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Abstract—Real-world optimization problems are often gov-
erned by one or more constraints. Over the last few decades, 
extensive research has been performed in Constrained Opti-
mization Problems (COPs) fueled by advances in computational 
intelligence. In particular, Evolutionary Algorithms (EAs) are a 
preferred tool for practitioners for solving these COPs within 
practicable time limits. We propose an ensemble of multi-
method hybrid EA framework with four mutation operators, two 
crossover operators, multi-search [Differential Evolution (DE) & 
Gaining Sharing Knowledge (GSK)] optimization algorithm, and 
ensemble of constraint handling techniques to solve global real-
world constrained optimization problem. The proposed frame-
work FEPEA has an ascendancy of multiple adaptation strategies 
concerning the control parameters, search mechanisms, two 
sub-populations as well as uses knowledge sharing mechanism 
between junior and senior phases. The algorithm also combines 
the power of four popular constraint handling techniques (CHT) 
and uses a voting mechanism to select any particular CHT. 
On top of that, this algorithm also uses both linear and non-
linear population size reduction in every step of the evolutionary 
process. We test our method on 57 real-world problems provided 
as part of the CEC 2020 special session & competition on real-
world constrained optimization benchmark suite. Experimental 
results indicate that FEPEA is able to achieve state-of-the-
art performance on real-world constrained global optimization 
when compared against other well-known real-world constrained 
optimizers.

Index Terms—constrained optimization; multi-operator; 
multi-parameter adaptation; nsemble constraint handling 
techniques; Evolutionary Algorithms

I. INTRODUCTION

Constrained Optimization Problems (COP) arise in numer-
ous fields, including natural sciences, economics, computers,
and engineering design. Constraints are of two types: equality
and inequality and while minimizing/maximizing the objective
function, all relevant constraints must be satisfied. A COP can
be depicted using Eq (7). These constraints are utilized to
discover feasible regions, which might be an ample continu-
ous search space, a significant, unpredictable space, a small
space, or various disconnected regions. Based on the type of
constraints and objective function, COP can be classified into
different sub-categories like linear or non-linear, continuous or
discontinuous, uni-modal or multi-modal. Of course, a certain
COP can belong to more than one category.

Computational Intelligence (CI) based-techniques, like Evo-
lutionary Algorithms (EA), are broadly employed to solve
COP, because they enjoy many fundamental upper hands
over customary numerical programming strategies [1]–[18],
[18]–[21] . Nonetheless, there is no assurance that they will
find ideal (global) solutions, and the nature of their solu-
tions depends on the topography of the problem, the set
of constraints, and its parametric settings. Among existing
evolutionary algorithms, one of the most popular is Differential
Evolution (DE) which was proposed by Storm and Price in
1996. This population-based method uses strategies consisting
of mutation, crossover, and selection to arrive at new solutions
and propel them toward the optimal solution. Since 1996,
several methods for mutation, crossover and selection have
been proposed resulting in modified versions of the algorithm.
DE being simple and easy to implement yet powerful found
applications in several fields and has acquired prominence for
taking care of issues in continuous areas, and has demonstrated
its predominance over other notable algorithms for taking care
of complex optimization issues with various properties [22].
Notwithstanding, no single version of the DE algorithm (or
EA) performs the best for a wide range of test cases. This
roused researchers to present variants that utilizes the qualities
of various operators.

A Multi-operator DE (MODE) algorithm leverages the
power of more than one DE operator, for instance, muta-
tion operator, crossover operator, with a preference towards
the better performing solutions based on objective function
evaluation value and mean constraint violation value during
the evolutionary process. It also progressively refreshes each
sub-population size based on two major markers: the nature of
solutions and the variety of each sub-population. The proposed
hybrid algorithm framework constitutes the division of popula-
tion between a Multi-Operator DE (MODE) [23] and an Adap-
tive Parameter Gaining Sharing Knowledge (APGSK) [24].
Later in the evolutionary process, it recombines these sub-
populations to form the current generation population. The
contributions of this paper includes a hybrid framework con-
sisting of multiple EA (here we have used two search opti-
mization algorithms but it generalizes to multiple evolutionary
algorithms), a weighted mutation operator for the top φbest
solutions in the sub-population assigned to MODE which
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explores promising search spaces in close proximity to the best
solutions, parametric adaptation of various control parameters
like crossover operator, knowledge parameter and a voting
mechanism based selection of ensemble constraint handling
techniques.

Towards the end of each generation, both the sub-
populations are assembled together to form one whole pop-
ulation and successively reallocated in the subsequent gener-
ation based on the success rate, functional evaluation value
and mean constraint violation. In addition, a linear decrease
of the population size is performed in the sub-population
allocated to MODE as standard LSHADE literature [25].
However, we use a nonlinear shrinkage of the population size
in the sub-population allocated to APGSK [24]. The under-
lying constraints are handled using voting mechanism which
probabilistically selects between four most popular constraint
handling techniques namely: Superiority of Feasible solutions
(SF), Stochastic Ranking (SR), ε-Constrained method (εC) and
Self-Adaptive Penalty method (SP). The proposed algorithmic
framework is extensively tested by tackling 57 real-world
constrained issues taken from the CEC2020 [26] competition
on non-convex constrained optimization issues from the real
world. The outcomes show that this algorithm measurably
outperforms existing state-of-the-art constrained optimization
algorithms.

The rest of this paper is structured as follows: a brief liter-
ature survey on a simple DE, various multi-operator DE, and
various most widely used constraint handling techniques has
been discussed in Section II; the proposed algorithm frame-
work and subtleties of its parts are discussed in Section III; the
benchmark, algorithm hyper-parameters, experimental results
and examinations are mentioned in Section IV; and, at last,
the conclusion and scope for future work is presented in
Section V. Finally, more avid users are elluded to check out
the Appendix section for more detailed guide on accurate
experimental results.

II. LITERATURE REVIEW

A. Differential Evolution (DE) Algorithm

DE is a straightforward yet highly efficient population
based Evolutionary Algorithm (EA) proposed by Price and
Storn [27], [28] in 1996 for real parameter optimization.
DE is not the same as conventional EAs in that it perturbs
the current generation population wherein it undergoes an
evolutionary process, evolving the current population using
various operations like mutation, crossover and selection.
Over the last couple of decades, DE has been applied to
a plethora of real-world constrained optimization problems
as well as numerical optimization problems because of its
straightforwardness, simplicity in implementation and robust
nature. Intrigued perusers are alluded to [29], [30] for a
thorough survey on DE.

A DE algorithm generally starts by generating an initial
population vector ~Xi = [xi,1, xi,2, . . . , xi,D]

T , where D refers
to the dimensionality of the problem and every solution
segment, xi, i = 1, 2, . . . , D, is a real number. From this
time forward, the terms solution and vector will be utilized

reciprocally. This population is randomly initialized between
a lower and upper bound (xj,min and xj,max) given by Eq (1)

xi,j = xj,min + randi,j [0, 1]× (xj,max − xj,min) (1)

where i = 1, 2, . . . , NP and j = 1, 2, . . . , D. A simple DE
algorithm comprises of three major steps: mutation, cross-over
and selection.

