

Article

Polyetherimide Reinforced Smart Inlays for Bondline Surveillance in Composites

Chresten von der Heide ^{1*}, Julian Steinmetz ², Oliver Völkerink ³, Patrick Makiela ³, Christian Hühne ^{2,3}, Michael Sinapius ², and Andreas Dietzel ¹

¹ Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany; c.von-der-heide@tu-braunschweig.de (C.v.d.H); a.dietzel@tu-braunschweig.de (A.D.)

² Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; j.steinmetz@tu-braunschweig.de (J.S.); christian.huehne@tu-braunschweig.de (C.H.); m.sinapius@tu-braunschweig.de (M.S.)

³ Institute of Composite Structures and Adaptive Systems, German Aerospace Center (DLR), 38108 Braunschweig, Germany; oliver.voelkerink@dlr.de (O.V.); patrick.makiela@dlr.de (P.M.); christian.huehne@dlr.de (C.H.)

* Correspondence: c.von-der-heide@tu-braunschweig.de

1 **Abstract:** We present an integrable, sensor inlay for monitoring crack initiation and growth inside
2 bondlines of structural carbon fiber reinforced plastic (CFRP) components. The sensing structures
3 are sandwiched between crack stopping polyvinylidene fluoride (PVDF) and a thin reinforcing
4 polyetherimide (PEI) layer. Good adhesion at all interfaces of the sensor system and to the CFRP
5 material is crucial as weak bonds can counteract the desired crack stopping functionality. At the
6 same time, the chosen reinforcing layer must withstand high strains, safely support the metallic
7 measuring grids and possess outstanding fatigue strength. We show that this robust sensor system,
8 which measures the strain at two successive fronts inside the bondline, allows to recognize cracks
9 in the proximity of the inlay regardless of the mechanical loads. Feasibility is demonstrated by
10 static load tests as well as cyclic long-term fatigue testing with up to 1,000,000 cycles. In addition
11 to pure crack detection, crack distance estimation based on sensor signals is illustrated. The inlay
12 integration process is developed with respect to industrial applicability. Thus, implementation
13 of the proposed system will allow the potential of lightweight CFRP constructions to be better
14 exploited by expanding the possibilities of structural adhesive bonding.

15 **Keywords:** thin-film sensors; foil sensors; composite structures; structural bonding; multifunctional bondline; function conformity; sensor integration; structural health monitoring

17 1. Introduction

18 Adhesive bonding is ideally suited to join lightweight components made from
19 composite materials because the load is transferred with only low stress peaks in the
20 adherends. In contrast to bolted joints, load bearing fibers are not cut, thus the composite
21 material is not weakened. In addition, weight savings of up to 15 % as well as fabrication
22 cost savings through reductions in both procurement and life-cycle maintenance of up
23 to 30 % can be achieved by full implementation of adhesive bonding [1–4]. Despite the
24 clear advantages, adhesively bonded joints have so far been used almost exclusively for
25 non load-critical structures as reliability is still a major concern, especially for structural
26 bonding in aviation [5]. Various possible bondline defects such as disbonds, voids,
27 cracks, foreign material inclusions, porosities, poor cure and weak bonds as well as
28 sensitivity to environmental or physico-chemical conditions make it challenging to
29 ensure a certain level of adhesive strength [2,6]. Thus, critical primary bonded joints
30 are still accompanied by additional *fail-safe* mechanical fasteners sometimes referred
31 to as *chicken-rivets* which diminish the benefits of adhesive bonding [7–9]. Regulation
32 authorities make clear requirements for certification of adhesively bonded joints whose

failure would mean a catastrophic loss to the overall structure [10]. While proof testing of each bond is costly and inefficient, reliable non-destructive inspection techniques do not exist yet [6]. Instead of proof testing, the regulations can also be fulfilled by limiting the possible disbond size accompanied by some kind of self-triggered repair request. In case of a partial disbond, sensor equipped design features have to ensure that a critical size of intact bond area is maintained under all circumstances [11].

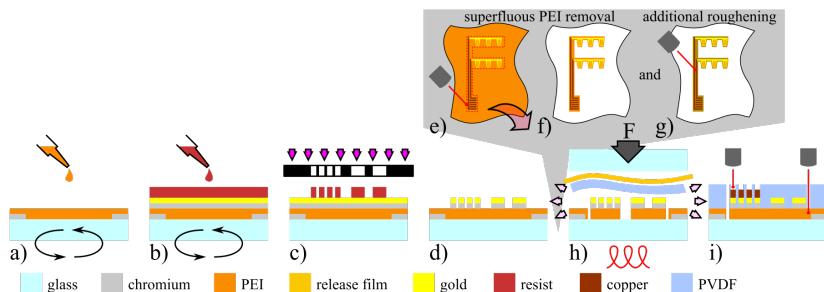
By embedding a strip of a ductile polymer like poly(vinylidene fluoride) (PVDF) into the prepreg of the load inducing adherend prior to curing, surface toughening (ST) by disbond-stopping features (DSFs) can be realized in a simple way, that is compatible with industrial fabrication [12,13]. To expand this concept with sensing capabilities, we recently developed an easy to integrate, smart inlay that combined crack sensing and stopping capability forming a multifunctional disbond arrest feature (MDAF) [14]. Strain sensor structures were applied directly onto the thermoplastic fluoropolymer. Although measurement data showed promising results and proved bondline surveillance ability, electrical failures occurred quickly during fatigue testing. Load peaks at the filigree structures open to the adhesive layer were found to be a major source of defects. Encapsulation of the sensor structures using a second PVDF cover layer can be ruled out, since both layers would melt simultaneously during the carbon fiber reinforced plastic (CFRP) integration process. Without mechanical reinforcement, the thin metallic micro structures could flow in the surrounding molten mass leaving them distorted and destroyed after cooling.

Polyetherimide (PEI) material has a higher melting point than PVDF. Hence, it should remain stable during CFRP integration when the PVDF layer is completely melted, thereby preserving the original shape of the (sensor-) structures. In addition, PEI possesses a higher Young's modulus and exhibits excellent adhesion to the CFRP matrix as shown before [15]. By introducing an additional polymer layer of PEI on which sensor structures are placed, durability in fatigue testing of inlay equipped adhesive joints shall be improved to achieve function compliant behaviour (adhesive load transfer, crack stop and crack detection). The lithographic structures on the PEI substrate shall be encapsulated by the crack stopping PVDF layer, which provides improved handling robustness and increases their distance to the stress peaks at the PVDF surface.

2. Materials and Methods:

2.1. Simulation

Abaqus / Explicit Version 2021 was used to solve the nonlinear 3D models. In order to reduce simulation time, the load was applied in a time period of 0.01 s, which is quicker than in the conducted experiments. The influence of shortening the time period was found to be negligible. The adherends made from composite material were modelled using a layer-wise approach with reduced integrated eight node linear solid elements (C3D8R). In z-direction (direction through the thickness of the sample) one element per layer is used. The element edge length in y-direction (direction of shorter specimen side) was 1.0 mm for all elements. In the region of interest the element edge length in x-direction (direction of longer specimen side) was set to 0.25 mm. In other regions a coarser mesh with 1.0 mm was used to save computation time. The same was applied to the adhesive layer. The crack stopping PVDF layer however, was discretized with nine elements in z-direction to get a strain gradient in thickness direction. Another measure to save computation time was to build up a half model using symmetry in the xz-plane assuming that the resulting error for 45°-plies has only negligible effect. The material data from Marlett and Tomblin [16] were used to model the composite adherends made from HexPly 8552-IM7 in combination with a linear-elastic transversally isotropic material model. The film adhesive was modelled using the exponent Drucker-Prager model in combination with material parameters derived in previous work [17] to account for hydrostatic pressure sensitive yielding. The hardening curve was taken from Tomblin et al. [18]. The PVDF material was modelled using von Mises plasticity and


86 material data provided by Campus Plastics [19] from the similar PVDF material Arkema
87 Kynar 740.

88 2.2. Smart Inlay Fabrication and Integration

89 The inlay fabrication depicted in Figure 1 is based on the process described earlier
90 [14]. A major change however, is that the bottom substrate layer was produced by
91 spin coating of a liquid 10 wt% PEI precursor based on polymer pellets diluted in
92 trichlorethanol [20] at a spin speed of 1000 rpm on a 4 inch glass wafer. This was
93 followed by hot plate curing for 2 min at 150 °C. After cooling a second polymer layer
94 was applied in the same manner, before final curing was conducted at 220 °C for 10 min
95 (see Figure 1a).

96 In order to promote adhesion to the PVDF interface upon encapsulation, the PEI
97 surface was modified by means of a laser workstation (microSTRUCT C, 3DMicromac)
98 with a pulsed laser source (212 fs pulse length) emitting at a primary wavelength of
99 1030 nm in linear, horizontal polarization. To rule out sudden crack propagation through
100 the PEI/PVDF interface, the bottom PEI layer is cut and partially removed leaving
101 behind only the contoured regions supporting the sensor structures (see grey insert in
102 Figure 1). This way, the PVDF DSF remains in direct CFRP contact after integration. In
103 addition, the remaining PEI surface was roughened using less laser power. An isotropic
104 pattern created by four scan lines rotated by 30° respectively was used as a filling to
105 create uniform abrasion. As the ablation threshold values for the metallic structures
106 exceed those of the substrate polymer, they stay unharmed while only the surrounding
107 polymer is affected.

