic 

and Renewable Energy (K.A.CARE)[46]. They contain the measurements of three compo-

nents of solar radiation: Direct Normal Irradiance (DNI), Global Horizontal Irradiance 

(GHI), and Diffuse Horizontal Irradiance (DHI), in addition to related meteorological pa-

rameters. The datasets cover the period from 1 January 2016 to 31 December 2020. Ideally, 

each dataset should contain the observations of 1827 days (5 years) averaged into one-

hour intervals. However, some days’ observations are not available because of device mal-

function or maintenance scheduling. The ground-based measurements were taken at 

eight Tier 1 solar monitoring stations with a resolution of 1 minute. Tier 1 stations provide 

the highest quality data, with the uncertainty of +/- 2% (sub-hourly). Table 2 presents in-

formation about these solar monitoring stations including the station name, latitude, lon-

gitude, and elevation. The climate classification of all locations is hot desert climate (BWh) 

according to Köppen classification obtained from ClimateCharts.net [47]. Figure 5 shows 

the solar stations’ location on the Saudi Arabia map. 
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Table 2. Saudi Solar monitoring stations information. 

Station # Station Name Latitude (N) Longitude (E) Elevation (m) 

1 Al-Baha University 20.1794 41.6357 1680 

2 Al-Jouf College of Technology 29.77634 40.02318 680 

3 Saline Water Conversion  

Corporation (Al-Khafji)  

28.50676 48.45513 13 

4 Arar Technical Institute 31.0274 40.90642 583 

5 Hail College of Technology 27.65261 41.70826 928 

6 Tabuk University 28.38287 36.48396 781 

7 Taif University 21.43278 40.49173 1518 

8 Wadi-Addawasir College of  

Technology  

20.43008 44.89433 671 

 

Figure 5. Solar monitoring stations’ locations on Saudi Arabia map. 

 The datasets of Toronto, Canada; and Caracas, Venezuela were collected from Na-

tional Solar Radiation Database accessed through the National Renewable Energy Labor-

atory (NREL) website [48]. These datasets were gathered by geostationary satellites unlike 

Saudi datasets, which were collected from ground stations. The climate classification of 

Toronto is humid continental (Dfb) and of Caracas is tropical (A) according to Köppen 

classification. Table 3 provides the source information of both datasets and Figure 6 shows 

Caracas and Toronto locations on the map. 

 

Table 3. External datasets source information. 

Location  Latitude (N) Longitude (E) Elevation (m) Climate Class 

Caracas, Venezuela 10.49 -66.9 942 A 

Toronto, Canada 43.65 -79.38 93 Dfb 
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Figure 6. Toronto and Caracas locations on the map. 

3.2.2. Datasets for Forecasting 

 In this section, a description of data preprocessing for forecasting is given. First, the 

data variables and the relationships among them are clarified, then, creating lagged fea-

tures and Temporal features steps are explained. Next, filling missing values, deleting 

night hours records, and data normalization steps are described. Finally, detailed infor-

mation about each dataset is given.  

For GHI forecasting, researchers usually use historical values of GHI alone as inputs 

to make a prediction or include other meteorological variables, such as wind speed and 

air temperature. Sometimes forecasted values of the meteorological variables and GHI are 

also used as inputs, such as Numerical weather prediction (NWP) models’ outputs [17]. 

In our work, the following nine measurements are chosen as inputs to GHI forecasting 

models. Figure 7 shows the relationship between GHI and the nine measurements in three 

datasets only as an example (Al-Baha, Al-Jouf, and Hail datasets). 

 

 GHI: the total amount of shortwave radiation received from above by a surface hor-

izontal to the ground. It is calculated using the following equation, which explains 

how GHI is related to DHI, DNI, and the Zenith Angle (ZA) [49]. 

��� = ��� × ���(��) + ��� (1)

 

 DHI: solar radiation that does not arrive on a direct path from the sun, but has been 

scattered by molecules and particles in the atmosphere and comes equally from all 

directions 

 DNI: solar radiation that comes in a straight line from the direction of the sun at its 

current position in the sky. On a sunny day, GHI consists of 20% DHI and 80% DNI 

[49].  
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 ZA: the angle between the sun’s rays and the vertical. 

 Air Temperature (AT). It has a positive correlation with solar radiation [50] as can be 

seen in Figure 7 

 Wind Speed (WS) and Wind Direction (WD) at 3 meters  

 Barometric Pressure (BP) 

 Relative Humidity (RH). It has a negative correlation with solar radiation [50] as 

shown in Figure 7 

 

 

 

 

(a) 

 
 

(b) 

 

 

 

 

 

 

 

 

(C) 

 

Figure 7. The relationship between GHI and the meteorological variables in: (a) Al-Baha; (b) Al-Jouf; 

and (c) Hail. 

 Using the previous three hours measurements (lag= 3 hours), we created a set of 

twenty-seven features. Table 4 shows the list of these features along with their unit. To 

create the lagged features, we used the shift method in Pandas library. Table 5 shows an 

example of using the shift method with GHI values to create lagged features. To guide the 

decision about the lag, we utilized the Autocorrelation Function (ACF) and Partial Auto-

correlation Function (PACF) for GHI as presented in Figure 8. The ACF shows a correla-

tion of GHI with its 3 past values while the PACF shows a high correlation of GHI with 

its first lag only. However, such functions can measure only the linear relationship be-

tween an observation at time t and the observations at previous times. 

Table 4. Forecasting datasets features. 

Time t features Time t-1 fea-

tures 

Time t-2 fea-

tures 

Time t-3 fea-

tures 

Unit  

GHI (output) GHI_lag1 GHI_lag2 GHI_lag3 Wh/m2 

Hour_sin (HS) DNI_lag1 DNI_lag2 DNI_lag3 Wh/m2 
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Hour_cos (HC) DHI_lag1 DHI_lag2 DHI_lag3 Wh/m2 

Day_sin (DS)  AT_lag1  AT_lag2  AT_lag3 ° C 

Day_cos (DC) ZA_lag1 ZA_lag2 ZA_lag3 ° 

Month_sin (MS) WS_lag1 WS_lag2 WS_lag3 m/s 

Month_cos (MC) WD_lag1 WD_lag2 WD_lag3 ° 

 RH_lag1 RH_lag2 RH_lag3 % 

 BP_lag1 BP_lag2 BP_lag3 Pa (Saudi data)/ 

Millibar (others) 

* Wh: watt-hour; m: meter; C: Celsius; s: second; Pa: pascal. 

Table 5. Example of creating lagged features of GHI. 

Tim stamp e  GHI at t GHI at t-1 GHI at t-2 GHI at t-3 

01/01/2016 7:00 0 0 0 0 

01/01/2016 8:00 35.3 0 0 0 

01/01/2016 9:00 236.2 35.3 0 0 

01/01/2016 10:00 468.8 236.2 35.3 0 

01/01/2016 11:00 609.6 468.8 236.2 35.3 

01/01/2016 12:00 688.7 609.6 468.8 236.2 

01/01/2016 13:00 686.8 688.7 609.6 468.8 

01/01/2016 14:00 635.6 686.8 688.7 609.6 

01/01/2016 15:00 522.7 635.6 686.8 688.7 

01/01/2016 16:00 361.3 522.7 635.6 686.8 

01/01/2016 17:00 166.2 361.3 522.7 635.6 

01/01/2016 18:00 15.6 166.2 361.3 522.7 

 

 

 

(a) (b) 

Figure 8. (a) Autocorrelation Function; (b) Partial Autocorrelation Function of GHI and its lagged readings. 

 Temporal variables (month, day, hour) of the forecasting time (t) are also important 

inputs. Since they have cyclical nature, we decided to encode them into sine and cosine 

using the following equations [51]. The result of this transformation is additional six fea-

tures (hour sine, hour cosine, day sine, day cosine, month sine, month cosine). The total 

features used for training the forecasting models are thirty-three as shown in Table 4.  

�� = ��� �
2. �. �

���(�)
� (2)
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�� = ��� �
2. �. �

���(�)
� (3)

 As mentioned earlier, there are missing records for many days in the Saudi datasets. 

To consider that during input-output construction, we eliminated any hour record that 

does not have the previous three consecutive hours' records [52]. Records of the years 

2016, 2017, and 2018 were used for training while records of the years 2019 and 2020 were 

used for validation and testing respectively. However, for Arar, Al-Khafji, and Tabuk da-

tasets, the number of missing days is large. Therefore, records of the year 2020 and the 

first four months of 2021 were used for testing sets of these locations. In Wadi-Addawasir, 

Arar, and Al-Baha dataset, a few DHI values are missing, and they were filled by Equation 

(1). Many values of wind direction and wind speed are missing in Wadi-Addawasir, 

Tabuk, and Taif datasets. However, the interpolation method cannot be used to fill these 

values because they are for consecutive hours. For such situation, usually, researchers in 

this field either use a regression model to predict the missing values or use another source 

of data, like nearby station [53]–[55]. Since regression model accuracy might affect the data 

quality, we decided to use a nearby station data to fill the missing wind speed/direction 

values in Wadi-Addawasir and Taif datasets. The source of such data is King Abdullah 

Petroleum Studies and Research Center (KAPSARC) [56]. The number of hourly records 

filled in Wadi-Addawasir dataset is 11978 hours while it is 7630 in Taif datasets. On the 

other hand, Tabuk dataset has only 529 missing hours’ records. Therefore, we decided to 

eliminate these records since the year 2021 records are added to the dataset to compensate 

for the shortage. Comparing methods for filling missing values and studying their impact 

on the forecasting results, as done in [57], [58], would be an opportunity for future work. 

