

Article

A Modulated Wideband Converter Model Based On Linear Algebra and its Application to Fast Calibration

Gilles Burel^{1,*}, Anthony Fiche¹ and Roland Gautier¹

¹ University of Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France

* Correspondence: Gilles.Burel@univ-brest.fr

Abstract: In the context of cognitive radio, smart city and Internet-of-Things, the need of advanced radio spectrum monitoring becomes crucial. However, surveillance of a wide frequency band without using extremely expensive high sampling rates devices is a challenging task. The recent development of compressed sampling approaches offers a promising solution to these problems. In this context, the Modulated Wideband Converter (MWC), a blind sub-Nyquist sampling system, is probably the most realistic approach and was successfully validated in real-world conditions. The MWC can be realized with existing analog components and there exist calibration methods which are able to integrate the imperfections of the mixers, filters and ADCs, hence allowing its use in real-world. The MWC underlying model is based on signal processing concepts such as filtering, modulation, Fourier series decomposition, oversampling and undersampling, spectrum aliasing, and so on, as well as in-flow data processing. In this paper we develop an MWC model which is entirely based on linear algebra, matrix theory and block processing. We show that this approach has many interests: straightforward translation of mathematical equations into simple and efficient software programming, suppression of some constraints of the initial model, and providing a basis for the development of an extremely fast system calibration method. With a typical MWC acquisition device we obtained a speed up of a factor greater than 20 of the calibration computation time, compared with a previous implementation.

Keywords: compressed sampling; hardware calibration; spectrum monitoring; linear algebra; matrix theory; modulated wideband converter

1. Introduction

Digital wireless radio signals are often composed of a small number of narrow-band transmissions spread across a wide spectrum range. For example, the Internet-of-Things (IoT) communications have recently emerged in contexts such as Smart City. Cognitive radios are able to dynamically manage the spectrum but require advanced sensing techniques for spectrum monitoring.

Basically, spectrum monitoring is based on the Shannon-Nyquist sampling theorem [1,2]. This theorem states that the signal must be sampled at a rate greater than its Nyquist frequency, which is twice its frequency band. However, when we have to monitor a large frequency band, this requirement can exceed the capabilities of existing Analog to Digital Converters (ADC) or require very expensive components. Furthermore, sampling at a very high rate may require huge storage capacities to store the digital samples.

Recently, new approaches have been proposed allowing sampling at sub-Nyquist rates. These approaches, known as compressed sensing, or compressive sampling [3], have emerged as a promising framework for signal acquisition in difficult applications, such as monitoring a wideband spectrum [4]. The basic idea of compressed sampling is to take benefit of the fact that a signal which has a sparse representation in a given basis can theoretically be recovered from a small set of linear measurements [5,6]. The price to pay is the need to develop sophisticated signal processing algorithms to reconstruct the signal from this small set of measurements, these algorithms being much more complex than the usual demodulators.

A great deal of the theoretical aspects of compressed sampling has been addressed in the literature. For example, many studies have been proposed in relation to the design of the measurement scheme as in [7,8]. However, few works have considered practical constraints of compressed sensing. Indeed, the design of the measurements schemes and their application to real-world acquisition systems remain a central challenge.

In this context, the Modulated Wideband Converter (MWC) has been proposed as an efficient system for real-world compressed sampling [9]. The MWC does sub-Nyquist sampling without prior information about the spectral support of the transmitters present in the monitored wideband. It can be realized with existing devices [10] and has been successfully tested on real-world problems including surveillance of a wideband spectrum [11].

Some practical implementations of compressed sensing systems have been already proposed [12–14]. To design a prototype of compressed sensing based on MWC scheme, we designed an analog board with discrete components [15]. Some authors have already addressed the design of MWC system and a non-exhaustive list of references is given here [11,13,16–19].

A necessary step when using MWC in real-world is the calibration of the acquisition system. Indeed, analog components are never ideal, especially when fed with wideband signals. Then, using a purely theoretical model leads to extremely poor performances of signal reconstruction. An efficient calibration method, which is considered as a reference, has been proposed in [13]. It consists in estimating the sensing matrix column after column by injecting sine waves at a specific frequency and recording the corresponding output signals. The procedure is repeated by changing the input frequency until all columns are estimated. Some researchers have exploited this work to calibrate their systems or to propose variants of the calibration algorithms [19–23]. While this procedure is efficient, it can be time consuming because the number of columns to estimate is usually at least a few dozens. That is why a few authors [24,25], including us [15], have recently proposed alternative calibration algorithms requiring only one input signal.

The MWC theoretical background is signal processing theory (filters, modulation, Fourier series, sampling theory, spectrum aliasing, ...). Most signal processing theoretical tools are asymptotic. However, when signals are processed in real-world, they are always finite, then block processing and purely matrix-based algorithms may be more natural and efficient.

Moreover, a quick look on the literature shows that most people use Matrix-based programming tools, such as Octave or Matlab, for signal processing in this context, but without really exploiting the power of these tools. To take full advantage of the power of Matrix-oriented software, it would then be preferable to process data by blocks instead of in-flow. It is therefore interesting to view the whole MWC acquisition and reconstruction in terms of block processing. The most natural framework to achieve this objective is matrix theory and linear algebra.

In this paper, we elaborate an MWC model using linear algebra only (without any signal processing theory). While this approach will probably appear less intuitive than the approach based on signal processing, because most people are less familiar with linear algebra than with signal processing, it has strong advantages:

- Once the model is established, programming it becomes extremely simple, straightforward and efficient.
- Furthermore, computational complexity is significantly reduced.
- The border effects are implicitly taken into account into the model. Indeed, using a signal processing model, people have to deal with the fact that the signals processed in the real-world are not infinite, while when using a linear algebra model, the finite nature of the data is implicitly taken into account and the mathematical equations are exact and not approximate.

- In the original version of the MWC, the number of physical branches is increased by a factor q , which must be an odd integer due to signal processing considerations. An interest of the linear algebra model is to allow even integers for q also.

The main contributions of this paper are:

- The development of a pure linear-algebra model of the MWC. Despite establishing this model is rather hard because it requires non trivial matrix manipulations, once established it is extremely simple and allows programming MWC-related software, such as calibration, in a very fast, compact and efficient way.
- Its application to the development of a very fast calibration method. With typical choices of parameters, the calibration is more than 20 times faster than our previous method (this previous method being itself very fast compared to a reference method, because it required only one calibration signal instead of dozens of sinusoidal signals in the reference method).

The remainder of this paper is organized as follows: Section 2 provides the main mathematical tools used in the paper. Then, section 3 presents an overview of our hardware acquisition board and the MWC principle. Section 4 establishes a system model based on linear algebra, and an equivalent model, useful for signal reconstruction and system calibration is then derived in section 5. In section 6 we show how this model allows us to considerably improve a calibration method that we proposed previously, leading to speeding up the process by a factor greater than 20. Then, some experimental results are shown in section 7.

2. Mathematical background

2.1. Notations

Unless otherwise stated, lowercase symbols denote row vectors (e.g. x, p), uppercase symbols denote matrices (e.g. C, Z), \bar{x} stands for the DFT (Discrete Fourier Transform) of x . The symbols N, K, L, a, b will be used to denote the size of vectors or matrices.

We will note D_x the square diagonal matrix whose diagonal is vector x .

The vectorization of a $K \times L$ matrix Q , denoted $\text{vec}(Q)$, is the $1 \times KL$ row vector obtained by reading the matrix row after row, from top to bottom:

$$\text{vec}(Q) = (q_{11} \cdots q_{1L} \quad q_{21} \cdots q_{2L} \quad \cdots q_{K1} \cdots q_{KL}) \quad (1)$$

M^* stands for the Hermitian transpose of matrix M .

I_K stands for the $K \times K$ identity matrix.

The nearest lower or equal integer will be noted $\lfloor \cdot \rfloor$ and the nearest greater or equal integer $\lceil \cdot \rceil$.

2.2. Circulant matrices

Let x be a $1 \times N$ row vector. A circulant matrix C_x is a square matrix whose first row is x and each next row is a circular shift one element to the right of the preceding row. That is:

$$C_x = \begin{pmatrix} x_0 & x_1 & x_2 & \cdots & x_{N-1} \\ x_{N-1} & x_0 & x_1 & \cdots & x_{N-2} \\ x_{N-2} & x_{N-1} & x_0 & \cdots & x_{N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_0 \end{pmatrix} \quad (2)$$

It is convenient to define the cyclic permutation matrix as the $N \times N$ matrix below:

$$J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix} \quad (3)$$

Then, C_x is a polynomial in J_N :

$$C_x = \sum_{n=0}^{N-1} x_n J_N^n \quad (4)$$

The effect of multiplication of a matrix M by J_N is as follows. The rows of MJ_N are the rows of M circularly shifted one element to the right. The columns of $J_N M$ are the columns of M circularly shifted one element to the top.

Matrices J_N and C_x commute:

$$J_N C_x = C_x J_N \quad (5)$$

because

$$J_N C_x = J_N \left(\sum_{n=0}^{N-1} x_n J_N^n \right) \quad (6)$$

$$= \sum_{n=0}^{N-1} x_n J_N^{n+1} \quad (7)$$

$$= \left(\sum_{n=0}^{N-1} x_n J_N^n \right) J_N \quad (8)$$

$$= C_x J_N \quad (9)$$

2.3. Discrete Fourier Transform (DFT)

Let us note ω the N^{th} square root of unity below:

$$\omega = \exp\left(-i\frac{2\pi}{N}\right) \quad (10)$$

The DFT matrix F_N is an $N \times N$ square symmetric matrix whose element at row l column k is ω^{lk} (assuming row 0 is the first row, and column 0 the first column):

$$F_N = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^2} \end{pmatrix} \quad (11)$$

The inverse DFT matrix is

$$F_N^{-1} = \frac{1}{N} F_N^* \quad (12)$$

The DFT of a vector x is

$$\bar{x} = x F_N \quad (13)$$

and the inverse DFT (IDFT) is given by $\bar{x} F_N^{-1}$.

A circulant matrix is diagonalized by the DFT matrix. That is

$$C_x = F_N D_{\bar{x}} F_N^{-1} \quad (14)$$

It follows that the elements of \bar{x} are the eigenvalues of C_x and the columns of F_N^{-1} are the eigenvectors.