1) Mutation: This is the first step in a simple DE
(DE/rand/1) evolutionary process where it tries to create a mu-
tant vector ~Vi by randomly selecting three candidate solutions
from the current population. It multiplies the scaling factor
(F ) with the difference between two of the candidates and
adds it to the remaining candidate to generate a trail mutant
vector given by Eq (2)

~Vi = ~Xri1
+ F × ( ~Xri2

− ~Xri3
) (2)

where ri1 6= ri2 6= ri3 and ri1, r
i
1, r

i
1 ∈ [1, NP ] and control

parameter F > 0
2) Crossover: Once a mutant vector is generated, a

crossover operation is performed to generate an offspring
solution. In a simple DE setup, two main types of crossover
operations are binomial and exponential crossover. In binomial
crossover is applied when a random number generated is less
than the control parameter Crossover Rate (Cr) given by
Eq (3)

Ui,j =

{
Vi,j if (rand ≤ Cri or j = jrand)

Xi.j otherwise
(3)

In exponential crossover, an integer is randomly selected
c ∈ [1, D] in the search space. This acts as the lower bound
of the decision space in which another integer is selected
C ∈ [c,D]. This represents the number of elements where the
donor or parent vector actually participates in offspring gen-
eration. Once, these two parameters are selected the offspring
is generated using Eq (4)

Ui,j =

{
Vi,j for j = 〈c〉D, 〈c+ 1〉, . . . , 〈c+ C + 1〉D
Xi.j for all other j ∈ [ 1, D]

(4)
3) Selection: Once the offspring is generated, the final step

is to perform a greedy based selection as to whether the parent
or the offspring solution should survive till the next generation.
Most of the times, this decision is taken based on the objective
function value of the parent and offspring also known as fitness
value given by Eq (5).

~Xi,G+1 =

{
~Ui,G if f(~Ui,G) ≤ f( ~Xi,G)
~Xi.j otherwise

(5)

where f(~Ui,G) and f( ~Xi,G) are objective function evaluation
or fitness values of the parent and offspring solutions, and G
is the current generation of the population.

The performance of a DE algorithm heavily relies on the
choice of control parameters, namely - scaling factor (F ) and
crossover rate (Cr). Liu et. al [31] proposed a fuzzy adaptive
DE (FADE) with an adaptation in the mutation and crossover
operators. This variant performed better than a standard DE.
It was quite evidently noted that a single value for the control
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parameters was just not enough hence, researchers opted for
self-adaptive versions of DE. [32], [33] One such variant called
JADE proposed by Zhang et al. [34] introduced an external
archive and sampling the scaling factor (µF ) from a normal
distribution within [0,1] and the crossover factor (µCR) from
a cauchy distribution between [0,1]. Subsequently, Tanabe et
al. [35] proposed SHADE where a memory based archive
of scaling factor (SF ) and crossover rate (SCR) were used
instead of a single µF and µCR as in JADE. Later Tanabe
improved his algorithm by adding a dynamic linear population
size reduction (LSPR) during the evolutionry phase called
LSHADE [25].

B. Multi Operator DE (MODE) Algorithm

Following the success of various control parameter adap-
tations in DE, researchers started looking out for possibilities
of using multiple mutation and crossover operators rather than
any single operator. Das et al. [36] proposed a neighbourhood-
based mutation operator (DE/target-to-best/1). Wang et al. [37]
proposed an orthogonal crossover (OXDE) to counteract the
limitations of binomial and exponential crossovers. Guo et
al [38] introduced eigenvector-based crossover operator which
helped crossovers to be rotationally invariant. Elsayed et
al. [39] proposed a self-adaptive multi-operator DE (SAMO-
DE) which was designed to tackle constraint optimization
issues by assigning different mutation operators to sub-
populations. These sub-populations were assigned a success
rate (SR) based on offspring quality determined by feasibility
and constraint violations. Zamuda et al, [40] proposed jDE
with two mutation operators and a population reduction based
on number of functional evaluation. Wang et al. [41] proposed
composite DE (CoDE) which used three mutation operators
alongwith three fixed control parameters to generate three
trail solutions, wherein the one with the best fitness values
survived to the next generation. Following the success of these
MODE algorithms Qin et al. [33] proposed self-adaptive DE
(SADE) wherein the probability of operator as well as control
parameter was dynamically updated based on the success
rate. Individual archives were maintained for solutions which
survived till the next generation as well as the ones which
were removed from subsequent generations. The probability
of selection of each mutation operator was adjusted as the
number of solutions which survived till the next round over
all the solutions which participated in the evolutionary process
for the particular mutation operator.

Another DE variant proposed by Da Silva et al. [42] for
unconstrained optimization used four mutation strategies and
a technique for operator selection which was slightly biased to-
wards the best individual in the current population. Mallipeddi
et al. [43] proposed an ensemble of mutation strategies and
control parameters with DE (EPSDE) which used a pool
of mutation strategies (JADE [34] and DE/current-to-rand/1)
and crossover operators (binomial and exponential), with
control parameters F ∈ (0.5, 0.9) and Cr ∈ (0.1, 0.5, 0.9).
Mallipeddi later proposed another parameter ensemble DE
which also used Harmony Search [44] and two popular muta-
tion operators (DE/current-to-pbest/bin [34] and DE/current-

to-gr best/bin [45]). This self-adaptable MODE was further-
more improved by Elsayed et al. [46] with organizing a co-
change structure change evolution system. Cui et al. [47]
proposed MPADE where the population was divided into three
sub-populations and three mutation operators (DE/current-
to-rbest/2, DE/current-to-nbest/2, and DE/current-to-pbest/2)
were applied on each sub-population. Similarly, Wu et
al. [48] proposed Multi-Population Ensemble DE (MPEDE)
which used three mutation strategies (DE/current-to-rand/1,
DE/current-to-pbest/1 and DE/rand/1) on three equally sized
populations and a larger reward sub-population. After a deter-
mined number of fitness evaluations the best mutation strategy
is awarded the reward sub-population.

Liu et al. [49] recently proposed Historical and Heuristic-
Based Adaptive Differential Evolution (HHDE) which divides
the population into three states: Superior (S), Medium (M)
and Inferior (I) and uses past historical heuristic informa-
tion of each individual based on fitness value to select
from three commonly used mutation strategies (DE/current-
to-rand/1, DE/current-to-pbest/1 and DE/rand/1). The top one-
third population (S) are in close proximity to the best so-
lution are assigned for exploration of promising areas using
DE/current-to-rand/1. The middle one-third population (M)
has the most scope of learning from better solutions (S) are
assigned DE/current-to-pbest/1 for exploitation. The bottom
one-third (I) can learn from good solutions (M) to obtain
better solutions than I and are assigned exploration strategy
of DE/rand/1. In addition it also uses multiple parameter
adaptations for other control parameters as well.