108 After sensor structuring and electroplating the PEI substrate was encapsulated (see
109 Figure 1e) with a 100 µm thick PVDF foil using a similar process as for the PVDF glass
110 wafer fixation before [14]. In the vacuumized bonder (AB-1PV, Electronic Vision Co.),
111 the PVDF foil was completely melted at 190 °C while curing for 3 h at 1.5 bar.

Figure 1. Smart inlay fabrication: a) PEI spin coating. b-c) Metallic layer sputtering and lithography. d) Chemical wet etching. e) PEI cutting. f) superfluous PEI foil peel off. g) roughening by means of fs-laser ablation. h) PVDF encapsulation. i) Geometry cut and pad opening.

112 Lastly, the outer smart inlay geometry was laser cut and peeled off the glass carrier
113 wafer using tweezers. Integration into CFRP follows the *co-curing process* [14]. After
114 adhesive bonding of both adherends, the composite plates were separated into the
115 previously described cracked lap shear (CLS) specimen geometry by saw cuts and
116 equipped with a soldered plug to connect the sensors. The adherends have been named
117 *lap* for the overlapping upper part and *strap* for the continuous bottom part respectively.

118 2.3. Mechanical Testing

119 Various mechanical tests were conducted to investigate the sensory characteristics
120 through static and dynamic testing of the inlay equipped specimens:

121 **Inlay Calibration:** To convert the electrical sensor signals into corresponding strain
122 values, the inlay was first calibrated using a specimen with constant cross-section (25
123 x 155 mm). Without an overlapping adherend, the strain is uniformly distributed and

124 directly measured through the tensile rig (see Figure 2). For calibration, the specimen
 125 was loaded five times to an elongation of $1000 \mu\text{m m}^{-1}$ ramping up and down within
 126 10 s each. This was preceded by three identical cycles with subsequent zeroing of the
 127 displacement in order to eliminate slip, slack and other falsifying influencing factors. In
 128 addition, two commercial quarter bridge strain gages were placed orthogonal to each
 129 other on the specimen backside. They serve as reference and for determination of the
 130 poisson ratio of the layered composite structure.

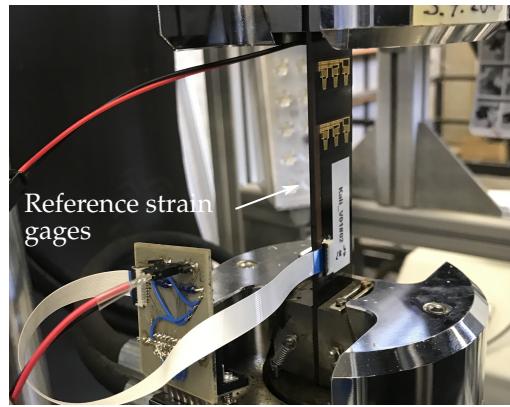


Figure 2. Calibration setup inside tensile rig with clamped open (lap-free) specimen

131 **Quasi Static Testing with various Crack Lengths:** CLS specimens with well defined
 132 crack lengths and a straight crack front shape were fabricated by inserting square release
 133 films of different lengths during the adhesive bonding process. Thereby, artificial crack
 134 lengths of 10, 16 and 23 mm were fabricated. Each specimen was subjected multiple times
 135 to an upramping tensile load of 5.104 kN (mean value of the cyclic load at $3000 \mu\text{m m}^{-1}$
 136 used during fatigue testing). Sensor signals were measured using a multi-channel strain
 137 gage amplifier (HBM, QuantumX MX1616B).

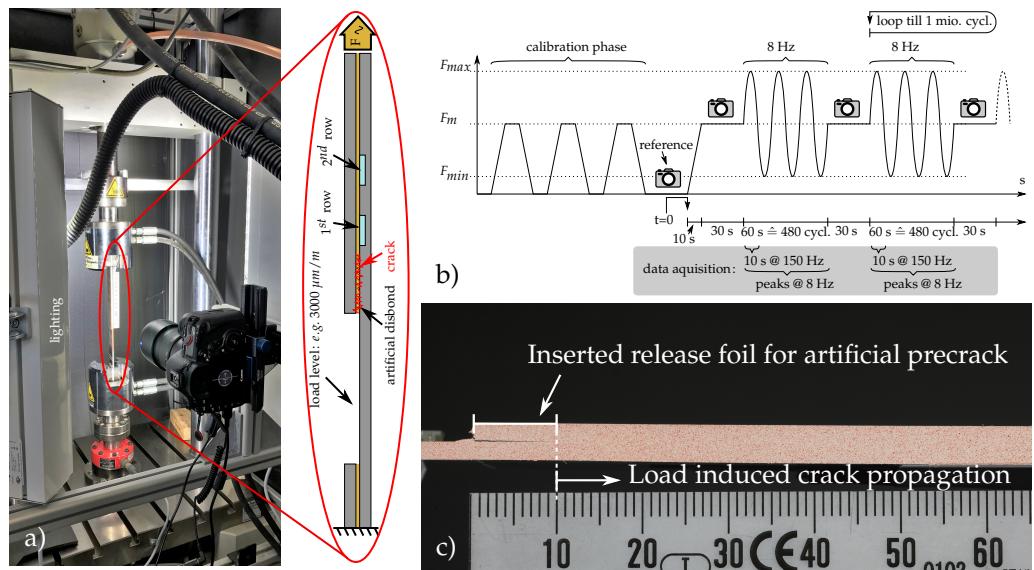


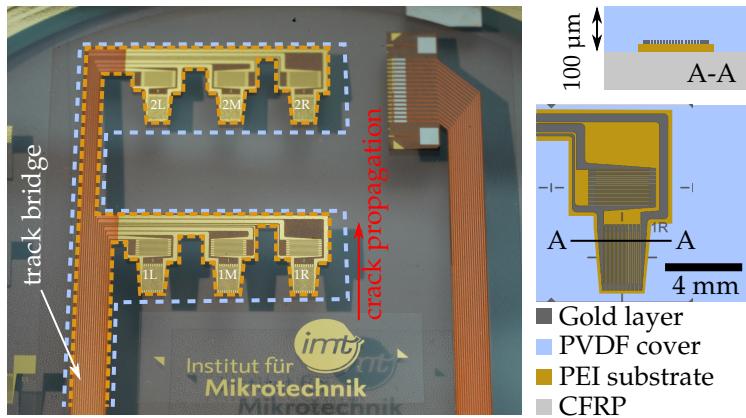
Figure 3. Dynamic fatigue testing overview. a) Tensile testbench with enlarged CLS-specimen sketch. b) Program overview of dynamic loading. c) Sideview picture after calibration run.

138 **Dynamic Fatigue Testing:** The fatigue testing of MDAF equipped CLS specimens
 139 was conducted in a tensile rig (Zwick-Roell, Amsler HC25) (see Figure 3a). Forces were
 140 selected according to Table 1 such that the adhesive layer was overloaded to force a
 141 slowly progressing crack growth. The lowest strain level corresponds to the maximum

Table 1: Overview of periodic load levels for 1.008.000 cycles.

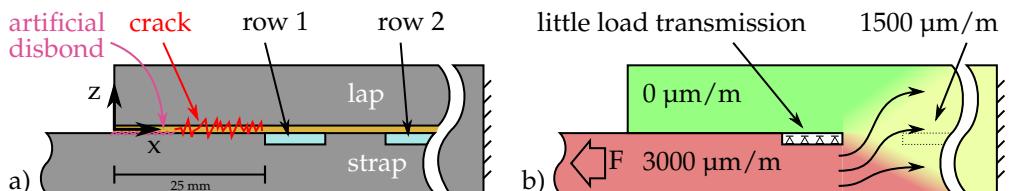
Max. Strain	Load level _{mean} \pm Oszi. Amplitude	F _{max}
3000 $\mu\text{m m}^{-1}$	5.104 kN \pm 4.176 kN @ 8 Hz	9.28 kN
3500 $\mu\text{m m}^{-1}$	5.973 kN \pm 4.887 kN @ 8 Hz	10.86 kN
4000 $\mu\text{m m}^{-1}$	6.837 kN \pm 5.594 kN @ 8 Hz	12.43 kN

¹⁴² *limit load* for composite structures in aeronautical applications, which is the maximum
¹⁴³ design load that may occur during service life [21]. Moreover, typical ultimate strains
¹⁴⁴ in composites are 4000 $\mu\text{m m}^{-1}$ [1]. The selected sinusoidal loading maxima of 9.28 kN
¹⁴⁵ and 12.43 kN induce limit and ultimate strain in the slender bottom strap, respectively.
¹⁴⁶ Crack length was monitored by a large sensor camera (Canon EOS 5D Mark IV, Zeiss
¹⁴⁷ Milvus 2/100M macro objective) with external trigger fixed at one side of the testbench
¹⁴⁸ together with powerful LED-lighting. Inlay sensors were again connected to the strain
¹⁴⁹ gage amplifier.


