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Abstract

On a rotating disk, two particles bounce at the vertices of a regular polygon
in opposite directions. On the return to the entry point, a clock measures
the time difference, called Sagnac effect. Due to Coriolis effects, the counter-
clockwise and clockwise paths are different. The particular case of the slow
disk where the two trajectories are very close and almost polygonal is studied.
The existence of a transition between a classical and a relativistic regime is
proved. An experimental verification is proposed. Although the two Sagnac
effects seem analogous, in detail their behavior is quite different.

Keywords: Rotating Disk, Special Relativity, Sagnac, synchronization, metric, Corio-
lis, transition, classical.
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1 Introduction

The Sagnac effect is studied as well for matter particles as for light. The Sagnac effect has
been experimentally verified with light, but also with all kinds of particles like neutrons,
electrons or atoms. The classical study, as on the example of a child on a merry-go-round
with a ball, allows to grasp an origin of the effect. For a rigorous study, paths in the shape
of n-sided regular polygons are considered. A circular contour is not directly envisaged
because it is not experimentally feasible with particles or light rays. A free particle does
not follow a circular path. The circle can be approached but the approximation is not
obvious and contains ambiguities. For example, in an optical fiber placed on the rim of a
rotating disk, the trajectory is a broken line for a step index fiber, or undulates on both
sides of the circular axis for a graded index fiber. Moreover, the historical experiment of
Georges Sagnac in 1913 was carried out according to a polygonal contour [1], and most of
the current gyrolasers, used daily in aeronautics for navigation, are made of a triangular
laser cavity. We show that the trajectory in the direction of rotation is not the same as
the one in the opposite direction, both for light and matter, which explains the difference
in time to make a turn. The study starts with the case where the disk and the particle
are classical. Wave or quantum aspects are only considered in Section 5.

2 Classical Sagnac effect

As is appropriate, light will be studied later in the relativistic framework.

2.1 Trajectories and time difference

In the inertial reference frame R′ of the laboratory, where the disk is rotating with the
angular frequency ω, we consider a Cartesian system of coordinates (O′, x′, y′, z′). At the
instant t′ = 0, the particle is at the position A1 = (r, 0, 0) with an initial velocity ~v ′

orthogonal to the rotation axis (O′z′). On figures 1 and 2, the quantities are defined.

Figure 1: α, α′ ∈]π2 ,
3π
2 [

Figure 2: t± = ntn±
Sagnac effect: ∆t = t+ − t−
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For a free particle we then have a rectilinear trajectory:

x′ = v′ cosα′t′ + r, y′ = v′ sinα′t′ and z′ = 0 (1)

The non-inertial reference frame of the disk is denoted R with the coordinates (O, x, y, z).
The center of the disk is O = O′, and at the date t = 0, (O, x) = (O′, x′). We have the
following change of polar coordinates for a counterclockwise rotating disk:

ρ = ρ′, θ = θ′ − ωt′, z = z′ and t = t′ (2)

On the disk, from A1, we throw at t = 0 the particle with the speed v and the direction
α. The additivity of velocities give the initial quantities v′ and α′ in R′:

~v ′ = ~v + ~vA1/R′ ⇒ v′ cosα′ = v cosα, v′ sinα′ = v sinα+ ωr

and v′ = v

√
cos2 α+

(
sinα+

ωr

v

)2
, α′ = arctan

(
sinα+ ωr

v

cosα

)
+ π (3)

Then, for t ∈ [0, tn], we obtain the trajectory on the disk frame:

ρ =
√

(v cosαt+ r)2 + (v sinα+ ωr)2t2

and θ = arctan

(
(v sinα+ ωr)t

v cosαt+ r

)
− ωt+ kπ, k ∈ Z (4)

On figures 3 and 4, with Eq. 4, the difference of trajectories is shown for r = 2 m, a period
T = 120 s, an initial speed v = 0.3 m/s and different values of n.

Figure 3: n = 4. ∆t ' 1.9 s. Figure 4: n = 6. ∆t ' 1.1 s.

A child with a ball on a merry-go-round can easily measure the classical Sagnac effect.