 Preprocessing steps also include deleting the records in which GHI equals zero, 

which represent nighttime hours. Moreover, all features were normalized to the range of 

[0,1] by min-max scaler, then denormalized to the normal range after the training process 

was completed. Table 6 presents information about each dataset including the total hourly 

records used for training, validation, and testing in addition to the number of missing 

days out of five years. It also indicates the mean, Standard Deviation (SD), and Variance 

(Var) of GHI of training, validation, and testing datasets.  

  

(a) (b) 

 

Figure 9 shows the percentage of cloudy and sunny hours of all datasets on the left 

chart while GHI mean and GHI SD are shown on the right chart. 

 

Table 6. Forecasting datasets information. 

Location 
Total Hourly 

Records  

Missing 

Days 

GHI  

Mean  

GHI 

SD 

GHI 

Var 

Al-Baha 

Train: 6227 

635 days 

574.67 323.90 104896.29 

Val: 3056 552.10 325.90 106176.30 

Test: 2247 582.09 311.16 96780.11 

Al-Jouf 

Train: 8600 

363 days 

554.11 307.66 94643.25 

Val: 2991 547.92 306.49 93901.92 

Test: 2554 528.14 296.47 87858.12 

Al-Khafji 

Train: 4618 
970 days 

(Year 2019) 

504.81 288.56 83245.88 

Val: 2363 555.17 308.66 95231.29 

Test: 2110 486.59 275.73 75991.13 

Arar Train: 8339 575 days 546.71 310.06 96128.23 
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Val: 3589 537.73 300.20 90097.23 

Test: 1357 485.46 295.04 86983.40 

Hail 

Train: 8723 

271 days 

552.26 311.69 97140.65 

Val: 3260 544.05 310.67 96486.20 

Test: 2561 543.77 303.82 92270.30 

Tabuk 

Train: 7576 

542 days 

593.27 310.35 96307.42 

Val: 3100 579.62 303.93 92342.88 

Test: 1937 498.03 261.73 68465.05 

Taif 

Train: 8618 

272 days 

580.83 321.62 103424.30 

Val: 3386 562.14 308.42 95094.37 

Test: 2543 567.62 308.47 95115.01 

Wadi-Adda-

wasir 

Train: 9199 

242 days 

584.98 309.00 9547422 

Val: 3450 579.24 306.12 93684.80 

Test: 2551 578.02 301.69 90982.42 

Caracas 

Train: 10112 

0 days 

499.28 284.48 80922.07 

Val: 3428 505.95 288.71 83327.90 

Test: 3428 524.82 297.12 88255.24 

Toronto 

Train: 9892 

0 days 

381.15 273.39 74732.91 

Val: 3392 336.74 266.95 71242.70 

Test: 3388 366.77 278.11 77322.36 

All  

Train: 81904 

3870 days - - - Val: 32015 

Test: 24676 

 

 

 

(a) (b) 

 

Figure 9. (a) Percentage of hours (sunny Vs. cloudy) of 10 datasets; (b) GHI (mean and SD) of 10 datasets. 

 

3.2.3. Datasets for Model Prediction    

 Preparing data for Auto-Selective Model Prediction Engine starts by combining all 

the ten datasets into one dataset, then adding a new column called “Best model” to the 

thirty-three features listed in Table 4. To determine the “Best model” for each record, first, 

we calculated the forecasting error of each model using Equation (4), which represents the 

absolute value of the difference between the actual GHI and the forecasted GHI. The best 

forecasting model for each record will be the model that achieves the least forecasting 

error. 
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Forecasting error = |actual GHI −  forecast GHI| (4)

 Figure 10 shows a snapshot of a few data records after adding “Best model” feature 

to the thirty-three features used for forecasting. Then, we used label encoding to convert 

this column to numeric values (0 for the CNN-BiLSTM model, and 1 for the LSTM-AE 

model). The total records used with the Auto-Selective Model Prediction Engine is 24576 

(80% of them used for training and 20% for testing). The class distribution is 23% and 77% 

for the CNN-BiLSTM model, and LSTM-AE model respectively. 

 

Figure 10. Snapshot of data inputs of Best Forecaster Recommendation model. 

 

3.3. Feature Importance   

 Nonlinearity and the “black-box” nature of deep learning models make it difficult to 

explain them and rank features based on importance. In this section, we use four conven-

tional methods for feature selection: Pearson’s correlation (3.3.1), Mutual Information 

(3.3.2), Forward Feature Selection and Backward Feature Elimination (3.3.3), and LASSO 

(3.3.4). However, we did not eliminate any feature listed in Table 4 based on the results of 

these four methods since there is no agreement among them. For example, a feature that 

is considered insignificant by a method would be selected as an important feature by an-

other. Therefore, we used such methods to understand the relationship between variables 

and provide insight into the data. In Section 4.1.1, the effect of the lagged features on fore-

casting is studied by training the models using only the first lagged features, then repeat-

ing training after adding the second and third lagged features. To present the results of 

feature importance methods, four or five datasets out of ten were selected for the sake of 

brevity. 

 

3.3.1. Pearson’s Correlation 

 Pearson’s correlation coefficient measures the linear relationship between two vari-

ables [59]. Figure 11 displays the correlation matrix for Al-Jouf while the same is displayed 

for Al-Khafji in Figure 12. The correlation matrices for Caracas and Toronto are shown in 

Figure 13 and Figure 14. Table 7 lists the most significant correlations between GHI and 

other features of the five datasets. The strongest positive correlation is between GHI and 

its last hour value while the strongest negative correlation is between GHI and hour cosine 

except for Toronto dataset, which is with Zenith Angel of lag 1. From Table 7, it is noticed 

that almost the same set of important features appear in the five datasets and thus, loca-

tion or climate has a slight impact on feature correlation. For example, DNI of lag 2 is more 

important in Toronto dataset than in other datasets. 
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Figure 11. Al-Jouf dataset correlation matrix 
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                            Figure 12. Al-Khafji dataset correlation matrix. 
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Figure 13. Caracas dataset correlation matrix. 
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Figure 14. Toronto dataset correlation matrix. 

 

Table 7. Significant Pearson’s correlation (PC) between GHI and other features. 

Al-Jouf Al-Khafji Wadi-Addawasir  Caracas Toronto 

Feature PC Feature PC Feature PC Feature PC Feature PC 

GHI_lag1 0.88 GHI_lag1 0.87 HC -0.91 HC -0.80 GHI_lag1 0.87 

HC -0.82 HC -0.81 GHI_lag1 0.86 GHI_lag1 0.76 ZA_lag1 -0.68 

ZA_lag1 -0.82 ZA_lag1 -0.78 ZA_lag1 -0.80 ZA_lag1 -0.61 DNI_lag1 0.64 

DNI_lag1 0.59 DNI_lag1 0.63 HS 0.53 HS 0.58 GHI_lag2 0.64 

HS 0.47 HS 0.51 DNI_lag1 0.53 DNI_lag1 0.49 DNI_lag2 0.54 

GHI_lag2 0.47 GHI_lag2 0.47     HC -0.51 

 

3.3.2. Mutual Information 

Mutual Information (MI) measures the reduction in uncertainty for one variable 

given a known value of the other variable [60]. Figure 15 shows the MI values of all fea-

tures for five datasets (Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). The most 

significant features for GHI prediction are GHI lagged observations and Zenith Angle 

lagged observations. Hour sine and cosine are also important in GHI prediction based on 

MI values. As in the case of Pearson’s correlation, location or climate has a slight impact 

on MI values since the same set of features show significance in the five datasets with 

small variation. For example, Hour sine and cosine are less important in Toronto dataset 
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than others. GHI and Zenith Angle lagged observations are more important in Saudi lo-

cations than in Caracas or Toronto. 

 

 

Figure 15. MI values of all features for Al-Jouf, Al-Khafji, Wadi-Addwasir, Caracas, and Toronto datasets.  

3.3.3. Forward Feature Selection (FFS) and Backward Feature Elimination (BFE) 

 Forward feature selection is an iterative method, which starts with no feature in the 

model. In each iteration, the feature which best improves the model is added till an addi-

tion of a new variable does not improve the performance of the model. Backward feature 

elimination on the other hand starts with all the features and removes the least significant 

feature at each iteration. This process is repeated until no improvement is observed with 

feature removal [61]. Table 8 shows ten selected features by FFS & BFE for five datasets 

(Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). Features selected by both meth-

ods for the same dataset are italicized. From Table 8, we can see that some features are 

selected in all datasets, such as Hour sine, DHI, DNI, and GHI lagged observations while 

other features are rarely selected like Wind Speed, Relative Humidity, Barometric Pres-

sure, and Air Temperature.   

Table 8. Selected features by FFS & BFE. 