¹⁵⁰ For the crack length measurement, a threshold algorithm was applied to the im-
¹⁵¹ ages in Python. After cropping the images to remove the scale, the "skimage thresh-
¹⁵² old_isodata" filter was taken to delete the red speckles and obtain black white images
¹⁵³ of the CLS specimen. The crack end is then visible as the black point furthest to the
¹⁵⁴ right. The crack origin was set manually in the first image of the measurement so that
¹⁵⁵ the crack length is found by taking the difference of the corresponding x-coordinates in
¹⁵⁶ pixels. The length was converted to mm by a pixel to mm ratio obtained from the ruler
¹⁵⁷ in the image before cropping. It has to be pointed out that the quantitative crack length
¹⁵⁸ in the CLS specimens is ambiguous. The rather thin crack opening in combination with
¹⁵⁹ the threshold algorithm lead to a constant underestimation of the crack length. For that
¹⁶⁰ reason, the crack length estimate given by the algorithm was corrected by 5 mm based on
¹⁶¹ a manual re-inspection and taking into account that the initial crack length of 10 mm due
¹⁶² to the artificial disbond is known. The correction does not alter the qualitative change of
¹⁶³ the crack length determined by the algorithm.

¹⁶⁴ Figure 3b exemplifies the cyclic loading process that ended after 1.008.000 cycles [4].
¹⁶⁵ If crack propagation is successfully maintained inside the first DSF after test completion,
¹⁶⁶ operational fatigue strength can be concluded. After clamping, the respective specimen
¹⁶⁷ was loaded three times to the mean load level in order to eliminate possible mechanical
¹⁶⁸ displacements inside the rig or clamping, to open up the artificial precrack and syn-
¹⁶⁹ chronize the measurement devices. Below the clamped specimen, the internal load cell
¹⁷⁰ (Huppert, 1010-BPS-25kN-5/8") was used to zero the displacement value in the load free
¹⁷¹ status before a reference picture was taken. The testing then started by ramping up to
¹⁷² the mean load level where the first picture under load was taken. This was followed by
¹⁷³ the oscillation cycle, during which the specimen was subjected to a sinusoidal load at a
¹⁷⁴ frequency of 8 Hz for 1 min. After these 480 cycles, the oscillation was stopped, while
¹⁷⁵ the mean load level was maintained to open up the crack created. In the steady state
¹⁷⁶ a high quality picture such as in Figure 3c was taken, where the crack stands out in
¹⁷⁷ form of a thin black line from the white painted sidewall of the specimen. An additional
¹⁷⁸ randomly distributed red speckle pattern was added by air brushing to later allow further
¹⁷⁹ investigations by means of particle tracing based on digital image correlation (DIC). Due
¹⁸⁰ to the long testing duration of about two days, efficient data acquisition was required
¹⁸¹ to avoid large files. Therefore, only a 10 s snippet at high sampling rate was stored at
¹⁸² the start of every 60 s oscillation phase. In data post processing, these snippets were
¹⁸³ evaluated for mean and maximum strain values.

¹⁸⁴ 3. Smart Inlay Concept and reinforced Design


¹⁸⁵ The inlay design (Figure 4) features six sensor nodes in a double strip design (three
¹⁸⁶ sensors each). While the three sensors close to the emerging crack front in row 1 monitor
¹⁸⁷ its propagation but may eventually fail upon arrival, the sensors in the second strip

188 further behind shall remain functional to give a measure for the load on the structure as
 189 well as to detect unexpected crack continuation. The sensor connecting tracks on the
 190 left side are electroplated to a thickness of about 8 μm to lower electrical resistance and
 191 improve their mechanical robustness.

Figure 4. Smart Inlay (still on carrier wafer) with PEI reinforced two strip arrangement of sensors. To emphasize the shape of both polymer layers they are surrounded by an orange dotted line (for PEI) and a white dotted contour (for PVDF) respectively. Schematic crack front (zick-zack line) and propagation direction towards the inlay are indicated in red. Sensor positions in row 1 and 2 are additionally marked L (left), M (middle), R (right). The labeled track bridge forwards all electrical signals. Right: Schematics are showing the geometry of the sensors in cross-sectional and top view.

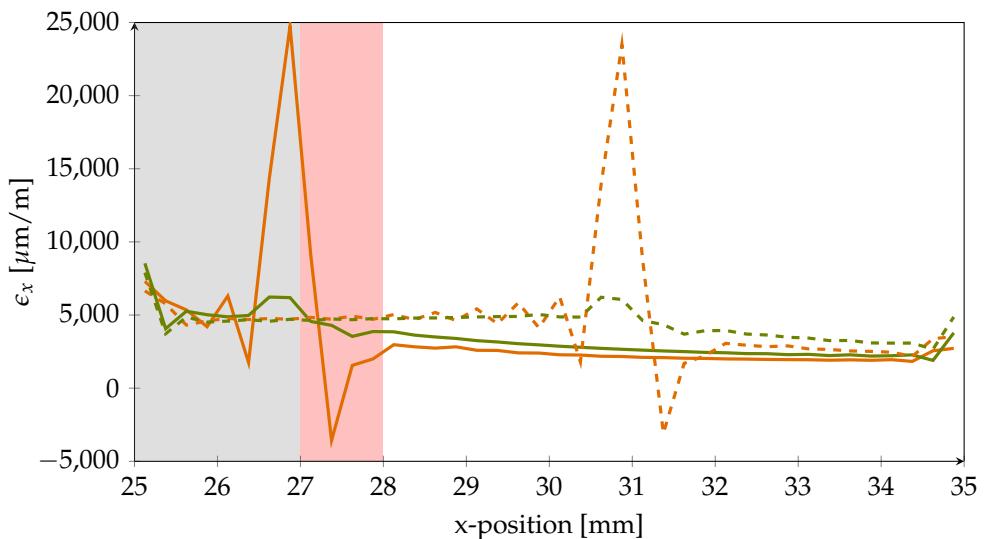
192 We already provided data exemplifying the stress peak and relief profile inside
 193 the adhesive layer starting at the overlap of a stained specimen [22]. Thus, as the crack
 194 advances through the bondline as depicted in Figure 4, the approximately 10 mm wide
 195 stress profile shifts likewise. This means, the bondline stress profile inside an uncracked
 196 specimen decreases within 10 mm to a purely load dependent value. In order to ensure
 197 that only real crack initiation rather than local stress peaks are detected, the first sensory
 198 strip is placed 15 mm away from the targeted crack start (artificial disbond length of
 199 10 mm must be added). In the healthy bondline state, the same load dependent sensor
 200 value will be measured by a second sensory strip with more clearance to the overlap
 201 edge. Thus, any sensor signal difference between both rows can be attributed directly to
 202 crack initiation.

Figure 5. Simplified mechanical model of sensor zone. a) Specimen sideview with exaggerated crack depiction and inlay colored in light blue. b) Force transition flow into the overlapping adherend is indicated by arrows. Red (full load) to green (no load) color transition indicates the approximate stress. Little load is transferred at the polymer strip interface due to the low PVDF stiffness.

203 Figure 5 shows cross sectional schematics illustrating the situation where the crack
 204 has reached the DSF, such that load is transferred solely in the overlapping region behind
 205 it. As the overlapped section of the specimen is thicker, the force flow fans out into both
 206 adherends with increasing overlap length. Behind a certain transition region, strain is

207 divided according to the ratio of the adherend thicknesses. For our samples, the over-
 208 lapped region is twice as thick, so the strain is halved in the middle of the overlapped
 209 section, which is in the adhesive layer. This means once the crack has reached the inlay,
 210 the first row strain sensors will measure approximately the same value as if the DSF was
 211 not adhesively bonded to the overlapping CFRP part.

212


213 Strain field Simulations:

214 Finite element (FE) analyses were carried out to study the above mentioned strain
 215 fields in the proximity of the crack stopping PVDF layer inside the CLS specimen with
 216 variation of the crack lengths under static loading. These were evaluated in order to
 217 identify positions that are sensitive to crack growth but at the same time show strains
 218 the sensor structures can resist.

219 In the model, a velocity loading of 100 mm s^{-1} was applied on the strap-only side
 220 with a smooth amplitude to prevent for oscillations in the model. All simulations were
 221 performed at a reaction force of 9.28 kN . The strap/lap doubled up side of the modelled
 222 specimen was fully clamped. The adhesive was connected to the adherends and to
 223 the crack stopping PVDF strips using tied constraints. Different from that, the PVDF
 224 inlays were attached to the adherends via merged nodes. The strain values presented
 225 and discussed in the following were evaluated at the element centroids by an Abaqus
 226 Python script using predefined element sets. It must be noted that alternating strain
 227 values occurred in the PVDF element row adjacent to the bondline. This is attributed by
 228 the authors to strain localisation effects. To avoid this problem, the strain values were
 229 evaluated in the row below the interfacing elements.