2.2 Centrifugal and Coriolis forces

The curved trajectory in the non-inertial frame can be understood by the action of fictitious
forces. Centrifugal force ~Fc and Coriolis force ~FC :

~Fc = −m~ac, ~FC = −m~aC with ~ac = −ω2−−→OM and ~aC = 2~ω ∧ ~v (5)

For the counterclockwise rotating disk, second Newton’s law give the differential equations:

ρ̈ = ρ(ω + θ̇)2 and ρθ̈ + 2ρ̇(ω + θ̇) = 0 (6)
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2.3 Slow disk

If the particle speed v′ is large compared to the disk speed ωr the trajectories are close to
a succession of straight lines. We have ρ(tn±) = r and θ(tn±) = ±2π/n, then we perform
a series expansion on ωtn, and we obtain an analytical expression of ∆t (Appendix A):

tn± '
2r sin π

n

v
+
r sin π

n

2v
ω2t2n ±

r cos πn
3v

ω3t3n and ∆t ' 16

3

ω3r4

v4
n cos

π

n
sin3 π

n
(7)

The order zero term of the t = ntn expansion is Ln/v, where Ln = 2nr sin(π/n) is the
perimeter of the polygon. There is no order one term. The order two term is the same
for counterclockwise and clockwise particles. So, only the third order contribute to the
classical Sagnac effect ∆t. A first order term would have been proportional to ωAn,
where An = nr2 sin(π/n) cos(π/n) is the polygon area. As we will see, it is the case for
the relativistic Sagnac effect. Thus, although at a first sight the classical and relativistic
effects are analogs, in the details theirs natures are quite different. Also, at the circle limit,
when n tends to infinite, the classical Sagnac effect tends to zero, when the relativistic
one tends to a non-null limit.

3 Relativistic Sagnac effect

3.1 Synchronization of clocks

The clocks in the inertial frame R′ are easily synchronized with Einstein’s synchroniza-
tion method [3]. In the non-inertial disk reference frame R, the proper clocks cannot be
synchronized because they have different rates depending on the radial distance ρ. But,
as the reference frame of the disk is stationary, we can use coordinate clocks [4]. We
imagine a continuous set of infinitesimal observers who remain at rest on the disk, and
each equipped with a ruler, a proper clock and a coordinate clock. First, we synchronized
the O’s proper clock with the coinciding O′’s clock. This is possible, if we assume the
following clock hypothesis: two clocks at the same speed, whatever their acceleration or
spin, undergo the same time dilation. Afterwards, O’s clock is our master clock used to
synchronize all the coordinate clocks, so we have t = t′. This works with a radar method
if we assume the round-trip symmetric (demonstration given in section 3.3).

Figure 5: If the round-trip of the
light rays is symmetric ∆tOA =
∆tAO, and all the coordinate clocks
on the disk can be synchronized with
O’s proper clock. Unlike the coor-
dinate clocks B and B′, which al-
though located at the same radial
distance and therefore at the same
rhythm, cannot be directly synchro-
nized because ∆tBB′ 6= ∆tB′B. On
the other hand, the synchronization
can be done via O where a mirror is
placed.

O emits a periodic light signal, and each of the other observers equals the rate of his
coordinate clock with the signal received from O. O sends a signal at t1 reflected by A

4
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(figure 5), and back to O at t2. When the signal is reflected by A, the time t = (t1 + t2)/2
is assigned to his coordinate clock. A coordinate clock can be compared to a clock radio-
controlled by O’s proper clock.

3.2 Metric

Due to symmetries, we assume the following general form for the metric in the disk refer-
ence system:

ds2 = gµνdx
µdxν = g00c

2dt2 + g11dρ
2 + 2g02cdtdθ + g22dθ

2 − dz2 (8)

In the inertial frame:

ds′2 = g′µνdx
′µdx′

ν
= c2dt′2 − dρ′2 − ρ′2dθ′2 − dz′2 (9)

� According Einstein’s conjecture, we have no length contraction along the radial
direction, then ρ = ρ′ and g11 = −1.

� For a particle at rest in R, ds2 = g00c
2dt2 = ds′2 = c2dt′2 − dl′2, then, with t = t′,

ρ′ = cst and βD
′c = vD

′ = dl′/dt′ the disk speed in R′, g00 = 1− βD ′2 = 1/γD
′2.