Considering the conspicuous need of having a grounded
system to choose best-performing evolutionary algorithm oper-
ators, Sallam et al. [50] proposed a landscape-based marker to
pick the best-appropriate operator all through the evolutionary
cycle of DE. Recently, Kumar et al. [51] proposed an upgraded
rendition of the MODE algorithm, which applied a unique
population size decrease method to diminish the size of the
population for any ensuing cycles. Subsequent to tackling
numerous CEC19 test issues, they have demonstrated the
matchless quality of their proposed algorithm. To enhance
the search capability of DE, Elsayed et al. [52] proposed
another component to consequently choosing the best-fitted
operators, for example, intensification factor, crossover rate,
and population size. Diverse constrained optimization test
issues were additionally utilized to survey their algorithm.
Sallam et al. [53] proposed a ensemble multi-operator DE
(EnMODE) that uses a probabilistic selection amongst three
mutation operators and two crossover operators (binomial
and exponential). EnMODE outperformed other state-of-the-
art algorithms on the 57 problems presented as part of the
CEC 2020 Real World Constrained Optimization benchmark
suite. More recently, Biswas et al. [54] proposed a variant of
MODE with adaptive hyperparameter optimization.

Ali et al. [55] proposed a nature-inspired gaining sharing
knowledge (GSK) based algorithm wherein heuristic informa-
tion is acquired and shared in two phases namely, the junior
and the senior phase. The analogy used in this algorithm
is same as how a human being acquires knowledge in his
early phase of schooling termed as juniors. Later on, as the
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human being becomes more proficient in their understanding
of the concepts, they are transformed into seniors. These
individuals then impart their knowledge with the then juniors
in order to enhance their understanding. Initially, all the
solutions are juniors which interact with other solutions during
the evolutionary cycle. The algorithm uses two main control
parameters - the knowledge ratio (kr) and the knowledge
factor (kf ). Consequently, Ali proposed an adaptive parameter
version of the GSK (APGSK) [56] where the knowledge rate
control parameter is dynamically adapted. In addition, a non-
linear population size reduction is also introduced with this
algorithm. The itemized depiction of the algorithm can be
found in Algorithm 2. Most recently, Ali proposed another
hybrid algorithm [57] for solving unconstrained problems
whereby the population was divided into two parts and as-
signed to IMODE [23] and APGSK [56]. This algorithm out-
performed all other state-of-the-art single-objective numerical
optimization algorithm on the CEC 2021 benchmark suite.

C. Constrained Handling Technique

Aside from the central optimization engine, constraint han-
dling strategy is the most significant part of the constrained
optimization solver. According to a survey [58], [59], few of
the most common constraint handling techniques due to their
popularity in recent years like:

• Superiority of Feasible solutions (SF)
• Stochastic Ranking (SR)
• epsilon-Constrained methods (εC)
• Self-Adaptive Penalty methods (SP)
• Novel Special Operators
• Multi-Objective concepts (MO)
• Ensemble of Constrained-Handling Techniques (ECHTs)
1) Superiority of Feasible solutions (SF): Superiority of

feasible solutions, as the name goes tend to favor feasible
solutions over the infeasible. However, it also faces some
limitations in very discreet and insatiable constraints search
spaces. This technique introduced by Deb [60] has three
situations:

• when the trial solution is feasible but the target solution
is infeasible

• when both trial and target are both infeasible solutions
• when both trial and target are feasible solutions

Thus, it can be noted from SF that a feasible solution is always
preferred over an infeasible solution. However, when both the
trial and target tend to be infeasible, the one with the lower
sum of constraint violations (ψ) is picked, where ψ is figured
utilizing Eq. (6). Also, when both trial and target is feasible,
the one with the least fitness value is preferred.

ψ( ~Xi) =

K∑
k=1

max
(

0, gk( ~Xi)
)

+

E∑
e=1

max
(

0, |he( ~Xi)| − δe
)

(6)
Mezura-Montes [61] introduced a DE-based method with

Deb’s comparative criteria as above, which proposed that the
newly selected individual may be re-inserted into the current
population (and not only inserted in the population for the next
generation like in the original DE algorithm). The goal was to

speed up convergence by selecting newly improved solutions
as random parents for other children in the current generation.
This was different from Deb’s method because it allowed for
preservation of trial vectors in current population even if the
violations are equal. Indeed, this method produced good re-
sults, but only it was laced with inconsistency. Surprisingly, as
of late, the strategy dependent on saving infeasible solutions in
the population has additionally shown a considerable guarantee
for handling constrained optimization issues [62].

2) Stochastic Ranking (SR): In order to decide whether the
target or trial solution to be selected Runarsson and Yao [63]
introduced a stochastic ranking technique which compared
solutions based on violation or fitness value with a probability
factor pf . Owing to limitations of either choosing fitness or
violation value, they later improved their ranking algorithm by
introducing a adaption of linearly decreasing the probability
factor from a value of 0.475 to 0.025. Although SR was
initially designed for Evolutionary Strategy (ES) algorithms,
but it has been later adapted to various EA [64], [65] and
genetic algorithms [66].

3) epsilon-Constrained methods (εC): Takahama and
Sakai [67] introduced an epsilon-based constraint handling
technique which is a lexicographical ordering mechanism
whereby the sum of constraint violation is minimized before
the minimization of the objective function, with the goal of
utilising its objective function value as a comparison criteria.
The authors improved their algorithm using various techniques
like using a DE and Gradient Based Mutation operator [67],
and later the use of an archive to store solutions and ability
to generate multiple solutions [68]. This was one of the best
performing techniques which was later adopted by Brest et
al. to propose a self-adaptive stochastic DE called ε-jDE [69]
which has demonstrated great performance in CEC 2006 RW
benchmark suite.

4) Self-Adaptive Penalty methods (SP): The most popular
constraint handling methods is static penalty method where the
fitness is penalized using a penalty for providing infeasible
solutions. While this method is rather simpler and easier
to implement, it has many short-comings including tuning
hyperparameters according to problem topology as well as pre-
mature convergence into infeasible solutions. Subsequently,
a two-part adaptive penalty function method was proposed
in [70] whereby the diversity improved by increasing the
fitness value of infeasible solution towards the best solution
which could be a feasible solution in the current population
with the best fitness value or the solution with the least
constraint violation if there are no viable feasible solutions.
Tessema et al. [71] used a similar two phase penalty function
but the penalty value was decided using the number of feasible
solutions in the current population. In a population with
more infeasible solutions a greater penalty is imposed on
solutions with larger constraint violation. If the population
contains more feasible solutions, the ones with better fitness
values receive the least penalties. This was a parameter less
penalty function with a slight bias towards infeasible solution
with better fitness values. However, both of these adaptive
penalty function variants required large number (in millions)
of functional evaluations.
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5) Novel Special Operators: Researchers have investigated
the use of various specialized operators like boundary based
operations, for example, a binary division between feasible
and infeasible solutions [72]. Another approach proposed by
Huang [73] divided the population into two halves, wherein
the first population uses DE to evolve the whole population
irrespective of feasibility, while the second population is used
to store only feasible solutions. New trial solutions are then
generated using both the populations. In addition, it also uses
Nelder-Mead local search operation on best feasible solutions.
Other interesting approaches include Constraint Quadratic
Approximation (CQA) [74] which used a surrogate of feasible
search space to generate quadratic conjecture of objective
function and other special equality operators.