230 In the beginning the simulation was validated by values obtained with strain
 231 gages that were applied onto the strap and yielded a strain of $3000 \mu\text{m m}^{-1}$ upon the
 232 predefined load of 9.28 kN . Upon equal load the FE-model showed $2900 \mu\text{m m}^{-1}$, which
 233 is considered a sufficient match.

234 First, the nominal strain in x-direction ϵ_x in the PVDF strip is evaluated for two
 235 different crack lengths at two different height levels which represent extreme positions
 236 (see Figure 6).

Figure 6. Nominal strain in x-direction in PVDF at different positions. Orange lines correspond to the upper PVDF-adhesive-interface. Green lines represent the lower PVDF-CFRP-interface. Furthermore, results for the two different crack lengths can be distinguished by the line type (solid = 27 mm, dashed = 31 mm). Grey background marks the simulated artificial disbond and red area is the resulting destructive zone for sensor structures because of high strain gradients.

237 On the one hand, the strains are investigated at the PVDF-adhesive interface at the
 238 top of the PVDF strip (orange lines). On the other hand, the strains are evaluated at the
 239 bottom of the PVDF strip which is the interface between PVDF and the CFRP adherend
 240 (green lines). The solid lines in Figure 6 show the strains for 27 mm crack length which
 241 means that the crack intruded the first crack stopping area by 2 mm. The dashed lines
 242 represent a crack length of 31 mm which is equal to a crack intrusion of 6 mm.

243 With $24800 \mu\text{m m}^{-1}$ the highest strain is measured at the PVDF-adhesive-interface
 244 when the crack has intruded the first PVDF strip. At the same position, the strain is
 245 with $6200 \mu\text{m m}^{-1}$ much lower at the PVDF-CFRP interface. However, the influence of
 246 the crack is still noticeable. The same holds true for the second PVDF strip when the
 247 crack is extended to 31 mm. This leads to the conclusion, that positioning of the sensor
 248 structures close to the CFRP interface beneath a covering layer is desirable since the
 249 material stressing effort of the sensor strongly reduces with increasing distance to the
 250 adhesive interface. Thus, sensor robustness is improved by lowering stress peaks acting
 251 upon it if the crack intrudes the first stopping feature. In addition, the simulation reveals,
 252 that the sensor measuring grid should be positioned with sufficient spacing to the front
 253 edge of the inlay to avoid the high strain gradients inside the approx. 1 mm wide region
 254 behind the crack front denoted *destructive zone*. Behind this zone, ϵ_x settles at a stable,
 255 well measurable value.

256 Moreover, from the evaluation of strains in x-direction, it can be seen that the
 257 PVDF material is elongated behind the crack front and compressed in front of the crack.
 258 This finding is supported by Figure 7, which shows the strain ϵ_z in through-thickness
 259 direction. A simplified depiction of the PVDF strip deformation is shown in Figure 8.

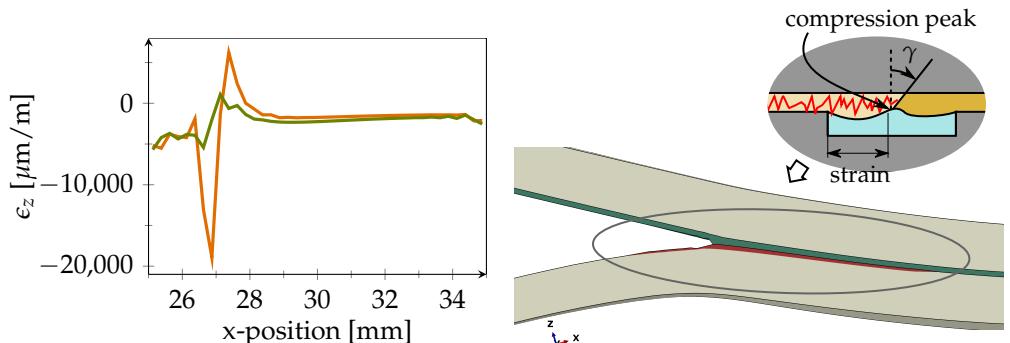
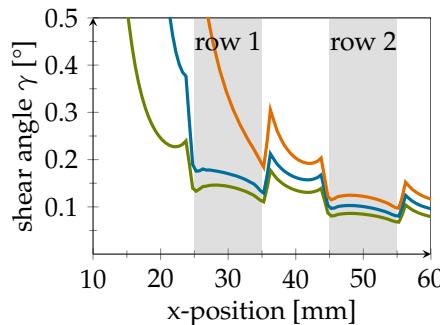
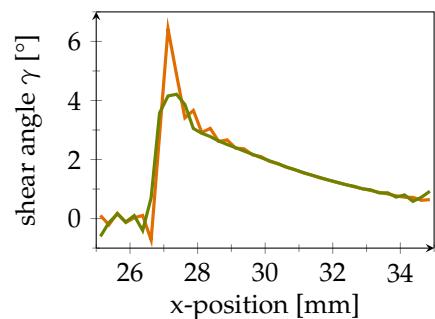



Figure 7. 27 mm crack length. Nominal strain in z-direction in PVDF at different positions. Orange line represents PVDF-adhesive-interface while green line visualizes the PVDF-CFRP-interface.


Figure 8. 20 % exaggerated FE-deformation of strap. Insert shows sketch of PVDF strip deformation with intruded crack. Shear angle γ within adhesive layer is indicated.

260 Figure 9 shows the course of the xz-shear angle γ within the adhesive layer at
 261 different crack lengths before the crack reaches the DSF. It can be seen that the shear
 262 angle γ in the inlay proximity is reduced. In Figure 10, however, the crack has propagated
 263 into the inlay. Here, it can be seen, that the nominal strain in xz-direction and thus the
 264 shear deformation is reduced when moving away from the adhesive interface.

265 At the PVDF-PVDF-interface the shear strain is only 65 % of the value at the PVDF-
 266 adhesive interface. However, likewise to the observations for strains in x-directions,
 267 the crack clearly shows in the strain curves at both positions. This indicates that the
 268 sensor should not be positioned directly at the adhesive interface although a crack in the
 269 adhesive is to be detected.

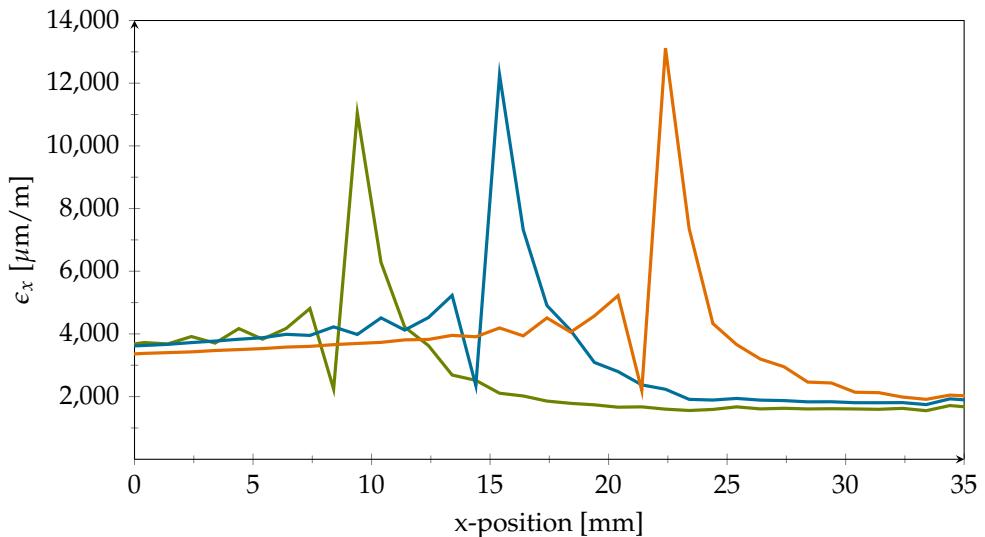


Figure 9. Shear angle plot for different crack length. Green: 10 mm, Blue: 16 mm, Orange: 23 mm. Grey areas mark positions of PVDF inlays.

Figure 10. Difference in shear angle in xz-direction at the top and bottom of the PVDF inlay and a crack length of 27 mm. Orange line represents PVDF-adhesive-interface while green line visualizes the PVDF-CFRP-interface.

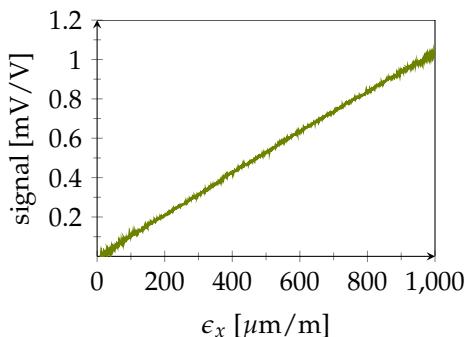
270 In preliminary testing of inlays, a practical problem was caused by ripped off copper
 271 tracks in the track bridge area connecting the sensors with the solderable plug. As the
 272 tracks were in contact with the adhesive layer, high strains were induced and the crack
 273 propagated slowly causing loss of sensor signals.