� For a particle at rest in R′, ds′2 = c2dt′2 = ds2 = g00c
2dt2 + 2g02cdtdθ + g22dθ

2.
For observers placed at the center of the disk, one at rest in R′ and the other in R:
ω′ = dθ′/dt′ = −dθ/dt = ω. Then ω2/c2 g22 = 2ω/c g02 + βD

′2.

� Einstein’s conjecture illustrated by Ehrenfest’s paradox, gives for a circle centered
on O, the ratio perimeter/diameter P/D = γDπ. From the spatial metric γij =

−gij+g0ig0j/g00 [3], P =
∫ √

γ22dθ, D = 2
∫ √

γ11dρ, and ω2/c2g22 = γD
′2ω2/c2g202−

γD
2R2.

With γD = γD
′, we find the well-known metric in the rotating disk [3]:

ds2 = (1− βD2)c2dt2 − dρ2 − 2ωρ2dtdθ − ρ2dθ2 − dz2 with βD(ρ) = ρω/c. (10)

We use the Lagrangian approach

ds2 = c2dτ2, τ =

∫
L(ρ, θ, ρ̇, θ̇)dt,

∂L

∂ρ
− d

dt

∂L

∂ρ̇
= 0 and

d

dt

∂L

∂θ̇
= 0 (11)

to determine the equations of motion

ρ̈ = ρ(ω + θ̇)2 and ρθ̈ + 2ρ̇(ω + θ̇) = 0. (12)

In relativity, the inertial forces are replaced by metric effects. In a non-inertial reference
frame, we no longer have a Minkowskian metric and a free particle follows a geodesic which
modifies its initially rectilinear and uniform motion to follow a curved and accelerated
trajectory.

It is also interesting to note that the following change of coordinate give the same
metric 10 from the metric 9 in the inertial frame:

ρ = ρ′, θ = θ′ − ωt′, z = z′ and t = t′. (13)

Eventually, the equations of motion and the change of coordinates are the same for the
classical and relativistic theories. The similarity is only apparent, although the trajectories
are the same for the same initial speed in the disk, the absolute time is replaced by the
coordinate time. Moreover, due to different velocity composition laws, the velocity of the
particle in the inertial reference frame is not the same.

5
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3.3 Trajectories and time difference

On the disk, from A1, we throw at t = 0 the particle with the speed v and the direction
α. The law of composition of velocities gives a relation between the velocities measured
by two inertial observers. One observer is at rest in R′, but the second observer cannot be
the one at rest on the disk, because the disk frame is not inertial. So we choose the inertial
reference frame coinciding locally at A1 and t = 0, because, according to the equivalence
principle, for any space-time event there is, locally, a coinciding inertial reference frame.
This local Minkowskian observer, and the neighboring observers, use their standard rulers
and proper clocks to measure the local velocity: vloc = dl/dtloc with dtloc = dτ . Whereas
the non-inertial observer coinciding at rest on the disk, uses his coordinate clock and
obtains the coordinate velocity: v = vcoord = dl/dtcoord, dtcoord = dt = γDdτ according
metric 10, and vloc = γDv. Considering all of the above, the composition of velocities give
the initial quantities v′ and α′ in R′:

~v′ =

(
(vx)loc

γD(1 + βD(vy)loc/c)
,

(vy)loc + ωr

1 + βD(vy)loc/c

)
=

(
v cosα

1 + βDγDv sinα/c
,
γDv sinα+ cβD

1 + βDγDv sinα/c

)
=
(
v′ cosα ′, v′ sinα ′

)
and v′ = v

√
cos2 α+

(
γD sinα+ ωr

v

)2
1 + βDγDv sinα/c

, α′ = arctan

(
γD sinα+ ωr

v

cosα

)
+ π (14)

Then, for t ∈ [0, tn], we obtain the trajectory on the disk frame:

ρ =

√
[v cosαt+ r(1 + βDγDv sinα/c)]2 + (γDv sinα+ cβD)2t2

1 + βDγDv sinα/c

and θ = arctan

(
(γDv sinα+ cβD)t

v cosαt+ r(1 + βDγDv sinα/c)

)
− ωt+ kπ, k ∈ Z (15)

