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Abstract: In the context of cognitive radio, smart city and Internet-of-Things, the need of advanced 1

radio spectrum monitoring becomes crucial. However, surveillance of a wide frequency band without 2

using extremely expensive high sampling rates devices is a challenging task. The recent development 3

of compressed sampling approaches offers a promising solution to these problems. In this context, the 4

Modulated Wideband Converter (MWC), a blind sub-Nyquist sampling system, is probably the most 5

realistic approach and was successfully validated in real-world conditions. The MWC can be realized 6

with existing analog components and there exist calibration methods which are able to integrate 7

the imperfections of the mixers, filters and ADCs, hence allowing its use in real-world. The MWC 8

underlying model is based on signal processing concepts such as filtering, modulation, Fourier series 9

decomposition, oversampling and undersampling, spectrum aliasing, and so on, as well as in-flow 10

data processing. In this paper we develop an MWC model which is entirely based on linear algebra, 11

matrix theory and block processing. We show that this approach has many interests: straightforward 12

translation of mathematical equations into simple and efficient software programming, suppression 13

of some constraints of the initial model, and providing a basis for the development of an extremely 14

fast system calibration method. With a typical MWC acquisition device we obtained a speed up of a 15

factor greater than 20 of the calibration computation time, compared with a previous implementation. 16

Keywords: compressed sampling; hardware calibration; spectrum monitoring; linear algebra; matrix 17

theory; modulated wideband converter 18

1. Introduction 19

Digital wireless radio signals are often composed of a small number of narrow-band 20

transmissions spread across a wide spectrum range. For example, the Internet-of-Things 21

(IoT) communications have recently emerged in contexts such as Smart City. Cognitive ra- 22

dios are able to dynamically manage the spectrum but require advanced sensing techniques 23

for spectrum monitoring. 24

Basically, spectrum monitoring is based on the Shannon-Nyquist sampling theorem 25

[1,2]. This theorem states that the signal must be sampled at a rate greater than its Nyquist 26

frequency, which is twice its frequency band. However, when we have to monitor a large 27

frequency band, this requirement can exceed the capabilities of existing Analog to Digital 28

Converters (ADC) or require very expensive components. Furthermore, sampling at a very 29

high rate may require huge storage capacities to store the digital samples. 30

Recently, new approaches have been proposed allowing sampling at sub-Nyquist 31

rates. These approaches, known as compressed sensing, or compressive sampling [3], have 32

emerged as a promising framework for signal acquisition in difficult applications, such 33

as monitoring a wideband spectrum [4]. The basic idea of compressed sampling is to 34

take benefit of the fact that a signal which has a sparse representation in a given basis can 35

theoretically be recovered from a small set of linear measurements [5,6]. The price to pay is 36

the need to develop sophisticated signal processing algorithms to reconstruct the signal 37

from this small set of measurements, these algorithms being must more complex than the 38

usual demodulators. 39
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A great deal of the theoretical aspects of compressed sampling has been addressed 40

in the literature. For example, many studies have been proposed in relation to the design 41

of the measurement scheme as in [7,8] . However, few works have considered practical 42

constraints of compressed sensing. Indeed, the design of the measurements schemes and 43

their application to real-world acquisition systems remain a central challenge. 44

In this context, the Modulated Wideband Converter (MWC) has been proposed as 45

an efficient system for real-world compressed sampling [9]. The MWC does sub-Nyquist 46

sampling without prior information about the spectral support of the transmitters present 47

in the monitored wideband. It can be realized with existing devices [10] and has been 48

successfully tested on real-world problems including surveillance of a wideband spectrum 49

[11]. 50

Some practical implementations of compressed sensing systems have been already 51

proposed [12–14]. To design a prototype of compressed sensing based on MWC scheme, 52

we designed an analog board with discrete components [15]. Some authors have already 53

addressed the design of MWC system and a non-exhaustive list of references is given here 54

[11,13,16–19]. 55

A necessary step when using MWC in real-world is the calibration of the acquisition 56

system. Indeed, analog components are never ideal, especially when fed with wideband 57

signals. Then, using a purely theoretical model leads to extremely poor performances of 58

signal reconstruction. An efficient calibration method, which is considered as a reference, 59

has been proposed in [13] . It consists in estimating the sensing matrix column after column 60

by injecting sine waves at a specific frequency and recording the corresponding output 61

signals. The procedure is repeated by changing the input frequency until all columns 62

are estimated. Some researchers have exploited this work to calibrate their systems or to 63

propose variants of the calibration algorithms [19–23]. While this procedure is efficient, it 64

can be time consuming because the number of columns to estimate is usually at least a 65

few dozens. That is why a few authors [24,25], including us [15], have recently proposed 66

alternative calibration algorithms requiring only one input signal. 67

The MWC theoretical background is signal processing theory (filters, modulation, 68

Fourier series, sampling theory, spectrum aliasing, ...). Most signal processing theoretical 69

tools are asymptotic. However, when signals are processed in real-world, they are always 70

finite, then block processing and purely matrix-based algorithms may be more natural and 71

efficient. 72

Moreover, a quick look on the literature shows that most people use Matrix-based 73

programming tools, such as Octave or Matlab, for signal processing in this context, but 74

without really exploiting the power of these tools. To take full advantage of the power of 75

Matrix-oriented software, it would then be preferable to process data by blocks instead of 76

in-flow. It is therefore interesting to view the whole MWC acquisition and reconstruction in 77

terms of block processing. The most natural framework to achieve this objective is matrix 78

theory and linear algebra. 79

In this paper, we elaborate an MWC model using linear algebra only (without any 80

signal processing theory). While this approach will probably appear less intuitive than 81

the approach based on signal processing, because most people are less familiar with linear 82

algebra than with signal processing, it has strong advantages: 83

• Once the model is established, programming it becomes extremely simple, straightfor- 84

ward and efficient. 85

• Furthermore, computational complexity is significantly reduced. 86

• The border effects are implicitly taken into account into the model. Indeed, using a 87

signal processing model, people have to deal with the fact that the signals processed 88

in the real-world are not infinite, while when using a linear algebra model, the finite 89

nature of the data is implicitly taken into account and the mathematical equations are 90

exact and not approximate. 91
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• In the original version of the MWC, the number of physical branches is increased by a 92

factor q, which must be an odd integer due to signal processing considerations. An 93

interest of the linear algebra model is to allow even integers for q also. 94

The main contributions of this paper are: 95

• The development of a pure linear-algebra model of the MWC. Despite establishing 96

this model is rather hard because it requires non trivial matrix manipulations, once 97

established it is extremely simple and allows programming MWC-related software, 98

such as calibration, in a very fast, compact and efficient way. 99

• Its application to the development of a very fast calibration method. With typical 100

choices of parameters, the calibration is more than 20 times faster than our previous 101

method (this previous method being itself very fast compared to a reference method, 102

because it required only one calibration signal instead of dozens of sinusoidal signals 103

in the reference method). 104

The remainder of this paper is organized as follows: Section 2 provides the main math- 105

ematical tools used in the paper. Then, section 3 presents an overview of our hardware 106

acquisition board and the MWC principle. Section 4 establishes a system model based 107

on linear algebra, and an equivalent model, useful for signal reconstruction and system 108

calibration is then derived in section 5. In section 6 we show how this model allows us 109

to considerably improve a calibration method that we proposed previously, leading to 110

speeding up the process by a factor greater than 20. Then, some experimental results are 111

shown in section 7. 112

2. Mathematical background 113

2.1. Notations 114

Unless otherwise stated, lowercase symbols denote row vectors (e.g. x, p), uppercase 115

symbols denote matrices (e.g. C, Z), x̄ stands for the DFT (Discrete Fourier Transform) of x. 116