We have also

$$D_{\bar{x}} = F_N^{-1} C_x F_N \quad (15)$$

and

$$\frac{1}{N} C_{\bar{x}} = F_N^{-1} D_{\bar{x}} F_N \quad (16)$$

2.4. Kronecker product

The Kronecker product, denoted by \otimes , is a bilinear operation on two matrices. If A is a $K \times L$ matrix and B is a $M \times N$ matrix, then the Kronecker product is the $KM \times LN$ block matrix C below:

$$C = A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1L}B \\ \vdots & \ddots & \vdots \\ a_{K1}B & \cdots & a_{KL}B \end{pmatrix} \quad (17)$$

The inverse Kronecker product is

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1} \quad (18)$$

Assuming the sizes are such that one can form the matrix products AC and BD , an interesting property, known as the mixed-product property, is:

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD) \quad (19)$$

The Kronecker product is associative, but not commutative. However, there exist permutation matrices such that, if A is an $a \times a$ square matrix and B a $b \times b$ square matrix, then [26]:

$$A \otimes B = P_{a,b}(B \otimes A)P_{b,a} \quad (20)$$

The permutation matrix $P_{a,b}$ is a shuffle matrix. It represents the permutation obtained when one writes elements row by row in an $a \times b$ matrix and reads them column by column. For instance, set $a = 2$ and $b = 3$. If one writes the elements 1, 2, 3, 4, 5, 6 row by row in a 2×3 matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \quad (21)$$

and reads them column by column, the order becomes 1, 4, 2, 5, 3, 6. Then the permutation matrix is

$$P_{2,3} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ 1 & & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \quad (22)$$

and we can check that

$$(1 \ 4 \ 2 \ 5 \ 3 \ 6) = (1 \ 2 \ 3 \ 4 \ 5 \ 6)P_{2,3} \quad (23)$$

If $N = KL$, an interesting property with the permutation matrix defined in (3) is

$$J_N^K = J_L \otimes I_K \quad (24)$$

2.5. General radix identity

If N is a composite number, i.e. $N = KL$, then [26]:

$$F_N = (F_K \otimes I_L) T_{K,L} (I_K \otimes F_L) P_{K,L} \quad (25)$$

where $T_{K,L}$ is a diagonal matrix (twiddle matrix) and $P_{K,L}$ a permutation matrix (shuffle matrix defined in subsection 2.4).

The twiddle matrix $T_{K,L}$ is an $N \times N$ diagonal matrix, the diagonal of which is $\text{vec}(Q_{K,L})$ with ω defined in (10) and

$$Q_{K,L} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{L-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(L-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{K-1} & \omega^{2(K-1)} & \cdots & \omega^{(K-1)(L-1)} \end{pmatrix} \quad (26)$$

For instance, with $K = 2$ and $L = 3$ we have

$$Q_{2,3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & e^{-i\pi/3} & e^{-2i\pi/3} \end{pmatrix} \quad (27)$$

and the diagonal of $T_{2,3}$ is

$$\text{diag}(T_{2,3}) = (1 \ 1 \ 1 \ 1 \ e^{-i\pi/3} \ e^{-2i\pi/3}) \quad (28)$$

Let us note θ_K and 1_K the $(1 \times K)$ vectors below

$$\theta_K = [1 \ 1 \ \cdots \ 1] \quad (29)$$

$$1_K = [1 \ 0 \ \cdots \ 0] \quad (30)$$

Note that for any $1 \times L$ vector p we have

$$(1_K \otimes p) T_{K,L} = (1_K \otimes p) \quad (31)$$

because only the first L elements of $1_K \otimes p$ are non null, and the L first elements of $T_{K,L}$ are ones.

Note also that

$$(1_K \otimes p) P_{K,L} = p \otimes 1_K \quad (32)$$

because when elements of $1_K \otimes p$ are written row by row in a $K \times L$ matrix, the elements of p go on the first row and the $K - 1$ next rows are null. Then, when this matrix is read column by column, we get elements of p separated by $K - 1$ zeroes, that is $p \otimes 1_K$

Similarly, it is easy to check that

$$T_{a,b}^{-1}(I_a \otimes 1_b^T) = I_a \otimes 1_b^T \quad (33)$$

and

$$P_{a,b}^{-1}(I_a \otimes \theta_b^T) = \theta_b^T \otimes I_a \quad (34)$$

2.6. Selection Matrix

Let us define the selection matrix $S_{N,K}^{(r)}$ as the $N \times K$ matrix below:

$$S_{N,K}^{(r)} = \begin{pmatrix} 0_{r \times K} \\ I_K \\ 0_{(N-K-r) \times K} \end{pmatrix} \quad (35)$$

If $x = (x_0 \cdots x_{N-1})$ is a $1 \times N$ vector, then $y = xS_{N,K}^{(r)}$ is the $1 \times K$ vector below:

$$y = (x_r \cdots x_{r+K-1}) \quad (36)$$

We consider the indices modulo N , so r may be negative.

2.7. Moore-Penrose Pseudo-inverse

Let us consider a rectangular matrix Z whose size is $L \times K$ with $L \leq K$. The Moore-Penrose pseudo-inverse [27] of Z , denoted Z^+ , is a $K \times L$ matrix which generalizes the concept of inverse and, among other interesting properties, provides a mean to compute a least squares solution to a system of linear equations that lacks an exact solution. The pseudoinverse is defined and unique for all complex matrices. It is usually computed using the singular value decomposition (SVD).

Let us note the SVD of Z as [28]:

$$Z = USV^* \quad (37)$$

where U is a $L \times L$ unitary matrix (i.e. $UU^* = U^*U = I$), V is a $K \times L$ matrix with orthonormal columns (i.e. $V^*V = I$) and S is a diagonal matrix, whose diagonal elements are the singular values (non-negative real numbers, ranked by decreasing order). The SVD exists for all complex matrices.

Here we consider a version of the SVD usually called “thin-SVD”, which is a compact version of the more general SVD decomposition (in which matrices S and V are larger), because this compact version is sufficient for the purpose of computing the pseudo-inverse. The computational cost of computing the thin-SVD is $6KL^2 + 20L^3$ flops ([28] p. 254). Note that, for complex matrices, it is usual to redefine the floating point operation (flop) in order to count only one flop for the product of two complex numbers, while in reality it requires 4 real multiplications. Since only ratios between the computational costs of algorithms is of interest, doing this does not change the result.

The pseudo-inverse is given by:

$$Z^+ = VS^+U^* \quad (38)$$

where S^+ is the pseudo-inverse of S . It is a diagonal matrix which diagonal contains the inverses of the singular values of S which are above a small tolerance value, and 0 elsewhere.

The cost of the inversion plus the computation of the matrix product is $2L + KL^2 \simeq KL^2$.

Overall, the cost of computing the pseudo-inverse is $7KL^2 + 20L^3$

3. Acquisition device and system parameters

The MWC is a compressed sampling device, which samples a signal $x(t)$ at a sampling frequency F_s significantly lower than its Nyquist frequency F_{nyq} . The input signal is assumed sparse in the frequency domain. From the outputs of this acquisition device, one can reconstruct the input signal using a compressed sensing algorithm, such as Orthogonal Matching Pursuit (OMP) [29].

The principle of the MWC is shown on Fig. 1:

- The input signal $x(t)$ is multiplied (using a mixer) by a scrambling signal $s(t)$.

- The resulting signal $v(t)$ goes through a low-pass filter whose impulse response is $h(t)$.
- Then, the filter output $w(t)$ is sampled by an Analog to Digital Converter (ADC), providing the output samples $y[n]$.

The scrambler $s(t)$ is a periodic signal: it is a basic waveform $p(t)$ repeated F_p times per second. The analog waveform $p(t)$ itself is generated at sampling frequency F_{nyq} from an L samples digital sequence, which is usually a pseudo-random sequence. Consequently, we have $F_p = F_{nyq}/L$.

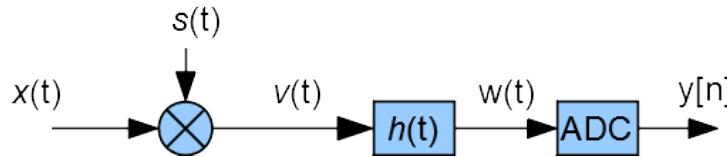


Figure 1. Principle of MWC acquisition (one physical branch).

The performances of the system can be enhanced by using M parallel branches with different scrambling signals. However, since generalization to M branches is trivial, we will restrict the discussions below to one branch.

The digital outputs $y[n]$ are provided at F_s samples per second.

In previous practical realizations, in order to reduce aliasing, the ADC output samples go through a digital filter which provides properly filtered samples at a frequency F_{ss} lower than F_s . In the original MWC model, F_{ss} is an odd multiple of F_p , that is $F_{ss} = qF_p$ with q an odd integer. In this paper, since the linear algebra model allows a less constrained postprocessing, this digital filter is not required and q is not necessarily odd. Indeed, we will see that the linear algebra model allows also even values of q .

When designing an actual acquisition device, we have to choose some parameters:

- The sampling frequency F_{nyq} of the scramblers, which will impact the Nyquist frequency of acceptable input signals (i.e. input signal maximum frequency must remain under $F_{nyq}/2$).
- The sampling frequency F_s of the ADC, which should be significantly lower than F_{nyq} (otherwise the system would have no interest compared to direct sampling at F_{nyq}). This frequency determines the subsampling factor $b = F_{nyq}/F_s$.
- The length L of the scrambler periodic pattern. This parameter determines the frequency of repetition $F_p = F_{nyq}/L$ of the scrambling pattern.

The scrambler and the ADC are controlled by a common central clock to avoid synchronization problems.

Reconstruction of the input signal, and calibration of the system, are based on the information provided by a block of a output samples. In order to avoid unnecessary mathematical complications, the value of a is chosen such that it corresponds to an integer number K of scrambling patterns, then $a = KL/b$. This output block then corresponds to $N = KL$ scrambler samples (and also to N input samples if the input signal were sampled at F_{nyq}). The size of the block determines the frequency resolution $F_s/a = F_{nyq}/N$.

For our experiments on real-world data, we designed a 4-channels MWC analog board (Fig. 2) which was described in more details in a previous paper [15]. The scramblers are sampled at $F_{nyq} = 1\text{GHz}$ and their length is $L = 96$. Therefore, their repetition frequency is $F_p = F_{nyq}/L = 10.41667\text{MHz}$. The device is then able to monitor a wideband spectrum of 1 GHz.