6) Multi-Objective concepts (MO): Various multi-objective
optimization concepts have been applied to solve constrained
optimization problems. For instance, a ranking based on re-
ducing constraint violation proposed by Ray [75] wherein the
population needs to sustain a certain section of the infeasible
population. After trail generation, the parent and offspring
are separated based on feasibility and successive independent
ranking is performed. Another interesting approach proposed
by Reynoso-Meza [76] divides the optimization problem into
three sub-problems of optimizing the objective function, the
inequality constraints and the equality constraints respectively.
Similarly, Wang et al [77] divided the problem into two sub-
problems of optimizing the objective function and optimizing
the sum of constraint violations. Consequently, Wang also
proposed Adaptive Trade-off Model Evolutionary Strategy
(ATMES) [78], where the population was sub-divided into
three parts based only infeasible solution, feasible and infea-
sible solutions and only feasible solutions.

7) Ensemble of Constrained-Handling Techniques
(ECHTs): Owing to the varied discrete feasible search
spaces in constrained optimization problems, researchers
have tend to use an ensemble of various constraint handling
techniques which have notably performed well in various
scenarios. Mallipeddi et al. [79] proposed the use of four
ECHTs (superiority of feasible solution, self-adaptive penalty
function, ε-constrained method and stochastic ranking) in
four sub-populations. Elsayed et al. [80] used two ECHTs
(superiority of feasible solution and ε-constrained method).
Qu [81] proposed use of multi-objective DE based on
feasibility of solutions and three ECHTs (superiority of
feasible solution, self-adaptive penalty function and ε-
constrained method). Tasgetiren et al. [82] proposed use
of two DE variants, and a Variable Neighborhood Search
(VNS) with three ECHTs (superiority of feasible solutions,
ε-constrained method, and an adaptive penalty function).
Similarly, Paldrak [83] suggested use of ensemble DE based
on VNS which also used an opposition based learning
and preferable good solution injection for creating trial
solutions. Trivedi et al. [84] proposed an ensemble of three
mutation operator as in CoDE [41] where a static based
penalty function is applied on the first half of the functional
evaluations and superiority of feasible solutions is applied
on the rest. Xu [85] proposed use of ensemble DE variants
and a two-level ε-constrained method using generation and

population level comparison Wen et al. [86] proposed a voting
mechanism for selection among four ECHTs (superiority of
feasible solutions, ε-constrained method, stochastic ranking
and self-adaptive penalty function)

In view of these pertinent literature review, it very well may
be guaranteed that the choice of selection of best-performing
blend of operators and parameters for any evolutionary algo-
rithm (say DE) is yet considered as a drawn-out task, despite
a couple of prior commitments from numerous researchers.
Some conspicuous bearings originating from this exploration
problem can be addressing the questions:

• using a framework comprising of an ensemble of search
operators within a single algorithm.

• how to effectively handle various diverse set of mu-
tation operators and their influence on exploration and
exploitation of the search space in each generation of the
population.

• how to distribute any particular set of operators or
parameters among the current population, and various
ways to segregate the population based on fitness, mean
constrained violation or functional evaluation.

• the usage of multi-method and heterogeneous optimiza-
tion algorithms (using different optimization algorithms
with varied behavior) instead of a single optimization
algorithm.

• using an ensemble of different constraint handling tech-
niques and specialized operators.

• algorithmic performance (speed, accuracy and conver-
gence) constraints.

Considering all the aforementioned concerns, this pa-
per proposes an upgraded multi-method algorithm frame-
work (FEPEA), which uses a hybrid of two different EA
with different behaviour distributed into two sub-populations
which is dynamically updated based on hyper-heuristics. It
also reduces the population size in each algorithm based on
success-rate using both linear and non-linear population size
reduction.

D. Applications

Constrained EAs and GAs have showed tremendous poten-
tial in handling a variety of real world as well as multimodal
optimization problems. Many of these algorithms is gain-
ing widespread acceptance in different domains of machine
learning and artificial inteligence, such as the use of such
algorithms in neuro-evolution in Reinforcement Learning (RL)
settings [87] or usage of evolutionary control parameters in
Automated Machine Learning [87]. In particular, we have
observed widespread use of AGSK in transportation prob-
lems [88], [89], path planning [90], knapsack problems [91],
[92], electrochemical systems such as photo-voltaic cells [93],
[94], engineering problems like fault diagnostics in power
systems [95], as well as adoption in machine learning [96] and
RL techniques [97]. As a result, it is reasonable to claim that
constrained evolutionary algorithms offer enormous potential
in the application of many engineering design challenges [1],
[98]–[100].
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III. THE FEPEA ALGORITHM

Real-World Constrained Optimization Evolutionary Algo-
rithm refers to addressing the optimization problem using
evaluation of the objective function f( ~X) only in a black-
box setting - where the functional landscape information is
not used. It is entrusted with looking for a solution ~X∗ that
minimizes the objective function: f( ~X∗) ≤ f( ~X) ∀ ~X ∈
F ⊆ SD, where F is in the feasible region, a limited set
satisfying the various constraints imposed on the search space
S. The optimization problem can be enacted using Eq (7)
where g( ~X) corresponds to gn inequality constraints and
h( ~X) corresponds to hn equality constraints.

minimize f( ~X) subjected to

gi( ~X) ≤ 0, ∀ i = 1, 2, . . . , gn

hj( ~X) = 0, ∀ j = 1, 2, . . . , hn (7)

In this paper we propose an hybrid ensemble evolutionary
algorithm framework FEPEA which uses multiple different
evolutionary algorithm with difference in characteristic be-
haviour. It uses an ensemble of various operators (mutation,
crossover) and control parameters. Alongside, it also uses
an ensemble of population size reduction techniques. As
for constraint handling, we shall be an ensemble of various
commonly used constraint handling techniques ECHTs such
as SF, SR, eC, SP. These techniques are selected based on
a voting mechanism within each sub-population. It must be
noted that the following framework can be swiftly modified
to include more algorithms and more wider choice of control
parameters and constraint handling techniques. Henceforth,
we shall adopt the usage of standard EA-ES notation and
mnemonics as presented in literature.