The symbols N, K, L, a, b will be used to denote the size of vectors or matrices. 117

We will note Dx the square diagonal matrix whose diagonal is vector x. 118

The vectorization of a K × L matrix Q, denoted vec(Q), is the 1 × KL row vector
obtained by reading the matrix row after row, from top to bottom:

vec(Q) =
(

q11 · · · q1L q21 · · · q2L · · · qK1 · · · qKL
)

(1)

M∗stands for the Hermitian transpose of matrix M. 119

IK stands for the K × K identity matrix. 120

The nearest lower or equal integer will be noted ⌊ ⌋ and the nearest greater or equal 121

integer ⌈ ⌉. 122

2.2. Circulant matrices 123

Let x be a 1 × N row vector. A circulant matrix Cx is a square matrix whose first row is 124

x and each next row is a circular shift one element to the right of the preceding row. That is: 125

Cx =


xo x1 x2 · · · xN−1

xN−1 x0 x1 · · · xN−2
xN−2 xN−1 x0 · · · xN−3

...
...

...
. . .

...
x1 x2 x3 · · · x0

 (2)
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It is convenient to define the cyclic permutation matrix as the N × N matrix below:

JN =


0 1 0 · · · 0
0 0 1 0
...

. . .
0 0 0 1
1 0 0 · · · 0

 (3)

Then, Cx is a polynomial in JN :

Cx =
N−1

∑
n=0

xn Jn
N (4)

The effect of multiplication of a matrix M by JN is as follows. The rows of MJN are the 126

rows of M circularly shifted one element to the right. The columns of JN M are the columns 127

of M circularly shifted one element to the top. 128

Matrices JN and Cx commute:

JNCx = Cx JN (5)

because

JNCx = JN

(
N−1

∑
n=0

xn Jn
N

)
(6)

=
N−1

∑
n=0

xn Jn+1
N (7)

=

(
N−1

∑
n=0

xn Jn
N

)
JN (8)

= Cx JN (9)

2.3. Discrete Fourier Transform (DFT) 129

Let us note ω the Nth square root of unity below:

ω = exp
(
−i

2π

N

)
(10)

The DFT matrix FN is an N × N square symmetric matrix whose element at row l 130

column k is ωlk (assuming row 0 is the first row, and column 0 the first column): 131

FN =


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2

 (11)

The inverse DFT matrix is
F−1

N =
1
N

F∗
N (12)

The DFT of a vector x is
x̄ = xFN (13)

and the inverse DFT (IDFT) is given by x̄F−1
N . 132
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A circulant matrix is diagonalized by the DFT matrix. That is

Cx = FN Dx̄F−1
N (14)

It follows that the elements of x̄ are the eigenvalues of Cx and the columns of F−1
N are 133

the eigenvectors. 134

We have also
Dx̄ = F−1

N CxFN (15)

and 135

1
N

Cx̄ = F−1
N DxFN (16)

2.4. Kronecker product 136

The Kronecker product, denoted by ⊗, is a bilinear operation on two matrices. If A is
a K × L matrix and B is a M × N matrix, then the Kronecker product is the KM × LN block
matrix C below:

C = A ⊗ B =

 a11B · · · a1LB
...

. . .
...

aK1B · · · aKLB

 (17)

The inverse Kronecker product is

(A ⊗ B)−1 = A−1 ⊗ B−1 (18)

Assuming the sizes are such that one can form the matrix products AC and BD, an 137

interesting property, known as the mixed-product property, is: 138

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD) (19)

The Kronecker product is associative, but not commutative. However, there exist
permutation matrices such that, if A is an a × a square matrix and B a b × b square matrix,
then [26]:

A ⊗ B = Pa,b(B ⊗ A)Pb,a (20)

The permutation matrix Pa,b is a shuffle matrix. It represents the permutation obtained
when one writes elements row by row in an a× b matrix and reads them column by column.
For instance, set a = 2 and b = 3. If one writes the elements 1, 2, 3, 4, 5, 6 row by row in a
2 × 3 matrix (

1 2 3
4 5 6

)
(21)

and reads them column by column, the order becomes 1, 4, 2, 5, 3, 6. Then the permuta- 139

tion matrix is 140

P2,3 =



1
1

1
1

1
1

 (22)

and we can check that(
1 4 2 5 3 6

)
=
(

1 2 3 4 5 6
)

P2,3 (23)
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If N = KL, an interesting property with the permutation matrix defined in (3) is

JK
N = JL ⊗ IK (24)

2.5. General radix identity 141

If N is a composite number, i.e. N = KL, then [26]:

FN = (FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (25)

where TK,L is a diagonal matrix (twiddle matrix) and PK,L a permutation matrix (shuffle 142

matrix defined in subsection 2.4). 143

The twiddle matrix TK,L is an N × N diagonal matrix, the diagonal of which is 144

vec(QK,L) with ω defined in (10) and 145

QK,L =


1 1 1 · · · 1
1 ω ω2 · · · ωL−1

1 ω2 ω4 · · · ω2(L−1)

...
...

...
. . .

...
1 ωK−1 ω2(K−1) · · · ω(K−1)(L−1)

 (26)

For instance, with K = 2 and L = 3 we have 146

Q2,3 =

(
1 1 1
1 e−iπ/3 e−2iπ/3

)
(27)

and the diagonal of T2,3 is

diag(T2,3) =
(

1 1 1 1 e−iπ/3 e−2iπ/3
)

(28)

Let us note θK and 1K the (1 × K) vectors below

θK =
[

1 1 · · · 1
]

(29)

1K =
[

1 0 · · · 0
]

(30)

Note that for any 1 × L vector p we have

(1K ⊗ p)TK,L = (1K ⊗ p) (31)

because only the first L elements of 1K ⊗ p are non null, and the L first elements of 147

TK,L are ones. 148

Note also that 149

(1K ⊗ p)PK,L = p ⊗ 1K (32)

because when elements of 1K ⊗ p are written row by row in a K × L matrix, the 150

elements of p go on the first row and the K − 1 next rows are null. Then, when this matrix 151

is read column by column, we get elements of p separated by K − 1 zeroes, that is p ⊗ 1K 152

