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Abstract: Grinding processes’ stochastic nature poses a challenge in predicting the quality of the
resulting surfaces. Post-production measurements for form, surface roughness, and circumferential
waviness are commonly performed due to infeasibility in measuring all quality parameters during
the grinding operation. Therefore, it is challenging to diagnose the root cause of quality deviations
in real-time resulting from variations in the machine’s operating condition. This paper introduces a
novel approach to predicting the overall quality of the individual parts. The grinder is equipped with
sensors to implement condition-based maintenance and is induced with five frequently occurring
failure conditions for the experimental test runs. The crucial quality parameters are measured for
the produced parts. Fuzzy c-means (FCM) and Hotelling’s T-squared (T2) have been evaluated to
generate quality labels from the multi-variate quality data. Benchmarked random forest regression
models are trained using fault diagnosis feature set and quality labels. Quality labels from the T2

statistic of quality parameters are preferred over FCM approach for their repeatability. The model,
trained from T2 labels achieves more than 94% accuracy when compared to the measured ring
disposition. The predicted overall quality using the sensors’ feature set is compared against the
threshold to reach a trustworthy maintenance decision.

Keywords: grinding; multivariate statistics; maintenance decision; condition-based maintenance;
condition monitoring; health management; prognostics; fault diagnosis

1. Introduction

Grinding is a key process in bearing production. Being at the end of the process
chain, it is crucial to avoid quality variations that can constitute producing scrap. The
high demand for output productivity and fulfillment of various surface quality parameters
makes the area of grinders and grinding process an active research field [1]. The changing
machine conditions of the bearing ring grinder make it challenging to achieve a predictable
process [2]. Despite the integration of several process monitoring techniques based on
measurement of in-situ cutting forces, power, vibrations, etc, today’s grinding process and
machines struggle to produce parts with desired quality without manual intervention in
setting up the process for the first time [3–5]. This variability of the process, in addition
to the machine’s maintenance condition dependency, requires an in-depth understanding
and knowledge of the influence of the involved parameters and how the deviation in one
affects the other [1]. This is especially valid when it comes to bearing production where the
tolerances on the produced quality are kept very tight.

In any production system, apart from the operational process impacts, the machines
and subsystems are subject to physical degradation [6,7]. To avoid unplanned downtime
the industry focuses on predicting behaviors in equipment that can affect the process
and undertaking actions to prevent failures [8,9]. The idea of machine fault diagnosis
is to determine and classify the severity of an asset or its subsystem failure to achieve
higher productivity and avoid catastrophic breakdowns which have a significant effect
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on maintenance costs [10]. Sophisticated maintenance strategies are thus considered and
practiced for complex and advanced machines in today’s manufacturing. Significant
expenditure goes into maintenance programs where one-third to one-half is wasted due to
ineffective maintenance [11]. To improve the maintenance effectiveness of machine systems
affected by the stochastic nature of machining operations, a well-consulted fault diagnosis
strategy with a maintenance decision support system is needed [12].

Condition-based maintenance (CBM) is the maintenance strategy of using sensors in
machines for the purpose of monitoring, diagnosis, and prognostics to effectively achieve
and plan cost-efficient maintenance while maintaining the uptime of the monitored assets
[13]. The primary challenge is to predict the health state of the equipment through the
use of sensor data with a level of certainty to accurately determine maintenance action
points through effective reasoning on the remaining useful life (RUL) [14]. To achieve the
level of certainty where the action can be taken, a perception has to be developed for the
current state that can lead to the understanding of the failure as part of condition-based
maintenance [11]. To anticipate the manifestation of the failure, as soon as possible, com-
plex analysis methodologies have to be adapted to quantify the chance of the machine’s
operation without fault [15]. Despite that Machine learning (ML) approaches and method-
ologies in failure prediction through collected data for predictive maintenance (PdM) have
been assessed several times [16], failure prognostics is still considered a less explored
task due to its specific nature in relation to the process and equipment [17]. As a result
maintenance decision-making becomes challenging where accuracy and robustness are
crucial in making decisions [18]. Due to limitations in run-to-failure data that can be used
in extrapolating machine conditions, the PdM is approached by obtaining labeled quality
data and interpreting it. The use of these methodologies as maintenance decision support
is an open issue due to the lack of annotations in such data [19,20].

