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Abstract: In the context of cognitive radio, smart city and Internet-of-Things, the need of advanced
radio spectrum monitoring becomes crucial. However, surveillance of a wide frequency band without
using extremely expensive high sampling rates devices is a challenging task. The recent development
of compressed sampling approaches offers a promising solution to these problems. In this context, the
Modulated Wideband Converter (MWC), a blind sub-Nyquist sampling system, is probably the most
realistic approach and was successfully validated in real-world conditions. The MWC can be realized
with existing analog components and there exist calibration methods which are able to integrate
the imperfections of the mixers, filters and ADCs, hence allowing its use in real-world. The MWC
underlying model is based on signal processing concepts such as filtering, modulation, Fourier series
decomposition, oversampling and undersampling, spectrum aliasing, and so on, as well as in-flow
data processing. In this paper we develop an MWC model which is entirely based on linear algebra,
matrix theory and block processing. We show that this approach has many interests: straightforward
translation of mathematical equations into simple and efficient software programming, suppression
of some constraints of the initial model, and providing a basis for the development of an extremely
fast system calibration method. With a typical MWC acquisition device we obtained a speed up of a
factor greater than 20 of the calibration computation time, compared with a previous implementation.

Keywords: compressed sampling; hardware calibration; spectrum monitoring; linear algebra; matrix
theory; modulated wideband converter

1. Introduction

Digital wireless radio signals are often composed of a small number of narrow-band
transmissions spread across a wide spectrum range. For example, the Internet-of-Things
(IoT) communications have recently emerged in contexts such as Smart City. Cognitive ra-
dios are able to dynamically manage the spectrum but require advanced sensing techniques
for spectrum monitoring.

Basically, spectrum monitoring is based on the Shannon-Nyquist sampling theorem
[1,2]. This theorem states that the signal must be sampled at a rate greater than its Nyquist
frequency, which is twice its frequency band. However, when we have to monitor a large
frequency band, this requirement can exceed the capabilities of existing Analog to Digital
Converters (ADC) or require very expensive components. Furthermore, sampling at a very
high rate may require huge storage capacities to store the digital samples.

Recently, new approaches have been proposed allowing sampling at sub-Nyquist
rates. These approaches, known as compressed sensing, or compressive sampling [3], have
emerged as a promising framework for signal acquisition in difficult applications, such
as monitoring a wideband spectrum [4]. The basic idea of compressed sampling is to
take benefit of the fact that a signal which has a sparse representation in a given basis can
theoretically be recovered from a small set of linear measurements [5,6]. The price to pay is
the need to develop sophisticated signal processing algorithms to reconstruct the signal
from this small set of measurements, these algorithms being must more complex than the
usual demodulators.
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A great deal of the theoretical aspects of compressed sampling has been addressed
in the literature. For example, many studies have been proposed in relation to the design
of the measurement scheme as in [7,8] . However, few works have considered practical
constraints of compressed sensing. Indeed, the design of the measurements schemes and
their application to real-world acquisition systems remain a central challenge.

In this context, the Modulated Wideband Converter (MWC) has been proposed as
an efficient system for real-world compressed sampling [9]. The MWC does sub-Nyquist
sampling without prior information about the spectral support of the transmitters present
in the monitored wideband. It can be realized with existing devices [10] and has been
successfully tested on real-world problems including surveillance of a wideband spectrum
[11].

Some practical implementations of compressed sensing systems have been already
proposed [12-14]. To design a prototype of compressed sensing based on MWC scheme,
we designed an analog board with discrete components [15]. Some authors have already
addressed the design of MWC system and a non-exhaustive list of references is given here
[11,13,16-19].

A necessary step when using MWC in real-world is the calibration of the acquisition
system. Indeed, analog components are never ideal, especially when fed with wideband
signals. Then, using a purely theoretical model leads to extremely poor performances of
signal reconstruction. An efficient calibration method, which is considered as a reference,
has been proposed in [13] . It consists in estimating the sensing matrix column after column
by injecting sine waves at a specific frequency and recording the corresponding output
signals. The procedure is repeated by changing the input frequency until all columns
are estimated. Some researchers have exploited this work to calibrate their systems or to
propose variants of the calibration algorithms [19-23]. While this procedure is efficient, it
can be time consuming because the number of columns to estimate is usually at least a
few dozens. That is why a few authors [24,25], including us [15], have recently proposed
alternative calibration algorithms requiring only one input signal.

The MWC theoretical background is signal processing theory (filters, modulation,
Fourier series, sampling theory, spectrum aliasing, ...). Most signal processing theoretical
tools are asymptotic. However, when signals are processed in real-world, they are always
finite, then block processing and purely matrix-based algorithms may be more natural and
efficient.

Moreover, a quick look on the literature shows that most people use Matrix-based
programming tools, such as Octave or Matlab, for signal processing in this context, but
without really exploiting the power of these tools. To take full advantage of the power of
Matrix-oriented software, it would then be preferable to process data by blocks instead of
in-flow. It is therefore interesting to view the whole MWC acquisition and reconstruction in
terms of block processing. The most natural framework to achieve this objective is matrix
theory and linear algebra.

In this paper, we elaborate an MWC model using linear algebra only (without any
signal processing theory). While this approach will probably appear less intuitive than
the approach based on signal processing, because most people are less familiar with linear
algebra than with signal processing, it has strong advantages:

*  Once the model is established, programming it becomes extremely simple, straightfor-
ward and efficient.

*  Furthermore, computational complexity is significantly reduced.

*  The border effects are implicitly taken into account into the model. Indeed, using a
signal processing model, people have to deal with the fact that the signals processed
in the real-world are not infinite, while when using a linear algebra model, the finite
nature of the data is implicitly taken into account and the mathematical equations are
exact and not approximate.
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e In the original version of the MWC, the number of physical branches is increased by a
factor g, which must be an odd integer due to signal processing considerations. An
interest of the linear algebra model is to allow even integers for g also.

The main contributions of this paper are:

*  The development of a pure linear-algebra model of the MWC. Despite establishing
this model is rather hard because it requires non trivial matrix manipulations, once
established it is extremely simple and allows programming MWC-related software,
such as calibration, in a very fast, compact and efficient way.

e  Its application to the development of a very fast calibration method. With typical
choices of parameters, the calibration is more than 20 times faster than our previous
method (this previous method being itself very fast compared to a reference method,
because it required only one calibration signal instead of dozens of sinusoidal signals
in the reference method).