Al-Jouf Al-Khafji Wadi-Addawasir Caracas Toronto 

FFS BFE FFS BFE FFS BFE FFS BFE FFS BFE 

HS HS HS HS HS HS HS HS MS HS 

HC HC WS_lag1 DHI_lag1 HC HC HC HC HS DHI_lag1 

DHI_lag1 DHI_lag1 DHI_lag1 DNI _lag1 DHI_lag1 DHI_lag1 DHI_lag1 DHI_lag1 GHI_lag1 DNI_lag1 

DNI_lag1 DNI_lag1 DNI_lag1 GHI_lag1 DNI_lag1 DNI _lag1 DNI_lag1 DNI_lag1 ZA_lag1 GHI_lag1 

GHI_lag1 GHI_lag1 GHI_lag1 BP_lag1 GHI_lag1 GHI_lag1 GHI_lag1 GHI_lag1 WS_lag1 AT_lag1 

ZA_lag1 ZA_lag1 ZA_lag1 DHI_lag2 DHI_lag2 DHI_lag2 RH_lag1 RH_lag1 WS_lag3 ZA_lag2 

DHI_lag2 DHI_lag2 DHI_lag2 DNI_lag2 ZA_lag3 ZA_lag3 GHI_lag2 DNI_lag2 DNI_lag2 DHI_lag3 

DNI_lag2 DNI_lag2 DHI_lag3 GHI_lag2 GHI_lag3 GHI_lag2 ZA_lag2 ZA_lag2 GHI_lag3 DNI_lag3 

GHI_lag3 GHI_lag2 DNI_lag3 ZA_lag2 ZA_lag1 ZA_lag2 WS_lag3 WS_lag3 ZA_lag3 GHI_lag3 

ZA_lag3 AT_lag1 GHI_lag3 GHI_lag3 RH_lag1 DNI_lag2 AT_lag3 AT_lag3 RH_lag3 AT_lag3 

 

3.3.4. LASSO Feature Selection   

 The LASSO method regularizes model parameters by shrinking the regression coef-

ficients, reducing some of them to zero. The feature selection phase occurs after the shrink-

age, where every non-zero value is selected to be used in the model [62]. Figure 16 shows 

the selected features based on the LASSO method for five datasets (Al-Jouf, Al-Khafji, 
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Wadi-Addawasir, Caracas, Toronto). The most significant features in all five datasets are 

GHI lagged observations, especially the last hour value (GHI_lag1), and last hour Zenith 

Angle value (ZA_lag1). DHI and DNI lagged observations are less important. Relative 

Humidity seems to have importance in Caracas dataset. Surprisingly, time-related fea-

tures are insignificant in all five datasets. 

 

 

 

 

(a) (b) (c) (d) 

Figure 16. Selected features based on the LASSO method: (a) Al-Jouf; (b) Al-Khafji; (d) Caracas; (e) Toronto. 

 

3.4. Models Development  

 In this section, five deep learning models have been explained: Long Short-Term 

Memory (3.4.1), Gated Recurrent Unit (3.4.2), Convolutional neural network (3.4.3), Hy-

brid CNN and Bidirectional LSTM (3.4.4), and LSTM Autoencoder (3.4.5). All five models 

are used for next-hour GHI forecasting while only LSTM model is used also for classifica-

tion to serve as Auto-Selective Model Prediction Engine. 

 

3.4.1. Long Short-Term Memory (LSTM)  

 LSTM is a special type of Recurrent Neural Network (RNN) capable of learning long-

term dependencies and tends to work much better than traditional RNN on a variety of 

tasks. In addition to the hidden state, LSTMs have the cell state that carries the relevant 

information from the earlier steps to later steps. Along the way, the new information is 

added to or removed from the cell state via input and forget gates. The output gate deter-

mines if the current memory cell will be output. More details about LSTM can be found 

in [5], [63]. 

 An LSTM model for the next hour GHI forecasting is implemented as shown in Fig-

ure 17. It consists of three LSTM layers for feature extraction and one dense layer to make 

GHI prediction. Each LSTM layer has 128 hidden states. Another LSTM model with a sim-

ilar structure is implemented to work as Auto-Selective Model Prediction Engine with two 

differences. First, two dense layers are used for classification instead of regression with 8 

and 2 neurons respectively. Second, the criterion function is Cross-entropy loss instead of 

Mean Squared Error loss (MSE). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2022                   doi:10.20944/preprints202208.0345.v1

https://doi.org/10.20944/preprints202208.0345.v1


 

 

 

 

Figure 17. LSTM forecasting model. 

  

 

3.4.2. Gated Recurrent Unit (GRU)   

 GRU is like LSTM, it also captures long-term dependencies, but it does it using reset 

and update gates without any cell state. While the update gate determines how much of 

the past information needs to be kept, the reset gate decides how much of the past infor-

mation to forget. GRUs are often faster and require less memory than LSTMs because they 

require less computation [64]. 

 A GRU model for the next hour GHI forecasting is implemented as shown in Figure 

18. It consists of three GRU layers for feature extraction and one dense layer to make GHI 

prediction. Each GRU layer has 128 hidden states. 

 

 
Figure 18. GRU forecasting model. 
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3.4.3. Convolutional neural network (CNN)   

 CNN is a type of neural network that is widely known in the computer vision field. 

It consists of several convolutional and pooling layers followed by fully connected layers. 

In convolutional layers, feature maps are created by applying convolution filters on inputs 

while these feature maps are down-sampled in pooling layers. After several convolution 

and down-sampling operations, features are flattened into 1D and passed to one or more 

fully connected layers to generate the output. More details about CNN can be found in 

[65], [66]. 

 A CNN model for the next hour GHI forecasting is implemented as shown in Figure 

19. It consists of two 1D-convolutional layers, one max-pooling layer, and two dense lay-

ers. In the first convolutional layer, 10 feature maps are created using a kernel of size 2 

and stride of 2 while in the second convolutional layer, 5 feature maps are created. The 

max-pooling layer uses a kernel of size 2 and a stride of 1. 

 

Figure 19. CNN forecasting model. 

 

3.4.4. Hybrid CNN-Bidirectional LSTM (CNN-BiLSTM) 

 Bidirectional-LSTM (BiLSTM) is an adjusted version of LSTM that contains two lay-

ers: one to process inputs in a forward direction, and another to process inputs in a back-

ward direction. This structure allows learning from past and future information. More 

details about BiLSTM can be found in [67], [68].  

 In CNN and BiLSTM structure, convolutional and pooling layers are followed by 

BiLSTM layers, then one or more dense layers to generate the output [69]. 

 A CNN BiLSTM model for the next hour GHI forecasting is implemented as shown 

in Figure 20. It has the same design as the CNN model illustrated previously with an ad-

ditional BiLSTM layer placed before the dense layers.  
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Figure 20. CNN-BiLSTM forecasting model. 

 

 

3.4.5. LSTM Autoencoder (LSTM-AE) 

 Autoencoder is a neural network that consists of two parts encoder and decoder. The 

encoder receives inputs and compresses them into a feature vector called latent space 

while the decoder decompresses the feature vector into an output. This data reconstruc-

tion process helps the model extract the most important features. LSTM Autoencoder 

model is an Autoencoder in which both the encoder and decoder consist of LSTM layers 

to learn temporal dependencies in sequence data. More about LSTM-AE can be found in 

[70], [71]. 

 An LSTM-AE model for the next hour GHI forecasting is implemented as shown in 

Figure 21. Both the encoder and decoder have two LSTM layers, followed by a dense layer 

to make GHI prediction.  

 
Figure 21. LSTM-AE forecasting model. 

 

 

3.5. Performance Evaluation Metrics 
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 In this paper, six performance evaluation metrics are used to evaluate the forecasting 

models. 

Mean Absolute Error (MAE) is the mean of the absolute values of the individual fore-

cast errors on overall examples (N) in the test set. Each forecasting error is the difference 

between the actual value (actual GHI) and the forecast value (forecast GHI). A lower value 

of MAE is better. It is calculated as follows [72]. 

MAE =
1

N
�|actual GHI� − forecast GHI�|

�

���

 (5)

Root Mean Square Error (RMSE) is the standard deviation of the residuals or the fore-

cast errors. It measures how spread out the residuals are and how the data is concentrated 

around the line of regression. A lower value of RMSE is better. It is calculated as follows 

[72]. 

RMSE =  �
1

N
�(actual GHI� − forecast GHI�)�

�

���

 (6)

Coefficient of determination (R2) is a statistical measure that determines the proportion 

of variance in the dependent variable that can be explained by the independent variable. 

It shows how well the data fit the regression model. R2 value ranges from 0 to 1 and a 

higher coefficient indicates a better fit for the model. It is calculated as follows [72].  

R� = 1 −
∑ (actual GHI� − forecast GHI�)

��
���

∑  (actual GHI� −  GHI�����)��
���

 (7)

Mean Absolute Percentage Error (MAPE) is a measure of forecasting accuracy. This per-

centage indicates the average difference between the forecasted value and the actual 

value. The smaller the MAPE the better the forecast. It is calculated as follows [73]. 

MAPE =
1

N
 � �

actual GHI� −  forecast GHI�

actual GHI�
�

�

���

× 100%  (8)

Normalized Metric (nMetric) is used to compare multiple forecasting methods applied 

to different datasets. The GHI range in a particular location affects the forecast results 

significantly. nMetric takes this fact into account by dividing the obtained Metric by the 

mean of GHI of the test dataset as shown in the equation below, which could allow a fairer 

comparison [6]. Normalization could be applied to any metric, such as MAE, RMSE, and 

MAPE. 

nMetric =
Metric

GHI�����
  (9)

Forecast Skills (FS) is used to compare a proposed forecasting model performance 

metric with a reference model performance metric. A commonly used reference model in 

the literature is the persistence method. The evaluation metric could be RMSE, MAE, or 

others. FS is calculated as follows [6].   

FS = 1 −
Metric ��������

 Metric �����������

 ∗ 100 %  (10)

Note that for performance analysis in Section 4, we have used both standard and 

normalized versions of MAE, RMSE, and MAPE. 