The challenge faced in achieving CBM leading towards PdM for a bearing ring grinder
is addressed in this work. In the previous works [2], the effective use of sensor data,
belonging to both process control and condition monitoring, has been demonstrated for
the purpose of failure diagnostics in the grinding machine. The proposed approach is
to use predicted quality information in addition to failure mode classification to trigger
maintenance action. From the intelligent fault diagnosis of the condition-based maintenance
setup [21], the measured output quality is considered as the evidence to identify if the failure
impacts the operational performance of the machine or subsystem. To prepare quality data
annotations, two approaches have been explored for which respective regression learners
are trained to predict the produced quality using the feature set extracted from sensor
data. Repeatability and reliability, in terms of implementation, of explored approaches are
considered to propose the preferred model of choice. A quality criterion, based on measured
quality parameters, is also developed to verify and validate the overall quality prediction
and performance quantification of the proposed approach. The combination of failure
diagnostics and classification of produced quality gives a complete CBM setup through
reliable and actionable maintenance decision support that is fundamental to adapting PdM
strategy in a bearing ring grinder.

2. Method

The modeling of machine degradation, being a stochastic phenomenon, is extremely
important for failure diagnostics and maintenance planning. Taking advantage of all the
available information from health monitoring data is advantageous to precisely describe
the extent of degradation. In this work, the Lidköping SGB55 grinder, shown in Figure 1, is
equipped with a state-of-the-art real-time data acquisition and health monitoring system [2].
To enable early fault detection in the bearing production process, rough grinding is chosen
as the process to be monitored and analyzed. In the CBM context, the maintenance strategy
has to follow the implementation steps of data acquisition, data processing, and maintenance
decision-making. The maintenance decision-making presented in this paper builds on the
previous work on the development of intelligent fault diagnosis [21] and follows the steps
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as depicted in Figure 2. As shown in Figure 3, this work focuses on the severity estimation
model and its support in maintenance decision-making for the bearing ring grinder.

Figure 1. The Lidköping SGB55 bearing ring grinder was used in this investigation.

Figure 2. Implementation steps of CBM process for failure prognostics. Adapted from [10,13].

2.1. Data Acquisition

Knowing the maintenance history of the SGB55 grinder, critical subsystems i.e. Grind-
ing Slide assembly and Workhead assembly are monitored with sensors installed on strategic
locations [2]. The Figure 4 shows the schematics of the SGB55 grinder and its subsystems.
The machine is equipped with sensors, listed in Table 1, for process control as well as
additional sensors for condition monitoring. The sensor data is acquired using National
Instruments Data Acquisition hardware and the LabView system. The data acquisition
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Figure 3. Failure prediction framework utilizing classification models for failure diagnostics and
regression models as severity estimation for the prediction of produced quality. The bounding box
represents the scope of this article.

system has the capability to simultaneously acquire and store sensor data in sync with the
machine’s cyclic operation. For each grinding cycle, the operational parameters are also
stored in a database for each grinding cycle.

Figure 4. SGB55’s critical subsystems for sensor installations as part of CBM implementation.
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Table 1. List of sensors installed in SGB55 grinder.