Figure 11. Nominal strain in x-direction in track bridge for different crack lengths. Green: 10 mm, Blue: 16 mm, Orange: 23 mm

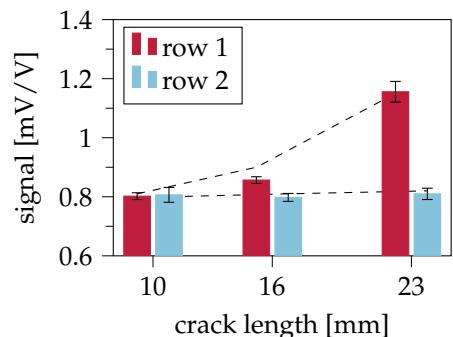
274 To investigate this issue further, the same model as above with an added strip of
 275 PVDF on the specimens side was used to evaluate the strains in x-direction at three
 276 different positions of the track bridge. As the track ripping was observed right in the
 277 transition area of the artificial disbond at $x=10$ mm the simulations were conducted
 278 for crack lengths of 10 mm, 16 mm and 23 mm (see Figure 11). From the plot it can
 279 be seen that for 10 mm crack length the maximum strain in x-direction is higher than
 280 $11\,000\, \mu\text{m m}^{-1}$. In addition, it is revealed that the maximum strain increases even further
 281 up to $13\,000\, \mu\text{m m}^{-1}$ with increasing crack length. These high stresses explain the ripped-
 282 off tracks found in some experiments. Very similar results were gained regardless of
 283 whether the inlay top at the adhesive layer interface or the CFRP transition zone at the
 284 inlay bottom was evaluated. Since strains of this magnitude far exceed the robustness
 285 of metallic materials under continuous fatigue loading, milling of the lap right above
 286 the track bridge prevented damaging stress peaks during our experiments. Due to the
 287 elastic PVDF cover on top, the load transfer from the strap into the lap is very limited

288 in this area. This adaptation enabled long term measurements. The wiring and signal
 289 transmission of smart inlay sensors that can in future be integrated during industrial
 290 production of CFRP components has to take these findings into account.

291 Simulation results for strain in x-direction confirmed the expected benefits of placing
 292 the sensor under a protective layer. As the ductile PVDF DSF deforms rather strong
 293 at the adhesive layer interface due to the sudden changes in material stiffness, the
 294 elastic material is incapable of providing the required support for the fragile measuring
 295 grids. The same analysis revealed a destructive zone of about 1 mm in width at the
 296 front edge of the DSF where stress gradients are steep (refer to Figure 6). Due to the
 297 intentional overloading of the adhesive layer during fatigue testing, the crack emerges
 298 and propagates, but shall eventually stop in front of the DSF (at 25 mm). This means the
 299 resulting stress peak will stay in this position during most of the fatigue cycle causing
 300 the depicted elevated stress profile in its proximity. Therefore, sensor structures on the
 301 inlay should be placed with a clearance of at least 1 mm to the inlay edge. Lastly, the
 302 PVDF inlay is heavily deformed in both x- and z-direction. Peel load magnitude is quiet
 303 comparable to in-plane stresses, thus adhesion of the sensor structures to the substrate
 304 must be strong.


305 **4. Results**

306 *4.1. Smart Inlay Calibration*


307 The smart inlay calibration through tensile loading (Figure 12) showed a linear
 308 behaviour and a peak signal amplitude of 1.02 mV V^{-1} (ratio of measured bridge voltage
 309 V_{diff} and supply voltage V_{cc} at $1000 \mu\text{m m}^{-1}$). Considering the sensors half-bridge
 310 structure with orthogonal measurement grids and a poisson ratio of $\nu = 0.36$ (derived
 311 for the specific CFRP layup, refer to section 2.3), Equation 1 [23] yields a gage factor of
 312 $k = 3.0$.

$$\frac{V_{diff}}{V_{cc}} = \frac{1}{4} \cdot k \cdot \epsilon_x \cdot (1 + \nu) \quad (1)$$

313 As the measuring grids were fabricated from a thin layer of gold, this value seemed
 314 rather high but can be explained by the underlying chromium layer which slightly alters
 315 electro-mechanical properties.

316 **Figure 12.** Sensor calibration: Specimen was
 317 loaded using a ramp signal up to a maximum
 318 strain of $1000 \mu\text{m m}^{-1}$.

319 **Figure 13.** Mean signal amplitudes for stat-
 320 ically strained specimens with various arti-
 321 ficial crack lengths. Standard deviation is
 322 represented in the form of brackets. FE sim-
 323 ulated results are shown by a dashed line.

316 *4.2. Crack Sensing in Quasi-Static Testing*

317 In their life cycle, structural bonds must endure varying load conditions. A single
 318 strain-sensitive sensor is incapable of distinguishing between load-induced strains and
 319 those caused by crack initiation. The smart inlay concept is based on recognizing strain
 320 gradients between two consecutive measurement locations at different distances to the

321 crack front. Here, load-induced signals in the healthy, crack-free adhesive layer are
 322 identical at both positions due to the uniform load distribution inside the bondline. In
 323 the case of a crack, however, the stress signals differ as a function of the distance from
 324 the crack front due to the decreasing load transfer into the lap.

325 Figure 13 shows the averaged amplitudes of row 1 and 2 sensors, each bar merging
 326 the signals from all three sensors in each row. While no signal difference could be
 327 observed at a crack length of 10 mm, a significant difference of up to 0.4 mV V^{-1} was
 328 seen for the longer cracks, where the crack front distance to the inlay was 9 mm (crack
 329 length = 16 mm) and 2 mm (crack length = 23 mm) respectively. This shows that the
 330 differential signal rises before direct crack front contact. Moreover, the differential signal
 331 height provides an estimate for the crack length. Figure 14 presents the output signals
 332 of the individual sensors inside the smart inlay over time during cyclic quasi-static
 333 loading. The sensors show good linearity and repeatability, even if some minor drift in
 334 the signals can be detected. A progressive signal difference with increasing crack length
 335 clearly proves the desired crack detection principle. However, once bondline damage
 336 has occurred, the differential signal becomes load dependent. This can be seen in Figure
 337 14b where the slope of sensor row 1 exceeds that of row 2, which means that higher
 338 loads result in higher differential signals.

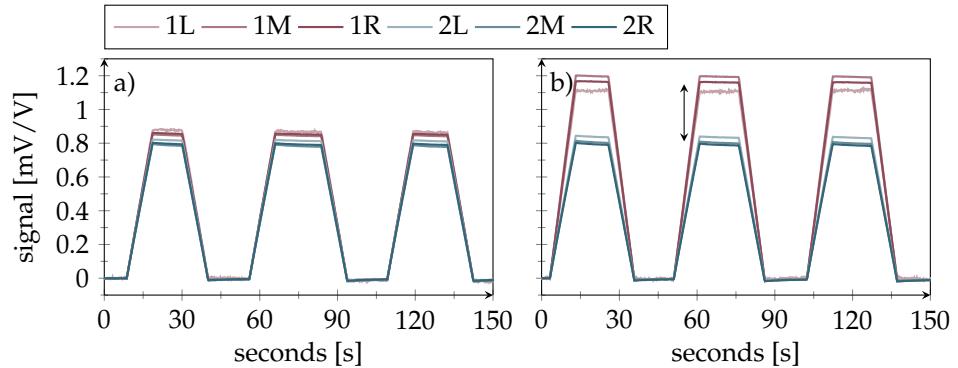
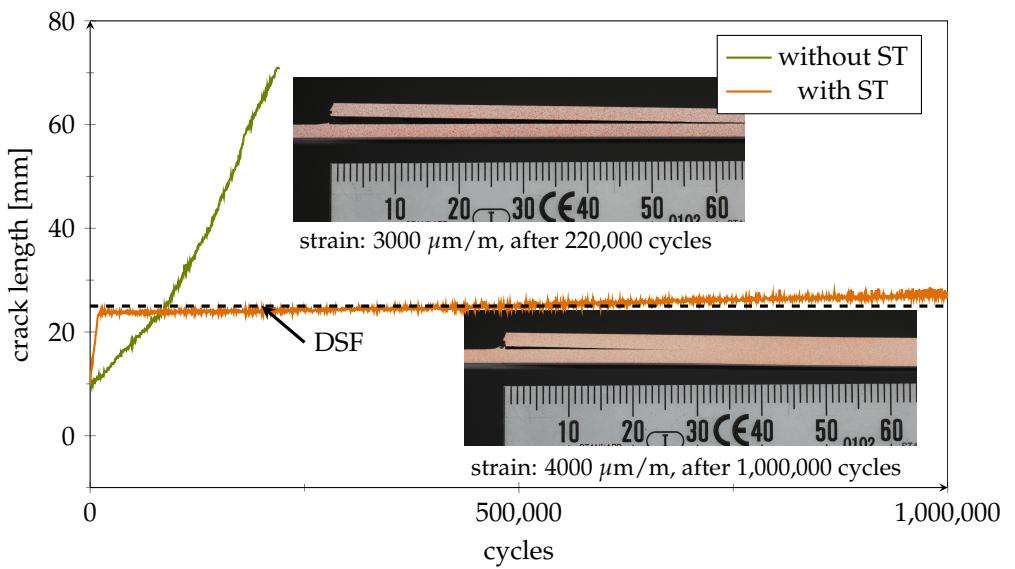



Figure 14. Sensor signals during cyclic quasi-static testing a) Artificial crack length: 16 mm. Sensor signals between rows start to deviate under load. b) Artificial crack length: 23 mm. With increasing crack length, signal amplitude of first row sensors rises. Colors indicate first (red) and second sensor row (blue).