A. IMODE Algorithm

As recently expressed, the general execution of the DE
operator might change during the optimization phases; this
largely depends on the initial seeds which are provided to
the algorithm as well as the optimization topography as well.
Additionally, an operator might perform well for specific kinds
of problems, yet its performance might be inadequate for
another. Hence, the utilization of multi-operator DE which
determines the fate of the mutation strategy in a probabilistic
manner is of the essence, as it is able to incorporate the
knowledge of which solution performed well in comparison
to others.The psuedo-code of the IMODE algorithm can be
depicted in Algorithm 1

1) DE Mutation: In FEPEA, we utilize three mutation
methodologies that are chosen in a probabilistic way as
examined later in II-E. Two of these methodologies depend
on JADE [34], i.e., DE/current-to-φbest/1 mutation with (8)
and without archive (9). The previous one is a weaker varia-
tion of the DE/current-to-best/1 mutation, while the last one
has shown promising execution in real parameter continuous
optimization issues. The third mutation is a DE/weighted-rand-
to-φbest operator (10). The three mutation strategies can be
listed as below:

• DE/current-to-φbest/1 + archive

~Vi,G = ~Xi,G+Fi · ( ~Xφ,G− ~Xi,G+ ~Xri1,G
− ~Xri3,G

), (8)

• DE/current-to-φbest/1 − archive

~Vi,G = ~Xi,G+Fi · ( ~Xφ,G− ~Xi,G+ ~Xri1,G
− ~Xri2,G

), (9)

• DE/weighted-rand-to-φbest

~Vi,G = Fi · ~Xri1,G
+ ( ~Xφ,G − ~Xri3,G

) (10)

where ri1 6= ri2 6= ri3 are randomly chosen unique integers
from current population pool (NP ) such that ri1, r

i
2, r

i
3 ∈

[1, NP ] and ~Xφ,G is chosen from top φ% solutions based
on objective function value and mean constrained violation.
The solutions which survive till the next generation are kept
in the current population P and the ones which succumb to the
selection process are preserved in an external archive A. These
spurned solutions are not completely abandoned and they do
get another chance to participate in the mutation process later
in the evolutionary cycle as ~Xri3,G

is chosen from the pool
consisting of this archive and current population A ∪ P . This
preserves the diversity of the population.

2) DE Crossover Rate: FEPEA uses an ensemble of
crossover operators namely binary and exponential crossover
in a random order to produce trial vector ~Vi,G. With an equal
probability, a crossover operator randomly selected using a
random number between [0,1] (if the random number between
[0,1] selected is less than 0.5, exponential crossover takes
place, otherwise, binary crossover takes place). This is can
be envisaged in Eq (11). Within each crossover mechanism
standard crossover operation is conducted as discussed in
Sec II-A2. The crossover operation acts as a diversity safe-
guarding mechanism by limiting the alterations in the trial
vector.

Ui,j =



{
Vi,j for j = 〈c〉D, 〈c+ 1〉, . . . , 〈c+ C + 1〉D
Xi.j for all other j ∈ [ 1, D]

if rand ≤ 0.5{
Vi,j if (rand ≤ Crior j = jrand)

Xi.j otherwise
otherwise

(11)
3) DE Control Parameters: The control parameter adaption

is enlivened from the success history-based hyperparameter
adaptation [25], [34], [35]. It keeps a memory archive of the
effective DE hyperparameters, to be specific, scaling factor F
in Eq (12) and crossover rate Cr in Eq (13). Success history
based memory archives are allotted as in standard SHADE [35]
to both the scaling factor Fi as SF,i = Fi, i = 1, . . . ,H ,
and the crossover rate Cri as SCr,i = Cri, i = 1, . . . ,H
particularly. Subsequently, the hyperparameters for construct-
ing the trial vectors are generated using these archives as in
Eq (12,13):

Fi ∼ randci
(
SF,ri , 0.1

)
and (12)

Cri ∼ randci
(
SCr,ri , 0.1

)
(13)

The scaling factor Fi is sampled using Cauchy distribution to
guarantee a wide spread of values. Fi is limited to a region of
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Fi ∈ (0, 1], and set to a value of 1 in case Fi > 1, otherwise
is re-sampled if Fi < 0 till a valid value of is produced.
Similarly, the crossover rate Cr is also sampled from the
Cauchy distribution and pruned to lie within the range of [0, 1].
An uniform random index ri is selected from the range [1, H].

At the end of each generation, the successful control pa-
rameters are archived in SF and SCR. The memory archive is
updated at a random position k ∈ [1, H]. Initially k is set to
1, and subsequently increased with every successful solutions
generated. If k > H then k is reset to 1. If a generation could
not generate any successful solution, the memory archive is
not updated. The archive SCR has a terminal value ⊥ which
is assigned when all elements of SCR = 0. If this value is
assigned to the memory it remains fixed at this value as the
CR gets locked at 0 till end of the search. This slows down
the overall convergence.

B. APGSK Algorithm

The nature inspired APGSK Algorithm intuitively reflects
human behavior of acquiring and propagating knowledge
within their eco-system. This basically occurs in two major
phases: firstly, when the solutions starts imbibing the knowl-
edge they are called juniors. These solutions consequently
interact with the other solutions in the neighbourhood and
acquire passive meta-heuristic information. Steadily these so-
lutions become adept in their trade which is when they are
transformed as seniors.

1) APGSK Control Parameters: In this paper, the control
parameters for APGSK kf and kr are naturally dictated by
choosing a pool for the two parameters and KwP probability.
The parameter pool is made out of four sets of tuple consisting
of the control parameters (kf , kr): [(0.1, 0.2), (1.0, 0.9),
(0.5, 0.9) and (1.0, 0.1)] which is utilized for the first half
of maximum functional evaluations, while another different
set: [(-0.15, 0.2), (-0.05, 0.1), (-0.05, 0.9), and (-0.15, 0.9)] is
applied to the residual half with a probability under 0.3 which
ensures population diversity and prevents the algorithm from
getting stuck at any local optima in the functional landscape.

The knowledge probability KwP that has a probability
parameter p for each setting of the previously aforementioned
parameter pool. This ensures that one tuple shall be selected
for each solution based on its probability parameter p. The
knowledge probability adaptation KwP begins after 10% of
maximum functional evaluations and is determined by ωps
which is the difference in the sum total objective function
value of the current xcurrenti and previous solution xpreviousi

for each setting. The following can be depicted in Eq (14):

ωps =

n∑
i=1

f(xcurrenti )− f(xpreviousi ) (14)

where n is the total number of solutions in parameter tuple
ps.

Following that, the rate of improvement for each parametric
setting is calculated as Eq (15):

∆ps = max(0.05,
ωps

sum(ωps)
) (15)

which is normalized between 0.05 and maximum ωps. This
kind of normalization ensures that none of the parametric
setting should be set to a probability below 0.05 thereby
preventing concentration of any selected parametric setting.

Finally, the rate of improvement (∆ps) for each parameteric
setting is used to refresh the knowledge probability of next
generation Kw PG+1 using the previous knowledge proba-
bility Kw PG depicted in Eq (16):

Kw PG+1 = (1− c)Kw PG + c ·∆ps (16)

where c is the learning rate.
2) Knowledge Rate Adaptation: The heterogeneous idea of

any population ought to be taken into the record to copy
the cycle of knowledge acquiring and sharing for a given
population through its life cycle. In this way, k needs to
consider two situations. The first when k ∈ (0, 1), while the
second is when k ≤ 1 with probability of ( FES

MAXFES
) in Eq

(17) as:

if rand ≥ FES

MAXFES
, k = 0.5 else k = 2 (17)

C. Population Update

While MODE uses a Linear Population Size Reduction
(LPSR) [25], AGSK, on the contrary, uses Non-Linear Pop-
ulation Size Reduction (NLPSR). The linear population size
reduction at each generation G, G = 1, 2, . . . in MODE is
updated as Eq (18)

NPG =

⌊
NPmax − (NPmax −NPmin)

FES

MAXFES

⌉
, (18)

At whatever point the condition NPG < NPG−1 happens,
the most exceedingly terrible NPG−1 −NPG individuals are
taken out from the population

Whereas the non-linear population size reduction (NLPSR)
in APGSK is implemented as Eq (19)

NPG =

(NPmin −NPinit ) ∗
(

FES

MAXFES

)(
1− FES

MAXFES

)+NPinit,

(19)
where FES denotes the current of functional evalua-
tion counter toward the finish of the given generation,
MAXFES denotes the maximum allowable functional evalu-
ations, NPmin is the minimum population size (which is set to
4 in the case of MODE and 12 incase of APGSK), NPmax is
the maximum population size, NPinit is the initial population
size, and b.e is the closest whole number function.