Measured quantity Sensor Target subsystem

Force Kistler 9105C Workhead Assembly
Acoustic emission Dittel m6000 Grinding spindle

Power Montronix PS100 Elec. motor (grinding)
Strain Kistler 9238B Workhead Assembly

Acoustic emission Parker U247 Workhead Tooling
Vibration PCB triax A45 Workhead Tooling
Vibration SKF CMSS2200 Elec. motor (grinding)
Vibration SKF CMSS2200 Elec. motor (workhead)
Vibration IMI601A01 Grinding Spindle

Temperature NTCALUG02A103F Grinding Spindle
Temperature NTCALUG02A103F Workhead Spindle
Temperature NTCALUG02A103F Workhead Tooling

2.1.1. Test and Measurement Criteria

A grinding cycle [22] consisting of a roughing stage and spark-out stage, shown in
Figure 5, is programmed to grind the rings. The Roughing stage removes the material
to reach the desired dimension of the rings and the Spark-out stage influences the final
quality parameters that are being measured at the end. Since the data is acquired w.r.t. the
individual grinding cycle, all the ground workpieces for the tests are saved as well. Failure
modes are introduced in the selected subsystem components to simulate failures during
production. To collect enough statistical data, each test is run for 7 dressing intervals where
the grinding wheel is refreshed after each interval. 15 rings are ground in each dressing
interval which gives a total of 105 rings for each test and produces 735 rings for all the
tests. Figure 6 maps the operating conditions for each type of test and the corresponding
rings produced in each test interval. It is infeasible to measure every ring produced using
standard equipment. Hence a subset of the produced rings is chosen to be measured for
the quality parameters, e.g. form, surface roughness, and waviness, as listed in Table 2. As
shown in Figure 6, ring numbers 1, 3, 7, and 15 from each dressing interval are measured
for the quality parameters to evaluate the quality being produced during each test run.
In addition to the measured quality disparity between different tests, the choice of rings
allows capturing the quality variations not only between dressing intervals but also within
the dressing interval of a test.

Table 2. Measured Quality Parameters.

Quality Parameter Equipment Used

Relative Diameter Dial gauge (referenced)
Roundness Waviness SKF MWA 160D

Surface Roughness Form Taylor Hobson - Form Talysurf

2.2. Data Processing

MATLAB R© is used for data and signal processing where the data is accessed from the
network storage and databases and is cleaned and filtered before further processing. Each
cycle is divided into segments as shown in the Figure 5 where the Idle segment, the Steady
Grinding segment, and the Spark-out segment are isolated from each sensor signal for further
processing in feature extraction. To be able to estimate overall ring quality using grinding
cycle data, the Spark-out segment is selected for feature engineering. The table 2 lists the
selected main quality parameters derived from quality measurements. Extreme data points
resulting from measurement errors can skew the analysis, therefore the quality parameters
are cleaned and verified before further processing.
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Figure 5. Grinding cycle to produce parts during tests. The grey line represents the grinding slide
position as it moves into the workpiece. Blue represents the resulting in typical force/power signals
and the segments that are extracted from each sensor signal for every cycle.

Figure 6. The figure presents the failure mode tests where the Test 4, as an example, is expanded to
depict the test procedure with dressing intervals and the rings in each of the dressing intervals. This
gives a total of 105 rings produced for each test.

2.2.1. Feature Engineering

After initial data processing, statistical features [23] are extracted from time and fre-
quency domain components of the sensor data for the selected segment. The 9 main quality
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parameters from measured Form, Surface roughness, and multiple bands of Circumferential
waviness are selected as quality features. The quality data is mean normalized per feature
for the measured rings according to

z =
X− µ

σ
, (1)

where X is the set of observations, µ is the mean of X and σ is the standard deviation of X.
MATLAB’s Principal Component Analysis (PCA) algorithm is used to calculate principal
components through singular value decomposition (SVD).

2.2.2. Model Development

To predict the overall quality as part of the quality severity model, two annotation
approaches are used to prepare labeled data from measured quality parameters.