Similarly, it is easy tho check that 153

T−1
a,b (Ia ⊗ 1T

b ) = Ia ⊗ 1T
b (33)

and 154

P−1
a,b (Ia ⊗ θT

b ) = θT
b ⊗ Ia (34)
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2.6. Selection Matrix 155

Let us define the selection matrix S(r)
N,K as the N × K matrix below:

S(r)
N,K =

 0r×K
IK

0(N−K−r)×K

 (35)

If x = (x0 · · · xN−1) is a 1 × N vector, then y = xS(r)
N,K is the 1 × K vector below: 156

y = (xr · · · xr+K−1) (36)

We consider the indices modulo N, so r may be negative. 157

2.7. Moore-Penrose Pseudo-inverse 158

Let us consider a rectangular matrix Z whose size is L × K with L ≤ K. The Moore- 159

Penrose pseudo-inverse [27] of Z, denoted Z+, is a K × L matrix which generalizes the 160

concept of inverse and, among other interesting properties, provides a mean to compute 161

a least squares solution to a system of linear equations that lacks an exact solution. The 162

pseudoinverse is defined and unique for all complex matrices. It is usually computed using 163

the singular value decomposition (SVD). 164

Let us note the SVD of Z as [28]:

Z = USV∗ (37)

where U is a L × L unitary matrix (i.e. UU∗ = U∗U = I), V is a K × L matrix with 165

orthonormal columns (i.e. V∗V = I) and S is a diagonal matrix, whose diagonal elements 166

are the singular values (non-negative real numbers, ranked by decreasing order). The SVD 167

exists for all complex matrices. 168

Here we consider a version of the SVD usually called “thin-SVD”, which is a compact 169

version of the more general SVD decomposition (in which matrices S and V are larger), 170

because this compact version is sufficient for the purpose of computing the pseudo-inverse. 171

The computational cost of computing the thin-SVD is 6KL2 + 20L3flops ([28] p. 254). Note 172

that, for complex matrices, it is usual to redefine the floating point operation (flop) in order 173

to count only one flop for the product of two complex numbers, while in reality it requires 174

4 real multiplications. Since only ratios between the computational costs of algorithms is of 175

interest, doing this does not change the result. 176

The pseudo-inverse is given by:

Z+ = VS+U∗ (38)

where S+ is the pseudo-inverse of S. It is a diagonal matrix which diagonal contains 177

the inverses of the singular values of S which are above a small tolerance value, and 0 178

elsewhere. 179

The cost of the inversion plus the computation of the matrix product is 2L + KL2 ≃ 180

KL2. 181

Overall, the cost of computing the pseudo-inverse is 7KL2 + 20L3
182

3. Acquisition device and system parameters 183

The MWC is a compressed sampling device, which samples a signal x(t) at a sampling 184

frequency Fs significantly lower than its Nyquist frequency Fnyq. The input signal is 185

assumed sparse in the frequency domain. From the outputs of this acquisition device, one 186

can reconstruct the input signal using a compressed sensing algorithm, such as Orthogonal 187

Matching Pursuit (OMP) [29]. 188

The principle of the MWC is shown on Fig. 1: 189

• The input signal x(t) is multiplied (using a mixer) by a scrambling signal s(t). 190

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 August 2022                   doi:10.20944/preprints202208.0294.v1

https://doi.org/10.20944/preprints202208.0294.v1


Version July 28, 2022 submitted to Sensors 8 of 30

• The resulting signal v(t) goes through a low-pass filter whose impulse response is 191

h(t). 192

• Then, the filter output w(t) is sampled by an Analog to Digital Converter (ADC), 193

providing the output samples y[n]. 194

The scrambler s(t) is a periodic signal: it is a basic waveform p(t) repeated Fp times per 195

second. The analog waveform p(t) itself is generated at sampling frequency Fnyq from an L 196

samples digital sequence, which is usually a pseudo-random sequence. Consequently, we 197

have Fp = Fnyq/L. 198

Figure 1. Principle of MWC acquisition (one physical branch).

The performances of the system can be enhanced by using M parallel branches with 199

different scrambling signals. However, since generalization to M branches is trivial, we 200

will restrict the discussions below to one branch. 201

The digital outputs y[n] are provided at Fs samples per second. 202

In previous practical realizations, in order to reduce aliasing, the ADC output samples 203

go through a digital filter which provides properly filtered samples at a frequency Fss lower 204

than Fs. In the original MWC model, Fss is an odd multiple of Fp, that is Fss = qFp with 205

q an odd integer. In this paper, since the linear algebra model allows a less constrained 206

postprocessing, this digital filter is not required and q is not necessarily odd. Indeed, we 207

will see that the linear algebra model allows also even values of q. 208

When designing an actual acquisition device, we have to choose some parameters: 209

• The sampling frequency Fnyq of the scramblers, which will impact the Nyquist fre- 210

quency of acceptable input signals (i.e. input signal maximum frequency must remain 211

under Fnyq/2). 212

• The sampling frequency Fs of the ADC, which should be significantly lower than Fnyq 213

(otherwise the system would have no interest compared to direct sampling at Fnyq). 214

This frequency determines the subsampling factor b = Fnyq/Fs. 215

• The length L of the scrambler periodic pattern. This parameter determines the fre- 216

quency of repetition Fp = Fnyq/L of the scrambling pattern. 217

The scrambler and the ADC are controlled by a common central clock to avoid synchro- 218

nization problems. 219

Reconstruction of the input signal, and calibration of the system, are based on the 220

information provided by a block of a output samples. In order to avoid unnecessary 221

mathematical complications, the value of a is chosen such that it corresponds to an integer 222

number K of scrambling patterns, then a = KL/b. This output block then corresponds to 223

N = KL scrambler samples (and also to N input samples if the input signal were sampled 224

at Fnyq). The size of the block determines the frequency resolution Fs/a = Fnyq/N. 225

For our experiments on real-world data, we designed a 4-channels MWC analog board 226

(Fig. 2) which was described in more details in a previous paper [15]. The scramblers are 227

sampled at Fnyq = 1GHz and their length is L = 96. Therefore, their repetition frequency is 228

Fp = Fnyq/L = 10.41667MHz . The device is then able to monitor a wideband spectrum of 229

1 GHz. 230
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Figure 2. Our analog acquisition board.

The prototype has M = 4 physical channels. Each channel has one M1-0008 mixer from 231

MArki©, and one SXLP-36+ lowpass filter from Mini-Circuits©, with a cut-off frequency 232

40 MHz (at -3 dB). The SXLP-36+ filter has been chosen to match the design of the ideal 233

lowpass filter: sharp cut-off, linear phase and flat band (attenuation < 0.5 dB) in frequency 234

range [DC-36] MHz. The ADC sampling frequency is Fs = 10Fp = 104.1667MHz (at Fs/2 235

the attenuation of the filter is more than 30 dB), therefore the sub-sampling factor is b = 9.6. 236

Table 1 sums up the main parameters. 237

Table 1. Parameters of our MWC prototype.