The remainder of this paper is organized as follows: Section 2 provides the main math-
ematical tools used in the paper. Then, section 3 presents an overview of our hardware
acquisition board and the MWC principle. Section 4 establishes a system model based
on linear algebra, and an equivalent model, useful for signal reconstruction and system
calibration is then derived in section 5. In section 6 we show how this model allows us
to considerably improve a calibration method that we proposed previously, leading to
speeding up the process by a factor greater than 20. Then, some experimental results are
shown in section 7.

2. Mathematical background
2.1. Notations

Unless otherwise stated, lowercase symbols denote row vectors (e.g. x, p), uppercase
symbols denote matrices (e.g. C, Z), X stands for the DFT (Discrete Fourier Transform) of x.
The symbols N, K, L, a, b will be used to denote the size of vectors or matrices.

We will note D, the square diagonal matrix whose diagonal is vector x.

The vectorization of a K x L matrix Q, denoted vec(Q), is the 1 x KL row vector
obtained by reading the matrix row after row, from top to bottom:

vec(Q) = ((qui---qiL g1+ Gar - GK1-- - qKL ) (1)

M*stands for the Hermitian transpose of matrix M.

Ik stands for the K x K identity matrix.

The nearest lower or equal integer will be noted | | and the nearest greater or equal
integer [ |.

2.2. Circulant matrices

Let x be a1 x N row vector. A circulant matrix Cy is a square matrix whose first row is
x and each next row is a circular shift one element to the right of the preceding row. That is:

Xo X1 X2 o XN-1
XN-1 X0 X1 -+ XN-2
Cy=| *N-2 XN-1 X0 -°* XN-3 2)

X1 X2 X3 e X0
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It is convenient to define the cyclic permutation matrix as the N x N matrix below:

010 ---0
0 01 0
IN=1 (3)
0 00 1
1 00 0
Then, Cy is a polynomial in Jy:
N-1
Cr= ), %l )
n=0

The effect of multiplication of a matrix M by [y is as follows. The rows of M|y are the
rows of M circularly shifted one element to the right. The columns of [y M are the columns
of M circularly shifted one element to the top.

Matrices Jy and C, commute:

]ch = Cx]N (5)

because

[ay

n=0

N—
NGy = ]N( Z xn]ﬁ]) (6)
1

N_
=Y x5t )
0

n=|

n=0
=GN )

N-1
= (2 xn]ﬁ])]N (8)

2.3. Discrete Fourier Transform (DFT)

Let us note w the N* square root of unity below:

w = exp(—izl\rlt) (10)

The DFT matrix Fy is an N x N square symmetric matrix whose element at row [
column k is w'¥ (assuming row 0 is the first row, and column 0 the first column):

1 1 1 . 1
1 w w? oo Nl
2 4 2(N-1
1 wN-1 wZ(I'\Ifl) w(N‘fl)z
The inverse DFT matrix is 1
Fyl= N (12)
The DFT of a vector x is
X = xFy (13)

and the inverse DFT (IDFT) is given by XFy, L
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A circulant matrix is diagonalized by the DFT matrix. That is
Cy = FyDsFy! (14)

It follows that the elements of ¥ are the eigenvalues of Cy and the columns of Fy; lare
the eigenvectors.
We have also
Dz = Fy'CyFy (15)

and
1 -1
~Cr = En' DxFn (16)

2.4. Kronecker product

The Kronecker product, denoted by ®, is a bilinear operation on two matrices. If A is
a K x L matrix and B is a M x N matrix, then the Kronecker product is the KM x LN block
matrix C below:

{IlllB s lllLB
C=A®B= Do (17)
{1K1B cee aKLB
The inverse Kronecker product is
(AB) '=A"1g@B! (18)

Assuming the sizes are such that one can form the matrix products AC and BD, an
interesting property, known as the mixed-product property, is:

(A®B)(C®D) = (AC)® (BD) (19)

The Kronecker product is associative, but not commutative. However, there exist
permutation matrices such that, if A is an a4 x a square matrix and B a b X b square matrix,
then [26]:

A®B=P,,(BRA)Py, (20)

The permutation matrix P, ; is a shuffle matrix. It represents the permutation obtained
when one writes elements row by row in an a x b matrix and reads them column by column.
For instance, set 2 = 2 and b = 3. If one writes the elements 1,2, 3,4,5,6 row by row in a

2 X 3 matrix
1 2 3
< 4 5 6 ) 1)

and reads them column by column, the order becomes 1,4, 2,5, 3, 6. Then the permuta-
tion matrix is

Py = (22)

and we can check that

(1 42536)=(12345 6)Ps (23)
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If N = KL, an interesting property with the permutation matrix defined in (3) is

K=ok (24)

2.5. General radix identity
If N is a composite number, i.e. N = KL, then [26]:

Fn = (Fx @ Ip)Tx . (Ixk ® Fr) Py 1, (25)

where Tk 1 is a diagonal matrix (twiddle matrix) and Px ; a permutation matrix (shuffle
matrix defined in subsection 2.4).

The twiddle matrix Tk is an N x N diagonal matrix, the diagonal of which is
vec(Qg ) with w defined in (10) and

1 1 1 1
1 w w? w1
Qxr = w? Wt At St ) (26)
Lkl @) L e
For instance, with K = 2 and L = 3 we have
Qa3 = ( 1 e‘if/3 6—2}7'(/3 ) (27)
and the diagonal of T, 3 is
diag(Toz) = (1 1 1 1 e in/3 ¢72in/37) (28)
Let us note 0 and 1k the (1 x K) vectors below
bx=[11 - 1] (29)
k=[10 - 0] (30)
Note that for any 1 x L vector p we have
(Ik®p)TkL = (Ik®p) (31)

because only the first L elements of 1x @ p are non null, and the L first elements of
Tk 1, are ones.
Note also that

(Ik®@p)PxL =p®1k (32)

because when elements of 1x ® p are written row by row in a K x L matrix, the
elements of p go on the first row and the K — 1 next rows are null. Then, when this matrix
is read column by column, we get elements of p separated by K — 1 zeroes, thatis p ® 1g
Similarly, it is easy tho check that
Ty (1)) =Lel] (33)

and

P;;(Ia 20l =0l 21, (34)
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2.6. Selection Matrix
Let us define the selection matrix S%?K as the N x K matrix below:
(r) 0r><1<
SNK = Ix (35)
O(N—K-r)xK

If x = (xp---xn_1)isal x N vector, theny = xS%,)K is the 1 x K vector below:

y= (X XKk 1) (36)

We consider the indices modulo N, so r may be negative.