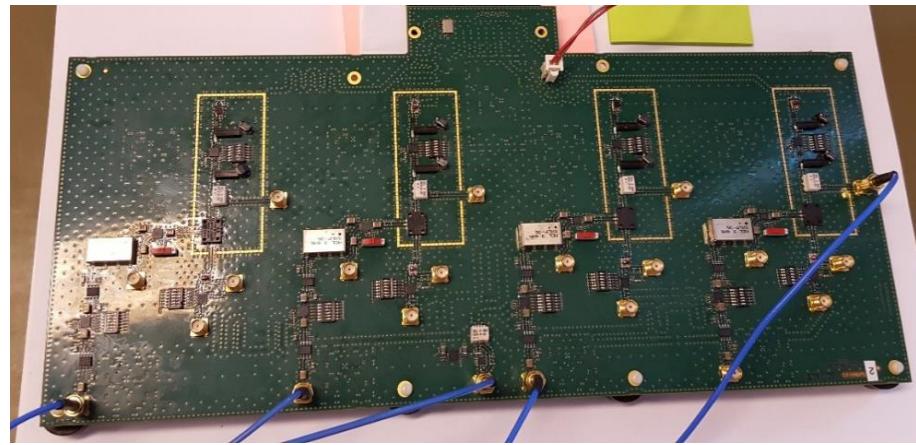


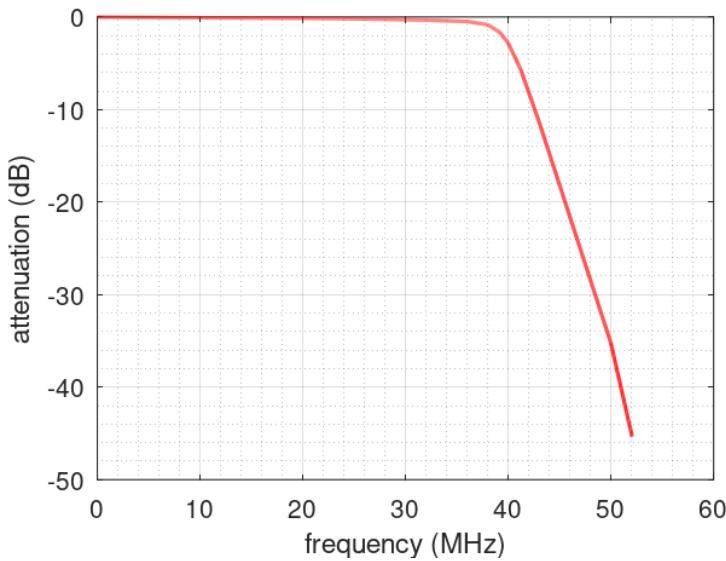
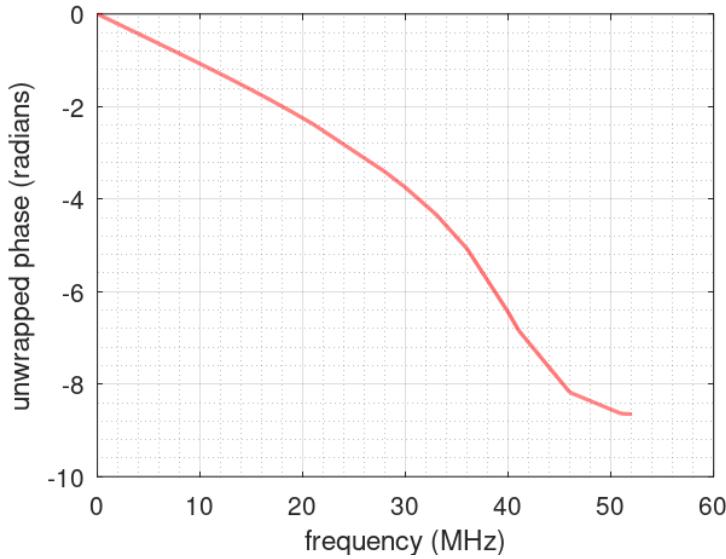
Figure 2. Our analog acquisition board.

The prototype has $M = 4$ physical channels. Each channel has one M1-0008 mixer from MArki®, and one SXLP-36+ lowpass filter from Mini-Circuits®, with a cut-off frequency 40 MHz (at -3 dB). The SXLP-36+ filter has been chosen to match the design of the ideal lowpass filter: sharp cut-off, linear phase and flat band (attenuation < 0.5 dB) in frequency range [DC-36] MHz. The ADC sampling frequency is $F_s = 10F_p = 104.1667\text{MHz}$ (at $F_s/2$ the attenuation of the filter is more than 30 dB), therefore the sub-sampling factor is $b = 9.6$. Table 1 sums up the main parameters.

Table 1. Parameters of our MWC prototype.

Symbol	Meaning	Value
M	Number of physical channels	4
L	Length of scramblers	96
F_{nyq}	Sampling frequency of scramblers = bandwidth to monitor	1 GHz
F_s	Sampling frequency of physical ADC	104.1667 MHz
$b = F_{nyq}/F_s$	Physical subsampling factor	9.6
$F_p = F_{nyq}/L$	Repetition frequency of scramblers	10.41667 MHz

The frequency response of the low-pass filter implemented on our acquisition board is shown on Fig. 3 and its phase on Fig. 4.

Frequency response of the low-pass filter: $20 \log_{10}(|H|)$ **Figure 3.** Frequency response of the low-pass filter.**Phase of the low-pass filter: $\text{angle}(H)$** **Figure 4.** Phase of the low-pass filter.

F_{nyq} being the Nyquist frequency of the input signal, we can consider a digital equivalent model at F_{nyq} without loss of information. Furthermore, since, as previously mentioned, in real-world applications calibration and signal processing are always performed on a limited amount of data, we can consider an input block of N samples (at F_{nyq}).

Modern implementations of the FFT [30] contain special code to handle splittings not only of size 2, but also of sizes 3 (and sometimes 5 and 7). So, for the efficiency of the FFT, we will preferably choose block sizes whose prime factors belong to $\{2, 3, 5, 7\}$. In our experiments, we have taken $K = 448$, $N = KL = 43008 = 2^{11} \times 3 \times 7$ and $a = 4480 = 2^9 \times 5 \times 7$. The frequency resolution is then $F_{nyq}/N \simeq 23\text{kHz}$ which is far sufficient unless we would like to detect extreme narrow-band transmitters.

4. System model and matrix representation

4.1. System equations in the time domain

Let us note:

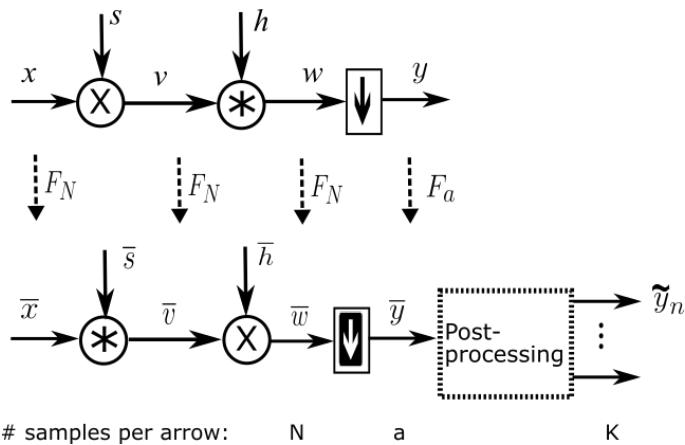


Figure 5. Principle of the system, using vector notations, in the time and frequency domains

- x the vector representing the input signal.
- s the vector representing the scrambling signal.
- v the vector representing the scrambler output.
- h the vector representing the lowpass filter impulse response.
- w the vector representing the lowpass filter output.
- y the $1 \times a$ vector containing the digital output samples (at F_s).

All these vectors, except y , are $(1 \times N)$ vectors and represent the signals at F_{nyq} samples per second. On Figure 5 we show the links between these vectors. In the time domain (top of the figure) the signals are represented by vectors. Symbol $*$ stands for cyclic convolution. These vectors can be transposed in the frequency domain using a multiplication by matrix F_N or F_a . A postprocessing, described later, is then performed in the frequency domain. The post-processing outputs q vectors \tilde{y}_n of size $1 \times K$.

In the figure, we have used different symbols for down-sampling, because the operation in the time and frequency domains are different. For instance, when b is an integer, down-sampling in the time domain consists in picking one sample out of b while its equivalent in the frequency domain is a multiplication by the down-sampling matrix Ξ which will be defined later.

Notations used below have already been defined in Section 2. Since the system is linear, in the time domain we have

$$y = xB \quad (39)$$

where B is an $N \times a$ matrix. The structure of B can be easily computed from the system model (Fig. 5):

$$B = D_s C_h \left(I_a \otimes 1_b^T \right) \quad (40)$$

Indeed, the scrambler output is given by:

$$v = xD_s \quad (41)$$

The filter output is:

$$w = vC_h \quad (42)$$

For the moment, let us consider that b is an integer (we will see later that this is not a requirement). In that case, down-sampling consists of picking one sample out of b in w . Mathematically, that is:

$$y = w \left(I_a \otimes 1_b^T \right) \quad (43)$$

Otherwise, down-sampling can be modeled using an interpolation matrix. However, we will not detail this, because only the equations in the frequency domain will be useful for our purpose. We will see later that in the frequency domain, thanks to the presence of a low pass filter, b being an integer is not a requirement anymore.

4.2. System equations in the frequency domain

Multiplying Eq. 39 by F_a and inserting the identity $F_N F_N^{-1}$ where appropriate, we obtain:

$$yF_a = (xF_N) \left(F_N^{-1} BF_a \right) \quad (44)$$

That is

$$\bar{y} = \bar{x}A \quad (45)$$

where A is an $N \times a$ matrix.

$$A = F_N^{-1} BF_a \quad (46)$$

The structure of A can be detailed further. Replacing B by its expression (Eq. 40) and inserting the identity $F_N F_N^{-1}$ where it is appropriate, we obtain:

$$A = \left(F_N^{-1} D_s F_N \right) \left(F_N^{-1} C_h F_N \right) \left(F_N^{-1} \left(I_a \otimes 1_b^T \right) F_a \right) \quad (47)$$

Then, using Eq. 15 and 16 we get:

$$A = \frac{1}{N} C_{\bar{s}} D_{\bar{h}} \Xi \quad (48)$$

As proved in the appendix (see A.1), the frequency-domain down-sampling matrix Ξ is:

$$\Xi = \frac{1}{b} \theta_b^T \otimes I_a \quad (49)$$

That is:

$$\Xi = \frac{1}{b} \begin{pmatrix} I_a \\ \vdots \\ I_a \end{pmatrix} \quad (50)$$

where sub-matrix I_a is repeated b times. Here we remind that h is a low-pass filter. Since the ADC sampling frequency is F_s , we assume that the elements of \bar{h} which correspond to frequencies outside the interval $[-F_s/2, F_s/2]$ are almost null. Since \bar{h} contains N elements, the frequency resolution is F_{nyq}/N , so $F_s/2$ corresponds to index $(F_s/2)/(F_{nyq}/N) = N/(2b)$, that is $a/2$. Let us note

$$c = \lfloor a/2 \rfloor \quad (51)$$

and

$$\delta = a \bmod 2 \quad (52)$$

Therefore the elements of \bar{h} are almost null for indices outside the interval $[-c, c + \delta]$ (the indices are considered modulo N). Hence, we can redefine Ξ as the $N \times a$ matrix below:

$$\Xi = \frac{1}{b} \begin{pmatrix} I_{c+\delta} & 0 \\ 0 & 0 \\ 0 & I_c \end{pmatrix} \quad (53)$$

without changing the product $D_{\bar{h}} \Xi$. Here, the zeros stand for null sub-matrices. We see that, thanks to the low-pass pass filter which leads to this structure of Ξ , it is not required anymore that b is an integer (this requirement was only due to the need of an integer number of occurrences of I_a in Eq. 50).