Symbol Meaning Value

M Number of physical channels 4

L Length of scramblers 96

Fnyq Sampling frequency of
scramblers

= bandwidth to monitor

1 GHz

Fs Sampling frequency of
physical ADC

104.1667 MHz

b = Fnyq/Fs Physical subsampling factor 9.6

Fp = Fnyq/L Repetition frequency of
scramblers

10.41667 MHz

The frequency response of the low-pass filter implemented on our acquisition board is 238

shown on Fig. 3 and its phase on Fig. 4. 239
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Figure 3. Frequency response of the low-pass filter.

Figure 4. Phase of the low-pass filter.

Fnyq being the Nyquist frequency of the input signal, we can consider a digital equiva- 240

lent model at Fnyq without loss of information. Furthermore, since, as previously mentioned, 241

in real-world applications calibration and signal processing are always performed on a 242

limited amount of data, we can consider an input block of N samples (at Fnyq). 243

Modern implementations of the FFT [30] contain special code to handle splittings not 244

only of size 2, but also of sizes 3 (and sometimes 5 and 7). So, for the efficiency of the 245

FFT, we will preferably choose block sizes whose prime factors belong to {2, 3, 5, 7}. In 246

our experiments, we have taken K = 448, N = KL = 43008 = 211 × 3 × 7 and a = 4480 = 247

29 × 5 × 7. The frequency resolution is then Fnyq/N ≃ 23kHz which is far sufficient unless 248

we would like to detect extreme narrow-band transmitters. 249

4. System model and matrix representation 250

4.1. System equations in the time domain 251

Let us note: 252
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Figure 5. Principle of the system, using vector notations, in the time and frequency domains

• x the vector representing the input signal. 253

• s the vector representing the scrambling signal. 254

• v the vector representing the scrambler output. 255

• h the vector representing the lowpass filter impulse response. 256

• w the vector representing the lowpass filter output. 257

• y the 1 × a vector containing the digital output samples (at Fs). 258

All these vectors, except y, are (1 × N) vectors and represent the signals at Fnyq samples 259

per second. On Figure 5 we show the links between these vectors. In the time domain (top 260

of the figure) the signals are represented by vectors. Symbol ∗ stands for cyclic convolution. 261

These vectors can be transposed in the frequency domain using a multiplication by matrix 262

FN or Fa. A postprocessing, described later, is then performed in the frequency domain. 263

The post-processing outputs q vectors ỹn of size 1 × K. 264

In the figure, we have used different symbols for down-sampling, because the opera- 265

tion in the time and frequency domains are different. For instance, when b is an integer, 266

down-sampling in the time domain consists in picking one sample out of b while its equiv- 267

alent in the frequency domain is a multiplication by the down-sampling matrix Ξ which 268

will be defined later. 269

Notations used below have already been defined in Section 2. Since the system is 270

linear, in the time domain we have 271

y = xB (39)

where B is an N × a matrix. The structure of B can be easily computed from the system 272

model (Fig. 5): 273

B = DsCh

(
Ia ⊗ 1T

b

)
(40)

Indeed, the scrambler output is given by:

v = xDs (41)

The filter output is: 274

w = vCh (42)

For the moment, let us consider that b is an integer (we will see later that this is not a 275

requirement). In that case, down-sampling consists of picking one sample out of b in w. 276

Mathematically, that is: 277

y = w
(

Ia ⊗ 1T
b

)
(43)
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Otherwise, down-sampling can be modeled using an interpolation matrix. However, 278

we will not detail this, because only the equations in the frequency domain will be useful 279

for our purpose. We will see later that in the frequency domain, thanks to the presence of a 280

low pass filter, b being an integer is not a requirement anymore. 281

4.2. System equations in the frequency domain 282

Multiplying Eq. 39 by Fa and inserting the identity FN F−1
N where appropriate, we 283

obtain: 284

yFa = (xFN)
(

F−1
N BFa

)
(44)

That is
ȳ = x̄A (45)

where A is an N × a matrix.
A = F−1

N BFa (46)

The structure of A can be detailed further. Replacing B by its expression (Eq. 40) and
inserting the identity FN F−1

N where it is appropriate, we obtain:

A =
(

F−1
N DsFN

)(
F−1

N ChFN

)(
F−1

N

(
Ia ⊗ 1T

b

)
Fa

)
(47)

Then, using Eq. 15 and 16 we get: 285

A =
1
N

Cs̄Dh̄Ξ (48)

As proved in the appendix (see A.1), the frequency-domain down-sampling matrix Ξ
is:

Ξ =
1
b

θT
b ⊗ Ia (49)

That is:

Ξ =
1
b

 Ia
...
Ia

 (50)

where sub-matrix Ia is repeated b times. Here we remind that h is a low-pass fil- 286

ter. Since the ADC sampling frequency is Fs, we assume that the elements of h̄ which 287

correspond to frequencies outside the interval ] − Fs/2, Fs/2[ are almost null. Since h̄ 288

contains N elements, the frequency resolution is Fnyq/N, so Fs/2 corresponds to index 289

(Fs/2)/(Fnyq/N) = N/(2b), that is a/2. Let us note 290

c = ⌊a/2⌋ (51)

and
δ = a mod 2 (52)

Therefore the elements of h̄ are almost null for indices outside the interval [−c, c + δ] 291

(the indices are considered modulo N). Hence, we can redefine Ξ as the N × a matrix 292

below: 293

Ξ =
1
b

 Ic+δ 0
0 0
0 Ic

 (53)

without changing the product Dh̄Ξ. Here, the zeros stand for null sub-matrices. We see 294

that, thanks to the low-pass pass filter which leads to this structure of Ξ, it is not required 295

anymore that b is an integer (this requirement was only due to the need of an integer 296

number of occurrences of Ia in Eq. 50). 297
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Finally, let us define the (1 × a) vector h̃:

h̃ =
[

h̄0 · · · h̄c+δ−1 h̄−c · · · h̄−1
]

(54)

where the indices are modulo N. We then have:

Dh̄Ξ = ΞDh̃ (55)

and the expression of matrix A becomes:

A =
1
N

Cs̄ΞDh̃ (56)

4.3. Unconstrained system equations in the time domain 298

Now we can go back to the time domain to obtain a matrix B which does not require b 299

being an integer. We have: 300

y = ȳF−1
a (57)

= x̄AF−1
a (58)

=
(

x̄F−1
N

)(
FN AF−1

a

)
(59)

= xB (60)

where
B = FN AF−1

a (61)

4.4. Fast simulation of the acquisition system 301

A first interest of the linear algebra model is that it makes the design of a fast simulator
obvious. Indeed, multiplication by a diagonal matrix D is efficiently implemented as
element by element vectors product, and multiplication by a Fourier matrix F (or its inverse)
is efficiently implemented by Fast Fourier Transform (FFT). On the contrary, multiplications
by circulant matrices C should be avoided because of their computational cost. Then, the
method to design a fast simulator is to insert identities FF−1 or F−1F where it is appropriate,
in order to suppress the circulant matrices. For instance, we have:

y = xB (62)