2.7. Moore-Penrose Pseudo-inverse

Let us consider a rectangular matrix Z whose size is L x K with L < K. The Moore-
Penrose pseudo-inverse [27] of Z, denoted Z T, is a K x L matrix which generalizes the
concept of inverse and, among other interesting properties, provides a mean to compute
a least squares solution to a system of linear equations that lacks an exact solution. The
pseudoinverse is defined and unique for all complex matrices. It is usually computed using
the singular value decomposition (SVD).

Let us note the SVD of Z as [28]:

Z = USV* 37)

where U is a L X L unitary matrix (i.e. UU* = U*U = I), V is a K x L matrix with
orthonormal columns (i.e. V*V = I) and S is a diagonal matrix, whose diagonal elements
are the singular values (non-negative real numbers, ranked by decreasing order). The SVD
exists for all complex matrices.

Here we consider a version of the SV D usually called “thin-SVD”, which is a compact
version of the more general SVD decomposition (in which matrices S and V are larger),
because this compact version is sufficient for the purpose of computing the pseudo-inverse.
The computational cost of computing the thin-SVD is 6KL2 + 20L3flops ([28] p. 254). Note
that, for complex matrices, it is usual to redefine the floating point operation (flop) in order
to count only one flop for the product of two complex numbers, while in reality it requires
4 real multiplications. Since only ratios between the computational costs of algorithms is of
interest, doing this does not change the result.

The pseudo-inverse is given by:

Zt =vstu* (38)

where ST is the pseudo-inverse of S. It is a diagonal matrix which diagonal contains
the inverses of the singular values of S which are above a small tolerance value, and 0
elsewhere.

The cost of the inversion plus the computation of the matrix product is 2L + KL? =~
KL2.

Overall, the cost of computing the pseudo-inverse is 7KL? + 20L3

3. Acquisition device and system parameters

The MWC is a compressed sampling device, which samples a signal x(t) at a sampling
frequency Fs significantly lower than its Nyquist frequency Fy;. The input signal is
assumed sparse in the frequency domain. From the outputs of this acquisition device, one
can reconstruct the input signal using a compressed sensing algorithm, such as Orthogonal
Matching Pursuit (OMP) [29].

The principle of the MWC is shown on Fig. 1:

e The input signal x(#) is multiplied (using a mixer) by a scrambling signal s(t).
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e The resulting signal v(t) goes through a low-pass filter whose impulse response is
h(t).

e Then, the filter output w(t) is sampled by an Analog to Digital Converter (ADC),
providing the output samples y/[n].

The scrambler s(t) is a periodic signal: it is a basic waveform p(t) repeated F, times per

second. The analog waveform p(t) itself is generated at sampling frequency Fyy, from an L

samples digital sequence, which is usually a pseudo-random sequence. Consequently, we

have Fp = an/L.

x(t) v(t) w(t) yIn]
h(t) [—ADC|—»

Figure 1. Principle of MWC acquisition (one physical branch).

The performances of the system can be enhanced by using M parallel branches with
different scrambling signals. However, since generalization to M branches is trivial, we
will restrict the discussions below to one branch.

The digital outputs y[n] are provided at F; samples per second.

In previous practical realizations, in order to reduce aliasing, the ADC output samples
go through a digital filter which provides properly filtered samples at a frequency Fss lower
than F;. In the original MWC model, Fss is an odd multiple of Fy, that is Fss = qF, with
g an odd integer. In this paper, since the linear algebra model allows a less constrained
postprocessing, this digital filter is not required and g is not necessarily odd. Indeed, we
will see that the linear algebra model allows also even values of g.

When designing an actual acquisition device, we have to choose some parameters:

*  The sampling frequency Fy; of the scramblers, which will impact the Nyquist fre-
quency of acceptable input signals (i.e. input signal maximum frequency must remain
under Fryq /2).

*  The sampling frequency Fs of the ADC, which should be significantly lower than Fy,
(otherwise the system would have no interest compared to direct sampling at F;y;).
This frequency determines the subsampling factor b = F,/ F;.

*  The length L of the scrambler periodic pattern. This parameter determines the fre-
quency of repetition F, = F,,/L of the scrambling pattern.

The scrambler and the ADC are controlled by a common central clock to avoid synchro-
nization problems.

Reconstruction of the input signal, and calibration of the system, are based on the
information provided by a block of a4 output samples. In order to avoid unnecessary
mathematical complications, the value of a is chosen such that it corresponds to an integer
number K of scrambling patterns, then a = KL/b. This output block then corresponds to
N = KL scrambler samples (and also to N input samples if the input signal were sampled
at Fnyq). The size of the block determines the frequency resolution F;/a = F;y,/N.

For our experiments on real-world data, we designed a 4-channels MWC analog board
(Fig. 2) which was described in more details in a previous paper [15]. The scramblers are
sampled at F,y; = 1GHz and their length is L = 96. Therefore, their repetition frequency is
F, = Fuyq/L = 10.41667MHz . The device is then able to monitor a wideband spectrum of
1 GHz.
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Figure 2. Our analog acquisition board.

The prototype has M = 4 physical channels. Each channel has one M1-0008 mixer from
MArki©, and one SXLP-36+ lowpass filter from Mini-Circuits©, with a cut-off frequency
40 MHz (at -3 dB). The SXLP-36+ filter has been chosen to match the design of the ideal
lowpass filter: sharp cut-off, linear phase and flat band (attenuation < 0.5 dB) in frequency
range [DC-36] MHz. The ADC sampling frequency is Fs = 10F, = 104.1667MHz (at Fs/2
the attenuation of the filter is more than 30 dB), therefore the sub-sampling factor is b = 9.6.
Table 1 sums up the main parameters.

Table 1. Parameters of our MWC prototype.