Finally, let us define the $(1 \times a)$ vector \tilde{h} :

$$\tilde{h} = [\tilde{h}_0 \ \dots \ \tilde{h}_{c+\delta-1} \ \tilde{h}_{-c} \ \dots \ \tilde{h}_{-1}] \quad (54)$$

where the indices are modulo N . We then have:

$$D_{\tilde{h}}\Xi = \Xi D_{\tilde{h}} \quad (55)$$

and the expression of matrix A becomes:

$$A = \frac{1}{N} C_{\tilde{s}} \Xi D_{\tilde{h}} \quad (56)$$

4.3. Unconstrained system equations in the time domain

Now we can go back to the time domain to obtain a matrix B which does not require b being an integer. We have:

$$y = \bar{y} F_a^{-1} \quad (57)$$

$$= \bar{x} A F_a^{-1} \quad (58)$$

$$= (\bar{x} F_N^{-1}) (F_N A F_a^{-1}) \quad (59)$$

$$= x B \quad (60)$$

where

$$B = F_N A F_a^{-1} \quad (61)$$

4.4. Fast simulation of the acquisition system

A first interest of the linear algebra model is that it makes the design of a fast simulator obvious. Indeed, multiplication by a diagonal matrix D is efficiently implemented as element by element vectors product, and multiplication by a Fourier matrix F (or its inverse) is efficiently implemented by Fast Fourier Transform (FFT). On the contrary, multiplications by circulant matrices C should be avoided because of their computational cost. Then, the method to design a fast simulator is to insert identities FF^{-1} or $F^{-1}F$ where it is appropriate, in order to suppress the circulant matrices. For instance, we have:

$$y = x B \quad (62)$$

$$= x F_N \frac{1}{N} C_{\tilde{s}} \Xi D_{\tilde{h}} F_a^{-1} \quad (63)$$

$$= x \left(F_N \frac{1}{N} C_{\tilde{s}} F_N^{-1} \right) F_N \Xi D_{\tilde{h}} F_a^{-1} \quad (64)$$

$$= x D_{\tilde{s}} F_N \Xi D_{\tilde{h}} F_a^{-1} \quad (65)$$

using Eq. 16. Here we have only fast operations, as shown on Fig. 6.

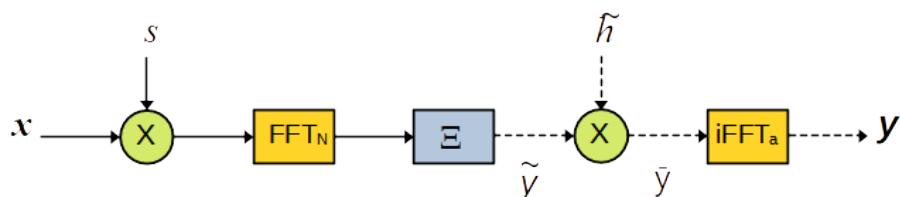


Figure 6. Fast simulation. Dotted arrows are for a elements, full arrows are for N elements.

5. Equivalent model and post-processing

5.1. Equivalent model

Until now, we have not taken profit of the periodicity of the scrambler. This opens the way to an equivalent model with interesting properties.

The scrambler is a $(1 \times N)$ vector s which contains K replica of a basic waveform represented by a $(1 \times L)$ vector p . Then, the scrambler can be written:

$$s = \theta_K \otimes p \quad (66)$$

And we have (see proof in Appendix A.2)

$$\bar{s} = K\bar{p} \otimes 1_K \quad (67)$$

It follows that \bar{s} is sparse (only one element out of K is nonzero). It will be easier to take benefit of the sparsity of \bar{s} if we permute \bar{x} and \bar{s} in the expression of \bar{y} :

$$\bar{y} = \frac{1}{N} \bar{x} C_{\bar{s}} \Xi D_{\tilde{h}} \quad (68)$$

$$= \frac{1}{N} \bar{s} C_{\bar{x}} \Xi D_{\tilde{h}} \quad (69)$$

The proof is trivial: since the multiplication is commutative, we can permute x and s (see Fig. 5), therefore we can also permute \bar{x} and \bar{s} .

Let us define the $L \times N$ matrix $C_{\bar{x}}^{(K)}$ obtained by picking one row out of K in $C_{\bar{x}}$. That is:

$$C_{\bar{x}}^{(K)} = (I_L \otimes 1_K) C_{\bar{x}} \quad (70)$$

More explicitly, that is:

$$C_{\bar{x}}^{(K)} = \begin{pmatrix} \bar{x}_0 & \cdots & \bar{x}_{N-1} \\ \bar{x}_{-K} & \cdots & \bar{x}_{N-K-1} \\ \vdots & & \vdots \\ \bar{x}_{-(L-1)K} & \cdots & \bar{x}_{K-1} \end{pmatrix} \quad (71)$$

where the indices are considered modulo N .

Let us denote

$$\tilde{p} = \frac{1}{L} \bar{p} \quad (72)$$

Using Eq. (67), the mixer output becomes:

$$\frac{1}{N} \bar{s} C_{\bar{x}} = \frac{1}{N} (K\bar{p} \otimes 1_K) C_{\bar{x}} \quad (73)$$

$$= \frac{1}{L} ((\bar{p} I_L) \otimes 1_K) C_{\bar{x}} \quad (74)$$

$$= \frac{1}{L} \bar{p} (I_L \otimes 1_K) C_{\bar{x}} \quad (75)$$

$$= \tilde{p} C_{\bar{x}}^{(K)} \quad (76)$$

An interesting property of matrix $C_{\bar{x}}^{(K)}$, that will be exploited later, is (see proof in Appendix A.3):

$$C_{\bar{x}}^{(K)} J_N^K = J_L C_{\bar{x}}^{(K)} \quad (77)$$

Finally, let us define

$$\tilde{y} = \bar{y} D_{1/\tilde{h}} \quad (78)$$

We then have:

$$\tilde{y} = \frac{1}{N} \bar{s} C_{\bar{x}} \Xi \quad (79)$$

$$= \tilde{p} C_{\bar{x}}^{(K)} \Xi \quad (80)$$

5.2. Post-processing

The post-processing extracts frequency blocks of K samples from \tilde{y} . Using definition (35), let us note S_n the $a \times K$ selection matrix below

$$S_n = b S_{a,K}^{(r+nK)} \quad (81)$$

and R_n the $N \times K$ selection matrix below

$$R_n = S_{N,K}^{(r+nK)} \quad (82)$$

Denoting \tilde{y}_n a $1 \times K$ vector representing the selected data, we have:

$$\tilde{y}_n = \tilde{y} S_n \quad (83)$$

\tilde{y}_n contains the elements of \tilde{y} whose indices (modulo a) are in the interval $\Phi = [r + nK, r + nK + K - 1]$.

The indices are considered modulo a , so r may be negative. We will consider that $\Phi \subset [-c, c + \delta]$, so

$$\Xi S_n = \Xi b S_{a,K}^{(r+nK)} \quad (84)$$

$$= S_{N,K}^{(r+nK)} \quad (85)$$

$$= R_n \quad (86)$$

We can note that:

$$R_n = J_N^{-nK} R_0 \quad (87)$$

This is a matrix similar to R_0 but with sub-matrix I_K circularly shifted nK positions downwards. We can note that we have also:

$$R_{n+1} = J_N^{-K} R_n \quad (88)$$

Eventually, using Eq. (76) and (77) we have:

$$\tilde{y}_n = \tilde{p} C_{\bar{x}}^{(K)} \Xi S_n \quad (89)$$

$$= \tilde{p} C_{\bar{x}}^{(K)} R_n \quad (90)$$

$$= \tilde{p} C_{\bar{x}}^{(K)} J_N^{-nK} R_0 \quad (91)$$

$$= (\tilde{p} J_L^{-n})(C_{\bar{x}}^{(K)} R_0) \quad (92)$$

$$= \tilde{p}_n Z_{\bar{x}} \quad (93)$$

where

$$\tilde{p}_n = \tilde{p} J_L^{-n} \quad (94)$$

and

$$Z_{\bar{x}} = C_{\bar{x}}^{(K)} R_0 \quad (95)$$

More explicitly, $Z_{\bar{x}}$ is the $L \times K$ matrix below:

$$Z_{\bar{x}} = \begin{pmatrix} \bar{x}_r & \cdots & \bar{x}_{r+K-1} \\ \bar{x}_{r-K} & \cdots & \bar{x}_{r-1} \\ \vdots & & \vdots \\ \bar{x}_{r-(L-1)K} & \cdots & \bar{x}_{r-(L-2)K-1} \end{pmatrix} \quad (96)$$

were the indices are considered modulo N . The interesting feature in equation (93) is that $Z_{\bar{x}}$ does not depend on n . Hence, we can take q different values of n and write

$$\begin{pmatrix} \vdots \\ \tilde{y}_n \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \tilde{p}_n \\ \vdots \end{pmatrix} Z_{\bar{x}} \quad (97)$$

assuming we know the filter frequency response (which should be the case, because the filter is part of the acquisition system). More compactly, this fundamental equation can be noted:

$$Y = PZ \quad (98)$$

were Y is the $(q \times K)$ matrix below:

$$Y = \begin{pmatrix} \vdots \\ \tilde{y}_n \\ \vdots \end{pmatrix} \quad (99)$$

P is the $(q \times L)$ matrix below:

$$P = \begin{pmatrix} \vdots \\ \tilde{p}_n \\ \vdots \end{pmatrix} \quad (100)$$

and Z is the $(L \times K)$ matrix below:

$$Z = Z_{\bar{x}} \quad (101)$$

So, the sizes of the matrices appearing in equation (98) are $(q \times K)$, $(q \times L)$, $(L \times K)$. Then, if the number of non-zero rows in Z is less than q the matrix Z can be reconstructed from this equation using an algorithm such as OMP [29]. Eventually, from Z we can retrieve \bar{x} as shown below. Indeed, it is easy to see that \bar{x} can be rebuilt from Z with

$$\bar{x} = \text{vec}(A_L Z) J_N^{r+K} \quad (102)$$

where A_L is the $K \times K$ anti-diagonal matrix:

$$A_L = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 1 & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \quad (103)$$

The effect of the multiplication of a matrix by A_L on the left is to reverse the order of its rows.

If we have M channels instead of one in the physical system, the number of rows of Y becomes qM , hence we can theoretically rebuilt the signal if the number of non-zero rows in Z is less than qM .

Let us note $q = 2\rho + \tau$ the Euclidean division of q by 2. In our experiments, we have set $r = 0$ for q even and $r = -\lfloor K/2 \rfloor$ for q odd. For n we take the integers in the interval $-\rho$ to $\rho + \tau - 1$. This choice, while not compulsory, is designed to take into account equally distributed values around frequency 0 in \tilde{y} , which is *a priori* the best choice. Indeed, the indices of the samples taken into account go from $r - \rho K$ to $r + (\rho + \tau)K - 1$, that is:

- For q odd: from $-\rho K - \lfloor K/2 \rfloor$ to $\rho K + \lceil K/2 \rceil - 1$
- For q even: from $-\rho K$ to $\rho K - 1$

For this choice, Fig. 7 illustrates how the elements of \tilde{x} are arranged into matrix $Z_{\tilde{x}}$ and Fig. 8 illustrates how the elements of \tilde{y} are arranged into matrix Y .