= xFN
1
N

Cs̄ΞDh̃F−1
a (63)

= x
(

FN
1
N

Cs̄F−1
N

)
FNΞDh̃F−1

a (64)

= xDsFNΞDh̃F−1
a (65)

using Eq. 16. Here we have only fast operations, as shown on Fig. 6. 302

Figure 6. Fast simulation. Dotted arrows are for a elements, full arrows are for N elements.
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5. Equivalent model and post-processing 303

5.1. Equivalent model 304

Until now, we have not taken profit of the periodicity of the scrambler. This opens the 305

way to an equivalent model with interesting properties. 306

The scrambler is a (1 × N) vector s which contains K replica of a basic waveform 307

represented by a (1 × L) vector p. Then, the scrambler can be written: 308

s = θK ⊗ p (66)

And we have (see proof in Appendix A.2)

s̄ = Kp̄ ⊗ 1K (67)

It follows that s̄ is sparse (only one element out of K is nonzero). It will be easier to
take benefit of the sparsity of s̄ if we permute x̄ and s̄ in the expression of ȳ:

ȳ =
1
N

x̄Cs̄ΞDh̃ (68)

=
1
N

s̄Cx̄ΞDh̃ (69)

The proof is trivial: since the multiplication is commutative, we can permute x and s 309

(see Fig. 5), therefore we can also permute x̄ and s̄. 310

Let us define the L × N matrix C(K)
x̄ obtained by picking one row out of K in Cx̄. That 311

is: 312

C(K)
x̄ = (IL ⊗ 1K)Cx̄ (70)

More explicitly, that is: 313

C(K)
x̄ =


x̄0 · · · x̄N−1

x̄−K · · · x̄N−K−1
...

...
x̄−(L−1)K · · · x̄K−1

 (71)

where the indices are considered modulo N. 314

Let us denote 315

p̃ =
1
L

p̄ (72)

Using Eq. (67), the mixer output becomes: 316

1
N

s̄Cx̄ =
1
N
(Kp̄ ⊗ 1K)Cx̄ (73)

=
1
L
(( p̄IL)⊗ 1K)Cx̄ (74)

=
1
L

p̄(IL ⊗ 1K)Cx̄ (75)

= p̃C(K)
x̄ (76)

An interesting property of matrix C(K)
x̄ , that will be exploited later, is (see proof in

Appendix A.3):
C(K)

x̄ JK
N = JLC(K)

x̄ (77)

Finally, let us define
ỹ = ȳD1/h̃ (78)
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We then have:

ỹ =
1
N

s̄Cx̄Ξ (79)

= p̃C(K)
x̄ Ξ (80)

5.2. Post-processing 317

The post-processing extracts frequency blocks of K samples from ỹ. 318

Using definition (35), let us note Sn the a × K selection matrix below

Sn = bS(r+nK)
a,K (81)

and Rn the N × K selection matrix below

Rn = S(r+nK)
N,K (82)

Denoting ỹn a 1 × K vector representing the selected data, we have: 319

ỹn = ỹSn (83)

ỹn contains the elements of ỹ whose indices (modulo a) are in the interval Φ = 320

[r + nK, r + nK + K − 1]. 321

The indices are considered modulo a, so r may be negative. We will consider that
Φ ⊂ [−c, c + δ], so

ΞSn = ΞbS(r+nK)
a,K (84)

= S(r+nK)
N,K (85)

= Rn (86)

We can note that: 322

Rn = J−nK
N R0 (87)

This is a matrix similar to R0 but with sub-matrix IK circularly shifted nK positions 323

downwards. We can note that we have also: 324

Rn+1 = J−K
N Rn (88)

Eventually, using Eq. (76) and (77) we have:

ỹn = p̃C(K)
x̄ ΞSn (89)

= p̃C(K)
x̄ Rn (90)

= p̃C(K)
x̄ J−nK

N R0 (91)

= ( p̃J−n
L )(C(K)

x̄ R0) (92)

= p̃nZx̄ (93)

where
p̃n = p̃J−n

L (94)

and
Zx̄ = C(K)

x̄ R0 (95)

More explicitly, Zx̄ is the L × K matrix below: 325
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Zx̄ =


x̄r · · · x̄r+K−1

x̄r−K · · · x̄r−1
...

...
x̄r−(L−1)K · · · x̄r−(L−2)K−1

 (96)

were the indices are considered modulo N. The interesting feature in equation (93) is
that Zx̄ does not depend on n. Hence, we can take q different values of n and write

...
ỹn
...

 =


...

p̃n
...

Zx̄ (97)

assuming we know the filter frequency response (which should be the case, because
the filter is part of the acquisition system). More compactly, this fundamental equation can
be noted:

Y = PZ (98)

were Y is the (q × K) matrix below:

Y =


...

ỹn
...

 (99)

P is the (q × L) matrix below:

P =


...

p̃n
...

 (100)

and Z is the (L × K)matrix below:

Z = Zx̄ (101)

So, the sizes of the matrices appearing in equation (98) are (q × K), (q × L), (L × K).
Then, if the number of non-zero rows in Z is less than q the matrix Z can be reconstructed
from this equation using an algorithm such as OMP [29]. Eventually, from Z we can retrieve
x̄ as shown below. Indeed, it is easy to see that x̄ can be rebuilt from Z with

x̄ = vec(ALZ)Jr+K
N (102)

where AL is the K × K anti-diagonal matrix:

AL =


0 · · · 0 1
... . . .

1 0

0 . . . . . . ...
1 0 · · · 0

 (103)

The effect of the multiplication of a matrix by AL on the left is to reverse the order of 326

its rows. 327

If we have M channels instead of one in the physical system, the number of rows of Y 328

becomes qM, hence we can theoretically rebuilt the signal if the number of non-zero rows 329

in Z is less than qM. 330
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Let us note q = 2ρ + τ the Euclidean division of q by 2. In our experiments, we have 331

set r = 0 for q even and r = −⌊K/2⌋ for q odd. For n we take the integers in the interval 332

−ρ to ρ + τ − 1. This choice, while not compulsory, is designed to take into account equally 333

distributed values around frequency 0 in ỹ, which is a priori the best choice. Indeed, the 334

indices of the samples taken into account go from r − ρK to r + (ρ + τ)K − 1, that is: 335

• For q odd: from −ρK − ⌊K/2⌋ to ρK + ⌈K/2⌉ − 1 336

• For q even: from −ρK to ρK − 1 337

For this choice, Fig. 7 illustrates how the elements of x̄ are arranged into matrix Zx̄ and Fig. 338

8 illustrates how the elements of ỹ are arranged into matrix Y. 339

Figure 7. Arrangement of the elements of x̄ into matrix Zx̄, for L = 4.