D. Constraint Handling

Amongst various constraint handling methods superiority of
feasible solutions has been a common choice for researchers.
There are many variants of these. The constrained handling
method used in FEPEA comprises of an ensemble of various
popular constraint handling methods (ECHT), such as SF, SR,
εC, and SP strategy by using a voting based mechanism [86]
to select the best-performing constraint handling operator
which minimizes the constraint violation mean. Experimental
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results illustrates that this method is able to successfully locate
and generate better offsprings in the feasible region. This
technique allows the users to use an ensemble of CHTs,
and the framework FEPEA allows the users to add more
customized novel constrained handling techniques to suit the
problem which it is trying to resolve.

The equality constraints are transformed into inequality
constraints by subtracting a minimal tolerance ( 107) from
the equality constraints as |hj(~x)| − ε 6 0. This is essential
because, for any equality constraints, the feasible region can
be represented as a line-segment between the bounds. If all
the constraints happen to be equality constraints, the feasible
region would be the intersection of all these regions, giving a
point, which degrades the evolutionary process. Thus, in order
to incorporate flexibility all the constraints are transformed
using Eq (20).

cvj(~x) =

{
max (0, gj(~x)) , j = 1, . . . , q
max (0, |hj(~x)| − ε) , j = q + 1, . . . ,m

(20)
The constraint violations are evaluated sequentially for the

entire population using all the constraint handling techniques.
The fitness value is calculated after apply a penalty of their
respective denormalized mean violation for each function as
in Eq. (21)

fitness = feval(i) + cvmean(i) (21)

where, feval(i) is the functional evaluation value and
cvmean(i) is the mean violation across all the independent
executions. For each CHT a separate counter is maintained
to denote which technique produced a better offspring. This
counter is used in a voting manner to decide on the CHT to
be used. Details of the technique can be found in Algorithm
(4).

E. Difference Vector Computation

Following constraint violation evaluation, a difference vec-
tor is computed based on these computed violation mean is
taken for various occurrences of feasible to feasible, infeasible
to feasible and infeasible to infeasible solution. A simple
difference vector of the form ~∆ can be represented using
Eq (22) which successfully generates offspring ~Ui,G such that
f(~Ui,G) ≤ f( ~Xi,G) always hold true.

~∆ = ~Xr1,G − ~Xr2,G (22)

Finally, a greedy based selection operation as mentioned in
Sec II-A3 is performed where, the solutions with a minimum
fitness value is selected for the next iteration.

F. Putting it all together

From an initial population, it is divided into two-divisions
(with 75% allocated to MODE and the rest allocated to
APGSK) at the beginning and it gradually changed. Each
population is fed to the designated algorithms and checked
for their efficacy. A greedy selection is then performed to
evolve the next generation. Finally, both the populations are

recombined and re-partitioned again until it provides a better
offspring.

The pseudo-code of the MODE algorithm is depicted in
Algorithm 1.

Algorithm 1 IMODE Algorithm

Require: Define nop, Probs ← 0.1, MAXFES , prob1,
prob2, NP , G← 1, FES ← 0

Input: Initial Population X of size NP
Output: Evaluate f(X), and calculate fitness evaluation

1: Initialization each operator op is assigned same number
of solutions NPop

2: while FES ≤MAXFES do
3: Update Generation Number G← G+ 1
4: Use the assigned DE mutation strategies to generate

offsprings where every DE mutation strategy (operator)
op optimizes determined solutions NPop

5: Evaluate for fitness f(X)
6: Update FES,FES ← FES +NP , Update NP
7: Compute the difference vector
8: Perform greedy selection among the solutions
9: Update each of the optimized solutions

10: end while

The pseudo-code of the AGSK algorithm is depicted in
Algorithm 2.

Algorithm 2 AGSK Algorithm

Require: mentioned in parameteric setting and KwP
Input: Initial Population X of size NP
Output: Evaluate f(X), and calculate fitness evaluation

1: Initialization Define initial parameter pool settings
2: while FES ≤MAXFES do
3: if FES ≤ 0.1×MAXFES then
4: Update the value of KwP
5: end if
6: Set one setting to every solution based on KwP
7: Evaluate for fitness f(X) and update FES,FES ←
FES +NP , Update NP

8: Compute the improvement value of every setting
9: end while

The pseudo-code of the FEPEAcan be depicted from Al-
gorithm 3.

The pseudo-code of the Voting algorithm is depicted in
Algorithm 4.

IV. EXPERIMENTAL RESULTS

A. Benchmark

To pass judgment on the presentation of the proposed
FEPEA algorithm, a few trials were led on 57 constrained
optimization issues with various measurements goes from
2 factors to 158 factors and distinctive number of equality
also, inequality constraints goes from 2 constraints to 148
constraints. Subtleties of these issues can be found in [51].

These issues are classified to six sets:
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Algorithm 3 FEPEA Algorithm

Require: Define N = PS1 + PS2, nop, Probs ← 0.1,
MAXFES , prob1 ← 1, prob2 ← 1, NP , G ← 1,
FES ← 0 and all other hyper-parameters

Input: Initialization IMODE and AGSK Parameters
1: Generate initial random population of size NP

Output: Evaluate f(X), and calculate fitness evaluation
2: Calculate for mean constraint violations for all (gn) equal-

ity and (hn) in-equality constraints
3: Calculate mean violation selection meanviol ← violation

gn+hn

4: Perform violation treatment using Voting Algorithm 4
5: Randomly allocate population into PS1 and PS2 with

default ratio of 75% to 25% at the beginning
6: while FES ≤MAXFES do
7: count← count+ 1
8: if count == CS then
9: Pr1 and Pr2 as stated in

10: end if
11: if count == 2× CS then
12: Share the best solution to both subpopulation
13: Reset Pr1, Pr2 and count
14: end if
15: if rand ∈ [0, 1] ≤ Pr1 then
16: Apply IMODE and optimize the sub-population
17: Use the assigned DE mutation strategies to generate

offsprings where every DE mutation strategy (operator) op
optimizes determined solutions NPop

18: Evaluate for fitness f(X) and update fitness evalua-
tion FES ← FES + PS1

19: Update the solutions and return the best solutions.
20: end if
21: if rand ∈ [0, 1] ≤ Pr2 then
22: Apply APGSK and optimize the sub-population
23: Update fitness evaluation FES ← FES + PS2