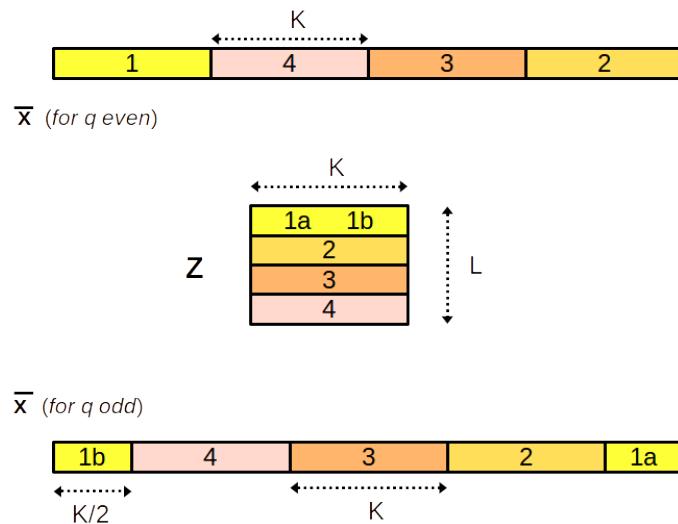


Figure 7. Arrangement of the elements of \tilde{x} into matrix $Z_{\tilde{x}}$, for $L = 4$.

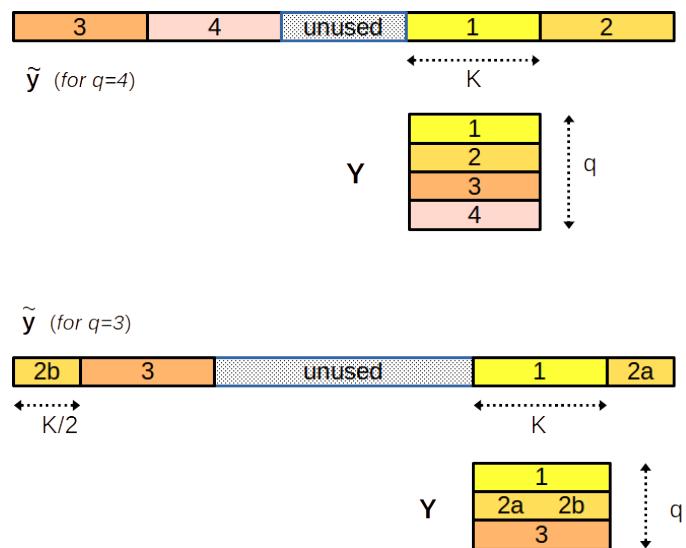


Figure 8. Arrangement of the elements of \tilde{y} into matrix Y , for $q = 4$ and $q = 3$.

5.3. Application of the equivalent model to reconstruction

The input of the reconstruction algorithm is the vector y provided by the acquisition device. The output is an estimation of \tilde{x} .

We assume that:

- The frequency response \tilde{h} of the low-pass filter is known (or has been estimated). Then \tilde{h} can be precomputed using Eq. (54).

- Matrix P has been precomputed, using Eq. 72, 94, 100, or (better) has been estimated by the calibration process (see subsection 6).

The procedure is as follows:

1. Using an a -points FFT compute \tilde{y}
2. Compensate the filter by computing \tilde{y} (Eq. 78)
3. Extract q sub-vectors \tilde{y}_n from \tilde{y} (Eq. 83)
4. Compute matrix Y (Eq. 99)
5. Use a compressed sensing algorithm, such as OMP [29], to estimate matrix Z from equation 98
6. Reconstruct \tilde{x} from Z using Eq. 102

As an illustration of how the linear algebra model makes things becoming simple from the programming point of view, this is the Octave program which builds matrix Y from y and then obtain x from the reconstructed matrix Z :

```
ytilde = fft(y,[],2)./htilde;
ind = 1+mod(r+[-rho*K:(rho+tau)*K-1], a);
Y = reshape(ytilde(ind),K,q).';
% Insert here estimation of Z from Y and P (using OMP, for instance)
xbs = reshape(Z(L:-1:1,:).',1,N);
xb = circshift(xbs,[0 r+K]);
x = ifft(xb,[],2);
```

If there are $M > 1$ physical channels, the $q \times K$ matrices Y corresponding to each channel are stacked vertically, leading to a $qM \times K$ matrix Y .

5.4. Interest of q even

The linear algebra model allows even values of q , instead of previous models which required q being odd. The main interest is that it puts lower constraints on the design of the acquisition board. If the acquisition board is already available, it may also allow a better use of the MWC output data, if the acquisition board was not perfectly optimized.

Let us consider our own acquisition board, which was designed before we established the linear-algebra model. We remind that the ADC sampling frequency is $F_s \simeq 104.2$ MHz and the scramblers repetition frequency is $F_p = F_{nyq}/L \simeq 10.42$ MHz. Using $F_s = F_{nyq}/b$ and $N = KL = ab$ it is easy to see that $F_p = KF_s/a$. In the frequency domain, a output samples correspond to F_s , then qK output samples correspond to $qKF_s/a = qF_p$.

- With $q = 7$, we put into Y a total of qK samples corresponding to a frequency half-band $qF_p/2 = 36.47$ MHz. This choice perfectly fits the frequency response of the low-pass filter, which is almost perfectly flat and linear phase in [DC-36MHz] (see Fig. 3 and 4).
- With $q = 6$, we would put into Y samples corresponding to a frequency half-band $qF_p/2 = 31.26$ MHz. This corresponds to an even better area of the filter response, but doing this we would not use all the available information.
- On the contrary, with $q = 8$, we would put into Y samples corresponding to a frequency half-band $qF_p/2 = 41.68$ MHz. This allows to take more information into account, but we see that we take into account some samples corresponding to lower quality of the filter response.

This result is not surprising, because our acquisition board was designed and optimized for $q = 7$, but for a future design of a new board, the possibility to have q even may be interesting because it puts less constraints on the choice of the commercial filters.

6. Application to fast calibration

6.1. Proposed approach

The objective of calibration is to estimate the true matrix P . Indeed, for real-world applications, using the theoretical matrix (Eq. 100) leads to very poor results [13]. In a previous paper [15], we proposed an approach which uses a single wideband signal

for calibration, contrary to previous approaches which required successive injections of sinusoids in the system. In that paper we presented spectrum reconstruction performances and examples of spectrum reconstruction obtained with our calibration method. In the present paper, we will mainly focus on simplifying and speeding up the method thanks to the linear algebra model.

The calibration signal is a white noise signal. Compared to methods based on iterative single-tones or mixture of single-tone signals, our new calibration method has the advantage of being more practical in terms of simplicity of implementation and time saving because only one measurement is used to complete the calibration. The calibration signal spectrum is totally flat in the band of interest and covers all the bandwidths of the spectrum to analyze. The calibration method uses an advanced resynchronization preprocessing. Our calibration method offers slightly better spectrum reconstruction performances compared to reference method [13].

If we know matrices Y and Z , using Eq. 98 we can estimate matrix P by:

$$\hat{P} = YZ^+ \quad (104)$$

where Z^+ is the Moore-Penrose pseudo-inverse [27] of Z . Matrix Y depends on the MWC outputs and matrix Z depends on its input signal. The problem in real-world context is that we cannot reliably synchronize the input of the MWC with the ADC sampling which provides the output, and even if a costly synchronization device was implemented there are delays in the analog board itself which are intractable. Then, the input signal must be designed such that a synchronization can be performed numerically. Otherwise, in Eq. 104 we would multiply matrices Y and Z^+ corresponding to desynchronized data, which would make no sense.

In order to allow an efficient numerical synchronization, we used, on MWC input, a periodical signal with flat spectrum and random phase. More precisely, the period of this signal corresponds to the chosen block size, that is N/F_{nyq} and one period can be represented by a length- N row vector x . This vector is generated as follows:

1. A length- N vector \bar{x} is generated such that, for any of its elements $\bar{x}(k)$, we have $|\bar{x}(k)| = 1$ and $\text{Arg}(\bar{x}(k))$ is random in $[0, 2\pi]$ under the constraint $\text{Arg}(\bar{x}(-k)) = -\text{Arg}(\bar{x}(k))$ (this constraint ensures that x is real).
2. x is deduced from \bar{x} by an inverse FFT: $x = \bar{x}F_N^{-1}$

Reminding that matrix Z contains the elements of \bar{x} (Eq. 101), the constant modulus $|\bar{x}(k)| = 1$ ensures that no element of Z is privileged or disadvantaged by the input signal. Furthermore, the random phase ensures that the input signal has good localization properties, which is desired for efficient synchronization. Finally, choosing a periodic signal has a strong advantage: a time shift of a block taken on the input signal is equivalent to a cyclic permutation of vector x .

On the programming point of view, building Z from x is very simple:

```
xb = fft(x, [], 2);
xbs = circshift(xb, [0 -(r+K)]);
Z(L:-1:1,:) = reshape(xbs,K,L).';
```

In the following, we will note $x_0 = x$ the signal pattern and x_d a cyclic permutation, d positions to the right, of the pattern. This means that

$$x_d = xJ_N^d \quad (105)$$

The procedure that we propose is as follows:

1. Feed the acquisition device with a periodic signal, which is a repetition of a known pattern x_0
2. Record n samples at the output of the acquisition device (this is vector y), then compute matrix Y using steps 1 to 4 of the reconstruction procedure.

3. Perform cyclic permutations of the input pattern x_0 . For each vector x_d , compute matrix $Z_d = Z_{\bar{x}_d}$ (using Eq. 101 and 96) and then \hat{P} (using Eq. 104).

Let us note the residue

$$R_d = Y - \hat{P}_d Z_d \quad (106)$$

The criterion to determine the best cyclic permutation of the input pattern x_0 is the inverse Frobenius norm of R_d (the Frobenius norm is the square root of the sum of the square modules of the elements of the matrix).

The computational cost per iteration (i.e. per value of d tested) can be estimated as follows:

- A FFT is required to compute \bar{x}_d , that is $LK \log_2(LK)$ flops (because $N = LK$).
- Computation of the pseudo-inverse $Z_d^+ : 7KL^2 + 20L^3$ flops (see subsection 2.7).
- Computation of $\hat{P} = YZ_d^+$ (the sizes of the matrices are $qM \times K$ and $K \times L$): $qMKL$ flops.
- Computation of $\hat{P}Z_d$ requires $qMLK$ flops.
- Computation of the Frobenius norm requires KL flops

Globally, since the computation of the Frobenius norm can be neglected compared to the other terms, the algorithm requires about $L(2qMK + 7LK + 20L^2 + K \log_2(LK))$ flops per iteration.