We can now plot the trajectories for all particles and all rotation speeds. In figure 6, the
disk reaches relativistic velocities, these two examples allow to understand fundamental
aspects of the theory. Certainly some physical limitations are imposed on the rotation
speed of the disk. But, even if, the disk can barely have a tiny portion of the speed c (the
maximum disk speed is close to the speed of sound in the disk material), it is important
to know the behavior of a particle close to the maximum value rmax = c/ω seen from an
observer at rest on the disk.
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Figure 6: (a) Light. Even for a ray of light, the trajectories in opposite directions are not
the same. The counterclockwise A+ and clockwise A− areas are different (if A+ ⊂ A− then
A+ < A−), and the well-known formula ∆τ = 4ωA/c2 cannot work. Examples: disk with
a speed of 50%, 40%, 30%, 20% and 10% of c on the rim in the laboratory. Sagnac effect for
r = 2 m: ∆τ ' 21, 18, 15, 10 and 5.2 ns. With the formula ∆τ = 4ωA/c2 ' 27, 21, 16, 11
and 5.3 ns. (b) Relativistic particle with a 95%c initial local speed in the disk frame and
a disk with a speed of 60%c on the rim in the laboratory. Classical case in gray. Even
if the equations of motion are the same, the trajectories are different. Sagnac effect for
r = 2 m: ∆tcoord ' 28 ns, ∆tloc = ∆τ ' 22 ns, classical ∆t ' 34 ns.

Figure 7: Light, v = c at O. ∆tOA = ∆tAO = r/c
.
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We can now demonstrate that the round-trip of the light rays is symmetric between
O and A in figure 5. Let us take in R′ the trajectory of a particle along the O′y′ axis.
The particle passes in O′ at t = 0 and for the initial velocity v′ = v (figure 7). For
t > 0, θ′ = +π/2, ρ = vt and θ = π/2 − ωρ/v. For t < 0, θ′ = −π/2, ρ = −vt and
θ = −π/2 + ωρ/v. So we have ρ = v/ω(π/2∓ θ), ρ(θ) = ρ(−θ) and t(θ) = −t(−θ).

3.4 Slow disk

If the particle speed v′ is large compared to the disk speed ωr the trajectories are close to
a succession of straight lines. We have ρ(tn±) = r and θ(tn±) = ±2π/n and we perform
a series expansion on ε = ωr/v. Indeed v ' v′ and ε << 1. We obtain an analytical
expression of ∆t with βc = v/c (Appendix B):

ωtn± = 2ε sin
π

n
± 2ε2 sin

π

n
cos

π

n

+ ε3 sin
π

n

[
2 sin2 π

n
+ βc

2
(

1− 5 sin2 π

n

)]
± 2ε4 sin

π

n
cos

π

n

[
4

3
sin2 π

n
− 2βc

2 sin2 π

n
+ βc

4
(

1− 2 sin2 π

n

)]
+ o(ε5)

(16)

Coordinate time difference for the slow disk:

∆t ' 4
ωAn
c2

+ 4
ω3r2

v4
An

[
4

3
sin2 π

n
− 2βc

2 sin2 π

n
+ βc

4
(

1− 2 sin2 π

n

)]
(17)

Sagnac effect for the slow disk with ∆τ = ∆t/γD and γD = 1/
√

1− ε2βc2:

∆τ ' 4
ωAn
c2

+ 4
ω3r2

v4
An

[
4

3
sin2 π

n
− 2βc

2 sin2 π

n
+ βc

4

(
1

2
− 2 sin2 π

n

)]
(18)

This formula works for all particles. Whether light or matter.