Figure 8. Arrangement of the elements of ỹ into matrix Y, for q = 4 and q = 3.

5.3. Application of the equivalent model to reconstruction 340

The input of the reconstruction algorithm is the vector y provided by the acquisition 341

device. The output is an estimation of x̄. 342

We assume that: 343

• The frequency response h̄ of the low-pass filter is known (or has been estimated). Then 344

h̃ can be precomputed using Eq. (54). 345
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• Matrix P has been precomputed, using Eq. 72, 94, 100, or (better) has been estimated 346

by the calibration process (see subsection 6). 347

The procedure is as follows: 348

1. Using an a-points FFT compute ȳ 349

2. Compensate the filter by computing ỹ (Eq. 78) 350

3. Extract q sub-vectors ỹn from ỹ (Eq. 83) 351

4. Compute matrix Y (Eq. 99) 352

5. Use a compressed sensing algorithm, such as OMP [29], to estimate matrix Z from 353

equation 98 354

6. Reconstruct x̄ from Z using Eq. 102 355

As an illustration of how the linear algebra model makes things becoming simple from the 356

programming point of view, this is the Octave program which builds matrix Y from y and 357

then obtain x from the reconstructed matrix Z: 358

ytilde = fft(y,[],2)./htilde; 359

ind = 1+mod(r+[-rho*K:(rho+tau)*K-1], a); 360

Y = reshape(ytilde(ind),K,q).’; 361

% Insert here estimation of Z from Y and P (using OMP, for instance) 362

xbs = reshape(Z(L:-1:1,:).’,1,N); 363

xb = circshift(xbs,[0 r+K]); 364

x = ifft(xb,[],2); 365

If there are M > 1 physical channels, the q × K matrices Y corresponding to each channel 366

are stacked vertically, leading to a qM × K matrix Y. 367

5.4. Interest of q even 368

The linear algebra model allows even values of q, instead of previous models which 369

required q being odd. The main interest is that it puts lower constraints on the design of the 370

acquisition board. If the acquisition board is already available, it may also allow a better 371

use of the MWC output data, if the acquisition board was not perfectly optimized. 372

Let us consider our own acquisition board, which was designed before we established 373

the linear-algebra model. We remind that the ADC sampling frequency is Fs ≃ 104.2 MHz 374

and the scramblers repetition frequency is Fp = Fnyq/L ≃ 10.42 MHz. Using Fs = Fnyq/b 375

and N = KL = ab it is easy to see that Fp = KFs/a. In the frequency domain, a output 376

samples correspond to Fs, then qK output samples correspond to qKFs/a = qFp. 377

• With q = 7, we put into Y a total of qK samples corresponding to a frequency half-band 378

qFp/2 = 36.47 MHz. This choice perfectly fits the frequency response of the low-pass 379

filter, which is almost perfectly flat and linear phase in [DC-36MHz] (see Fig. 3 and 4). 380

• With q = 6, we would put into Y samples corresponding to a frequency half-band 381

qFp/2 = 31.26 MHz. This corresponds to an even better area of the filter response, but 382

doing this we would not use all the available information. 383

• On the contrary, with q = 8, we would put into Y samples corresponding to a 384

frequency half-band qFp/2 = 41.68 MHz. This allows to take more information into 385

account, but we see that we take into account some samples corresponding to lower 386

quality of the filter response. 387

This result is not surprising, because our acquisition board was designed and optimized 388

for q = 7, but for a future design of a new board, the possibility to have q even may be 389

interesting because it puts less constraints on the choice of the commercial filters. 390

6. Application to fast calibration 391

6.1. Proposed approach 392

The objective of calibration is to estimate the true matrix P. Indeed, for real-world 393

applications, using the theoretical matrix (Eq. 100) leads to very poor results [13]. In 394

a previous paper [15], we proposed an approach which uses a single wideband signal 395
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for calibration, contrary to previous approaches which required successive injections of 396

sinusoids in the system. In that paper we presented spectrum reconstruction performances 397

and examples of spectrum reconstruction obtained with our calibration method. In the 398

present paper, we will mainly focus on simplifying and speeding up the method thanks to 399

the linear algebra model. 400

The calibration signal is a white noise signal. Compared to methods based on iter- 401

ative single-tones or mixture of single-tone signals, our new calibration method has the 402

advantage of being more practical in terms of simplicity of implementation and time saving 403

because only one measurement is used to complete the calibration. The calibration signal 404

spectrum is totally flat in the band of interest and covers all the bandwidths of the spectrum 405

to analyze. The calibration method uses an advanced resynchronization preprocessing. Our 406

calibration method offers slightly better spectrum reconstruction performances compared 407

to reference method [13]. 408

If we know matrices Y and Z, using Eq. 98 we can estimate matrix P by:

P̂ = YZ+ (104)

where Z+is the Moore-Penrose pseudo-inverse [27] of Z. Matrix Y depends on the 409

MWC outputs and matrix Z depends on its input signal. The problem in real-world context 410

is that we cannot reliably synchronize the input of the MWC with the ADC sampling which 411

provides the output, and even if a costly synchronization device was implemented there 412

are delays in the analog board itself which are intractable. Then, the input signal must 413

be designed such that a synchronization can be performed numerically. Otherwise, in Eq. 414

104 we would multiply matrices Y and Z+corresponding to desynchronized data, which 415

would make no sense. 416

In order to allow an efficient numerical synchronization, we used, on MWC input, 417

a periodical signal with flat spectrum and random phase. More precisely, the period of 418

this signal corresponds to the chosen block size, that is N/Fnyq and one period can be 419

represented by a length-N row vector x. This vector is generated as follows: 420

1. A length-N vector x̄ is generated such that, for any of its elements x̄(k), we have 421

|x̄(k)| = 1 and Arg(x̄(k)) is random in [0, 2π[ under the constraint Arg(x̄(−k)) = 422

−Arg(x̄(k)) (this constraint ensures that x is real). 423

2. x is deduced from x̄ by an inverse FFT: x = x̄F−1
N 424

Reminding that matrix Z contains the elements of x̄ (Eq. 101), the constant modulus 425

|x̄(k)| = 1 ensures that no element of Z is privileged or disadvantaged by the input 426

signal. Furthermore, the random phase ensures that the input signal has good localization 427

properties, which is desired for efficient synchronization. Finally, choosing a periodic signal 428

has a strong advantage: a time shift of a block taken on the input signal is equivalent to a 429

cyclic permutation of vector x. 430

On the programming point of view, building Z from x is very simple: 431

xb = fft(x, [], 2); 432

xbs = circshift(xb,[0 -(r+K)]); 433

Z(L:-1:1,:) = reshape(xbs,K,L).’; 434

In the following, we will note x0 = x the signal pattern and xd a cyclic permutation, d
positions to the right, of the pattern. This means that

xd = xJd
N (105)