6.2. Fast update of matrix Z

While evaluating all possible shifts d , computation of matrix $Z_d = Z_{\bar{x}_d}$ requires an N -points FFT to obtain \bar{x}_d , which requires approximately $N \log_2(N)$ multiplication at each iteration. However, we can reduce the complexity just by computing the first matrix and then updating it at each iteration as described below. Let us consider a vector x_d which is a cyclic permutation, d positions to the right, of pattern x . We have:

$$x_d = x_0 J_N^d \quad (107)$$

Then

$$\bar{x}_d = x_0 J_N^d F_N \quad (108)$$

$$= x_0 F_N F_N^{-1} J_N^d F_N \quad (109)$$

$$= \bar{x}_0 D_{\bar{\alpha}_d} \quad (110)$$

were

$$\alpha_d = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \quad (111)$$

Indeed, since $J_N^d = C_{\alpha_d}$, using Eq. 15 we have:

$$F_N^{-1} J_N^d F_N = F_N^{-1} C_{\alpha_d} F_N \quad (112)$$

$$= D_{\bar{\alpha}_d} \quad (113)$$

Since $\bar{\alpha}_d = \alpha_d F_N$ it is easy to see that $\bar{\alpha}_d$ is the $(d+1)^{th}$ row of F_N , that is (see Eq. 10 and 11):

$$\bar{\alpha}_d = \begin{bmatrix} 1 & \omega^d & \omega^{2d} & \cdots & \omega^{(N-1)d} \end{bmatrix} \quad (114)$$

Then, we have:

$$Z_d = Z_{\bar{\alpha}_d} \bullet \bar{x}_0 \quad (115)$$

$$= Z_{\bar{\alpha}_d} \bullet Z_0 \quad (116)$$

where \bullet stands for element by element multiplication. This equation can also be written

$$Z_d = \omega^{-rd} \Theta_d^* Z_0 \Omega_d \quad (117)$$

with

$$\Theta_d = \text{diag} \begin{bmatrix} 1 & \omega^{Kd} & \omega^{2Kd} & \dots & \omega^{(L-1)Kd} \end{bmatrix} \quad (118)$$

$$\Omega_d = \text{diag} \begin{bmatrix} 1 & \omega^d & \omega^{2d} & \dots & \omega^{(K-1)d} \end{bmatrix} \quad (119)$$

To see where this formula comes from, we must remind that multiplication by a diagonal matrix on the left (right) multiplies the rows (columns) by the elements of the diagonal. Then, denoting $\omega_d = \omega^d$ we can see that:

$$\omega_d^{-r} \text{vec}(\Theta_d)^* \text{vec}(\Omega_d) = \omega_d^{-r} \begin{bmatrix} 1 \\ \omega_d^{-K} \\ \dots \\ \omega_d^{-(L-1)K} \end{bmatrix} \begin{bmatrix} 1 & \omega_d & \dots & \omega_d^K \end{bmatrix} \quad (120)$$

$$= \omega_d^{-r} \begin{bmatrix} 1 & \omega_d & \dots & \omega_d^{K-1} \\ \omega_d^{-K} & \omega_d^{-K+1} & \dots & \omega_d^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega_d^{-(L-1)K} & \omega_d^{-(L-1)K+1} & \dots & \omega_d^{-(L-2)K-1} \end{bmatrix} \quad (121)$$

$$= Z_{\bar{\alpha}_d} \quad (122)$$

If we evaluate by step g we can use:

$$Z_d = Z_{\bar{\alpha}_g} \bullet Z_{d-g} \quad (123)$$

Matrix $Z_{\bar{\alpha}_g}$ can be precomputed. So, at each iteration, we need only N multiplications, which is less complex than computing $\bar{\alpha}_d$ each time. This update requires only $N = LK$ multiplications at each iteration, instead of approximately $N \log_2(N)$.

If we want to allow sub-sample precision (i.e. $g < 1$) we just have to note $\eta = N/2$ and write $\bar{\alpha}_g$ as follows:

$$\bar{\alpha}_g = [1 \ \omega^g \ \dots \ \omega^{\eta-1} \ \omega^{-\eta g} \ \dots \ \omega^{-g}] \quad (124)$$

This is very interesting because sub-sample precision is then allowed without any additional cost due to oversampling (with this method, no oversampling is required). Matrix $Z_{\bar{\alpha}_g}$ is computed as follows:

```
alpha = exp(-i*2*pi*g*[0:eta-1 -eta:-1]/N);
alpha = circshift(alpha,[0 -(r+K)]);
Zalpha(L:-1:1,:) = reshape(alpha,K,L).';
```

Then, at each iteration, updating matrix Z is done by:

```
Z = Z .* Zalpha;
```

6.3. Fast update of matrix Z^+

The approach is similar with the pseudo-inverse: we can reduce the complexity just by computing the first pseudo-inverse matrix and then updating it at each iteration as described below. This update requires only N multiplications at each iteration.

According to discussions above, denoting $Z_0 = USV^*$ the SVD of Z_0 , we have

$$Z_d = \omega^{-rd} \Theta_d^* (USV^*) \Omega_d \quad (125)$$

$$= (\omega^{-rd} \Theta_d^* U) S (\Omega_d^* V)^* \quad (126)$$

This equation directly provides the SVD of Z_d . It follows that Z_d^+ is

$$Z_d^+ = (\Omega_d^* V) S^+ (\omega^{-rd} \Theta_d^* U)^* \quad (127)$$

$$= \omega^{rd} \Omega_d^* Z_0^+ \Theta_d \quad (128)$$

This update can be realized by element by element multiplication :

$$Z_d^+ = Z_{\alpha_d}^* \bullet Z_0^+ \quad (129)$$

If we evaluate by step g we can update the matrix at each iteration by:

$$Z_d^+ = Z_{\alpha_g}^* \bullet Z_{d-g}^+ \quad (130)$$

where $Z_{\alpha_g}^*$ can be precomputed.

6.4. Fast synchronization

To obtain a synchronization, we must evaluate the Frobenius norm of R_d at each iteration.

We can evaluate the computational complexity of this fast algorithm as follows:

- Updating matrix Z_d and Z_d^+ requires $2LK$ flops.
- Computing $Y_d Z_0^+$ requires $qMKL$ flops.
- Multiplying $Y_d Z_0^+$ by Z_0 requires $qMKL$ flops.
- Computing the Frobenius norm requires KL flops

Globally, the algorithm requires $2qMKL + 3KL \simeq 2qMKL$ flops per iteration, which is to be compared to $L(2qMK + 7LK + 20L^2 + K \log_2(LK))$ for the previous version. The gain is, approximately:

$$G \simeq 1 + \frac{7L}{2qM} + \frac{10L^2}{qMK} + \frac{\log_2(L)}{2qM} + \frac{\log_2(K)}{2qM} \quad (131)$$

$$\simeq 21 \quad (132)$$

Computation time on Octave is 54 seconds for the slow version and 1.6 seconds for the fast version, which is then 34 times faster.

As a function of K , the gain decreases until $K = 20 \ln(2)L^2 = 127761$ (which is a huge value, not expected for real-world acquisition devices), where it reaches a minimum of 13.4, then increases slowly, behaving asymptotically as $\log_2(K)/(2qM)$, as shown on Fig. 9.

7. Experimental Results

Using a step $g > 1$ for the evaluation of the synchronization criterion allows a decrease of the computation time by a factor g . A good strategy is to get a coarse synchronization with a step $g > 1$, and then to perform a fine synchronization around the detected peak. The fine synchronization may be even realized at sub-sample precision, if desired. However, a too large initial step must be avoided because it may lead to missing the synchronization peak during the coarse synchronization. In our experiments, we first used a coarse synchronization with step $g = 16$, then a fine synchronization with step $g = 1$ around the coarse synchronization peak. Fig. 10 shows the obtained synchronization data. Fig. 11 and 12 are zooms around the synchronization peak to show more details.

If the response of the filter is not taken into account in Eq. 78 (i.e. assuming an ideal low-pass filter), the synchronization peak is only slightly lower (4.75 instead of 5.22). This is due to the fact that the low-pass filter used in our analog board has good characteristics (almost flat response, and almost linear phase, in the band of interest). The difference would be higher with a lower quality filter. Anyway, it is always better to integrate the filter response in the equations, as we did, because the additional computational cost is negligible.

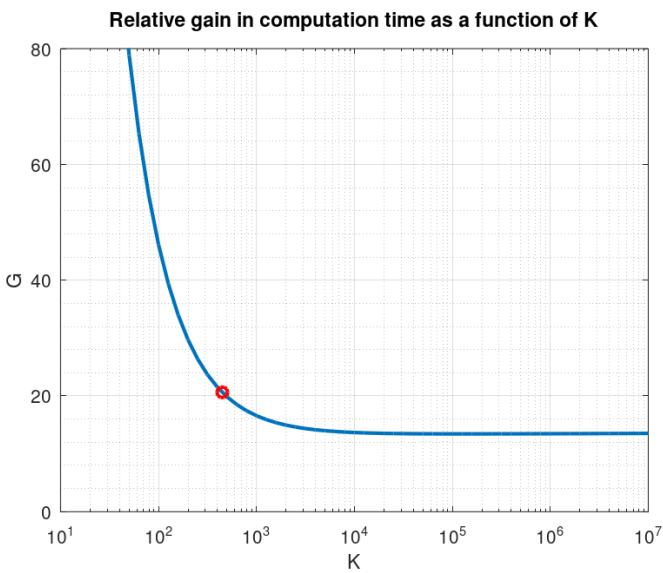


Figure 9. Gain as a function of K (the red dot shows the values corresponding to our acquisition board)

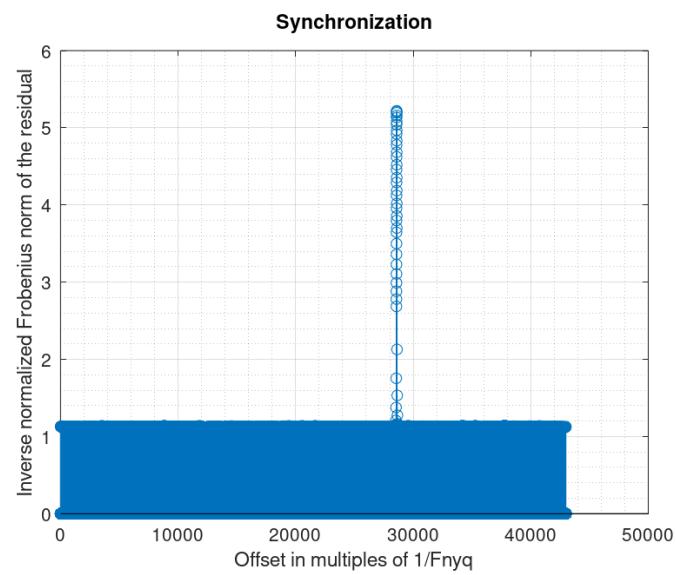


Figure 10. Synchronization (overview)

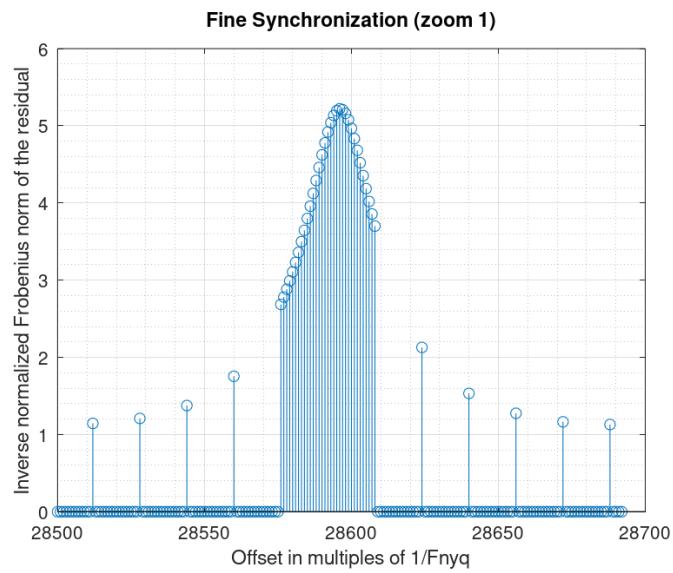


Figure 11. Synchronization (zoom 1)