339 4.3. Fatigue Testing of passive bonds

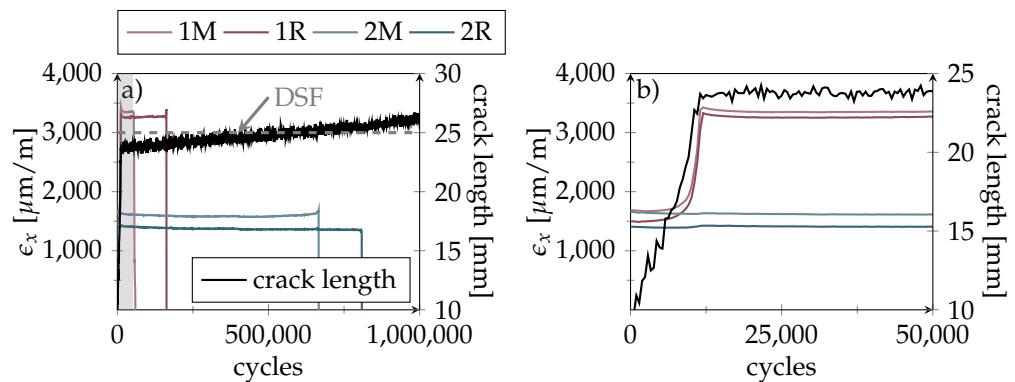
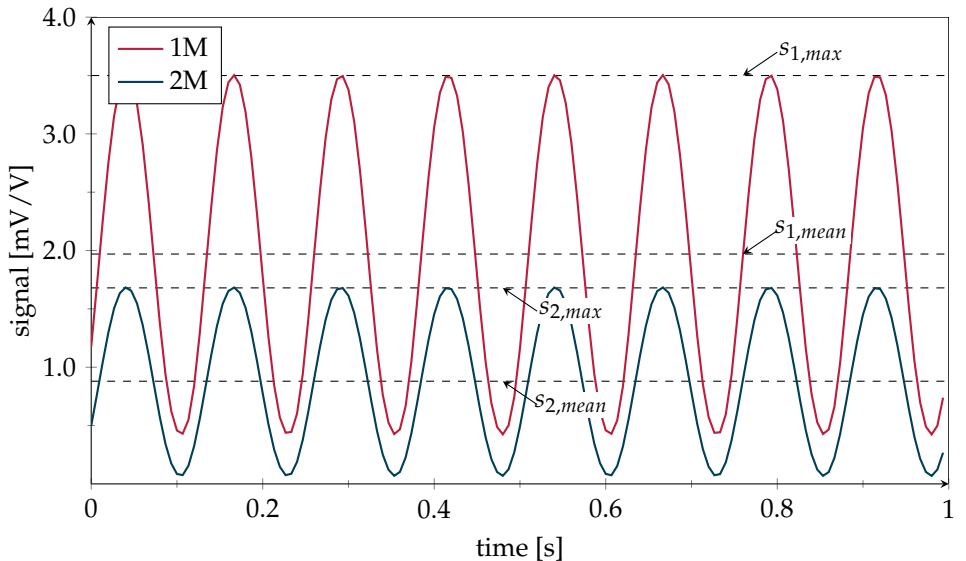
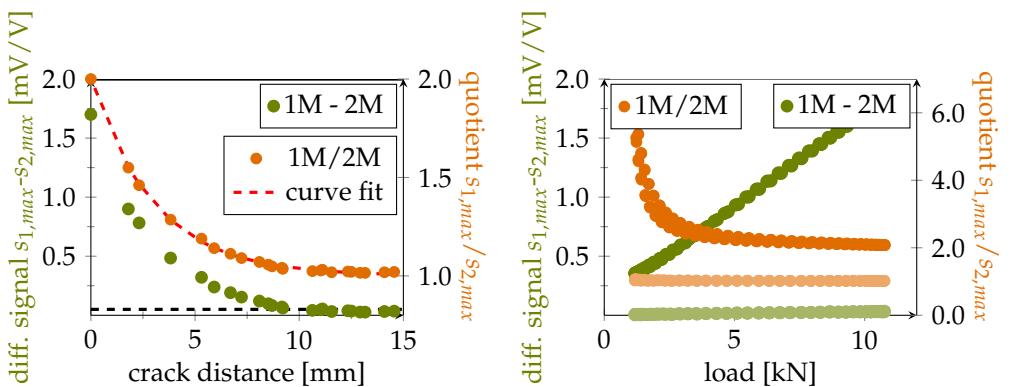

340 To simulate fatigue-induced continuous crack growth, healthy specimens were
 341 subjected to dynamic cyclic loading. Figure 15 exemplifies the difference between
 342 specimens with and without crack arresting inlay (here without sensor structures). In the
 343 reference specimen without ST a crack progressed quickly to a length of more than 65 mm
 344 (end of our crack progression scale) within approx. 250000 cycles using a maximum
 345 strain level of $3000 \mu\text{m m}^{-1}$. In comparison, the specimen with ST showed some initial
 346 crack growth but was still structurally intact when the fatigue test ended after 1 million
 347 cycles. Here, the crack remained almost stationary inside the first DSF at 25 mm even
 348 though the maximum load was set to $4000 \mu\text{m m}^{-1}$.

Figure 15. Comparison of optically determined crack progression during fatigue testing. Sideviews of a reference specimen without inlays (maximum strap strain: $3000 \mu\text{m m}^{-1}$) and a sensorless specimen equipped with ST inlay (maximum strap strain: $4000 \mu\text{m m}^{-1}$).


349 4.4. Detection of emerging and progressing cracks using Smart Inlays

350 In the next step, the smart inlays were tested for their dynamic load-bearing capacity.
351 All data shown in the following are from the same specimen with lap/strap geometry
352 as shown in Figure 5. As Figure 16a shows, the crack was successfully stopped inside
353 the first DSF where it continued to propagate at a much lower pace while sensor signals
354 provided plausible results in long-term load tests. This decisive progress compared to our
355 earlier work on the smart inlay [14] was achieved by the addition of PEI reinforcement
356 for the sensing structures and the laser processes (e,f,g in Figure 1). Second row sensors
357 even stayed functional up to 700,000 cycles. As the zoomed plot in Figure 16b reveals,
358 first row sensor signals correlate with increasing crack length as expected. Once the
359 crack was arrested in front of the inlay, the level of measured first row strain indicates
360 the applied load as expected and schematically illustrated in Figure 5.


Figure 16. Fatigue testing results (maximum strap strain: $3500 \mu\text{m m}^{-1}$) showing maximum strain values over cycles as measured by the smart inlay sensors. Colors indicate first (red) and second sensor row (blue). Optically measured crack length is depicted black while gray dotted line marks the DSF edge a) Crack advances quickly to the first DSF where it becomes arrested. First sensor row gets destroyed early while second row sensors remain functional almost till the cycle ends. Area of first 50000 cycles is marked with grey background. b) Zoom of the first 50000 cycles of the left plot. Difference between first and second sensor row signals clearly correlates with the crack length.

361 Figure 17 shows a one second signal excerpt from the middle sensors, when the
 362 crack has reached the DSF. The signal oscillation corresponds to the applied load.

Figure 17. Exemplary sensor signal snapshot starting at 50400 cycles when crack has reached the DSF. While the second row maximum value $s_{2,max}$ as well as the mean value $s_{2,mean}$ of sensor 2M have stayed at their initial values, the first row maximum amplitude $s_{1,max}$ as well as the mean value $s_{1,mean}$ of sensor 1M have increased with crack propagation.

363 In order to display the following data independent of the selected inlay position
 364 within the bondline, the remaining *crack distance* to the first DSF is used in the following
 365 as a measure for crack propagation instead of total crack length. A simple threshold
 366 criterion for crack detection based on the differential signal is exemplified in Figure 18
 367 by a horizontal black dashed line.

Figure 18. Green curve corresponds to signal difference $s_{1,max} - s_{2,max}$ in dependence of crack distance. The black dashed line on the bottom represents a crack detection threshold level of 0.05 mV/V. The orange curve corresponds to $s_{1,max} / s_{2,max}$ and its fit forms the basis of the crack distance estimation algorithm.