The procedure that we propose is as follows: 435

1. Feed the acquisition device with a periodic signal, which is a repetition of a known 436

pattern x0 437

2. Record a samples at the output of the acquisition device (this is vector y), then compute 438

matrix Y using steps 1 to 4 of the reconstruction procedure. 439
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3. Perform cyclic permutations of the input pattern x0. For each vector xd, compute 440

matrix Zd = Zx̄d (using Eq. 101 and 96) and then P̂ (using Eq. 104). 441

Let us note the residue
Rd = Y − P̂dZd (106)

The criterion to determine the best cyclic permutation of the input pattern x0 is the 442

inverse Frobenius norm of Rd (the Frobenius norm is the square root of the sum of the 443

square modules of the elements of the matrix). 444

The computational cost per iteration (i.e. per value of d tested) can be estimated as 445

follows: 446

• A FFT is required to compute x̄d, that is LK log2(LK) flops (because N = LK). 447

• Computation of the pseudo-inverse Z+
d : 7KL2 + 20L3flops (see subsection 2.7). 448

• Computation of P̂ = YZ+
d (the sizes of the matrices are qM × K and K × L): qMKL 449

flops. 450

• Computation of P̂Zd requires qMLK flops. 451

• Computation of the Frobenius norm requires KL flops 452

Globally, since the computation of the Frobenius norm can be neglected compared to the 453

other terms, the algorithm requires about L(2qMK + 7LK + 20L2 + K log2(LK)) flops per 454

iteration. 455

6.2. Fast update of matrix Z 456

While evaluating all possibles shifts d, computation of matrix Zd = Zx̄d requires an
N-points FFT to obtain x̄d, which requires approximately Nlog2(N) multiplication at each
iteration. However, we can reduce the complexity just by computing the first matrix and
then updating it at each iteration as described below. Let us consider a vector xd which is a
cyclic permutation, d positions to the right, of pattern x. We have:

xd = x0 Jd
N (107)

Then

x̄d = x0 Jd
N FN (108)

= x0FN F−1
N Jd

N FN (109)

= x̄0Dαd (110)

were

αd =

0 · · · 0︸ ︷︷ ︸
d

10 · · · 0

 (111)

Indeed, since Jd
N = Cαd , using Eq. 15 we have:

F−1
N Jd

N FN = F−1
N Cαd FN (112)

= Dαd (113)

Since αd = αdFN it is easy to see that αd is the (d + 1)th row of FN , that is (see Eq. 10
and 11):

αd =
[

1 ωd ω2d · · · ω(N−1)d
]

(114)

Then, we have:

Zd = Zαd•x̄0 (115)

= Zαd • Z0 (116)
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where • stands for element by element multiplication. This equation can also be
written

Zd = ω−rdΘ∗
dZ0Ωd (117)

with
Θd = diag

[
1 ωKd ω2Kd · · · ω(L−1)Kd

]
(118)

Ωd = diag
[

1 ωd ω2d · · · ω(K−1)d
]

(119)

To see were this formula comes from, we must remind that multiplication by a diagonal
matrix on the left (right) multiplies the rows (columns) by the elements of the diagonal.
Then, denoting ωd = ωd we can see that:

ω−r
d vec(Θd)

∗vec(Ωd) = ω−r
d


1

ω−K
d
· · ·

ω
−(L−1)K
d

[ 1 ωd · · · ωK
d
]

(120)

= ω−r
d


1 ωd · · · ωK−1

d
ω−K

d ω−K+1
d · · · ω−1

d
...

...
...

ω
−(L−1)K
d ω

−(L−1)K+1
d · · · ω

−(L−2)K−1
d

 (121)

= Zαd (122)

If we evaluate by step g we can use:

Zd = Zαg • Zd−g (123)

Matrix Zαg can be precomputed. So, at each iteration, we need only N multiplications, 457

which is less complex than computing x̄d each time. This update requires only N = LK 458

multiplications at each iteration, instead of approximately Nlog2(N). 459

If we want to allow sub-sample precision (i.e. g < 1) we just have to note η = N/2
and write αg as follows:

αg =
[

1 ωg · · · ωη−1 ω−ηg · · · ω−g ] (124)

This is very interesting because sub-sample precision is then allowed without any 460

additional cost due to oversampling (with this method, no oversampling is required). 461

Matrix Zαg is computed as follows: 462

alpha = exp(-i*2*pi*g*[0:eta-1 -eta:-1]/N); 463

alpha = circshift(alpha,[0 -(r+K)]); 464

Zalpha(L:-1:1,:) = reshape(alpha,K,L).’; 465

Then, at each iteration, updating matrix Z is done by: 466

Z = Z .* Zalpha; 467

6.3. Fast update of matrix Z+
468

The approach is similar with the pseudo-inverse: we can reduce the complexity just 469

by computing the first pseudo-inverse matrix and then updating it at each iteration as 470

described below. This update requires only N multiplications at each iteration. 471

According to discussions above, denoting Z0 = USV∗ the SVD of Z0, we have

Zd = ω−rdΘ∗
d(USV∗)Ωd (125)

= (ω−rdΘ∗
dU)S(Ω∗

dV)∗ (126)
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This equation directly provides the SVD of Zd. It follows that Z+
d is

Z+
d = (Ω∗

dV)S+(ω−rdΘ∗
dU)∗ (127)

= ωrdΩ∗
dZ+

0 Θd (128)

This update can be realized by element by element multiplication :

Z+
d = Z∗

αd
• Z+

0 (129)

If we evaluate by step g we can update the matrix at each iteration by: 472

Z+
d = Z∗

αg
• Z+

d−g (130)

where Z∗
αg

can be precomputed. 473

6.4. Fast synchronization 474

To obtain a synchronization, we must evaluate the Frobenius norm of Rd at each 475

iteration. 476

We can evaluate the computational complexity of this fast algorithm as follows: 477

• Updating matrix Zd and Z+
d requires 2LK flops. 478

• Computing YdZ+
0 requires qMKL flops. 479

• Multiplying YdZ+
0 by Z0 requires qMKL flops. 480

• Computing the Frobenius norm requires KL flops 481

Globally, the algorithm requires 2qMKL + 3KL ≃ 2qMKL flops per iteration, which is to be
compared to L(2qMK + 7LK + 20L2 + K log2(LK)) for the previous version. The gain is,
approximately:

G ≃ 1 +
7L

2qM
+

10L2

qMK
+

log2(L)
2qM

+
log2(K)

2qM
(131)

≃ 21 (132)

Computation time on Octave is 54 seconds for the slow version and 1.6 seconds for 482

the fast version, which is then 34 times faster. 483

As a function of K, the gain decreases until K = 20 ln(2)L2 = 127761 (which is a huge 484

value, not expected for real-world acquisition devices), where it reaches a minimum of 13.4, 485

then increases slowly, behaving asymptotically as log2(K)/(2qM), as shown on Fig. 9. 486