3.6. Tool Implementation   

 In this paper, PyTorch, which is an open-source machine learning framework devel-

oped by Facebook's AI Research lab, was used as the platform to create deep learning 

models, where Python3 was employed as the programming language. The experiments 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2022                   doi:10.20944/preprints202208.0345.v1

https://doi.org/10.20944/preprints202208.0345.v1


 

 

 

were performed on a laptop with Intel Core i7-11800 H CPU, NVIDIA GeForce RTX 3070 

GPU, and 16 GB memory. However, all deep learning models were developed using GPU. 

The hyperparameters used in each model are listed in Table 9 in addition to the optimiza-

tion methods.  

Table 9. Models hyperparameter. 

Model  Batch size Layers 
Learning 

rate 

Number 

of 

epochs  

Optimization  

LSTM  256 
3 hidden layers with 128 hid-

den states, 1 dense layer 
0.001 100 

Dropout= 0.2, ReLU func-

tion, Weight decay = 

0.000001, Adam 

GRU 256 
3 hidden layers with 128 hid-

den states,1 dense layer 
0.001 100 

Dropout= 0.2, ReLU func-

tion, 

Weight decay = 0.000001, 

Adam 

CNN 64 

2 conv layers with 10 and 5 

filters, 1 max-pooling layer, 2 

dense layers 

0.001 100 

Dropout= 0.2, ReLU func-

tion, Adam, batch normal-

ization 

CNN-

BiLSTM 
64 

2 conv layers with 10 and 5 

filters, 1 max-pooling layer, 1 

BiLSTM layer, 2 dense layers 

0.001 100 

Dropout= 0.2, ReLU func-

tion, Adam, batch normal-

ization 

LSTM-AE 256 
4 LSTM layers with 128 hid-

den states, 1 dense layer 
0.001 100 

ReLU function, weight 

dcay=0.000001, Adam 

 

4. SENERGY: Results and Evaluation 

The performance of the two SENERGY components, Forecasting Engine and Auto-

Selective Model Prediction Engine are evaluated in Section 4.1. and 4.2 respectively. The 

evaluation of both components is analyzed from several aspects, such as climate and lo-

cation, sunny and cloudy weathers, and summer and winter seasons. Then, the achieved 

gain and loss in forecasting performance using SENERGY is discussed in Section 4.3. Fi-

nally, a comparison of SENERGY performance with other related works is provided in 

Section 4.4. 

4.1. SENERGY: Forecasting Engine Performance 

In this section, first, the effect of the lagged features on forecasting is analyzed (4.1.1). 

Then, the forecasting results of five deep learning models, which are described earlier in 

Section 3.4 are analyzed here. The analysis is provided using four aspects: climate and 

location (4.1.2), sunny and cloudy weather (4.1.3), summer and winter seasons (4.1.4), and 

forecasting error results (4.1.5). The results reported are the average of the evaluation met-

rics for fifty simulations, which were calculated for unseen data (testing datasets). The size 

of each testing dataset is given in Table 6 and the used performance evaluation metrics 

are described in Section 3.5. 

 

4.1.1. Effect of Lagged Features on Forecasting 

 In Section 3.2.2, we explained how lagged features were created and why we decided 

to use lag equal to 3 (the last three hours of observations). In this Section, we use Toronto 

dataset to study the effect of using lag equals 1, 2, and 3 to examine the effect of such 

different lags on the forecasting results. Figure 22 shows the difference in MAE, RMSE, 

and MAPE for the five forecasting models when using lag equals to 1, 2, and 3 with To-

ronto dataset. With LSTM, GRU, and CNN-BiLSTM model, it is noticed that using lag 3 
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made the results slightly worse, except with MAPE, which had improved. In contrast, the 

LSTM-AE model achieved better results in all error metrics with lag 2 over lag 1 and the 

best results with lag 3. Given the fact that GHI is only highly correlated with GHI for lag 

1 (see Table 7), using lag equals 1 would give satisfactory results, especially if dimension-

ality might affect the model efficiency. Otherwise, it is worth trying different lagged fea-

tures to see if that would result in better performance as in the case of the LSTM-AE model, 

especially because the climate in the data source might have an effect as well. 

 

Figure 22. The effect of the lagged features on Toronto dataset. 

4.1.2. Effect of Climate and Location on Forecasting 

 The performance of five deep learning-based forecasting models (LSTM, GRU, CNN, 

CNN-BiLSTM, and LSTM-AE) is compared in this Section for all the ten datasets for the 

task of next-hour GHI prediction. Forecasting results using MAE metric and its normal-

ized value are plotted in Figure 23. From the figure, we can see that the best MAE and 

nMAE values are associated with Wadi-Addwasir while the worst values are associated 

with Caracas and Toronto, except for LSTM-AE model. The high performance related to 

Wadi-Addwasir dataset might be attributed to the completeness of this dataset compared 

to other Saudi datasets since it has the least number of missing days and the largest train-

ing set size. In contrast, the low performance associated with Caracas and Toronto da-

tasets might be attributed to the high percentage of cloudy hours (or unclear sky condi-

tion) compared to other Saudi locations. The best model according to MAE and nMAE 

values is LSTM-AE model, which achieves nMAE equal to 0.02 with Wadi-Addwasir and 

Toronto datasets. This excellent performance is attributed to the ability of the model to 

reconstruct the inputs into a better representation in addition to extracting the temporal 

features. On the other hand, the worst performance is associated with CNN model with 

Saudi datasets while CNN-BiLSTM model is the worst for Caracas and Toronto. With 

time-series data, the temporal features are the most important features, which cannot be 

captured by the CNN model. 
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(a) (b) 

Figure 23. Forecasting results of 5 models for all datasets (a) MAE; (b) nMAE. 

 Forecasting results using RMSE metric and its normalized value are plotted in Figure 

24. From the figure, we can see that the best RMSE and nRMSE values are associated with 

Wadi-Addwasir for all five models. This is also observed earlier with MAE and nMAE 

results. On the other hand, the worst values are associated with Caracas and Toronto for 

all models, except for LSTM-AE, which achieved the worst nRMSE value equal to 0.08 

with Al-Khafji dataset. We mentioned earlier the advantage of Wadi-Addwasir dataset 

compared to other Saudi data and the disadvantage of Caracas and Toronto. Regarding 

Al-Khafji dataset, it has missing data equal to one year, which might explain the low per-

formance of LSTM-AE model here. However, LSTM-AE model is the best model for all 

locations while CNN is the worst with Saudi datasets and CNN-BiLSTM model is the 

worst with Caracas and Toronto data. As mentioned earlier, the ability of LSTM-AE to 

reconstruct the inputs into a better representation in addition to extracting the temporal 

features might be the reason behind its superior performance. 

 

  

(a) (b) 

Figure 24. Forecasting results of 5 models for all datasets (a) RMSE; (b) nRMSE. 

Forecasting results using the MAPE metric and its normalized values are plotted in 

Figure 25. From the figure, we can see that the location effect on MAPE and nMAPE values 

are different from what was observed earlier with MAE and RMSE results. For example, 
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the best nMAPE value for LSTM is 0.04 achieved with Al-Baha, Tabuk, and Wadi-

Addwasir while for GRU model it is also 0.04 achieved with Tabuk and Wadi-Addwasir. 

For CNN, the best nMAPE value is 0.13 achieved with Caracas. For CNN-BiLSTM, the 

best nMAPE value is 0.02 achieved with Tabuk and Wadi-Addwasir. For LSTM-AE, the 

best nMAPE value is 0.02 achieved with Hail, Taif, and Caracas. On the other hand, the 

worst values for all models are associated with Toronto, except for LSTM-AE model, 

which achieved the worst value, which is 0.07 with Al-Khafji. Comparing models perfor-

mances, the best is LSTM-AE model for five datasets (Al-Baha, Hail, Taif, Caracas, To-

ronto) and CNN-BiLSTM model for four datasets (Al-Khafji, Arar, Tabuk, Wadi-

Addwasir). Otherwise, the worst is CNN model for all locations. MAPE (refer to Equation 

(8)) is different from other metrics because it gives the forecasting error relative to the 

actual GHI, which might explain the different results observed with this metric. 

 

 

 

(a) (b) 

Figure 25. Forecasting results of 5 models for all datasets (a) MAPE; (b) nMAPE. 

Figure 26 shows the FS results based on MAE and RMSE for all the forecasting mod-

els, which represent the performance improvement compared to the persistence method. 

The best FS results are achieved by the LSTM-AE model, which is 93% in MAE with Hail 

and Wadi-Addawasir datasets while it is 92% in RMSE with Toronto dataset. 

 

 

 

(a) (b) 

Figure 26. Forecasting results of 5 models for all datasets (a) FSMAE; (b) FSRMSE. 
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In summary, looking at the performance from the models’ perspective (refer to Fig-

ure 23, Figure 24, and Figure 25), it is evident that the LSTM-AE model achieved the lowest 

nMAE, nRMSE, and nMAPE, which is equal to 0.02. This excellent performance, as men-

tioned earlier, is attributed to the ability of the model to reconstruct the inputs into a better 

representation in addition to extracting the temporal features. The LSTM and GRU mod-

els come in second place while the CNN model achieved the worst results. With time-

series data, the temporal features are the most important features, which cannot be cap-

tured by the CNN model. However, CNN-BiLSTM is the worst model for Caracas and 

Toronto according to MAE and RMSE results. In contrast, according to nMAPE metric, 

the CNN-BiLSTM model outperformed the LSTM-AE with four out of ten datasets (Al-

Khafji, Arar, Tabuk, and Wadi-Addwasir) and both models achieved the same value with 

Al-Jouf.  