Approach 1

In the first approach, top 6 principal components are used where the data from 9
quality parameters of measured parts are transformed using the principal component
score of the PCA method in MATLAB. The transformed data is then used to perform
fuzzy c-means (FCM) clustering, which is an unsupervised clustering approach, using the
parameters given in Table 3. The parameters are modified from default values to account
for the possible clusters in the quality data with the reduced provision of overlap of the
learned clusters. The FCM clustering method allows each data point to belong to multiple
clusters with varying degrees of membership. The cluster where the baseline tests, 1 and 7
get higher membership probability is used as the reference cluster for the acceptable quality
and a label for the training data set. The regression model is then trained using the sensor
signal feature set to estimate the probability of membership of the output quality to the
reference cluster.

Table 3. Optional parameters used for the fuzzy c-means clustering algorithm in MATLAB.

Option Value

Nr. of clusters 4
Fuzzy overlap 1.1
Max. Iterations 50

Min. obj. improvement 0.001
Info Disp. flag False

Approach 2

In the second approach, the T2 statistic given by the PCA in MATLAB provides the
statistical measure of the multivariate distance of each observation, i.e. ring quality data,
from the center of the dataset. The PCA function also supports an output method of
Hotelling’s T-Squared Statistic (T2) for the input data according to

T2 = n(x−m)′(cov)−1(x−m), (2)

where x belong to feature set of observations X, m is the distribution mean of X, (x−m)
is the vector distance of an observation point x from m and (cov)−1 is the inverse covariance
matrix of X. The PCA method uses all the principal components to compute the T-squared
statistic such that it is computed in full feature space. The T2 statistic received for the
measured rings becomes the label and is used in training a regression model using the
feature set from sensor signal data. The trained model estimates and thus populates a T2

control chart for the ring produced in each grinding cycle given the feature set from the
cycle data.

To select the regression learner, MATLAB’s regression learner app is used to train
different models ranging from linear and support vector machines to regression trees and
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random forest. The feature set used to benchmark models originates from the sensor data
as mentioned previously in this section. The models are trained separately with quality
labels from both approaches including the labels for baseline tests. The random forest
regression learner with default hyper-parameters, listed in Table 4, came out to be the top
performer in this bench-marking. Hence the random forest regression model is trained
further to be the selected overall ring quality estimator.

Table 4. Hyperparameters used for training of "Fit ensemble of learners for regression" in MATLAB.

Parameter Value

Method Least-squares boosting
Number of ensemble learning cycles 30

Weak learners to use in ensemble Decision tree template
Minimum observations per leaf 8

Learning rate for shrinkage 0.1

2.3. Decision-making

The significance of any maintenance strategy is reflected through the accuracy and
reliability of the maintenance decision-making. The random forest regression learners
estimate the overall quality output of individual grinding cycles in terms of predicting the
produced quality parameters as a multivariate statistical measure. Failure diagnostic is an
important first step which is achieved from random forest classifiers, trained on the feature
set from sensor signal data, to predict if the failure exists and the type of failure mode in
the acquired data. Once the existing failure mode has been identified, the overall produced
quality is predicted.

The random forest regression model from the first approach, trained using data from
the FCM clustering method, estimates the probability of the output quality belonging to the
reference quality cluster. A pre-selected threshold is used to trigger the maintenance action
if the probability falls short of the threshold indicating the failure mode to be severe as the
quality reaches the unacceptable limit. This method relies on the accuracy of the learned
cluster membership used as a label to train the regression model as well as the selection of
the threshold. The FCM clustering, being an unsupervised learning methodology, adds
uncertainty to the decision-making as the training of the regression model relies on the
learned clusters being representative of the failure and reference classes. The threshold
itself adds another dimension that needs optimization based on knowledge and validation
through quality measurements.