Symbol Meaning Value
M Number of physical channels 4
L Length of scramblers 96
Fuyq Sampling frequency of 1GHz
scramblers
= bandwidth to monitor
Fs Sampling frequency of 104.1667 MHz
physical ADC
b = Fuyq/Fs Physical subsampling factor 9.6
Fy = Fuyq/L Repetition frequency of 10.41667 MHz
scramblers

The frequency response of the low-pass filter implemented on our acquisition board is
shown on Fig. 3 and its phase on Fig. 4.
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Frequency response of the low-pass filter: 20*10g4(|H|)
0 e .

-10 r

attenuation (dB)

0 10 20 30 40 50 60
frequency (MHz)

Figure 3. Frequency response of the low-pass filter.

Phase of the low-pass filter: angle(H)

0] _ - . . .
e 2
(1]
2
o
© 4
(2]
(1]
=
o
B 6
2 hY
o :
Z 8
3
-10 1 L L L I
0 10 20 30 40 50 60
frequency (MHz)

Figure 4. Phase of the low-pass filter.

Fyyq being the Nyquist frequency of the input signal, we can consider a digital equiva-
lent model at Fy,; without loss of information. Furthermore, since, as previously mentioned,
in real-world applications calibration and signal processing are always performed on a
limited amount of data, we can consider an input block of N samples (at Fyyq).

Modern implementations of the FFT [30] contain special code to handle splittings not
only of size 2, but also of sizes 3 (and sometimes 5 and 7). So, for the efficiency of the
FFT, we will preferably choose block sizes whose prime factors belong to {2,3,5,7}. In
our experiments, we have taken K = 448, N = KL = 43008 = 211 w3 x 7and a = 4480 =
2% x 5 x 7. The frequency resolution is then F,,,/ N = 23kHz which is far sufficient unless
we would like to detect extreme narrow-band transmitters.

4. System model and matrix representation
4.1. System equations in the time domain

Let us note:
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Jun

# samples per arrow: N a K

Figure 5. Principle of the system, using vector notations, in the time and frequency domains

*  x the vector representing the input signal.

* s the vector representing the scrambling signal.

* v the vector representing the scrambler output.

*  h the vector representing the lowpass filter impulse response.
*  w the vector representing the lowpass filter output.

e ythel x a vector containing the digital output samples (at F;).

All these vectors, except y, are (1 x N) vectors and represent the signals at F;; samples
per second. On Figure 5 we show the links between these vectors. In the time domain (top
of the figure) the signals are represented by vectors. Symbol * stands for cyclic convolution.
These vectors can be transposed in the frequency domain using a multiplication by matrix
Fy or F;. A postprocessing, described later, is then performed in the frequency domain.
The post-processing outputs g vectors i, of size 1 x K.

In the figure, we have used different symbols for down-sampling, because the opera-
tion in the time and frequency domains are different. For instance, when b is an integer,
down-sampling in the time domain consists in picking one sample out of b while its equiv-
alent in the frequency domain is a multiplication by the down-sampling matrix & which
will be defined later.

Notations used below have already been defined in Section 2. Since the system is
linear, in the time domain we have

y=xB (39)

where B is an N x a matrix. The structure of B can be easily computed from the system
model (Fig. 5):

B = DG, (Iu ® 15) (40)
Indeed, the scrambler output is given by:
v = xD; (41)
The filter output is:

w = "UCh (42)

For the moment, let us consider that b is an integer (we will see later that this is not a
requirement). In that case, down-sampling consists of picking one sample out of b in w.
Mathematically, that is:

y= w(la ® 1,?) 43)
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Otherwise, down-sampling can be modeled using an interpolation matrix. However,
we will not detail this, because only the equations in the frequency domain will be useful
for our purpose. We will see later that in the frequency domain, thanks to the presence of a
low pass filter, b being an integer is not a requirement anymore.

4.2. System equations in the frequency domain

Multiplying Eq. 39 by F; and inserting the identity FNFﬁl where appropriate, we

obtain:
yF, = (xEy) (PﬁlBFu) (44)
That is
7=xA (45)
where A is an N X a matrix.
A =Fy'BF, (46)

The structure of A can be detailed further. Replacing B by its expression (Eq. 40) and
inserting the identity Fy Fy ! where it is appropriate, we obtain:

A= (FﬁlDSFN) (PlglchPN) (Plgl (Ia ® 15) Fa) 47)
Then, using Eq. 15 and 16 we get:

1 -
A= SCD5E (48)

As proved in the appendix (see A.1), the frequency-domain down-sampling matrix &
is:

1
E = 59;? ® Ia (49)
That is:
"
I

where sub-matrix I, is repeated b times. Here we remind that & is a low-pass fil-
ter. Since the ADC sampling frequency is F;, we assume that the elements of & which
correspond to frequencies outside the interval | — F;/2, F;/2[ are almost null. Since
contains N elements, the frequency resolution is F,y,/N, so F;/2 corresponds to index
(Fs/2)/(Fuyq/N) = N/(2b), thatis a/2. Let us note

c=|a/2] (51)

and
6 =amod?2 (52)

Therefore the elements of / are almost null for indices outside the interval [—c, ¢ + §]
(the indices are considered modulo N). Hence, we can redefine E as the N x a matrix

below:
1 Iets O
== 5 0 0 (53)
0 I

without changing the product D; =. Here, the zeros stand for null sub-matrices. We see
that, thanks to the low-pass pass filter which leads to this structure of &, it is not required
anymore that b is an integer (this requirement was only due to the need of an integer
number of occurrences of I; in Eq. 50).
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Finally, let us define the (1 x a) vector /:
=g o By e o o] (54)

where the indices are modulo N. We then have:

DjE = ED;, (55)

and the expression of matrix A becomes:
A= ngEDE (56)

N

4.3. Unconstrained system equations in the time domain

Now we can go back to the time domain to obtain a matrix B which does not require b
being an integer. We have:

y=7E" (57)
= TAF, ! (58)
= (=r3") (vaE) (59)
= xB (60)
where
B = FyAF; ! (61)

4.4. Fast simulation of the acquisition system

A first interest of the linear algebra model is that it makes the design of a fast simulator
obvious. Indeed, multiplication by a diagonal matrix D is efficiently implemented as
element by element vectors product, and multiplication by a Fourier matrix F (or its inverse)
is efficiently implemented by Fast Fourier Transform (FFT). On the contrary, multiplications
by circulant matrices C should be avoided because of their computational cost. Then, the
method to design a fast simulator is to insert identities FF~! or F~!F where it is appropriate,
in order to suppress the circulant matrices. For instance, we have:

y=xB (62)
1
= 2Py GEDF,; ! (63)
1
=x (FNNchNl) FNED;F; ! (64)
= xD;FNED;F; ! (65)

using Eq. 16. Here we have only fast operations, as shown on Fig. 6.