 Looking at the performance from the locations’ perspective (refer to Figure 23, Figure 

24, and Figure 25), we can notice that the best nMAE, nRMSE, and nMAPE results for all 

models are mostly associated with Wadi-Addwasir dataset. On the other hand, the worst 

results are linked with Toronto and Caracas datasets. As mentioned earlier, the high per-

formance related to Wadi-Addwasir dataset might be attributed to the completeness of 

this dataset compared to other Saudi datasets since it has the least number of missing days 

and the largest training set size (see Table 6). The second-best performance is associated 

with Tabuk dataset. Despite the high number of missing records, it has the highest per-

centage of sunny hours and the lowest percentage of cloudy hours among other datasets 

(see Figure 9). In contrast, the low performance associated with Toronto and Caracas da-

tasets might be attributed to the high percentage of cloudy hours (or unclear sky condi-

tion) compared to other Saudi locations (see Figure 9). This in turn means GHI varies from 

time to time and is hard to predict. We can infer that the most important factor that affects 

models’ performance is the climate in the dataset source, followed by the completeness of 

the dataset to help the model learn the GHI variations accurately. 

 

4.1.3. Effect of Sunny and Cloudy Weather on Forecasting 

To examine the effect of weather type on models’ performance, we plot in Figure 27 

the actual vs. predicted GHI of one sunny and one cloudy day by all the five models for 

five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, and Toronto. The first three-

hour of GHI values after sunrise were used as inputs to the models. Therefore, the predic-

tion starts from 11:00 am or 10:00 am depending on the sunrise time in the location of the 

data source. Similarly, the last time is 18:00 or 17:00 depending on the sunset time, which 

is the last time for GHI prediction of the day. From Figure 27, we can observe that predict-

ing GHI on sunny days is more accurate than on cloudy days. It is also noticed that the 

LSTM-AE model is the most accurate model on sunny and cloudy days. Even if it is not 

very accurate as in the case of Toronto cloudy day, it is able to capture the trend line 

closely. In contrast, the CNN-BiLSTM model sometimes achieves a closer prediction than 

the LSTM-AE model, but it could not capture the trend line accurately like the LSTM-AE 

model as shown in the case of Toronto cloudy day. On the other hand, the CNN model 

achieves the worst prediction, especially on cloudy days. 
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Figure 27. Sunny vs. Cloudy -- Actual Vs. predicted GHI of 5 models for: (a) Al-Jouf sunny; (b) Al-Jouf cloudy; (c) Al-Khafji sunny; 

(d) Al-Khafji cloudy; (e) Wadi-Addwasir sunny; (f) Wadi-Addwasir cloudy; (g) Caracas sunny; (h) Caracas cloudy; (i) Toronto 

sunny; (j) Toronto cloudy 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 
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4.1.4. Effect of Summer and Winter Seasons on Forecasting 

To examine the effect of seasons on models’ performance, we first show, in Figure 28, 

the actual vs. predicted GHI of the coldest and hottest months (January and August) by 

all models for five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, and Toronto. 

Like sunny and cloudy results, we found that the LSTM-AE model is the most accurate in 

January and August while CNN is the worst model. It is noticed also that the CNN-

BiLSTM model performs poorly with specific datasets as in the case of Caracas and To-

ronto because the GHI readings are not stationary. Figure 29 shows the MAE for summer 

and winter for each dataset. The MAE metric is selected for no specific reason, we could 

have plotted RMSE and other metrics, or all the metrics considered in this paper. How-

ever, we plot one metric for the sake of brevity. We divided the year into two seasons for 

simplification and because Saudi Arabia does not experience four seasons. Summer in-

cludes May, June, July, August, September, and October while winter includes the re-

maining months. From Figure 29, we can see that winter MAE is higher than summer in 

all datasets, except for Taif, Caracas, and Toronto where MAE is higher in summer. An-

other observation is that the CNN model and CNN-BiLSTM model have the largest dif-

ference in MAE from summer to winter while the LSTM-AE model has a very slight dif-

ference.   
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Figure 28. Summer vs. Winter -- Actual vs. predicted GHI of 5 models for: (a) Al-Jouf Jan; (b) Al-Jouf Aug; (c) Al-Khafji Jan; (d) Al-

Khafji Aug; (e) Wadi-Addwasir Jan; (f) Wadi-Addwasir Aug; (g) Caracas Jan; (h) Caracas Aug; (i) Toronto Jan; (j) Toronto Aug. 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 

 

(i) (j) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 29. MAE of Summer Vs. Winter for 5 models for: (a) Al-Baha; (b) Al-Jouf; (c) Al-Khafji; (d) Arar; (e) Hail; (f) Tabuk; (g) Taif; 

(h) Wadi-Addwasir; (i) Caracas; (j) Toronto. 
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4.1.5. Digging Deeper into Forecasting Error for Each GHI Prediction 

 The forecasting error is defined earlier (see Equation (4)). To depict the forecasting 

error distribution and outliers of the five models for all datasets, a Boxplot of the forecast-

ing error is displayed in Figure 30. Note that the plot for each location contains forecasting 

errors for each data item in the testing dataset that is used for prediction (see Table 6 for 

details about the testing sets sizes). All models’ forecasting error interquartile range is 

below 100 except for Caracas dataset. It is clear from the figure that the forecasting error 

of the LSTM-AE model has the smallest interquartile range with the fewest outliers. 

Model-wise, the forecasting error of the CNN-BiLSTM model has the highest outliers 

while dataset-wise, Toronto and Taif datasets have the highest outliers. 

 

 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 
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(i) (j) 

Figure 30. Boxplot of GHI forecasting error of 5 models for 5 models for: (a) Al-Baha; (b) Al-Jouf; (c) Al-Khafji; (d) Arar; (e) Hail; (f) 

Tabuk; (g) Taif; (h) Wadi-Addwasir; (i) Caracas; (j) Toronto. 

 The forecasting error is used to determine the “best model” label of each record in 

the testing datasets of all locations. The best model is the model that achieves the least 

forecasting error for each record. Figure 31 shows the achieved percentage of all the five 

models as the "best model" based on the forecasting error. The percentage is calculated by 

dividing the number of records in which a model is the best by the total number of records. 

It is clear from the pie chart that LSTM-AE model is the best model for 54% of the records 

while CNN-BiLSTM comes in second place with 17%. LSTM and GRU models achieved 

the least forecasting error for 11% of the records whereas CNN does so for 7% only. 

 

Figure 31. The achieved percentage of the models as "best model" based on the forecasting error. 

4.2. SENERGY: Auto-Selective Model Prediction Engine Performance 

 In Section 4.1, we compared the five forecasters’ performances on ten datasets and 

found that according to MAE and RMSE results, the LSTM-AE model is the best forecaster 

without competition. However, according to the MAPE metric, the LSTM-AE model is the 

best forecaster with half of the datasets while CNN-BiLSTM is the best with the other half. 

We also compared the five forecasters’ performances using the forecasting error of each 

individual record (see Equation (4)) and we found that LSTM-AE model is the best model 

for 54% of the total records while CNN-BiLSTM is the best for 17%. The remaining models 

CNN, GRU, and LSTM together achieved 29% only (see Figure 31). This imbalance in the 
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data that comes from the forecasting models’ performance variation would affect the clas-

sifier training negatively. Considering both the overall performance of the forecasters rep-

resented in MAPE metric and item-wise performance represented in the forecasting error, 

we decided to use only two models: LSTM-AE, and CNN-BiLSTM in SENERGY tool to 

mitigate the imbalanced data issue. Accordingly, we built an Auto-Selective Model Pre-

diction Engine that chooses one out of the best two models based on the same inputs used 

for forecasting. We will incorporate in the tool additional models for GHI forecasting in 

the future. A description of the Auto-Selective Model Prediction Engine structure is given 

in Section 3.4.1. Figure 32 shows the confusion matrix of the Engine. As shown in the ma-

trix, correctly classified CNN-BiLSTM records account for 8.4% while LSTM-AE records 

account for 72.57%.  

 

Figure 32. Auto-Selective Model Prediction Engine confusion matrix. 

Table 10 presents the classification report of the Auto-Selective Model Prediction En-

gine. It shows the precision, recall, F1-score, and support of both models CNN-BiLSTM 

and LSTM-AE separately, then, the classification accuracy of the engine. The total number 

of records used for testing the engine is 3500 as shown in Support column. Out of which, 

CNN-BiLSTM model accounts for 23% (809/3500), and LSTM-AE model accounts for 77% 

(2691/3500). The percentage of correctly classified records of each model is shown in Recall 

column. CNN-BiLSTM model recall is 36% while LSTM-AE model recall is 94%. This large 

difference between both models’ accuracy is mainly attributed to data imbalance, which 

in turn renders the overall engine accuracy to 81% (F1-score in the third row).  

Table 10. Auto-Selective Model Prediction Engine classification report. 

 Precision Recall  F1-score  Support  

CNN-BiLSTM 66% 36% 47% 809 

LSTM-AE 83% 94% 88% 2691 

Accuracy    81% 3500 

Macro average  75% 65% 68% 3500 

Weighted average  79% 81% 79% 3500 

 

Figure 33 shows the feature importance using the Random Forest classifier method. 

Random Forest is used here not to make a prediction or eliminate features, but rather to 

provide insights about features ranking. The most important feature for classification is 

the solar zenith angle followed by DHI value of lag 1. The least important features are 
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time-related features, such as DS, DC, MS, MC, and HS. In contrast, HS and HC are 

important features for forecasting (refer to Section 3.3). 