Figure 19. Signal difference $s_{1,max} - s_{2,max}$ and signal ratio $s_{1,max} / s_{2,max}$ in dependence of load. Light green markers show the load independent initial differential relation (crack distance = 15 mm), darker green markers the linear relation after 50400 cycles (crack distance = 0 mm). Same color wise allocation regarding the crack distance was used for orange markers displaying the quotient relation.

368 Depending on the required safety against measurement outliers and signal noise,
 369 this threshold must be adequately selected. However, as described earlier, the differential
 370 signal is not load independent when a crack has occurred. This becomes also apparent
 371 in Figure 19. Therefore this criterion can only be used to generally recognize but not
 372 quantify bondline damage. With the exemplified threshold, crack emergence signal is
 373 triggered approx. 10 mm before reaching the DSF, but only under the condition that the
 374 structure is fully loaded (here $3500 \mu\text{m m}^{-1}$).

375 The presented sensor design was developed to safely detect a crack when it has
 376 reached the DSF at the latest. However, as sensor signals raise upon crack emergence
 377 prior to DSF arrival it seems feasible to find a signal driven, load independent estimation
 378 of the remaining crack distance z in front of the first DSF. The CFRP material is loaded
 379 only in its elastic regime. Thus, when the bond is loaded by an external load F_{load} , the
 380 strain sensor signals s_1 and s_2 can be expressed by:

$$\rightarrow s_1 = \underbrace{\frac{1}{E \cdot A_1(z)} \cdot F_{load}}_{\frac{s_1}{s_2} = \frac{A_1(z)}{A_2}} \quad \rightarrow s_2 = \frac{1}{E \cdot A_2} \cdot F_{load} \quad (2)$$

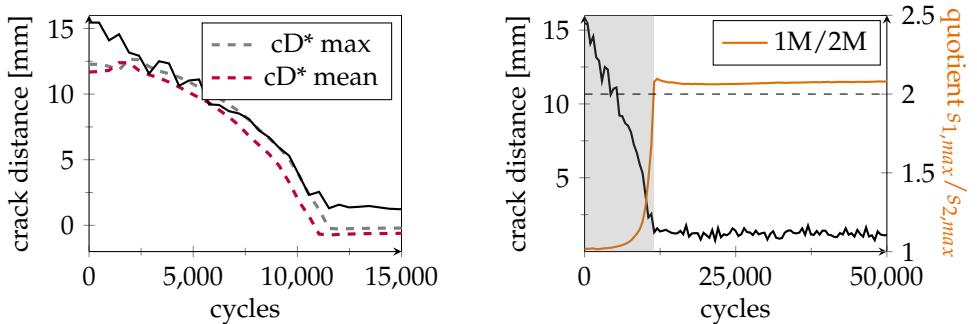
375 In Formula (2), E is the Young's modulus of the CFRP material and $A_1(z)$ and A_2
 376 represent the effectively loaded CFRP cross-sections at the two measuring positions.
 377 As long as the bond is intact or the crack far away from the smart inlay, $A_1(z)$ and
 378 A_2 are equal for both sensor rows. However, when a crack comes into the smart inlay
 379 proximity the effective cross-section $A_1(z)$ decreases, due to the lower load transfer
 380 into the lap. As the crack advances further, $A_1(z)$ progressively reduces depending
 381 on the thickness relation between the lap and the total thickness of lap and strap. For
 382 our specimens both adherends had a similar thickness, hence $A_1(z)$ eventually reduced
 383 (when reaching the DSF) to half its initial value $A_2/2$, as the load is then carried by the
 384 strap cross-section only. By rearranging and inserting the similar components F_{load}/E in
 385 Formula (2) into each other, it can be seen that the cross-sectional ratio equals the sensor
 386 signal quotient. Consequently the course of the signal quotient depends only on the
 387 effective cross-sections and is independent of load. Assuming that the crack distance
 388 dependant decay $A_1(z)/A_2$ can be described by an exponentially decreasing function,
 389 the sensor signal quotient s_1/s_2 can be expressed as:

$$\rho(z) = e^{-z/a} + b = \frac{s_1}{s_2} \quad (3)$$

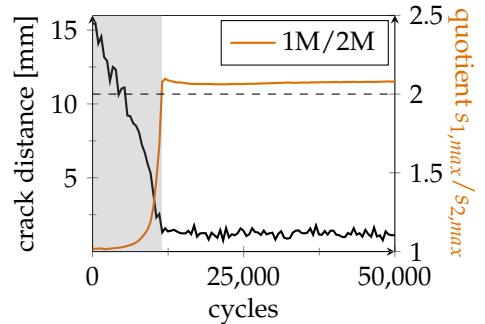
381 To retrieve the analytical correlation, the experimental signal quotient (here we used
 382 $s_{1,max}/s_{2,max}$) was fitted with this Formula which yielded $a = 3.035 \text{ mm}$. Signal quotient
 383 and fit are plotted over the crack distance in Figure 18. Value b was approximated with
 384 the initial cross-sectional ratio $b = A_1(\infty)/A_2 = 1.0$ as the effective cross-sections are
 385 equal when the crack distance is large.

386 It should be noted, that the fit value a gives an indication of the sensors detection
 387 range. The load transfer into the lap reaches 95% of its stable widespread level within
 388 a range of $3/\beta$, measured from the beginning of the overlap (this corresponds to the
 389 crackfront) [1], where $\beta = 1/a$ using our notation. This yields a detection range of
 390 approx. 9 mm, which is the crack distance from the inlay at which detection is possible at
 391 the earliest. This seems in accordance with Figure 14, which showed for the static testing
 392 results a small but significant signal difference at a crack distance of 9 mm (corresponding
 393 to a crack length of 16 mm).

394 In contrast to the differential criterion described earlier, the quotient relation remains
 395 stable for higher loads as shown in Figure 19. However, for smaller loads the quotient
 396 is sensitive to small but stable signal offsets between a sensor pair appearing when
 397 the joining partners initially settle under load. This means, that a quotient criterion


398 can be used to estimate crack distance independent of load once a certain minimal
 399 level of loading can be assumed (here, approx. 4 kN). To further improve this, suitable
 400 pre-calibration steps which eliminate any offset between the sensor pairs in the loaded
 401 healthy bondline state can be conducted.

The crack distance estimation via signal quotient and using the fit value a can be expressed as:


$$\Leftrightarrow z = -a \cdot \ln(s_1/s_2 - 1) \quad (4)$$

402 As shown in Figure 20 crack distance estimation based on the signal quotient
 403 is in good correlation with the measured length for two load levels. In addition to
 404 the maximum values $s_{1,max}$ and $s_{2,max}$ also the mean values $s_{1,mean}$ and $s_{2,mean}$ of the
 405 signals during cyclic loading were used. This illustrates that the estimating calculation
 406 successfully suppresses the influence of load. However, some deviations remain for
 407 the time of crack emergence (crack distance 15 mm) as well as for the zero value right
 408 in front of the DSF. Regarding the former, this is because the slope of the correlation
 409 between crack distance and the signal quotient is rather flat in this area which limits
 410 the detection range (refer to Figure 18). The latter is likely to be caused by measuring
 411 inaccuracies of the actual crack distance as the optical sideview image evaluation is
 412 subjected to a certain non avoidable degree of uncertainty.

413 From Figure 18 it can be seen that the effective cross-sectional ratio at a crack
 414 distance of zero equals $A_1(0)/A_2 = s_1/s_2 = 2.0$. This level is marked as a dashed line
 415 in Figure 21. As for the other ST equipped specimens, the crack propagated almost
 416 linearly towards the DSF within the first approx. 10000 cycles. The intersection point
 417 with the dashed threshold marks the moment when the crack has reached the first DSF.
 418 This observation can be exploited to define a binary zero crack distance criterion, that
 419 indicates an urgent need for repair.

420 **Figure 20.** Optically measured remaining
 421 crack distance from the DSF (black) and
 422 crack distance (cD^*) estimated from the
 423 signal ratios of sensor 1M and 2M at two differ-
 424 ent load levels (s_{max} and s_{mean}).

425 **Figure 21.** Course of $s_{1,max}/s_{2,max}$ (orange
 426 curve) with progressing crack. Grey area
 427 marks region of continuous crack progres-
 428 sion. Initially the ratio assumes a value of
 429 1 but increases with crack propagation. As
 430 soon as the crack has reached the first DSF,
 431 the ratio assumes a value of 2 and optical
 432 evaluation (black) reveals that the crack has
 433 stopped.