24: Update the solutions and return the best solutions.
25: end if
26: Recombine the solutions from the both the algorithms

PS ← PS1 + PS2

27: Check for constraint violation and calculate mean vio-
lation using the Voting Algorithm 4

28: end while

• Industrial Chemical Processes contains seven test prob-
lems (F01−F07);

• Process Synthesis and Design Problems has seven test
problems (F08−F14);

• Mechanical Engineering Problem includes 19 test prob-
lems (F15−F33);

• Power System Problems has 11 test problem (F34 −
F44);

• Power Electronic Problems contains six test problems
(F45−F50);

• Livestock Feed Ration Optimization contains seven test
problems (F51−F57);

All the experiments were executed on the following system:

• OS: Windows 10

Algorithm 4 Voting Algorithm

Require: known set of constraint handling techniques H
Input: Parent Population Pi,G, Offspring Population Pi,G+1

Output: Calculated fitness violation evaluation and updated
Population Po,G+1

1: Initialization Initialize violation terms Vo, Vp
2: for h ≤ H do
3: if Pi,G+1 ≤ Pi,G according to rules of h then
4: Update Vo = Vo + 1
5: else
6: Update Vp = Vp + 1
7: end if
8: end for
9: if Vo ≥ Vp then

10: Update Pi,G+1 in Po,G+1

11: else
12: Update Pi,G in Po,G+1

13: end if

• CPU: AMD Ryzen 7 3700X (3.59 GHz)
• RAM: 16 GB
• Language: MATLAB 2018a
• Compiler: MinGW-w64 C/C++ Compiler

B. Parameter Settings

1) IMODE Parameters:
• Number of Operators (Nop) = 3
• Archive Factor = 1.4
• Scaling Factor = 0.5
• Crossover Factor = 0.5
• Minimum Population Size = 4
2) APGSK Parameters: (kf , kr):
• First 50%: [(0.1, 0.2), (0.5, 0.9), (1.0, 0.9) and (1.0, 0.1)]
• Last 50%:[(- 0.15, 0.2), (- 0.05, 0.9), (- 0.15, 0.9) and (-

0.05, 0.1)]
• Minimum Population Size = 12

C. Results Obtained

We have tested the variability in performance of the pro-
posed FEPEA along with the individual algorithms IMODE
and AGSK. Although, the APGSK algorithm is able to obtain
good results, the ECDF plots using Performance Profiles in
Fig(1) of these three algorithms pitted against each other
indicate that that the hybridization of both the algorithm is
able to obtain better results than either of the algorithm ran
individually.

In addition we perform non-parametric tests of the proposed
FEPEA along with other state-of-the-art known to perform
well in recent RW Constrained Optimization like IUDE, Eps-
MAgES, iLSHADE44, COLSHADE, EnMODE and AGSK.
The results presented in the table indicate that the proposed
algorithm is able to obtain state-of-the-art results.

We also use the scoring mechanism provided by the bench-
mark suite to confer on the results, wherein, the proposed
FEPEA is able to beat the competitors comprehensively.
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Fig. 1: ECDF plot for EnMODE vs APGSK vs cAGSKODE

TABLE I: Friedman Test Results

Algo IUDE EpsMAgES iLSHADE44 COLSHADE EnMODE AGSK FEPEA
Rank 23.47 21.59 21.05 16.69 33.98 33.85 50.00

The algorithm has been tested on the CEC 2020 RW
Benchmark and it has proven to achieve great results as
depicted in the Tables.

V. CONCLUSION AND FUTURE WORKS

In this paper a hybrid FEPEA is proposed to solve real
world constrained optimization problems from the CEC 2020
Benchmark Suite. This algorithm mainly merges the two
algorithm IMODE and AGSK which have individually proven
to be the top contenders in prior CEC competitions. This
algorithm not only leverages multiple self adaptation tech-
niques and multiple operators originally introduced in each
algorithms, but it also unites both linear and non-linear popula-
tion size reduction from both the algorithms. The performance
of FEPEA reveals that it is able to attain state-of-the-art
performance and hunt for solutions in the feasible space. This
paper also shows that hybridization of multiple algorithms
tends to be mutually beneficial when solving for multiple
optimization problems across a varied topography.

As part of future developments we will try to look for
even more state-of-the-art constraint handling procedures with
higher efficacy across a discrete feasible space. Consequently,
we are also researching in the use of this constrained optimiza-
tion algorithm for solving mechanical systems problems like
thermal buckling load [99] utilising isogeometric finite element
analysis of stiffened laminated composite plates [100]. Also,
we would like to investigate the performance of the algorithm
across a wide range of transformation operations like bias,

TABLE II: Results obtained using Scoring function as part of
the CEC2020 benchmark suite

Algo IUDE EpsMAgES iLSHADE44 COLSHADE EnMODE AGSK FEPEA
Score 23.47 21.59 21.05 16.69 33.98 33.85 50.00

TABLE III: Table of Outcomes for F01-F08

Criteria F01 F02 F03 F04 F05 F06 F07 F08

Best f 0.0000e+00 4.2089e+03 -1.7989e+04 -9.9986e-01 -3.6466e+03 9.9790e-01 6.9962e-01 -1.0000e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 0.0000e+00 6.2822e+03 -8.7264e+03 -9.9262e-01 -3.2793e+03 1.6035e+00 1.1227e+00 -2.2630e-01
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.4616e-01 0.0000e+00

Mean f 5.1768e+00 6.1573e+03 -9.5337e+03 -9.9042e-01 -3.2717e+03 1.5354e+00 1.3067e+00 -4.1083e-01
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2211e-02 6.1918e-01 0.0000e+00

Worst f 4.1790e+01 6.6728e+03 -3.8688e+03 -9.6503e-01 -2.7061e+03 2.2681e+00 2.3718e+00 6.1899e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 7.2799e-02 1.8102e+00 0.0000e+00

Std f 1.1940e+01 5.6421e+02 3.8138e+03 8.8730e-03 2.1472e+02 4.1420e-01 4.7718e-01 4.5155e-01
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.8026e-02 6.5119e-01 0.0000e+00

FR
c

TABLE IV: Table of Outcomes for F09-F16

Criteria F09 F10 F11 F12 F13 F14 F15 F16

Best f 5.3716e-01 1.0000e-01 -1.3000e+01 1.4782e+00 2.2303e+04 2.4666e+04 2.4630e+03 1.1720e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 7.1534e-01 1.0000e-01 5.5000e+00 2.9248e+00 2.2311e+04 4.3727e+04 2.8338e+03 1.1756e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Mean f 7.4605e-01 1.0001e-01 5.1650e+00 2.5176e+00 2.2333e+04 4.4398e+04 2.7687e+03 1.5230e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Worst f 1.0194e+00 1.0001e-01 2.5359e+01 2.9248e+00 2.2474e+04 6.3315e+04 2.9117e+03 9.3064e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Std f 1.5561e-01 1.3136e-05 1.0870e+01 5.3610e-01 4.5170e+01 9.7984e+03 1.2283e+02 1.6230e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