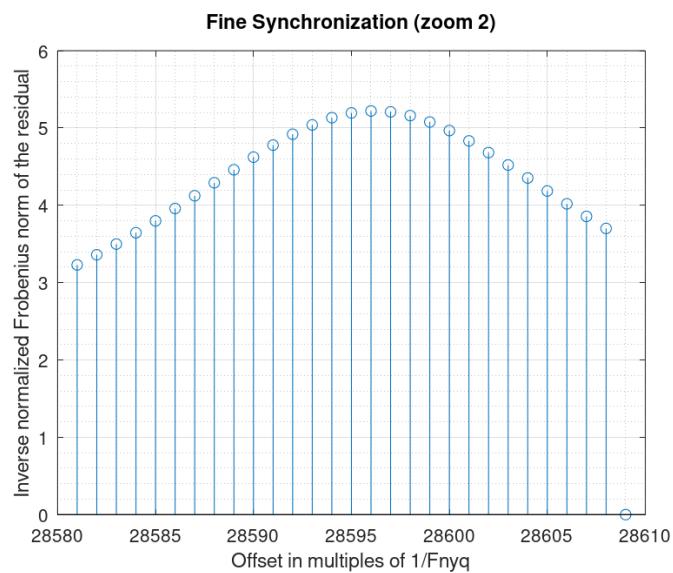


Figure 12. Synchronization (zoom 2)

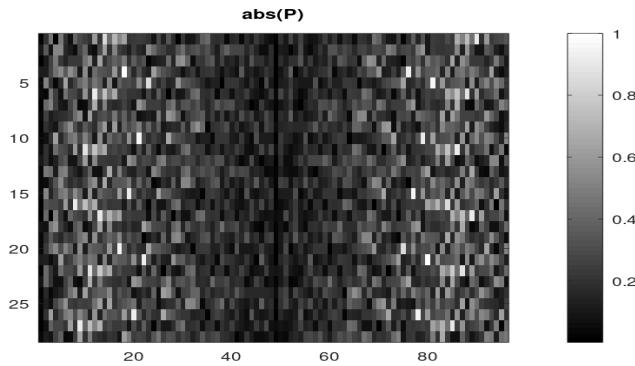


Figure 13. Estimated mixture matrix P (modulus)

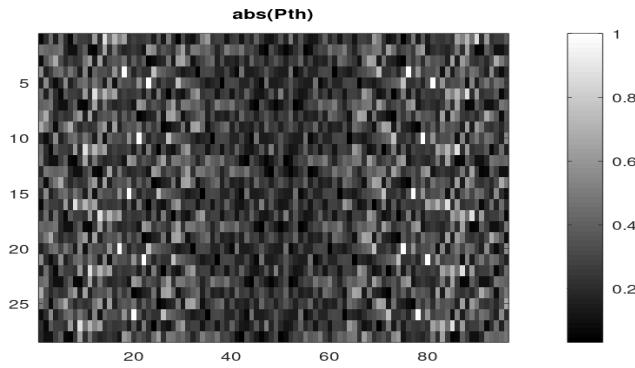


Figure 14. Theoretical mixture matrix P_{th} (modulus)

Once the signal is synchronized, the estimated matrix \hat{P} is obtained using Eq. 104 (at no additional cost because this computation was already part of the synchronization process). Fig 13 shows the modulus of the matrix elements. Here, since we have $M = 4$ physical channels and we have taken $q = 7$, the matrix has $qM=28$ rows (and $L = 96$ columns). The first $q = 7$ rows correspond to the first physical channel, then the next q rows to the second physical channel, and so on.

The theoretical (ideal) matrix P_{th} can be computed using Eq. 100. Since the analog scrambling sequence is the output of a Digital to Analog Converter (DAC), fed with a digital pseudo-random sequence, it is (ideally) piecewise constant in the time domain. In the spectral domain, this is equivalent to a multiplication by the *sinc* function which first zero is at F_{nyq} . We take that into account when computing our theoretical matrix in order to be as close as possible to the real-world matrix. Fig. 14 shows the modules of the elements of this matrix.

The estimated (real-world) mixture matrix \hat{P} may be compared with the theoretical (ideal) mixture matrix P_{th} . On the basis of the elements modules, we can see that their overall aspects are close despite noticeable differences. In fact, the main differences are on the phases of the elements. If we draw the normalized correlation coefficients between the columns of both matrices (Fig. 15), we obtain low values, which confirms significant differences. We remind that a normalized correlation coefficient is the absolute value of the cosine of the angle between two vectors (here the columns of both matrices), then values around 0.5 mean that the angle is about 60 degrees, then the columns are significantly different.

In a previous paper [15], we showed that despite the good quality of our real-world acquisition board, calibration of the system is absolutely required: using the theoretical matrix leads to poor reconstruction performances. Without calibration, the system usually incorrectly detects the active sub-bands, and even when the active sub-bands are correctly

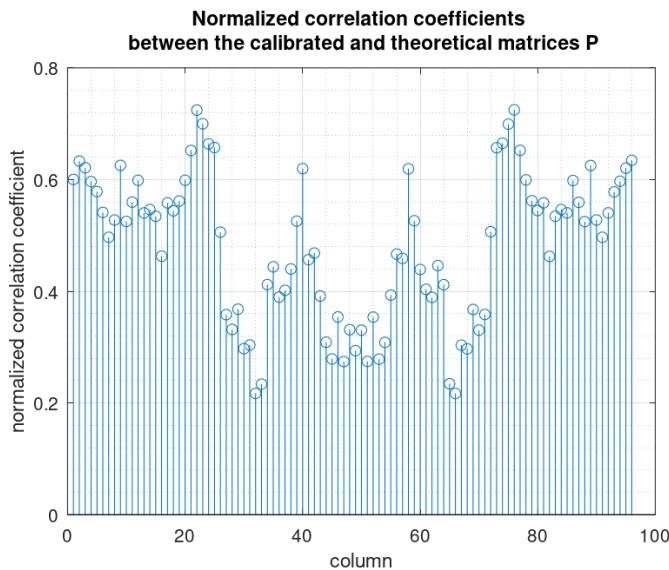


Figure 15. Normalized correlation coefficients

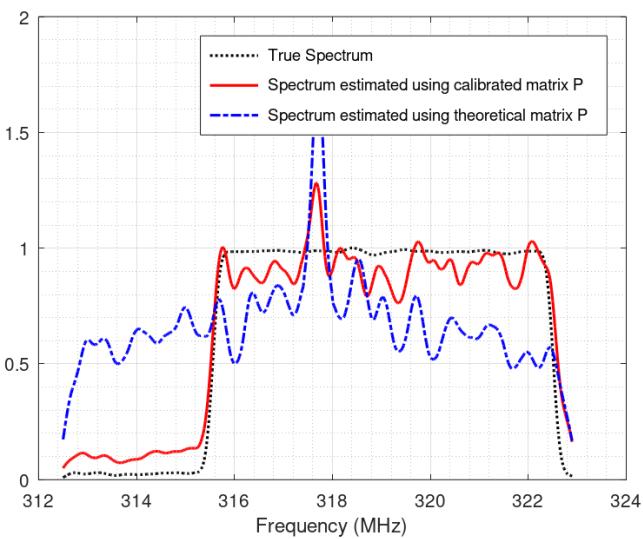


Figure 16. Example of sub-band spectrum reconstruction with and without calibration

identified, the spectrum reconstruction provided by the uncalibrated system is extremely poor, as illustrated on Fig. 16.

This shows that calibration is unavoidable. An interest of the extremely fast calibration procedure proposed in this paper is the possibility to perform quick recalibration of the system as soon as the performances appear to decrease. Indeed, many factors such as temperature, external perturbation, components aging, etc., modify the characteristics of the system, making a recalibration necessary.

8. Conclusion

In this paper we have established an MWC model which is solely based on linear algebra. It is very convenient as a basis for fast and efficient programming of simulation, reconstruction and calibration algorithms related to MWC. It suppresses a previous restriction on the channels augmentation factor, hence providing more degrees of liberty to the systems designer. It also allowed us to develop an extremely fast implementation of a previously proposed calibration algorithm, leading to a gain of a factor greater than 20 on the computation time. This fast calibration allows quick recalibration of the system as soon

as it becomes necessary. Our future work will include more in-depth exploitation of the advantages and interesting properties of this model.

Author Contributions: Conceptualization, G.B.; methodology, G.B., A.F., R.G.; software, G.B.; validation, G.B., A.F., R.G.; formal analysis, G.B., A.F., R.G.; investigation, G.B., A.F., R.G.; resources, G.B., A.F., R.G.; data curation, G.B., A.F., R.G.; writing—original draft preparation, G.B.; writing—review and editing, G.B., A.F., R.G.; visualization, G.B., A.F., R.G.; supervision, R.G.; project administration, A.F. and R.G.; funding acquisition, G.B. and R.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research is partly supported by the IBNM (Brest Institute of Computer Science and Mathematics) CyberIoT Chair of Excellence at the University of Brest. The design of our MWC analog board has been partly supported by the RAPID REACC-RF project whereas the MWC model based on linear algebra has been developed after the end of the REACC-RF project.