Luminous Sagnac effect for a regular n-polygon with v = vloc/γD and vloc = c:

∆τ ' 4
ωAn
c2

[
1 +

ω2r2

c2

(
1

2
− 8

3
sin2 π

n

)]
(19)

Sagnac effect in the limit case of the circle, when n tends to infinity, for both light and
matter:

∆τ ' 4
ωA

c2

(
1 +

1

2

ω2r2

c2

)
with A = πr2. (20)

For light rays along a circle, we find the same result starting from the metric with dτ = 0
and ρ = r = cst [2]:

c2dτ2 = 0 = (1− βD2)c2dt2 − c/ω βD2cdtdθ − c2/ω2 βD
2dθ2, (21)

then c2dt2 = βD
2(cdt+ cdθ/ω)2 and dt = ±rdθ/(c∓ωr). By integrating counterclockwise

and clockwise we find back the circular optic Sagnac effect:

∆t = t+ − t− = 4
ωA

c2

(
1− ω2r2

c2

)−1
and ∆τ = 4

ωA

c2

(
1− ω2r2

c2

)− 1
2

. (22)
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4 Transition

In the limit of the slow disk, in formula 18, appears the classical regime (c → +∞), the
relativistic regime (vloc → c) and the transition between the two. In figure 8, for each
curve we keep constant the ratio ε between the disk speed ωr on the rim and the initial
particle coordinate speed v on the disk. In the classical regime the Sagnac effect is inversely
proportional to βc, whereas in the relativistic regime the Sagnac effect is proportional to
βc. At the transition, we obtain a minimal value of ∆τ :

∆τ minimal for βcmin = 2/
√

3 ε sin(π/n). (23)

For a circular path, there is no transition, and the behavior is always relativistic. In the
relativistic regime the Sagnac effect is independent of the speed v of the particle. It works
for a light ray in a medium or a particle of matter. This is the so called universality of
the Sagnac effect [7].

Figure 8: Sagnac Effect, transition from classical to relativistic. Slow disk with ωr/v =
ε = cst << 1. Classical limit: ∆τ = (16/3 ε3An sin2(π/n)/rc)/βc. Relativistic limit:
∆τ = 4ωAn/c

2 = (4εAn/rc)βc. Figure for r = 2 m and n = 4.

5 Proposals for experiments

5.1 Particle accelerator

An experiment to be carried out to highlight the transition between classical and rela-
tivistic Sagnac effects. We have a particle gun that allows us to control the velocity of the
particles. The rotation speed of the platform is also adjustable. The disk is slow, and in
order to maintain the ratio ε between the rotating disk speed and the particles velocity,
we change the disk angular speed proportionally to the particles speed.

If we use an electron gun, the counterclockwise and clockwise charges will interact
electrically at the midpoint, so we can use a neutral particle gun, or send counterclockwise

9
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and clockwise charged particles one after the other.
Finally the simplest way is to have a cyclic particle accelerator placed on a rotating

platform (figure 9).

Figure 9: The apparatus uses mag-
netic fields to bend the charged par-
ticle trajectories into a hexagon.
The particle speed is controlled and
kept constant. The number of revo-
lutions and the time are measured.
The particles always travel the poly-
gon in the same direction and it is
the platform that changes the direc-
tion of rotation for the t+ and t−
measurements.

In practice, for a disk with a diameter of 4 m which rotates with a speed on the rim
10000 times lower than the speed of the particles, the Sagnac effect is around a femtosecond
near the transition. To increase the effect, the particle can make a large number N of
turns. On figure 10, N = 106 and the Sagnac effect is around a nanosecond.

Figure 10: For r = 2 m, n = 6, ε = 5 ×
10−5 and N = 106.
If βc = βcmin ' 2.9× 10−5 then T ' 28 s,
N∆τ ' 0.2 ns and Nt ' 22 min.
If βc = 10βcmin then T ' 2.8 s, N∆τ ' 1
ns and Nt ' 133 s.
If βc = βcmin/10 then T ' 280 s, N∆τ '
1 ns and Nt ' 3.7 h.

In the relativistic regime the disk rotates faster and one can wonder if the centrifugal
force does not deform the platform too much. Indeed the platform is not perfectly rigid
and we have to consider the mechanical constraints exerted on the disk by the acceleration.
We model the disk by a homogeneous cylinder of density ρ and modulus of rigidity E.
According to Hooke’s law σ = Eε with σ the pressure exerted and ε = ∆l/l the relative
deformation. Due to its elasticity, the disk becomes wider and its radius increases. We
calculate the extension by integrating over the entire disk and we find ∆r = ρω2r3/9E.
Fortunately, the consequences on the Sagnac effect are negligible. For example on figure
10, with a marble platform, if we consider the relativistic regime with βc = 10−3 and
T = 0.84 s, then ∆r ' 5 µm, and ∆τ remains almost the same with N∆τ ' 3.47 ns.