FR
c

TABLE V: Table of Outcomes for F17-F24

Criteria F17 F18 F19 F20 F21 F22 F23 F24

Best f 2.5000e-03 1.5902e+01 4.4079e-02 0.0000e+00 1.2498e-01 5.2325e-01 0.0000e+00 0.0000e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 2.5000e-03 6.9090e+02 2.7365e-01 0.0000e+00 1.2555e-01 5.2883e-01 1.9380e-01 3.7666e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Mean f 2.5000e-03 7.9146e+02 3.1193e-01 0.0000e+00 1.2951e-01 5.3127e-01 1.2245e+00 3.4398e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Worst f 2.5000e-03 1.8843e+03 6.0141e-01 0.0000e+00 1.8938e-01 5.4981e-01 7.4791e+00 4.3945e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Std f 4.4262e-19 5.5281e+02 1.6515e-01 0.0000e+00 1.2938e-02 6.5552e-03 2.1986e+00 1.1048e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

FR
c

TABLE VI: Table of Outcomes for F25-F32

Criteria F25 F26 F27 F28 F29 F30 F31 F32

Best f -3.5453e+18 2.4811e+01 1.2123e+02 4.9896e+03 1.1493e+06 3.5975e-04 0.0000e+00 -3.2217e+04
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f -4.5838e+13 5.9894e+01 3.4911e+02 5.4819e+03 1.6227e+06 1.1425e-03 4.3450e-19 -3.2217e+04
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Mean f -1.5007e+17 5.8173e+01 3.3100e+02 5.9970e+03 1.6213e+06 1.3582e-03 7.8479e-11 -3.2217e+04
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Worst f -1.6765e+11 9.6575e+01 4.5297e+02 1.4182e+04 2.1506e+06 6.0318e-03 1.5603e-09 -3.2217e+04
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Std f 7.0843e+17 2.0606e+01 9.3922e+01 1.7919e+03 2.6015e+05 1.1419e-03 3.1251e-10 7.4260e-12
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

FR
c

TABLE VII: Table of Outcomes for F33-F40

Criteria F33 F34 F35 F36 F37 F38 F39 F40

Best f 2.6393e+00 2.0285e+00 9.6867e+01 1.3004e+02 -6.7958e+00 -1.0859e+01 -2.0524e+01 1.0305e+03
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 2.6393e+00 1.0600e+01 3.2930e+02 2.5908e+02 -2.4633e+00 -5.4786e-01 1.8928e+00 2.3486e+04
v 0.0000e+00 1.4860e-01 0.0000e+00 6.1115e-01 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Mean f 2.6393e+00 1.0431e+01 3.2499e+02 2.7357e+02 -1.9698e+00 9.7238e-01 7.6360e-01 4.9706e+04
v 0.0000e+00 1.5048e-01 5.8108e-01 1.1077e+00 1.2659e-02 1.2363e-02 1.8745e-02 2.9733e+00

Worst f 2.6394e+00 2.2741e+01 6.8588e+02 4.5050e+02 5.2081e+00 1.4463e+01 2.1526e+01 4.8057e+05
v 0.0000e+00 3.4354e-01 3.8987e+00 3.9145e+00 1.2565e-01 1.0981e-01 1.3226e-01 9.7348e+00

Std f 1.2508e-06 6.2414e+00 1.2826e+02 7.8276e+01 2.9765e+00 7.5524e+00 9.7206e+00 9.4272e+04
v 0.0000e+00 1.3037e-01 1.0963e+00 1.3378e+00 3.3610e-02 2.7123e-02 4.0669e-02 3.5560e+00

FR
c

TABLE VIII: Table of Outcomes for F41-F48

Criteria F41 F42 F43 F44 F45 F46 F47 F48

Best f 2.4067e+03 -1.5122e+03 -7.1221e+02 -6.0519e+03 4.1428e-01 3.0069e-01 1.5997e-01 8.9752e-02
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 1.0822e+04 -8.5192e+02 -4.0033e+02 -5.8830e+03 1.6642e+00 9.0235e-01 6.9454e-01 4.8018e-01
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2000e-07 0.0000e+00 7.4516e-03

Mean f 1.5604e+04 -8.5301e+02 -4.0156e+02 -5.8718e+03 2.2788e+00 1.3208e+00 8.5780e-01 6.9715e-01
v 2.8400e+00 3.1441e-01 1.0847e-01 0.0000e+00 2.4488e-02 2.5060e-02 2.8297e-02 7.5673e-02

Worst f 1.3470e+05 2.0610e+01 -4.1687e+01 -5.6930e+03 5.5520e+00 3.1915e+00 2.0522e+00 2.0462e+00
v 1.2588e+01 3.8312e+00 1.5443e+00 0.0000e+00 1.5013e-01 2.9334e-01 2.2166e-01 4.3372e-01

Std f 2.5420e+04 3.6722e+02 1.6109e+02 9.7141e+01 1.7147e+00 1.0743e+00 5.8715e-01 5.3454e-01
v 4.2509e+00 9.2583e-01 3.7936e-01 0.0000e+00 4.2907e-02 6.2438e-02 5.4517e-02 1.1090e-01

FR
c
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TABLE IX: Table of Outcomes for F49-F57

Criteria F49 F50 F51 F52 F53 F54 F55 F56 F57

Best f 8.9536e-02 8.1703e-02 1.9402e+03 1.0086e+03 1.9159e+03 3.3261e+02 0.0000e+00 0.0000e+00 0.0000e+00
v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Median f 4.0093e-01 2.8774e-01 4.7870e+03 4.3282e+03 5.0558e+03 3.5933e+03 0.0000e+00 1.9857e+01 0.0000e+00
v 9.3333e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Mean f 5.5587e-01 4.4447e-01 5.5060e+03 4.1844e+03 5.0044e+03 4.0343e+03 8.7865e+00 4.7390e+01 1.6094e-01
v 4.6614e-02 3.9396e-02 2.6448e-03 0.0000e+00 0.0000e+00 2.4291e-03 0.0000e+00 0.0000e+00 0.0000e+00

Worst f 2.1419e+00 1.2800e+00 1.4714e+04 6.4224e+03 1.1503e+04 9.1097e+03 1.4634e+02 1.9717e+02 4.0234e+00
v 2.5449e-01 3.3982e-01 3.9307e-02 0.0000e+00 0.0000e+00 2.2804e-02 0.0000e+00 0.0000e+00 0.0000e+00

Std f 4.6180e-01 3.5667e-01 2.8061e+03 1.1448e+03 1.8417e+03 2.0272e+03 3.1473e+01 5.9556e+01 8.0468e-01
v 7.3491e-02 7.7423e-02 8.1914e-03 0.0000e+00 0.0000e+00 5.4948e-03 0.0000e+00 0.0000e+00 0.0000e+00

FR
c

shift, rotation, etc. Lastly, we would like to use hyperparameter
optimization techniques [54] for finding good initial control
parameter guesses for our proposed algorithm.
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