 

Figure 33. Feature importance using Random Forest classifier. 

 Our objective in this paper is to introduce our deep learning-based auto-selective 

approach to predicting the best performing machine learning model for GHI forecasting. 

We will investigate and improve the data balancing and other approaches in the future to 

improve the performance of the proposed auto-selective approach. 

 In the coming sections, the classification results are analyzed from three aspects: 

climate and location (4.2.1), sunny and cloudy weathers (4.2.2), and summer and winter 

seasons (4.2.3). 

4.2.1. Model Prediction: Climate and Location 

 To further analyze the classification results, we first calculated the Auto-Selective 

Model Prediction Engine accuracy for each location as presented in Figure 34. The number 

of total records is also incorporated in the figure to see its effect on accuracy. The highest 

classification accuracy is 90% associated with Caracas and Toronto due to a large number 

of records for both locations while the lowest classification accuracy is 69% associated 

with Tabuk for which the low number of records plays a role in addition to the close fore-

casting performance between both forecasting models for this location (see Section 4.1.2). 
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Figure 34. Classification accuracy of Model Prediction Engine based on location with total records. 

 We also calculated the recall of both models CNN-BiLSTM and LSTM-AE for each 

location as shown in Figure 35. The recall percentage for LSTM-AE model is 90% or higher 

for all locations except for Al-khafji, which equals 59%. On the other hand, the recall per-

centage for CNN-BiLSTM ranges from 9% to 44% except for Al-khafji, which equals to 

86%. The reason for the superiority of CNN-BiLSTM model accuracy over LSTM-AE 

model associated with Al-khafji data is the imbalance in both models with 133 versus 97, 

unlike other datasets in which the total records of LSTM-AE is always higher than CNN-

BiLSTM. This, in turn, is explained by the high variation in forecasting performance be-

tween CNN-BiLSTM model with MAPE of around 16% and LSTM-AE with MAPE 

around 35% for Al-khafji dataset (see Figure 25). 

 

Figure 35. Recall of the two forecasting models in Model Prediction Engine. 

4.2.2. Model Prediction: Sunny and Cloudy Weathers 

 The classification accuracy of the Model Prediction Engine on sunny days is 75% and 

86% for cloudy days while the total record for sunny days is higher than cloudy by 28%. 

These results contradict forecasting results in which forecasting on sunny days is more 
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accurate than on cloudy days. The reason for that is the close prediction for both forecast-

ing models CNN-BiLSTM and LSTM-AE in sunny weather, which makes it difficult for 

the classifier to pick one model. On the other hand, LSTM-AE shows superior perfor-

mance on cloudy days, which the classifier learned from the data. Figure 36 shows the 

recall for each model in sunny versus cloudy weather. Notably, CNN-BiLSTM recall in 

cloudy weather is better than sunny with 38% while LSTM-AE recall in sunny weather is 

2% better than cloudy. As explained earlier, on sunny days CNN-BiLSTM and LSTM-AE 

have a close prediction that causes the classifier to misclassify CNN-BiLSTM records as 

LSTM-AE. 

 

Figure 36. Recall of the two forecasting models (sunny Vs. cloudy) in Model Prediction Engine. 

4.2.3. Model Prediction: Summer and Winter Seasons 

 The classification accuracy of the Model Prediction Engine in summer is 82% and 

80% for winter even though the total number of records for summer is less than winter by 

14%. This slight difference in the performance between seasons is aligned with the same 

trend found in the forecasting results. Figure 37 shows the recall for each model in sum-

mer versus winter. It is notable that CNN-BiLSTM recall in summer is better than in win-

ter with a 7% difference while LSTM-AE recall is almost the same. 
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Figure 37. Recall of the two forecasting models (summer Vs. winter) in Model Prediction Engine. 

 

 

4.3. SENERGY: Performance Gain and Loss 

4.3.1. Actual Gains and Losses 

To understand the benefit of using SENERGY, we calculated the performance gain 

(G) or loss (L) for the tool versus a model (m) as follows: the difference between the fore-

casting error of a model (CNN-BiLSTM, LSTM-AE) and the forecasting error of the model 

chosen by the tool.    

G or L =   FE� − FE�  (11)

 A positive value indicates a gain, and a negative value indicates a loss. The gain or 

loss is calculated for each record in the testing set of Model Prediction Engine (total of 

3500 records) using Equation (11). Table 11 shows an example of gain or loss calculation 

for three real records. As shown in the first row, the forecasting error of CNN-BiLSTM is 

67.73 and for LSTM-AE is 4.83. The tool is able to choose the best model correctly for this 

record, thus, the achieved forecasting error is 4.83. To measure the gain over CNN-

BiLSTM model, we calculate the difference between 67.73 and 4.83, which is 62.90. There-

fore, we can say that the tool achieved gain in performance equals 62.90 over CNN-

BiLSTM for this record. On the other hand, no gain was achieved for the tool over LSTM-

AE model because it is the best anyway. Similarly, in the second record, the forecasting 

error of CNN-BiLSTM is 128.60 and for LSTM-AE is 44.41. The tool failed to choose the 

best model correctly for this record, thus, the achieved forecasting error is 128.60. There is 

no gain for the tool over CNN-BiLSTM model in this case. The difference between the 

forecasting error of LSTM-AE model and the forecasting error of the wrong best model 

chosen by the tool is 84.19. It is a negative number; thus, it is a loss in tool performance 

for LSTM-AE model for this record. 

Table 11. An example of Gain/Loss of SENERGY over two models. 

FE 

CNN-BiLSTM 

FE 

LSTM-AE 

FE 

Best Model 

G/L 

CNN-BiLSTM 

G/L 

LSTM-AE 

67.73 4.83 4.83 62.90 0 

128.60 44.41 128.60 0 -84.19 
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0.47 29.12 29.12 -28.65 0 

 

Figure 38 shows the gain or loss of SENERGY versus CNN-BiLSTM model for each 

record. The gain is positive and hence above to zero line and the loss is negative and hence 

below the zero line. Locations’ records are differentiated by colors. As noted, the gain is 

large in general because LSTM-AE model provides highly better forecasting than CNN-

BiLSTM model. In contrast, the loss is small because when CNN-BiLSTM model achieves 

better forecasting than LSTM-AE model, the difference is small. Looking at gain or loss 

from a location perspective, the largest gains are achieved with Caracas and Toronto da-

tasets while the smallest gains are achieved with Wadi-Addawasir, which is compatible 

with forecasting results discussed in Section 4.1.2. 

 

 

Figure 38.Gain/loss of SENERGY versus CNN-BiLSTM. 

 

Figure 39 shows the gain or loss of SENERGY versus LSTM-AE model for each rec-

ord. Locations’ records are differentiated by colors. The gain is small in general because 

as we mentioned earlier when CNN-BiLSTM model achieves better forecasting than 

LSTM-AE model, the difference is small. In contrast, misclassifying records for which the 

best model is LSTM-AE as CNN-BiLSTM comes with a large loss because LSTM-AE ac-

complishes smaller forecasting error in general (refer to Table 11-second row for an exam-

ple). Looking at gain or loss from a location perspective, the largest gains are achieved 

with Saudi datasets while the largest losses are achieved with Caracas and Toronto da-

tasets, which is compatible with forecasting results discussed in Section 4.1.2. 

Note that despite the large losses, the SENERGY tool still offers gains over the LSTM-

AE method. These low gains and high losses are because the LSTM-AE method provides 

significantly better performance compared to any other method causing the LSTM-AE 

forecasting method to own most of the labels in the classification dataset (2691 out of 3500) 

as the best performing forecasting method, and this created a major data imbalance prob-

lem causing poor classification accuracy. Partly, to some extent, the performance of the 

LSTM-AE method could be attributed to the fact that we used a relatively optimized 

lagged feature for the LSTM-AE method giving LSTM-AE an advantage over the other 

four forecasting methods (see Section 4.1.1). It is possible to incorporate in SYNERGY a 

set of different features (e.g., Lag1, Lag2, Lag3) and treat each pair of a distinct feature 

(from this feature set) and a forecasting model as a separate forecasting engine (or model) 

and train the SYNERGY model prediction engine to predict a feature-model pair. This will 

allow SYNERGY to predict the best combination of a feature and model for a given GHI 

prediction instead of pre-defined fixed input features. The same approach can be 
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extended to hyperparameter optimisations and other parameters in the machine learning 

forecasting pipeline. These feature-related and parameter-related aspects of the SYN-

ERGY approach should be investigated further before robust conclusions can be drawn. 

In addition, the use of additional meteorological datasets with high climate and data di-

versity and additional forecasting methods, coupled with solutions for data imbalance 

problems could create a more balanced classification dataset and allow improvements in 

the classification error leading to significantly better forecasting accuracies and gains. 

The next section explains through graphical data what is potentially possible with 

the proposed SENERGY approach if the data imbalance problem can be solved. The ex-

citing fact about the tool is that it would provide higher gains for higher diversity datasets 

while usually, the opposite is true for a single forecasting method. Also, as explained ear-

lier, the approach allows selecting different models optimized for different climates rather 

than optimizing a model for multiple climates that may provide an optimally average 

performance for diverse climates. Moreover, further investigations into this approach 

could allow further understanding of optimal models for specific climates and weather 

leading to a better understanding of climates and forecasting methods and eventually de-

veloping better renewable energy forecasting approaches.  

 

 

Figure 39. Gain or loss of SENERGY versus LSTM-AE. 