X FFTw = po--- @ ————— HiFFTa f----- Yy

Figure 6. Fast simulation. Dotted arrows are for a elements, full arrows are for N elements.
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5. Equivalent model and post-processing
5.1. Equivalent model

Until now, we have not taken profit of the periodicity of the scrambler. This opens the
way to an equivalent model with interesting properties.

The scrambler is a (1 x N) vector s which contains K replica of a basic waveform
represented by a (1 x L) vector p. Then, the scrambler can be written:

s=0k®p (66)
And we have (see proof in Appendix A.2)
5=Kp®lk (67)

It follows that 5 is sparse (only one element out of K is nonzero). It will be easier to
take benefit of the sparsity of 5 if we permute ¥ and 5 in the expression of §:

1
7 = ¥CsED;, (68)
= %s‘CxED,; (69)

The proof is trivial: since the multiplication is commutative, we can permute x and s
(see Fig. 5), therefore we can also permute ¥ and 3.

Let us define the L X N matrix C,(ZK) obtained by picking one row out of K in Cs. That

is:
e = (1L ® 1%)Cx (70)
More explicitly, that is:
Xo ERR S N |
C;(EK): XTK XNinl -
Y-k 0 Xk—1

where the indices are considered modulo N.
Let us denote

R
p=1pP (72)

Using Eq. (67), the mixer output becomes:

1 1
1

= 7 ((PL) @ 1) Cs (74)
1

= pctd (76)

An interesting property of matrix C,(?K), that will be exploited later, is (see proof in
Appendix A.3):

csg = e (77)

Finally, let us define
y=9Dy; (78)
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We then have:
O .
7= Nscxa (79)
= pc¥z (80)
5.2. Post-processing
The post-processing extracts frequency blocks of K samples from j.
Using definition (35), let us note S, the a x K selection matrix below
Su = bS\ ") (81)
and R, the N x K selection matrix below
K
= s (82)
Denoting i, a 1 x K vector representing the selected data, we have:
gn = ]7511 (83)

7 contains the elements of §j whose indices (modulo a) are in the interval ¢ =
[r +nK,r+nK+K-1].

The indices are considered modulo a4, so ¥ may be negative. We will consider that
& C [—c,c+9],s0

ES, = 2S¢ (84)
_ s%}”m (85)
=R, (86)
We can note that:
Ry = [ Ry (87)

This is a matrix similar to Ry but with sub-matrix Ix circularly shifted nK positions
downwards. We can note that we have also:

Ryi1 = J Ry (88)
Eventually, using Eq. (76) and (77) we have:

7, = pcNas, (89)
= pCR, (90)
= pCO T KR (91)
= (pJ")(C{V'Ro) 92)
= f;nz,2 93)

where
Pn=pI" (94)

and

Zg = CYR (95)

More explicitly, Zz is the L x K matrix below:
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Xr e Xr+K—1
O e Xr—1
Zy = . . (96)
Y (L-1DK X (L-2)Kk-1

were the indices are considered modulo N. The interesting feature in equation (93) is
that Zz does not depend on n. Hence, we can take g different values of n and write

In | =| Pn [%s (97)

assuming we know the filter frequency response (which should be the case, because

the filter is part of the acquisition system). More compactly, this fundamental equation can
be noted:

Y =PZ (98)

were Y is the (g x K) matrix below:
In (99)

P is the (g x L) matrix below:
P= ( P (100)

and Z is the (L x K)matrix below:
Z =7 (101)

So, the sizes of the matrices appearing in equation (98) are (g x K), (¢ x L), (L x K).
Then, if the number of non-zero rows in Z is less than g the matrix Z can be reconstructed
from this equation using an algorithm such as OMP [29]. Eventually, from Z we can retrieve
X as shown below. Indeed, it is easy to see that X can be rebuilt from Z with

% = vec(ALZ) 7K (102)

where Aj is the K x K anti-diagonal matrix:

a=| b0 (103)
0o .- .
1.0 -0

The effect of the multiplication of a matrix by Ay on the left is to reverse the order of
its rows.

If we have M channels instead of one in the physical system, the number of rows of Y
becomes gM, hence we can theoretically rebuilt the signal if the number of non-zero rows
in Z is less than gM.
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Let us note g = 2p + 7 the Euclidean division of g by 2. In our experiments, we have
setr = 0 for g even and r = —|K/2| for g odd. For n we take the integers in the interval
—p to p+ 7 — 1. This choice, while not compulsory, is designed to take into account equally
distributed values around frequency 0 in j, which is a priori the best choice. Indeed, the
indices of the samples taken into account go from r — pK to ¥ + (p + 7)K — 1, that is:

e Forgodd: from —pK — |K/2] to pK+ [K/2] —1

*  For g even: from —pK to pK — 1

For this choice, Fig. 7 illustrates how the elements of ¥ are arranged into matrix Z and Fig.
8 illustrates how the elements of 7 are arranged into matrix Y.

K
Q --------------------- ’
I 1 I 4 I 3 I 2 |
X (for g even)
K
i >
la 1b ‘
2 :
z 3 L
Z
x_(forqodd)
[ 1b | 4 | 3 [ 2 | 1a |
e » i s aranry »
K/2 K

31T =+ 1 1T T =2 ]
- CLITIITITIrIrrreT »
Y (for g=4) K
1 *
2 :
iq
]
y (for g=3)
| 2b | 3
k2
1 E S
Y 2a 2b )
3 H

Figure 8. Arrangement of the elements of i into matrix Y, for g = 4 and g = 3.

5.3. Application of the equivalent model to reconstruction

The input of the reconstruction algorithm is the vector y provided by the acquisition
device. The output is an estimation of *.
We assume that:
e The frequency response / of the low-pass filter is known (or has been estimated). Then
h can be precomputed using Eq. (54).
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*  Matrix P has been precomputed, using Eq. 72, 94, 100, or (better) has been estimated
by the calibration process (see subsection 6).