7. Experimental Results 487

Using a step g > 1 for the evaluation of the synchronization criterion allows a decrease 488

of the computation time by a factor g. A good strategy is to get a coarse synchronization 489

with a step g > 1, and then to perform a fine synchronization around the detected peak. 490

The fine synchronization may be even realized at sub-sample precision, if desired. However, 491

a too large initial step must be avoided because it may lead to missing the synchronization 492

peak during the coarse synchronization. In our experiments, we first used a coarse synchro- 493

nization with step g = 16, then a fine synchronization with step g = 1 around the coarse 494

synchronization peak. Fig. 10 shows the obtained synchronization data. Fig. 11 and 12 are 495

zooms around the synchronization peak to show more details. 496

If the response of the filter is not taken into account in Eq. 78 (i.e. assuming an ideal 497

low-pass filter), the synchronization peak is only slightly lower (4.75 instead of 5.22). This 498

is due to the fact that the low-pass filter used in our analog board has good characteristics 499

(almost flat response, and almost linear phase, in the band of interest). The difference 500

would be higher with a lower quality filter. Anyway, it is always better to integrate the 501

filter response in the equations, as we did, because the additional computational cost is 502

negligible. 503
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Figure 9. Gain as a function of K (the red dot shows the values corresponding to our acquisition
board)

Figure 10. Synchronization (overview)
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Figure 11. Synchronization (zoom 1)

Figure 12. Synchronization (zoom 2)
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Figure 13. Estimated mixture matrix P (modulus)

Figure 14. Theoretical mixture matrix Pth (modulus)

Once the signal is synchronized, the estimated matrix P̂ is obtained using Eq. 104 504

(at no additional cost because this computation was already part of the synchronization 505

process). Fig 13 shows the modulus of the matrix elements. Here, since we have M = 4 506

physical channels and we have taken q = 7, the matrix has qM=28 rows (and L = 96 507

columns). The first q = 7 rows correspond to the first physical channel, then the next q 508

rows to the second physical channel, and so on. 509

The theoretical (ideal) matrix Pth can be computed using Eq. 100. Since the analog 510

scrambling sequence is the output of a Digital to Analog Converter (DAC), fed with a 511

digital pseudo-random sequence, it is (ideally) piecewise constant in the time domain. In 512

the spectral domain, this is equivalent to a multiplication by the sinc function which first 513

zero is at Fnyq. We take that into account when computing our theoretical matrix in order to 514

be as close as possible to the real-world matrix. Fig. 14 shows the modules of the elements 515

of this matrix. 516

The estimated (real-world) mixture matrix P̂ may be compared with the theoretical 517

(ideal) mixture matrix Pth. On the basis of the elements modules, we can see that their 518

overall aspects are close despite noticeable differences. In fact, the main differences are 519

on the phases of the elements. If we draw the normalized correlation coefficients between 520

the columns of both matrices (Fig. 15), we obtain low values, which confirms significant 521

differences. We remind that a normalized correlation coefficient is the absolute value of the 522

cosine of the angle between two vectors (here the columns of both matrices), then values 523

around 0.5 mean that the angle is about 60 degrees, then the columns are significantly 524

different. 525

In a previous paper [15], we showed that despite the good quality of our real-world 526

acquisition board, calibration of the system is absolutely required: using the theoretical 527

matrix leads to poor reconstruction performances. Without calibration, the system usually 528

incorrectly detects the active sub-bands, and even when the active sub-bands are correctly 529
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Figure 15. Normalized correlation coefficients

Figure 16. Example of sub-band spectrum reconstruction with and without calibration

identified, the spectrum reconstruction provided by the uncalibrated system is extremely 530

poor, as illustrated on Fig. 16. 531

This shows that calibration is unavoidable. An interest of the extremely fast calibration 532

procedure proposed in this paper is the possibility to perform quick recalibration of the 533

system as soon as the performances appear to decrease. Indeed, many factors such as 534

temperature, external perturbation, components aging, etc., modify the characteristics of 535

the system, making a recalibration necessary. 536

8. Conclusion 537

In this paper we have established an MWC model which is solely based on linear 538

algebra. It is very convenient as a basis for fast and efficient programming of simulation, 539

reconstruction and calibration algorithms related to MWC. It suppresses a previous re- 540

striction on the channels augmentation factor, hence providing more degrees of liberty to 541

the systems designer. It also allowed us to develop an extremely fast implementation of a 542

previously proposed calibration algorithm, leading to a gain of a factor greater than 20 on 543

the computation time. This fast calibration allows quick recalibration of the system as soon 544
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as it becomes necessary. Our future work will include more in-depth exploitation of the 545

advantages and interesting properties of this model. 546
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Abbreviations 562

The following abbreviations are used in this manuscript: 563

564

ADC Analog to Digital Converter
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
flop floating point operation
MWC Modulated Wideband Converter
SVD Singular Value Decomposition

565

Appendix A Mathematical proofs 566

Appendix A.1 Frequency-domain downsampling matrix Ξ 567

Using the general radix identity, with N = ab, the inverse DFT matrix can be decom-
posed as:

F−1
N = P−1

a,b (Ia ⊗ F−1
b )T−1

a,b (F−1
a ⊗ Ib) (A1)

Then, the frequency-domain downsampling matrix Ξ is: 568

Ξ = F−1
N

(
Ia ⊗ 1T

b

)
Fa (A2)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (F−1

a ⊗ Ib)
(

Ia ⊗ 1T
b

)
Fa (A3)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (F−1

a ⊗ 1T
b )Fa (A4)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (Ia ⊗ 1T

b ) (A5)

= P−1
a,b (Ia ⊗ F−1

b )(Ia ⊗ 1T
b ) (A6)

=
1
b

P−1
a,b (Ia ⊗ θT

b ) (A7)

=
1
b

θT
b ⊗ Ia (A8)

Appendix A.2 Periodic scrambler 569

Using the general radix identity, with N = KL, the DFT matrix can be decomposed as:

FN = (FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (A9)
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Then, we have: 570

s̄ = sFN (A10)

= (θK ⊗ p)(FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (A11)

= (θKFK)⊗ (pIL)TK,L(IK ⊗ FL)PK,L (A12)

= K(1K ⊗ p)TK,L(IK ⊗ FL)PK,L (A13)

= K(1K ⊗ p)(IK ⊗ FL)PK,L (A14)

= K(1K IK)⊗ (pFL)PK,L (A15)

= K(1K ⊗ p̄)PK,L (A16)

= Kp̄ ⊗ 1K (A17)

Appendix A.3 Commutation property of C(K)
x̄ 571

C(K)
x̄ JK

N = (KIL ⊗ 1K)Cx̄ JK
N (A18)

= K(IL ⊗ 1K)JK
NCx̄ (A19)

= K(IL ⊗ 1K)(JL ⊗ IK)Cx̄ (A20)

= K(IL JL)⊗ (1K IK)Cx̄ (A21)

= JL(KIL ⊗ 1K)Cx̄ (A22)

= JLC(K)
x̄ (A23)

where we have used (24). 572
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