 

 Figure 40 displays the average gain or loss of the SENERGY tool for each record. 

Locations’ records are differentiated by colors. The average is calculated by summing both 

models’ gain/loss values and dividing the sum by 2.  
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Figure 40. Average gain/loss of SENERGY. 

                         

4.3.2. Potential Performance 

 In the previous section, we demonstrated the gain and loss of SENERGY, which can 

choose the best forecasting model among the two models only. However, in an ideal situ-

ation, SENERGY would choose the best forecaster of the five models included in this work 

or even more models in the future. Therefore, the potential gain or loss is calculated here 

assuming that SENERGY can choose the best out of five forecasting models with 100% 

classification accuracy. 

 Figure 41 shows the gain of SENERGY over LSTM and GRU models in an ideal situ-

ation. There is no loss here because as mentioned before, the classification accuracy is 

100%. It is noted that the gain over both models is almost the same for all locations because 

the forecasting performances of both models are convergent (refer to Section 4.1.2 ). loca-

tion-wise, the largest gains of both models come with Caracas and Toronto datasets while 

the lowest gains are achieved with Al-Khafji and Wadi-Addawsir. 

 

 

(a) (b) 

Figure 41. Gain of SENERGY over:(a) LSTM; (b) GRU. 

Figure 42 shows the gain of SENERGY over CNN and CNN-BiLSTM models in ideal 

situation. There is no loss here because as mentioned before, the classification accuracy is 

100%. Gain over CNN model is like gain over CNN-BiLSTM model although the latter 

has more outliers. Looking at the gain from a location perspective, the largest gains are 

achieved with Caracas and Toronto datasets while the lowest gains are achieved with Al-

Khafji and Wadi-Addawsir. 
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 (a) (b) 

Figure 42. Gain of SENERGY over:(a) CNN; (b) CNN-BiLSTM. 

Figure 43 (a) shows the gain of SENERGY over LSTM-AE model. Unlike other mod-

els, the largest gains are achieved with Al-Khafji. On the other hand, the lowest gains are 

related to Wadi-Addawsir like other models. Figure 43 (b) shows the gain of SENERGY 

over all the five models as a boxplot. It is obvious that the largest gain is achieved with 

CNN and CNN-BiLSTM models. Also, gain over LSTM and GRU models is similar while 

gain over LSTM-AE is very small since it is the best forecaster for most of the records 

anyway. 

 

 

  
(a) (b) 

Figure 43. Gain of SENERGY:(a) over LSTM-AE; (b) as a boxplot for the five base models. 

 

4.4. SENERGY: Comparison with other Works 

 To the best of our knowledge, no work in the literature suggests a similar tool to 

combine deep learning for forecasting and classification to improve solar radiation fore-

casting performance and generalizability. Therefore, the comparison here will be mainly 

based on the forecasting results. The works that we have selected in this section for com-

parison with our tool SENERGY are based on two criteria. Firstly, these compared works 

propose models for forecasting next-hour GHI, and, secondly, they use multiple datasets 

from different climates. For the reasons explained, the works such as [23], [39]–[43], [74], 

[75] are excluded from the comparison because the datasets used are for one climate only. 

The works such as [20], [26], [44], [45], [69], [76]–[79] are also excluded from the compari-

son because they propose forecasting models for different time horizons such as day 

ahead or monthly GHI compared to the next-hour GHI that is the focus of our work in 

this paper. 
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 Comparison in this section includes MAE, RMSE, MAPE results, and their normal-

ized values of all locations datasets used in each work whenever they are reported. The 

comparison also includes the forecasting skill metric FSMAE and FSRMSE. Equations of all 

these metrics are provided in Section 3.5. Moreover, GHI mean and standard deviation 

are added to the comparison to show the variation among locations.  

Table 12 presents the comparison of SENERGY to six works, which met the afore-

mentioned selection criteria. The comparison in the table is based first on information that 

shows the data variation aspect: data source location, GHI mean and standard deviation, 

climate classification of the location, and the use of weather parameters in addition to 

historical values of GHI in inputs. The second aspect of comparison is the model used for 

forecasting. For example, in reference [18], data from three locations in India are used, 

which represent three different climate classes (Cwa, Cwb, Bsh). GHI mean and SD are 

not provided. Weather data in addition to GHI historical values are used to develop the 

proposed ensemble model of XGBF-DNN. The third aspect of comparison is performance 

metric results, which are compared later in multiple figures. 

 

 

Table 12. Comparison of SENERGY to related works. 

Ref 

# 
Location  

GHI 

mean 

GHI 

SD 
Climate  

Weather 

data 
Model  

[18] 

Jaipur 

NA  NA 

 Cwa 

 Cwb 

 Bsh 

 
Ensemble model of XGBF-

DNN 
New Delhi 

Gangtok 

[21] 

 

Los Angeles 217.37 291.73 
 Csb, 

 BSk 

 Af 

 BWk 

 
Hybrid model of 

CEEMDAN-CNN-LSTMv 

Denver  203.33 276.40 

Hawaii’s Big Is-

land   
220.12  307.79 

Tamanrasset 269.98 361.83 

[22] 

Ajaccio 

NA NA 
 Csa 

 Csb 
 

ARMA 

 RF 
Tilos 

Odeillo 

[24] 

CA 

NA  NA 

 BSk 

 Cfa 

 Cfb 

 Am 

 Dfb 

 Dfa 

 Generalized Random Forest 

TX 

WA 

FL 

PA  

MN  

[25] 

Bondville 398.04  284.66  

 Cfa 

 BWk 

 BSk 

 Cfb 

 Dfa 

 

68 machine learning algo-

rithms (Cubist model is the 

best in most cases) 

Desert Rock 517.72 
 

314.73  

Fort Peck 368.17 277.33 

Goodwin 

Creek 
442.77 289 

Penn. State Uni 384.31 277.24 

Sioux Falls 406.94 277.55 

Table Moun-

tain 
412.19 287.97 

[27] 
Tucson 532.5 

NA 
 Bsh 

 Cfa  
  ELM 

Bermuda 417.1 
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Brasilia 475.6  A 

 Dfc Sonnblick  347.2 

Solar Village 580.9 

Golden 459.4 

Darwin 516.4 

Ny-Alesund 184.3 

Toravere 256.9 

Lerwick  198.3 

This 

wor

k 

Al-Baha  582.09 311.16 

 BWh 

 A 

 Dfb 

 

LSTM 

GRU 

CNN 

CNN-BiLSTM 

LSTM-AE 

Al-Jouf,  528.14 296.47 

Al-Khafji  486.59 275.73 

Arar 485.46 295.04 

Hail 543.77 303.82 

Tabuk 498.03 261.73 

Taif 567.62 308.47 

Wadi-Adda-

wasir 
578.02 301.69 

Caracas 366.77 271.11 

Toronto 524.82 297.12 

Ref [27] has 20 locations, we present data about 10 locations from various climates for simplicity.  

NA: Not available. 

 A fair comparison of models’ performances in the literature is a challenging task be-

cause first, there is great variation in the results reported by researchers. Also, it is difficult 

to find best-performing model by comparing various statistical measures at the same time, 

such as RMSE, MAE, MAPE, etc. For example, to compare six works included in this sec-

tion, we need multiple figures (Figure 44, Figure 45, Figure 46, Figure 47). Some metrics 

are reported in these six papers and others are not. Sometimes normalized metrics’ results 

are not given in a paper, but the GHI mean of each location is given. Therefore, we calcu-

lated normalized metrics in this case. Therefore, we could not include all the six works in 

these figures. This highlights the need to standardize the performance metrics used to 

report results. Each box plot in the following figures represents a performance metric re-

sult of several locations. Performance metrics results are averages calculated for a whole 

dataset. The desirable outcome is a low box to show small error and a short box to show 

small variation among different locations. The number of locations is ten for this work, 

and it is shown beside the authors’ names in the legend for other works. SENERGY results 

reported in the next figures are calculated assuming it can choose the best out of five fore-

casting models with 100% classification accuracy. To elaborate, our proposed approach 

has the potential to provide better performance than any forecasting model alone, there-

fore, we reported the results for the ideal situation. 

In Figure 44 (a), MAE results from Gao et al. [21] and Fouilloy et al. [22] are compared 

to MAE results of five forecasting models and SENERGY in this work. It is noted that 

reference [22] has the worst MAE results in terms of high value and large variation among 

the three locations. On the other hand, LSTM-AE model and SENERGY show the best 

performance in terms of both the lowest MAE values and low variations for ten locations. 

The work of Gao et al. [21] appears to show the next best performance, however, it is 

because the results are for four locations only. In Figure 44 (b), nMAE results are com-

pared. Reference [22] is excluded because nMAE is not reported there. We see how nor-

malization made the box of Gao et al. [21] bigger and thus, it is fair to say that LSTM, GRU, 

LSTM-AE, and SENERGY show better performance even with a larger number of loca-

tions. Both for MAE and nMAE, LSTM-AE model and SENERGY show the same perfor-

mance because according to these metrics (averaged over each of the ten location da-

tasets), the best model is always LSTM-AE for all locations (refer to Figure 23).  
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(a) (b) 

Figure 44. Comparison of multiple works based on: (a) MAE; (b) nMAE. 

 

 In Figure 45 (a), RMSE results of four works: Kumari & Toshniwal [18], Gao et al. 