420 5. Conclusion & Outlook

421 The results gained from the mechanical testing of smart inlay equipped specimens
 422 have shown that a full functionally compliant implementation is possible. Based on
 423 FE-simulations that revealed a confined but highly strained zone in the vicinity of
 424 a stress peak, which occurs usually in front of the first DSF, sensor placement was
 425 adjusted to avoid damage due to overloading. In addition, DSF simulations in both,
 426 in-plane as well as through thickness direction have revealed the positive influence of

427 PEI reinforcement in combination with a protective PVDF cover layer. This reduces
428 shear deformation at the sensor location, without influencing the longitudinal in-plain
429 strain that needs to be measured. Furthermore the additional layer improves handling
430 robustness upon integration. The new PEI reinforced inlay proofed crack detecting
431 capabilities in a test setup under static loading and with different lengths of artificial
432 cracks. With the dynamic fatigue tests a more realistic scenario with stress related crack
433 propagation was created. Results show that PEI layer reinforced sensors are on the verge
434 of completely solving any durability issues. From the first row sensor data it can be seen,
435 that these sensors stay functional considerably longer (up to 200,000 cycles) than the
436 point in time when the crack has reached the DSF within approx. 10,000 cycles. The
437 best second row sensor stayed fully functional for even 800,000 cycles. Moreover, the
438 system showed promising results regarding crack detection within the first 50000 cycles,
439 as well as advanced capabilities such as a detection of the point of time when the crack
440 has reached the DSF detection, as well as crack distance estimation solely based on the
441 quotient between the signals of both rows. This estimation is independent of the actual
442 load condition and therefor perfectly suited for real situations e.g. in aircraft, where
443 the momentary load is highly variable and unknown and confidence about structural
444 integrity valuable.

445 For future samples, an alternative contacting concept should be considered, as the
446 lateral track bridge experiences too high mechanical stress. Likewise, the presented crack
447 length estimate, should be comprehensively validated to check the general validity of
448 the fitted parameters in practice. And even though the presented system has proven
449 functional, the future focus of development can aim for a more cost-effective inlay
450 manufacturing processes such as screen printing. Only then industrial applicability can
451 be achieved.

452 **Author Contributions:** The smart inlay development including the design, fabrication, and the
453 testing of microsensors as well as the evaluation of results such as crack distance estimation was
454 conducted by C.v.d.H. Function conformity aspects were contributed by J.S. Running simulations
455 was mainly contributed by O.V. and P.M. The sensor integration process and the CFRP specimen
456 fabrication were conducted in close collaboration between C.v.d.H. and J.S.
457 Conceptualization, C.v.d.H., J.S., A.D., C.H., M.S.; methodology, C.v.d.H.; software, C.v.d.H.,
458 J.S., O.V. and P.M.; validation, C.v.d.H., J.S., O.V. and P.M.; formal analysis, C.v.d.H.; investiga-
459 tion, C.v.d.H. and J.S.; resources, A.D., C.H., M.S.; data curation, C.v.d.H., J.S., O.V. and P.M.;
460 writing—original draft preparation, C.v.d.H.; writing—review and editing, C.v.d.H., J.S., O.V.; visu-
461 alization, C.v.d.H.; supervision, A.D., C.H., M.S.; project administration, A.D., C.H., M.S.; funding
462 acquisition, A.D., C.H., M.S.

463 **Funding:** This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German
464 Research Foundation) – 401136681; We acknowledge support by the Deutsche Forschungsgemein-
465 schaft (DFG, German Research Foundation) and the Open Access Publication Funds of Technische
466 Universität Braunschweig.

467 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the
468 design of the study; in the collection, analyses, or interpretation of data; in the writing of the
469 manuscript, or in the decision to publish the results.

470 Abbreviations

471 The following abbreviations are used in this manuscript:

472	CFRP	carbon fiber reinforced plastic
	CLS	cracked lap shear
	DSF	disbond-stopping feature
	FE	finite element
473	MDAF	multifunctional disbond arrest feature
	PEI	polyetherimide
	PVDF	poly(vinylidene fluoride)
	ST	surface toughening

References

1. Baker, A.A.; Scott, M.L. *Composite materials for aircraft structures*, third edition ed.; AIAA education series, American Institute of Aeronautics and Astronautics Inc: Reston, VA, 2016. doi:10.2514/4.103261.
2. Markatos, D.N.; Tserpes, K.I.; Rau, E.; Markus, S.; Ehrhart, B.; Pantelakis, S. The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical use. *Composites Part B: Engineering* **2013**, *45*, 556–564. doi:10.1016/j.compositesb.2012.05.052.
3. Thrall, E.W. Primary Adhesively Bonded Structure Technology (PABST). *Journal of Aircraft* **1977**, *14*, 588–594. doi:10.2514/3.58825.
4. Ashcroft, I.A.; Wahab, M.; Crocombe, A.; Hughes, D.; Shaw, S. The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography. *Composites Part A: Applied Science and Manufacturing* **2001**, *32*, 45–58. doi:10.1016/s1359-835x(00)00131-7.
5. Bardenstein, D.; Lukatsky, A.; Deutsch, Z.; Kressel, I.; Shemesh, N.; Clay, S.B. Design and Experimental Validation of a bonded structure Fail Safe Damage Arrest Concept. AIAA SCITECH 2022 Forum; American Institute of Aeronautics and Astronautics: Reston, Virginia, 2022. doi:10.2514/6.2022-1778.
6. Federal Aviation Administration. Bonded Joints and Structures - Technical Issues and Certification Considerations: PS-ACE100-2005-10038, 2005.
7. Kelly, G. Load transfer in hybrid (bonded/bolted) composite single-lap joints. *Composite Structures* **2005**, *69*, 35–43. doi:10.1016/j.compstruct.2004.04.016.
8. Cheung, C. H. Gray, P.; Lin, K.Y. Fastener as Fail-Safe Disbond/Delamination Arrest for Laminated Composite Structures. 18th Internationel conference on composite materials, 2011.
9. Kadlec, M.; Růžek, R.; Bělský, P. Concurrent use of Z-pins for crack arrest and structural health monitoring in adhesive-bonded composite lap joints. *Composites Science and Technology* **2020**, *188*, 107967. doi:10.1016/j.compscitech.2019.107967.
10. European Aviation Safety Agency. Annex II to ED Decision 2010/003/R of 19/07/2010: EASA, 2010.
11. Department of Defense. Joint service specification guide, 30.10.1998.
12. Schollerer, M.J.; Kosmann, J.; Völkerink, O.; Holzhüter, D.; Hühne, C. Surface toughening – a concept to decrease stress peaks in bonded joints. *The Journal of Adhesion* **2018**, *95*, 495–514. doi:10.1080/00218464.2018.1555041.
13. Schollerer, M.J.; Kosmann, J.; Holzhüter, D.; Bello-Larroche, C.; Hühne, C. Surface toughening – An industrial approach to increase the robustness of pure adhesive joints with film adhesives. *Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering* **2020**, *234*, 1980–1987. doi:10.1177/0954410020950071.
14. von der Heide, C.; Steinmetz, J.; Schollerer, M.J.; Hühne, C.; Sinapius, M.; Dietzel, A. Smart Inlays for Simultaneous Crack Sensing and Arrest in Multifunctional Bondlines of Composites. *Sensors (Basel, Switzerland)* **2021**, *21*, 3852. doi:10.3390/s21113852.
15. Kyriazis, A.; Asali, K.; Sinapius, M.; Rager, K.; Dietzel, A. Adhesion of Multifunctional Substrates for Integrated Cure Monitoring Film Sensors to Carbon Fiber Reinforced Polymers. *Journal of Composites Science* **2020**, *4*, 138. doi:10.3390/jcs4030138.
16. Marlett, K.; Ng, Y.; Tomblin, J. Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% RC qualification material property data report. *National Center for Advanced Materials Performance, Wichita, Kansas. Test Report CAM-RP-2009-015, Rev. A* **2011**, pp. 1–238.
17. Völkerink, O.; Kosmann, J.; Schollerer, M.; Holzhüter, D.; Hühne, C. Strength prediction of adhesively bonded single lap joints with the eXtended Finite Element Method. *The Journal of Adhesion* **2018**, pp. 1–21.
18. Tomblin, J.; Seneviratne, W.; Escobar, P.; Yoon-Khian, Y. Shear stress-strain data for structural adhesives. Technical report, Wichita State University Department of Aeronautical Engineering, 2002.
19. ARKEMA. Datenblatt Kynar 740 - PVDF. <https://www.campusplastics.com/material/pdf/138634/Kynar740?sLg=de>, 2021. Accessed: 2022-06-30.
20. Rager, K.; Jaworski, D.; von der Heide, C.; Kyriazis, A.; Sinapius, M.; Constantinou, I.; Dietzel, A. Space-Filling Curve Resistor on Ultra-Thin Polyetherimide Foil for Strain Impervious Temperature Sensing. *Sensors (Basel, Switzerland)* **2021**, *21*, 6479. doi:10.3390/s21196479.
21. Löbel, T. The Hybrid Bondline: A Novel Disbond-Stopping Design for Adhesively Bonded Composite Joints. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, 2016.
22. Steinmetz, J.; Löbel, T.; Völkerink, O.; Hühne, C.; Sinapius, M.; von der Heide, C.; Dietzel, A. The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures. *MDPI Journal of Composites Science* **2021**.
23. Keil, S. *Dehnungsmessstreifen*, 2., neu bearbeitete auflage ed.; Springer Vieweg: Wiesbaden, 2017.