Acknowledgments: The authors would like to thank the company Syrlinks for the design of the analog board.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results”

Abbreviations

The following abbreviations are used in this manuscript:

ADC	Analog to Digital Converter
DAC	Digital to Analog Converter
DFT	Discrete Fourier Transform
FFT	Fast Fourier Transform
flop	floating point operation
MWC	Modulated Wideband Converter
SVD	Singular Value Decomposition

Appendix A Mathematical proofs

Appendix A.1 Frequency-domain downsampling matrix Ξ

Using the general radix identity, with $N = ab$, the inverse DFT matrix can be decomposed as:

$$F_N^{-1} = P_{a,b}^{-1}(I_a \otimes F_b^{-1})T_{a,b}^{-1}(F_a^{-1} \otimes I_b) \quad (\text{A1})$$

Then, the frequency-domain downsampling matrix Ξ is:

$$\Xi = F_N^{-1} \left(I_a \otimes 1_b^T \right) F_a \quad (\text{A2})$$

$$= P_{a,b}^{-1}(I_a \otimes F_b^{-1})T_{a,b}^{-1}(F_a^{-1} \otimes I_b) \left(I_a \otimes 1_b^T \right) F_a \quad (\text{A3})$$

$$= P_{a,b}^{-1}(I_a \otimes F_b^{-1})T_{a,b}^{-1}(F_a^{-1} \otimes 1_b^T)F_a \quad (\text{A4})$$

$$= P_{a,b}^{-1}(I_a \otimes F_b^{-1})T_{a,b}^{-1}(I_a \otimes 1_b^T) \quad (\text{A5})$$

$$= P_{a,b}^{-1}(I_a \otimes F_b^{-1})(I_a \otimes 1_b^T) \quad (\text{A6})$$

$$= \frac{1}{b} P_{a,b}^{-1}(I_a \otimes \theta_b^T) \quad (\text{A7})$$

$$= \frac{1}{b} \theta_b^T \otimes I_a \quad (\text{A8})$$

Appendix A.2 Periodic scrambler

Using the general radix identity, with $N = KL$, the DFT matrix can be decomposed as:

$$F_N = (F_K \otimes I_L)T_{K,L}(I_K \otimes F_L)P_{K,L} \quad (\text{A9})$$

Then, we have:

$$\bar{s} = sF_N \quad (A10)$$

$$= (\theta_K \otimes p)(F_K \otimes I_L)T_{K,L}(I_K \otimes F_L)P_{K,L} \quad (A11)$$

$$= (\theta_K F_K) \otimes (pI_L)T_{K,L}(I_K \otimes F_L)P_{K,L} \quad (A12)$$

$$= K(1_K \otimes p)T_{K,L}(I_K \otimes F_L)P_{K,L} \quad (A13)$$

$$= K(1_K \otimes p)(I_K \otimes F_L)P_{K,L} \quad (A14)$$

$$= K(1_K I_K) \otimes (pF_L)P_{K,L} \quad (A15)$$

$$= K(1_K \otimes \bar{p})P_{K,L} \quad (A16)$$

$$= K\bar{p} \otimes 1_K \quad (A17)$$

Appendix A.3 Commutation property of $C_{\bar{x}}^{(K)}$

$$C_{\bar{x}}^{(K)} J_N^K = (K I_L \otimes 1_K) C_{\bar{x}} J_N^K \quad (A18)$$

$$= K(I_L \otimes 1_K) J_N^K C_{\bar{x}} \quad (A19)$$

$$= K(I_L \otimes 1_K)(J_L \otimes I_K) C_{\bar{x}} \quad (A20)$$

$$= K(I_L J_L) \otimes (1_K I_K) C_{\bar{x}} \quad (A21)$$

$$= J_L (K I_L \otimes 1_K) C_{\bar{x}} \quad (A22)$$

$$= J_L C_{\bar{x}}^{(K)} \quad (A23)$$

where we have used (24).

References

- Shannon, C.E. Communication in the presence of noise. *Proc. IRE* 1949, 37, 10–21.
- Nyquist, H. Certain topics in telegraph transmission theory. *Trans. Am. Inst. Electr. Eng.* 1928, 47, 617–644.
- Upadhyaya, V.; Salim, M. Compressive Sensing: Methods, Techniques, and Applications. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Jeju Island, Korea, 12–14 March 2021; IOP Publishing: Bristol, UK, 2021; Volume 1099, p. 012012.
- Fang, J.; Wang, B.; Li, H.; Liang, Y.C. Recent Advances on Sub-Nyquist Sampling-Based Wideband Spectrum Sensing. *IEEE Wirel. Commun.* 2021, 28, 115–121.
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. *IEEE Signal Process. Mag.* 2008, 25, 21–30.
- Donoho, D.L. Compressed sensing. *IEEE Trans. Inf. Theory* 2006, 52, 1289–1306.
- Zelnik-Manor, L.; Rosenblum, K.; Eldar, Y.C. Sensing matrix optimization for block-sparse decoding. *IEEE Trans. Signal Process.* 2011, 59, 4300–4312.
- Abolghasemi, V.; Ferdowsi, S.; Makkiabadi, B.; Sanaei, S. On optimization of the measurement matrix for compressive sensing. In Proceedings of the European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010.
- Mishali, M.; Eldar, Y.C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. *IEEE J. Sel. Top. Signal Process.* 2010, 4, 375–391.
- Mishali, M.; Hilgendorf, R.; Shoshan, E.; Rivkin, I.; Eldar, Y.C. Generic sensing hardware and real-time reconstruction for structured analog signals. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1748–1751.
- Mishali, M.; Eldar, Y.C.; Dounaevsky, O.; Shoshan, E. Xampling: Analog to digital at sub-Nyquist rates. *IET Circuits Devices Syst.* 2011, 5, 8–20.
- Laska, J.N.; Kirolos, S.; Duarte, M.F.; Ragheb, T.S.; Baraniuk, R.G.; Massoud, Y. Theory and implementation of an analog-to-information converter using random demodulation. In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 1959–1962.
- Israeli, E.; Tsiper, S.; Cohen, D.; Shoshan, E.; Hilgendorf, R.; Reysenson, A.; Eldar, Y.C. Hardware calibration of the modulated wideband converter. In Proceedings of the Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12 December 2014; pp. 948–953.
- Adams, D.; Eldar, Y.C.; Murmann, B. A Mixer Front End for a Four-Channel Modulated Wideband Converter With 62-dB Blocker Rejection. *IEEE J. Solid-State Circuits* 2017, 52, 1286–1294.

15. Burel, G.; Fiche, A.; Gautier, R.; Martin-Guennou, A. A Modulated Wideband Converter Calibration Technique Based on a Single Measurement of a White Noise Signal with Advanced Resynchronization Preprocessing. *Electronics*, MDPI, 2022, 11 (5), 774.
16. Mishali, M.; Eldar, Y.C.; Dounaevsky, O.; Shoshan, E. Sub-Nyquist acquisition hardware for wideband communication. In Proceedings of the 2010 IEEE Workshop on Signal Processing Systems, San Francisco, CA, USA, 6–8 October 2010; pp. 156–161.
17. Eldar, Y.C. *Sampling Theory: Beyond Bandlimited Systems*; Cambridge University Press: Cambridge, UK, 2015.
18. Cohen, D.; Tsiper, S.; Eldar, Y.C. Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware. *IEEE Signal Process. Mag.* 2018, 35, 137–166.
19. Liu, W.; Huang, Z.; Wang, X.; Sun, W. Design of a single channel modulated wideband converter for wideband spectrum sensing: Theory, architecture and hardware implementation. *Sensors* 2017, 17, 1035.
20. Wang, P.; You, F.; He, S. An improved signal reconstruction of modulated wideband converter using a sensing matrix built upon synchronized modulated signals. *Circuits Syst. Signal Process.* 2019, 38, 3187–3210.
21. Fu, N.; Jiang, S.; Deng, L.; Qiao, L. Successive-phase correction calibration method for modulated wideband converter system. *IET Signal Process.* 2019, 13, 624–632.
22. Park, J.; Jang, J.; Lee, H.N. A calibration for the modulated wideband converter using sinusoids with unknown phases. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 951–955.
23. Alp, Y.K.; Korucu, A.B.; Karabacak, A.T.; Gürbüz, A.C.; Arikan, O. Online calibration of modulated wideband converter. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 913–916.
24. Byambadorj, Z.; Asami, K.; Yamaguchi, T.; Higo, A.; Fujita, M.; Iizuka, T. A Calibration Technique for Simultaneous Estimation of Actual Sensing Matrix Coefficients on Modulated Wideband Converters. *IEEE Trans. Circuits Syst. I Regul. Pap.* 2020, 67, 5561–5573.
25. Byambadorj, Z.; Asami, K.; Yamaguchi, T.J.; Higo, A.; Fujita, M.; Iizuka, T. High-Precision Sub-Nyquist Sampling System Based on Modulated Wideband Converter for Communication Device Testing. *IEEE Trans. Circuits Syst. I Regul. Pap.* 2021, 69, 378–388.
26. D'Angeli D., Donno A., "Shuffling Matrices, Kronecker Product and Discrete Fourier Transform", *Discrete Applied Mathematics* 233 (2017), 1-18
27. Penrose R., A generalized inverse for matrices. *Proceedings of the Cambridge Philosophical Society*, vol. 51, 1955, p. 406-413
28. Golub G. H., Van Loan C.F., *Matrix Computations*, Third Edition, The Johns Hopkins University Press, Baltimore and London, 1996, ISBN 0-8018-5413-8
29. Cai, T.T.; Wang, L. Orthogonal matching pursuit for sparse signal recovery with noise. *IEEE Trans. Inf. Theory* 2011, 57, 4680–4688.
30. Sondergaard, P.L., "Next Fast FFT Size", Available Online <https://ltfat.github.io/notes/ltfatnote017.pdf> (accessed on 23 07 2022).

Short Biography of Authors

Gilles Burel (Senior Member, IEEE) received the M.Sc. degree from Supélec, France, in 1988, the Ph.D. degree from University of Brest, France, in 1991, and the Habilitation to Supervise Research degree in 1996. From 1988 to 1997 he was with Thomson CSF, then Thomson Multimedia, Rennes, France, where he worked on image processing and pattern recognition. Since 1997, he is Professor of Digital Communications, Image and Signal Processing at the University of Brest. In 2000, he created the « Signal Processing for Telecommunications » research team at the University of Brest, then, from 2008 to 2016, he was Deputy Director of the Lab-STICC CNRS UMR 6285, which is one of the largest French research laboratories in the area of Telecommunications, Information and Signal Processing. He is now with the Security, Intelligence and Integrity of Information (SI3) research team of that laboratory. His present research interests are in signal processing for digital communications, compressed sampling and quantum communications.

Anthony Fiche (Member, IEEE) received the M.S. and Ph.D. degrees from the University of Brest, France, in 2009 and 2012, respectively. Between 2012 and 2014, he was a Postdoctoral Researcher with the Department of Radar and Electro-Magnetic Sensing, ENSTA Bretagne (Lab-STICC UMR CNRS 6285), Brest, where he worked on clutter modeling. Between October 2014 and August 2015, he was a Teaching and Research Temporary Assistant with the University Institute of Technology, Quimper, France. Since September 2015, he has been working with the University of Brest, as an Associate Professor with the Lab-STICC, Team T2I3/SI3. His current research interests include compressed sampling and full duplex communications.

Roland Gautier (Member, IEEE) received the M.Sc. degree in 1995 and the Ph.D. degree in electrical engineering from the University of Nice Sophia Antipolis, in 2000, then the Habilitation to Supervise Research (HDR) from the University of Brest, in 2013. From 2000 to 2001, he was an Assistant Professor with Polytech-Nantes Engineering School, France. Since 2001, he is Associate Professor in electronic engineering and signal processing at the University of Brest, France. From 2012 to 2020, he was the Manager of the Defense Research Axis, Lab-STICC, COM Team. His current research interests include the area of signal processing and digital communications, digital communication intelligence (COMINT), analysis, and blind parameters recognition, multiple-access and spread spectrum transmissions, cognitive

and software radio, cybersecurity, physical layer security for communications, drones communications detection, and jamming. Since 2018, he has been the Holder of the “CyberIoT” Chair of Excellence and since 2020 the Manager of the Lab-STICC, Security, Intelligence and Integrity of Information (SI3) Team.