[21], Lee et al. [24], and Bouzgou & Gueymard [27] are compared to RMSE results of the 

five forecasting models and SENERGY results in this work. LSTM-AE model and SEN-

ERGY achieved the best performance in terms of lowest RMSE and smallest variation 

among ten locations. The work of Gao et al. reference [21] comes in the second place, how-

ever, it includes four locations only compared to six and twenty in other works. The worst 

performance in terms of value is associated with the work of Bouzgou & Gueymard ref-

erence [27], while the worst based on variation among locations is associated with the 

work of Lee et al. reference [24] with six locations. In Figure 45 (b), nRMSE results of this 

work are compared to four works. Since nRMSE is not reported in references [18] and [24], 

they are excluded in (b) and another two works are added: Fouilloy et al. reference [22] 

and Yagli et al. reference [25]. The best nRMSE results are achieved by LSTM-AE model 

and SENERGY while the worst are related to Yagli et al. reference [25] in terms of low 

value and Fouilloy et al. reference [22] in terms of large variation among locations. Com-

paring (a) and (b), we can see the benefit of normalization in providing a fair comparison. 

For example, in (a) Gao et al. reference [21] box is smaller and lower than LSTM, GRU, 

CNN, and CNN-BiLSTM models, but after normalization, it becomes higher than all of 

them. In both (a) and (b), LSTM-AE model and SENERGY achieved the best performance 

in terms of lowest value and smallest variation. Again, SENERGY shows the same perfor-

mance as LSTM-AE model because according to RMSE and nRMSE results, the best model 

is always LSTM-AE for all locations (refer to Figure 24).  
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(a) (b) 

Figure 45. Comparison of multiple works based on: (a)RMSE; (b)nRMSE. 

 In Figure 46 (a), MAPE results of Lee et al. reference [24], and Bouzgou & Gueymard 

reference [27] are compared to the five forecasting models and SENERGY results in this 

work. SENERGY achieved the lowest error with the smallest variation among ten loca-

tions while CNN model is the worst. In Figure 46 (B), the comparison is based on nMAPE 

results and the same observation about the best and worst performance is true. The work 

of Lee et al. reference [24] is eliminated in (b) since GHI mean is not reported and thus 

nMAPE cannot be calculated. From (a) and (b), we can see the normalization effect on the 

work of Bouzgou & Gueymard reference [27]. In (a), it shows better performance than 

LSTM, GRU, and CNN-BiLSTM models while in (b) it becomes worse than all of them in 

value or variation among locations. Unlike MAE and RMSE results, SENERGY outper-

forms LSTM-AE model based on MAPE and nMAPE because the latter is not the best 

model for all locations according to these metrics (refer to Figure 25). 

  

  

(a) (b) 

Figure 46. Comparison of multiple works based on: (a) MAPE; (b) nMAPE. 

 In Figure 47 (a), FSMAE results of Gao et al. [21] are compared to the five forecasting 

models and SENERGY results in this work. In this figure, the highest value is the best. It 

is noticed that LSTM-AE model and SENERGY have the highest value and the lowest 

variation among locations while CNN model is the worst in terms of value and CNN-

BiLSTM is the worst in terms of variation among locations. In (b), FSRMSE results of three 

works: Gao et al. [21], Fouilloy et al. [22], and Bouzgou & Gueymard [27] are compared to 

the five forecasting models and SENERGY results in this work. Again, LSTM-AE model 

and SENERGY have the highest value and the lowest variation among locations. The sec-

ond best performance is achieved by the work of Gao et al. [21]. However, it only includes 
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the results of four locations compared to ten and twenty in other works. On the other 

hand, Bouzgou & Gueymard reference [27] has the worst value and the largest variation 

among locations since it includes twenty results. Like MAE and RMSE results, SENERGY 

does not show better performance than LSTM-AE model in (a) or (b) because on both 

metrics, the latter is the best model for all locations (refer to Figure 26). 

 

  

(a) (b) 

Figure 47. Comparison of multiple works based on: (a) FSMAE; (b) FSRMSE. 

 Figure 48 compares the SENERGY performance with the five forecasting models in 

terms of the forecasting error (refer to Equation (4)). As we mentioned earlier, the com-

parison in this section is based on the assumption that SENERGY can choose the best 

among the five forecasting models with 100% accuracy. In this figure, the forecasting error 

is calculated and represented for each data item in the testing datasets of all locations 

together. (a total of 24676 records as shown in Table 6). Therefore, the number of outliers 

for each model is higher compared to the earlier figures in this section (those figures plot 

average statistics for each dataset). No other work is compared in this figure because we 

do not have results available at this precision from other researchers published works. 

From (a), we can see the improvement of SENERGY performance over the five models 

comes from the ability of the tool to choose one of the five models that achieves the least 

error for each data input. Similarly, in (b) the forecasting error is divided by actual GHI to 

get the relative error. Both in (a) and (b), SENERGY has the least error with fewer outliers 

and CNN model is the worst. 

 

 

(a) (b) 

Figure 48. Comparison of SENERGY to other models based on: (a) forecasting error; (b) relative forecasting error. 

 From all the figures shown in this section, it is evident how difficult it is to compare 

works when different metrics are reported and not all the needed information for a fair 

comparison is given. There is a need to improve, consolidate, and standardize 
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international efforts on transparent and extensive testing of the proposed models for re-

newable energy forecasting [10]. One approach could be that researchers make the com-

plete results data openly available for comparison purposes. The box plot used in this 

work provides the results at a higher granularity compared to the aggregate or average 

metrics. Particularly, the box plots for the forecasting error and the relative forecasting 

error provide a more detailed account of the performance because these results are plotted 

for each GHI prediction compared to the other performance metrics that show perfor-

mance at a lower granularity of dataset levels. 

 

5. Conclusions and Future work 

This work introduced SENERGY, a novel tool for solar radiation forecasting. SEN-

ERGY utilizes the knowledge gained from the performance of deep learning-based fore-

casting models with different datasets collected from multiple locations and the meteoro-

logical data variables of these locations to recommend the best forecasting model suitable 

for data features. Using the recommended forecasting model by SENERGY with new data 

inputs would save time and effort in running experiments in addition to the gain in fore-

casting accuracy. To build the knowledge base of the models’ performances, we trained 

and tested five forecasting models: LSTM, GRU, CNN, CNN-BiLSTM, and LSTM-AE with 

eight datasets collected from different locations in Saudi Arabia that have hot desert cli-

mate in addition to datasets from Toronto and Caracas, which have humid continental 

and tropical climate respectively. To provide the best forecasting model recommendation, 

an LSTM model was developed. 

Future work would aim to make improvements in different aspects of the SENERGY 

tool design. One area is to improve the knowledge base. We used data from three different 

climates only. In the future, more datasets from different countries and climates would be 

used to enrich the knowledge base. This would allow SENERGY to provide more accurate 

recommendations to any meteorological data irrespective of the climate changes. Addi-

tionally, the SENERGY knowledge base contains only the performance of two forecasting 

models. Another way to improve it is to use more competitive forecasting models, specif-

ically the models proven to provide high performance in the literature. Another aspect is 

to improve the model prediction engine performance. Currently, the classification accu-

racy is 81%, which should be enhanced in the future. One idea is to add a weather classi-

fication step (sunny, cloudy, etc.) to improve accuracy. Moreover, SENERGY predicts the 

best model based on models’ performance in terms of forecasting accuracy only. Another 

performance option could be added to the tool, which is the model computation time. 

Model auto-selection would be provided based on both performance measures upon user 

preferences. A third aspect is to improve forecasting. Future work will also include im-

proving the used forecasting models through a rigorous optimization process, such as 

hyperparameters tuning, and through inputs, such as using the forecast of meteorological 

variables or satellite data in addition to the historical measurements data to improve the 

GHI prediction.  

The current performance of the SENERGY tool is limited because the LSTM-AE 

method outperforms all other methods, causing the LSTM-AE forecasting method to own 

the majority of the labels in the classification dataset as the best performing forecasting 

method, resulting in a major data imbalance problem and poor classification accuracy. 

The LSTM-AE method's performance could be attributed in part to the fact that we used 

a relatively optimized lagged feature for the LSTM-AE method, giving LSTM-AE an ad-

vantage over the other four forecasting methods. It is possible to include a set of different 

features (for example, Lag1, Lag2, Lag3) in SYNERGY and treat each pair of a distinct 

feature (from this feature set) and a forecasting model as a separate forecasting engine (or 

model) and train the SYNERGY model prediction engine to predict a feature-model pair. 

Instead of pre-defined fixed input features, SYNERGY will be able to predict the best 
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combination of a feature and model for a given GHI prediction. The same approach can 

be used to optimize hyperparameters and other parameters in the machine learning fore-

casting pipeline. These feature- and parameter-related aspects of the SYNERGY approach 

should be investigated further before drawing firm conclusions. Furthermore, the use of 

additional meteorological datasets with high climate and data diversity, as well as addi-

tional forecasting methods, in conjunction with solutions to data imbalance problems, 

could result in a more balanced classification dataset and allow improvements in classifi-

cation error, resulting in significantly better forecasting accuracies and gains.  

Finally, in order to predict the best performing deep learning model for GHI fore-

casting, the proposed auto-selective approach currently considers minimum forecasting 

error. It can be extended to predict forecasting models based on additional criteria such 

as the amount of energy required or the speed with which the model is executed, different 

input features, different optimisations of the same models, or other user preferences. To 

improve the tool's performance and diversity, additional deep learning models for classi-

fication (to auto-select) or forecasting solar radiation can be incorporated. The method can 

be applied to other renewable energy sources and problems, such as wind energy fore-

casting. 
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