The procedure is as follows:

Using an a-points FFT compute i

Compensate the filter by computing 7 (Eq. 78)

Extract g sub-vectors jj, from i (Eq. 83)

Compute matrix Y (Eq. 99)

Use a compressed sensing algorithm, such as OMP [29], to estimate matrix Z from
equation 98

6.  Reconstruct ¥ from Z using Eq. 102

G L

As an illustration of how the linear algebra model makes things becoming simple from the
programming point of view, this is the Octave program which builds matrix Y from y and
then obtain x from the reconstructed matrix Z:

ytilde = fft(y,[],2)./htilde;

ind = 1+mod(r+[-rho*K: (rho+tau)*K-1], a);

Y = reshape(ytilde(ind),K,q).’;

% Insert here estimation of Z from Y and P (using OMP, for instance)
xbs = reshape(Z(L:-1:1,:).7,1,N);

xb = circshift(xbs, [0 r+K]);

x = ifft(xb,[1,2);

If there are M > 1 physical channels, the 4 X K matrices Y corresponding to each channel
are stacked vertically, leading to a gM x K matrix Y.

5.4. Interest of q even

The linear algebra model allows even values of g, instead of previous models which
required g being odd. The main interest is that it puts lower constraints on the design of the
acquisition board. If the acquisition board is already available, it may also allow a better
use of the MWC output data, if the acquisition board was not perfectly optimized.

Let us consider our own acquisition board, which was designed before we established
the linear-algebra model. We remind that the ADC sampling frequency is F; ~ 104.2 MHz
and the scramblers repetition frequency is F, = F;y,/L ~ 10.42 MHz. Using Fs = Fyq/b
and N = KL = ab it is easy to see that F, = KF;/a. In the frequency domain, a output
samples correspond to Fs, then gK output samples correspond to gKFs/a = gF,.

e Withg =7, weputinto Y a total of gK samples corresponding to a frequency half-band
qFy/2 = 36.47 MHz. This choice perfectly fits the frequency response of the low-pass
filter, which is almost perfectly flat and linear phase in [DC-36MHz] (see Fig. 3 and 4).

*  With g = 6, we would put into Y samples corresponding to a frequency half-band
qFp/2 = 31.26 MHz. This corresponds to an even better area of the filter response, but
doing this we would not use all the available information.

¢  On the contrary, with g = 8, we would put into Y samples corresponding to a
frequency half-band qF,/2 = 41.68 MHz. This allows to take more information into
account, but we see that we take into account some samples corresponding to lower
quality of the filter response.

This result is not surprising, because our acquisition board was designed and optimized
for g = 7, but for a future design of a new board, the possibility to have g even may be
interesting because it puts less constraints on the choice of the commercial filters.

6. Application to fast calibration
6.1. Proposed approach

The objective of calibration is to estimate the true matrix P. Indeed, for real-world
applications, using the theoretical matrix (Eq. 100) leads to very poor results [13]. In
a previous paper [15], we proposed an approach which uses a single wideband signal
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for calibration, contrary to previous approaches which required successive injections of
sinusoids in the system. In that paper we presented spectrum reconstruction performances
and examples of spectrum reconstruction obtained with our calibration method. In the
present paper, we will mainly focus on simplifying and speeding up the method thanks to
the linear algebra model.

The calibration signal is a white noise signal. Compared to methods based on iter-
ative single-tones or mixture of single-tone signals, our new calibration method has the
advantage of being more practical in terms of simplicity of implementation and time saving
because only one measurement is used to complete the calibration. The calibration signal
spectrum is totally flat in the band of interest and covers all the bandwidths of the spectrum
to analyze. The calibration method uses an advanced resynchronization preprocessing. Our
calibration method offers slightly better spectrum reconstruction performances compared
to reference method [13].

If we know matrices Y and Z, using Eq. 98 we can estimate matrix P by:

P=vz* (104)

where ZTis the Moore-Penrose pseudo-inverse [27] of Z. Matrix Y depends on the
MWC outputs and matrix Z depends on its input signal. The problem in real-world context
is that we cannot reliably synchronize the input of the MWC with the ADC sampling which
provides the output, and even if a costly synchronization device was implemented there
are delays in the analog board itself which are intractable. Then, the input signal must
be designed such that a synchronization can be performed numerically. Otherwise, in Eq.
104 we would multiply matrices Y and Z* corresponding to desynchronized data, which
would make no sense.

In order to allow an efficient numerical synchronization, we used, on MWC input,
a periodical signal with flat spectrum and random phase. More precisely, the period of
this signal corresponds to the chosen block size, that is N/F;y; and one period can be
represented by a length-N row vector x. This vector is generated as follows:

1. Alength-N vector ¥ is generated such that, for any of its elements %(k), we have
|%(k)| = 1 and Arg(%(k)) is random in [0, 277[ under the constraint Arg(%(—k)) =
—Arg(%(k)) (this constraint ensures that x is real).

2. xis deduced from ¥ by an inverse FFT: x = XFy; !

Reminding that matrix Z contains the elements of ¥ (Eq. 101), the constant modulus
|%(k)| = 1 ensures that no element of Z is privileged or disadvantaged by the input
signal. Furthermore, the random phase ensures that the input signal has good localization
properties, which is desired for efficient synchronization. Finally, choosing a periodic signal
has a strong advantage: a time shift of a block taken on the input signal is equivalent to a
cyclic permutation of vector x.

On the programming point of view, building Z from x is very simple:

xb = fft(x, [0, 2);
xbs = circshift(xb, [0 -(x+K)]1);
Z(L:-1:1,:) = reshape(xbs,K,L).’;

In the following, we will note xg = x the signal pattern and x,; a cyclic permutation, 4
positions to the right, of the pattern. This means that

xg = xJ4 (105)

The procedure that we propose is as follows:

1.  Feed the acquisition device with a periodic signal, which is a repetition of a known
pattern xg

2. Record a samples at the output of the acquisition device (this is vector y), then compute
matrix Y using steps 1 to 4 of the reconstruction procedure.
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3. Perform cyclic permutations of the input pattern xg. For each vector x;, compute
matrix Z; = Zs, (using Eq. 101 and 96) and then P (using Eq. 104).
Let us note the residue
Ry =Y —D;Z, (106)

The criterion to determine the best cyclic permutation of the input pattern x is the
inverse Frobenius norm of R; (the Frobenius norm is the square root of the sum of the
square modules of the elements of the matrix).