As for the second approach where the random forest regression model is trained using
Hotelling’s T-squared statistic, it estimates the T2 statistic by taking feature set input from
sensor data of individual grinding cycles. The T2 statistic can be used to populate the
control chart where the quality deviation can also be visually monitored against an upper
control limit (UCL). The estimated T2 statistic is compared against the UCL to trigger the
maintenance action if the T2 value exceeds the limit. The UCL is calculated based on the
data from the baseline tests 1 and 7 according to

UCL =

(
p(k− 1)(n− 1)
kn− k− p + 1

Fα[p, (kn− k− p + 1)]
)

, (3)

where (1− α)100% is the confidence level, n is the size of the sample set, k is the size of the
subgroup, p is the degrees of freedom and Fα is the F-statistic at α. Note that the UCL does not
depend on the T2 values calculated for the sample set. Keeping the confidence level (1− α)
less than 100% reduces the chances of false positives in the control chart. This comparison
for making the maintenance decision has a dependency on the measurement data itself for
the calculation of UCL which acts as the threshold for the predicted quality. Thus it is more
reliable and repeatable than the clustering approach where the probability of the learned
clusters differing in every iteration is higher. Also, the variation in the incoming data will
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have a different distribution of quality parameters which will influence the cluster learning
significantly.

2.3.1. Predicted quality validation criteria

The rough grinding considered in this work is the intermediate step in the bearing ring
production. Therefore, the produced parts are measured from the tests according to Figure
6. To verify the performance of the proposed model that estimates the overall ring quality,
criteria to classify produced rings to be within specifications are defined. Since the T2

multivariate statistic does not signify variations in the individual quality parameters, entire
quality data from the baseline test is taken as a reference. Individual quality parameters for
the measured rings are categorized as within specifications if they fall in the 20% of the
mean of the parameter of their respective ring number in the baseline test. For a ring to
be considered of acceptable quality, at least 4 of the 9 quality parameters are to be within
specifications. The pseudo-code for this criteria calculation is presented in the algorithm
1. This results in the individual quality parameter to be quantified as Rpq = 0 if within
the range and Rpq = 1 if outside the 20% range. Hence, the rings get classified as either
accepted (Rq ≤ 4

9 | Rq → 0) or rejected (Rq > 4
9 | Rq → 1) as per the proposed quality

criteria. Thus the ground truth of the measured rings allows the validation of the output of
the severity model predictions from the test dataset.

Algorithm 1 Calculating acceptable quality criteria based on the measured quality parame-
ters.

Input:
Q : Measurement data
Pq : List of measured quality parameters
T : List of Tests
D : List of Dressing cycles in T
R : List of ring numbers measured in D
re f : Baseline test
for i ∈ R do

for j← 1 to length of Pq do
q = 1

n ∑n
k=1 Q(re f )kj where k ∈ D

for k← 1 to length of D do
for l ← 1 to length of T do

if q− 0.2 ∗ q < Qijk < q + 0.2 ∗ q then
Rpqijkl = 0

else
Rpqijkl = 1

end if
end for

end for
end for

end for
Rq = 1

n ∑n
k=1 Rpqk where k ∈ Pq

Output:
Rq : Classified rings as per measured quality

3. Results and discussion

This paper is the extension of the previously proposed failure classification framework
[2] to include quality as depicted in Figure 3. As explained in Section 2.1, data from the
installed sensors and machine’s operating parameters are acquired simultaneously for
each grinding cycle from which the statistical features are extracted after filtering and
segmentation. The selected feature set for the failure classification results in greater than
98% accuracy, for both the binary and the multi-class failure mode classifier. The intelligent
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fault diagnosis along with published dataset and feature and sensor selection for failure
mode classification are covered in the implementation of the CBM setup for the bearing
ring grinder [21]. To include quality data in the analysis, the produced rings from the
experimental test runs are measured as described in the Section 2.1.1.

The Figure 7 shows the box plot of surface roughness and circumferential form mea-
surement of all the measured rings. It is to be noted that different types of failure modes
will affect the measured parameters differently as evident for the two quality parameters,
Surface Roughness (Ra) and form, as shown in the Figure 7. The PCA from the 9 measured
quality parameters of the produced parts is shown in Figure 8. Although more than 60%
of the variance is explained by the first two principal components, it is not enough to
separate all the test classes. From the Figure 8, the tests 1, 2, 3, and 7 seem to overlap. Since
tests 1 and 7 are reference baseline tests, they are bound to be closer to each other in the
hyperspace. Due to less severity of the failure modes 2 and 3, statistically, it is possible to
produce parts within tolerance. At this early stage of material removal in production, it
will not be possible to identify quality variations resulting from these failure modes due to
the limited number of in-line quality parameters being measured.

Figure 7. Box plot of Mean Normalized Surface Roughness on the left and circumferential form
measurement on the right. The box plot for each test 1− 7 includes measured rings from all the dress
cycles

As explained in Section 2.2.2 for the Approach 1 using the fuzzy c-means clustering
algorithm, the top 6 principal components are used to learn 4 quality clusters in MATLAB
using the parameters listed in the table 3. The 4 number of clusters better explained the
variations before the clusters within a class start to appear. Examining the raw quality
data from a domain expert perspective also suggests the close existence of the test classes
as shown in Figure 8. The learned cluster centers, in Figure 9, are represented in the first
3 principal component dimensions as learned from the FCM clustering algorithm. The
resulting allocation of each test class for the 4 centers is depicted in a stacked bar plot in the
Figure 10. Since FCM is based on optimization, the cluster allocation varies for each run
of the algorithm which affects the repeatability of the results in this approach. From the
Figure 10, it is evident that the cluster center 4 is the reference cluster and is used as the
quality label to train the regression model.

The selected regression model is the random forest as per MATLAB’s regression
learner app benchmark figures presented in the table 5. Thus the center 4 data, representing
the degree of membership for each measured observation, is used as a label to train the
random forest regression model with an achieved Root Mean Square Error (RMSE) of
0.28 out of the max scale of 1. The low RMSE gives a good predictor which is evident
from the Figure 11 where the test data from tests 1 and 7 are estimated to be belonging to
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Figure 8. The Pareto plot on the left shows more than 95% of the variance explained by 6 principal
components. On the right, the scatter plot for the first two principal components shows the separation
of the test classes 1− 7 as per Figure 6.

Figure 9. The 3-D plot represents the cluster centers where axes are the top principal component axes
from PCA.

the reference cluster. The uncertainty in cluster learning and cluster center membership
allocation makes it difficult to repeatedly use the method for reliable predictability. The
significant difference between the benchmark and the presented first approach’s RMSE
results from FCM-based labeled data is evidence of the inherent fuzzy behavior of the
algorithm directly influencing the performance accuracy.
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Figure 10. Probability or degree of cluster center membership to the individual quality observation
of the respective test classes in 6 PCA dimensions.

Table 5. Bench-marking of regression models in MATLAB’s regression learner app. Quality Label
columns represent the achieved Root Mean Square Error (RMSE) for the labels used from the two
approaches in training the models.

Regression Model Quality Labels 1 Quality Labels 2

Random Forest 0.358 4.960
Regression Tree 0.414 5.743

Support Vector Machine 0.544 6.184
Linear Regression 1.755 11.065

In contrast, the Approach 2 of Hotelling’s T-squared statistic is less uncertain due to
repeatability and reliability based on the available data. The T2 statistic values achieved
from the output of the PCA algorithm in MATLAB are used as labels to train the random
forest regression learner using default hyper-parameters and only modifying the ones listed
in the table 4. The training of the regression learner results in an RMSE of 5.19 out of max
scale T2 value of 26.62 which, in terms of error rate, is lower than the RMSE of Approach 1,
i.e. 19% < 28%. The UCL calculated from the training quality dataset using the equation
3 becomes 9.1 with the confidence level of 97% obtained from α = 0.027. The training
dataset when compared against the UCL is shown in Figure 12.