The computational cost per iteration (i.e. per value of d tested) can be estimated as
follows:

e AFFTis required to compute X, that is LKlog, (LK) flops (because N = LK).

*  Computation of the pseudo-inverse Z; : 7KL? + 20L*flops (see subsection 2.7).

e Computation of P = YZ] (the sizes of the matrices are M x K and K x L): §MKL
flops.

e  Computation of PZ; requires gMLK flops.

e Computation of the Frobenius norm requires KL flops

Globally, since the computation of the Frobenius norm can be neglected compared to the
other terms, the algorithm requires about L(2gMK + 7LK + 20L? + K log, (LK)) flops per
iteration.

6.2. Fast update of matrix Z

While evaluating all possibles shifts d, computation of matrix Z; = Zz, requires an
N-points FFT to obtain £, which requires approximately Nlog,(N) multiplication at each
iteration. However, we can reduce the complexity just by computing the first matrix and
then updating it at each iteration as described below. Let us consider a vector x; which is a
cyclic permutation, d positions to the right, of pattern x. We have:

xg = xoJf (107)

Then
Xg = xO]fd\]FN (108)
= xoFNFy T4 FN (109)
= %Dy, (110)

were
ag= [0---010---0 (111)

d

Indeed, since ]ﬁ, = Cy,, using Eq. 15 we have:

Fy'J4FN = Fy'CayFn (112)
= Dy, 113)
Since &; = ayFy it is easy to see that &, is the (d + 1) row of Fy, that is (see Eq. 10
and 11):
=] 1 w! ¥ ... @N-1d } (114)
Then, we have:
Zj = Zg ez, (115)

SV ARYA (116)
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where e stands for element by element multiplication. This equation can also be

written
Zg = w @5 200y (117)
with
@d:diag[ 1 wkd 2Kd aJ(L*UKd] (118)
Q :diag[ 1 o w¥ ... KD ] (119)

To see were this formula comes from, we must remind that multiplication by a diagonal
matrix on the left (right) multiplies the rows (columns) by the elements of the diagonal.
Then, denoting w; = w” we can see that:

1
w-K
wyvec(0y) vec(Qy) = w;” k& (1 wy - Wb ] (120)
—(L-1)K
L “a
i 1 wy wf;*l
w; X w K+l w;!
= w;’ i , (121)
i wd—(L—l)K w (L-DK+1 —(L-2)K-1
Za, (122)
If we evaluate by step ¢ we can use:
Zy=Zs, 0 Zs g (123)

Matrix Zg, can be precomputed. So, at each iteration, we need only N multiplications,
which is less complex than computing %; each time. This update requires only N = LK
multiplications at each iteration, instead of approximately Nlog>(N).

If we want to allow sub-sample precision (i.e. § < 1) we just have to note 4 = N/2
and write &g as follows:

ag:[1 w8 o Wl g . w*g] (124)

This is very interesting because sub-sample precision is then allowed without any
additional cost due to oversampling (with this method, no oversampling is required).
Matrix Zg,is computed as follows:

alpha = exp(-i*2xpi*gx[0:eta-1 -eta:-1]/N);
alpha = circshift(alpha, [0 -(r+K)1);
Zalpha(L:-1:1,:) = reshape(alpha,K,L).’;

Then, at each iteration, updating matrix Z is done by:
Z = Z .x Zalpha;

6.3. Fast update of matrix Z*

The approach is similar with the pseudo-inverse: we can reduce the complexity just
by computing the first pseudo-inverse matrix and then updating it at each iteration as
described below. This update requires only N multiplications at each iteration.

According to discussions above, denoting Zy = USV* the SVD of Zj, we have

Zg = w @ (USV*)Qy (125)
= (wMeIU)S(Q V) (126)
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This equation directly provides the SVD of Z. It follows that Z7 is
zZf = (Q;V)SH(wMeju)* (127)
= W75 0, (128)

This update can be realized by element by element multiplication :
7y =75, 07§ (129)

If we evaluate by step ¢ we can update the matrix at each iteration by:

Zi =7z, 07 , (130)

where Z;g can be precomputed.

6.4. Fast synchronization

To obtain a synchronization, we must evaluate the Frobenius norm of R; at each
iteration.

We can evaluate the computational complexity of this fast algorithm as follows:
*  Updating matrix Z; and Z requires 2LK flops.
e  Computing Y;Z; requires gMKL flops.
e Multiplying YdZ(')" by Zy requires gMKL flops.
e Computing the Frobenius norm requires KL flops
Globally, the algorithm requires 2gMKL + 3KL ~ 2gMKL flops per iteration, which is to be
compared to L(2gMK + 7LK + 20L? + K log, (LK)) for the previous version. The gain is,
approximately:

7L 10L%? log,(L) = log,(K)
2qM  qMK 2qM 2qM
~ 21 (132)

Gel4 (131)

Computation time on Octave is 54 seconds for the slow version and 1.6 seconds for
the fast version, which is then 34 times faster.

As a function of K, the gain decreases until K = 201In(2)L? = 127761 (which is a huge
value, not expected for real-world acquisition devices), where it reaches a minimum of 13.4,
then increases slowly, behaving asymptotically as log, (K)/(2q9M), as shown on Fig. 9.

7. Experimental Results

Using a step ¢ > 1 for the evaluation of the synchronization criterion allows a decrease
of the computation time by a factor g. A good strategy is to get a coarse synchronization
with a step ¢ > 1, and then to perform a fine synchronization around the detected peak.
The fine synchronization may be even realized at sub-sample precision, if desired. However,
a too large initial step must be avoided because it may lead to missing the synchronization
peak during the coarse synchronization. In our experiments, we first used a coarse synchro-
nization with step ¢ = 16, then a fine synchronization with step ¢ = 1 around the coarse
synchronization peak. Fig. 10 shows the obtained synchronization data. Fig. 11 and 12 are
zooms around the synchronization peak to show more details.