The regression model estimations on the test set of sensor feature set are shown in
the Figure 13. The UCL is shown as a dashed line and serves as a threshold above which
the quality becomes unacceptable. Even though the test set, comprising of feature set
from the selected segment of the sensor data, is larger than the entire quality dataset, the
results follow the trend of the training set of measured quality. It is only fitting to verify the
regression model predictions using absolute truth which is the measured ring quality itself.
The Box plot in the Figure 14 depicts the classification of rings as accepted or rejected based
on the criteria defined in Section 2.3.1. Note that the criteria result in the classification
of individual rings based on all the measured quality parameters. Hence, the measured
rings that end up out of spec according to quality criteria are represented as red circle
markers in the Figure 13. Most of the markers being above the UCL line of the plot verify
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Figure 11. Predicting the overall ring quality produced in test data. The dashed line represents the
threshold above which the quality is acceptable.

Figure 12. Calculated T2 statistic from training quality dataset using MATLAB’s Principal Component
Analysis (PCA) algorithm. The dashed line represents Upper Control Limit (UCL).
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the performance of the model on the test set with calculated accuracy of more than 93%
on the corresponding rings measured for quality. In comparison, the FCM approach has
less absolute differentiation between the quality data from different test classes which
confirms the overlapping quality clusters in the hyper-space. However, the results from the
T2 statistic are repeatable which is desirable in any failure prediction model.

Figure 13. Predicting the overall produced quality in test data through estimating T2 statistic. The
dashed line represents Upper Control Limit threshold above which the quality is unacceptable. The
red circle markers indicate the rejected rings according to quality criteria.

The results presented here demonstrate the potential of using data from the sensors,
e.g. acoustic emission, vibration, force, power, and temperature, installed for the purpose
of process control and condition monitoring to predict quality in a bearing ring grinder. In
this work, the class balance has been ensured in setting up the experimental tests to avoid
over-representation of any failure mode in the dataset [2]. Although different failure modes
affect the measured quality parameters differently, the defined quality criteria account for
the individual parameter in comparison to the reference quality test. The high accuracy
prediction results achieved on the dataset give the confidence to use the presented approach
in regular production to estimate overall quality for rings using the sensor data only.

4. Conclusion

This paper presents an approach to predicting the overall quality of ground bearing
rings using a feature set from the sensor data. The grinder is equipped with additional
acoustic emission, vibration, force (strain), and temperature sensors for machine health
monitoring purposes. The feature set, resulting from the failure diagnostics using sensor
data, is also used to benchmark the random forest as a top-performing regression model to
estimate the quality of the produced rings. Using Hotelling’s T-squared statistic to generate
quality labels is presented as the preferred choice over fuzzy c-means clustering, for its
repeatable results. The model prediction is compared against a threshold value for ring
quality disposition to trigger a maintenance action. The quality criteria based on individual
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Figure 14. Box plot showing the quantification of the quality produced in each test after the acceptance
criteria have been applied to the measured parts.

quality parameters validate the proposed model performance with 94.2% accuracy on the
test set of measured rings. The use of multivariate quality statistic ensures the consideration
of all quality parameter variations that are otherwise infeasible to measure in-line during
the grinding operation. Thus, this work successfully demonstrates the possibility to use
the data from the installed sensors to not only estimate the condition and performance
but also to predict the produced quality variations of the production grinder. The high
accuracy achieved in predicting the overall quality evidently shows the effectiveness of
such decision support in triggering maintenance action. The potential to improve the
performance through enhanced quality classification criteria needs to be verified through
extended testing and measurement of the produced parts. Additionally, individual quality
parameters can be predicted to take specific remedial actions. However, for the scope of this
work, the herein presented approach demonstrates an efficient and effective implementation
of a maintenance decision support system for a bearing ring grinder. With the availability
of multiple sensor data from the entire grinding cycle, using more sophisticated data
processing and model development can be considered to improve failure prognostics as
part of predictive maintenance.
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