If the response of the filter is not taken into account in Eq. 78 (i.e. assuming an ideal
low-pass filter), the synchronization peak is only slightly lower (4.75 instead of 5.22). This
is due to the fact that the low-pass filter used in our analog board has good characteristics
(almost flat response, and almost linear phase, in the band of interest). The difference
would be higher with a lower quality filter. Anyway;, it is always better to integrate the
filter response in the equations, as we did, because the additional computational cost is
negligible.
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Relative gain in computation time as a function of K
80 T . .

O 40

0 . ‘ . . ‘
10’ 10 10° 104 10° 10° 107
K
Figure 9. Gain as a function of K (the red dot shows the values corresponding to our acquisition
board)

Synchronization
6 . .
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Figure 10. Synchronization (overview)
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Fine Synchronization (zoom 1)

Inverse normalized Frobenius norm of the residual

28500 28550 28600 28650 28700
Offset in multiples of 1/Fnyq

Figure 11. Synchronization (zoom 1)

Fine Synchronization (zoom 2)
6 T T T

F oo

Inverse normalized Frobenius norm of the residual
w
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|
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Figure 12. Synchronization (zoom 2)
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abs(P)

0.8

Figure 13. Estimated mixture matrix P (modulus)

abs(Pth)

Figure 14. Theoretical mixture matrix Py, (modulus)

Once the signal is synchronized, the estimated matrix P is obtained using Eq. 104
(at no additional cost because this computation was already part of the synchronization
process). Fig 13 shows the modulus of the matrix elements. Here, since we have M = 4
physical channels and we have taken g = 7, the matrix has gM=28 rows (and L = 96
columns). The first ¢ = 7 rows correspond to the first physical channel, then the next g
rows to the second physical channel, and so on.

The theoretical (ideal) matrix Py, can be computed using Eq. 100. Since the analog
scrambling sequence is the output of a Digital to Analog Converter (DAC), fed with a
digital pseudo-random sequence, it is (ideally) piecewise constant in the time domain. In
the spectral domain, this is equivalent to a multiplication by the sinc function which first
zero is at Fj;y;. We take that into account when computing our theoretical matrix in order to
be as close as possible to the real-world matrix. Fig. 14 shows the modules of the elements
of this matrix.

The estimated (real-world) mixture matrix P may be compared with the theoretical
(ideal) mixture matrix Py,. On the basis of the elements modules, we can see that their
overall aspects are close despite noticeable differences. In fact, the main differences are
on the phases of the elements. If we draw the normalized correlation coefficients between
the columns of both matrices (Fig. 15), we obtain low values, which confirms significant
differences. We remind that a normalized correlation coefficient is the absolute value of the
cosine of the angle between two vectors (here the columns of both matrices), then values
around 0.5 mean that the angle is about 60 degrees, then the columns are significantly
different.

In a previous paper [15], we showed that despite the good quality of our real-world
acquisition board, calibration of the system is absolutely required: using the theoretical
matrix leads to poor reconstruction performances. Without calibration, the system usually
incorrectly detects the active sub-bands, and even when the active sub-bands are correctly
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Normalized correlation coefficients
between the calibrated and theoretical matrices P
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Figure 15. Normalized correlation coefficients
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Figure 16. Example of sub-band spectrum reconstruction with and without calibration

identified, the spectrum reconstruction provided by the uncalibrated system is extremely
poor, as illustrated on Fig. 16.

This shows that calibration is unavoidable. An interest of the extremely fast calibration
procedure proposed in this paper is the possibility to perform quick recalibration of the
system as soon as the performances appear to decrease. Indeed, many factors such as
temperature, external perturbation, components aging, etc., modify the characteristics of
the system, making a recalibration necessary.

8. Conclusion

In this paper we have established an MWC model which is solely based on linear
algebra. It is very convenient as a basis for fast and efficient programming of simulation,
reconstruction and calibration algorithms related to MWC. It suppresses a previous re-
striction on the channels augmentation factor, hence providing more degrees of liberty to
the systems designer. It also allowed us to develop an extremely fast implementation of a
previously proposed calibration algorithm, leading to a gain of a factor greater than 20 on
the computation time. This fast calibration allows quick recalibration of the system as soon
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as it becomes necessary. Our future work will include more in-depth exploitation of the
advantages and interesting properties of this model.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC  Analog to Digital Converter
DAC  Digital to Analog Converter
DFT Discrete Fourier Transform

FFT Fast Fourier Transform

flop floating point operation

MWC Modulated Wideband Converter
SVD Singular Value Decomposition

Appendix A Mathematical proofs
Appendix A.1 Frequency-domain downsampling matrix =

Using the general radix identity, with N = ab, the inverse DFT matrix can be decom-

posed as:
' =P (Lo FT N E @) (A1)

Then, the frequency-domain downsampling matrix Z is:

g =Fy! (Ia ® 1{) F, (A2)
=P (L@ BT (@) (1)) F (A3)
=P (Lo F, )T, N(F ' ®1))E, (A4)
=P (L@ F, )T, (I ®15) (A5)
=Py (k@ F, )l ®1p) (A6)
1

=3P (L@ 6)) (A7)
1

=20, ® L, (A8)

Appendix A.2 Periodic scrambler
Using the general radix identity, with N = KL, the DFT matrix can be decomposed as:

Fy = (Fk ® Ip,) Tk, (Ix ® Fp) Pk (A9)
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Then, we have:

§ =sky (A10)
= (0 ® p)(Fk @ I) Tk, (Ix ® FL) P .1 (A11)
= (0xFx) ® (pIL) Tk, (Ix ® FL) Pk L (A12)
= K(1x @ p) Tk, (Ik ® FL) Pk L (A13)
=K(1k @ p)(Ix @ F)Px L (A14)
= K(1kIx) ® (pFL) Pk L (A15)
= K(1xk® p)Px L (A16)
=Kp®1k (A17)

Appendix A.3 Commutation property of CJ(?K)

CHIK = (K1 @ 1%)CeJ§ (A18)
= K(I, ® 1x)JNCs (A19)
= K(IL ® 1k) (JL ® Ix)Cx (A20)
= K(ILJL) ® (1xIk)Csx (A21)
= JL(KIL ® 1k)Cx (A22)
= 1. (A23)

where we have used (24).
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