10
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5.2 Atom gyrometers

With the current progress of atom lasers, we can propose another experiment. In the
Sagnac experiment, instead of looking at the difference in time when the rays return, we
can consider the wave aspect of light and measure the phase shift. Nowadays, we do the
same with atoms that follow two different paths and then interfere in a Mach-Zehnder-type
interferometer [11] (figure 11). The inherent sensitivity of atom gyrometers exceeds that
of photon gyrometers by several orders of magnitude.

Figure 11: (a) Mach-Zehnder interferometer: a coherent light source S, such as a laser,
emits a light ray which encounter at O a first half-silvered mirror, so half of the light
is transmitted to the mirror M1, while the other half is reflected by M2. Both beams
recombine at P with the second beam splitter and interfere on the detector I. Due to
front-surface reflections the interference is destructive at J . (b) Atom interferometer:
compared to the traditional optical interferometer (a), light and matter invert their roles.
The beam of atoms S is split by a laser into two beams, which after a certain distance are
redirected to each other with another laser. Appropriately used lasers act as splitters and
mirrors for coherent atomic beams.

In the case below, the path is diamond-shaped, and the light pulses are considered to
act as splitters and mirrors (figure 11 (b)). The calculations of subsection 3.4 are resumed
with ρ(tA = 0) = rM , ρ(tB±) = rm and θ(tB±) = ±π/2. A series expansion on ε = ωrM/v
is performed. Considering symmetries ∆tAB = ∆tBC , then:

∆t ' 2
ωA

c2
+

2

3

ω3l2A

v4

(
1− 3

2
βc

2

)
with l =

√
r2M + r2m (24)

In the context of the experiments carried out, v << c, βD << 1 and ∆τ ' ∆t, so:

∆τ ' 2
ωA

c2
+

2

3

ω3l2A

v4
(25)

Using the result of J. Anandan [12], ∆φ/π = (2mc2/h)∆τ , then:

z =
∆φ

π
' 4mωA

h

(
1 +

c2ω2l2

3v4

)
(26)

In figure 12, two curves are plotted and the results of the Lenef et al [13] and Gustavson
et al [14] experiments are compared. The angular rates ω are of the order of the Earth’s
rotation rate and a phase shift of several fringes is obtained. The Lenef et al experiment
use a beam of Na atoms with v ' 1030 m/s, rM ' 0.66 m, rm ' 27, 8 µm, A ' 37 mm2,
and ω ranges up to 146 µrad/s. The Gustavson et al experiment use a beam of Cs atoms
with v ' 290 m/s, rM ' 0.96 m, rm ' 11, 5 µm, A ' 22 mm2, and ω ranges up to 145
µrad/s. In this last experiment the transition is approached.
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Figure 12: (a) Two experiments results represented on the dimensionless curve ∆τ/∆τmin
versus x = β/βmin with βmin = lε/

√
3rM and ∆τ/∆τmin = 1/2(x+ 1/x). (b) The fringe

shift compared with the relativistic case: z/zrel = 1 + 1/x2 with zrel = 4mωA/h.

6 Discussion

As indicated in section 3.1, the synchronization of the clocks on the periphery of the disk
is not symmetrical. Thus, if we apply the standard protocol of symmetrical radar echoes,
we artificially obtain a time gap which corresponds in fact to the Sagnac effect. As Dennis
Dieks explains [8] ”while establishing standard simultaneity along the way, we create a
‘time gap’ [...] This is the celebrated Sagnac effect”. We have a full synchronization on the
disk which works perfectly, and the rigid space-filling lattice is permanently synchronized
with the master clock [4].

With our coordinate system on the rotating disk, we cannot study the case where
ρ > rmax. This is only an artifact due to the fact that the coordinate system is built
with the help of clocks at rest on the disk. But the disk cannot have a physical existence
beyond rmax. Nevertheless it goes without saying that the particle exists beyond rmax,
we see it in the inertial reference frame where the trajectory is rectilinear, uniform and
infinite.

In subsection 3.2, we assume that γD = γD
′. However, these are two quantities of

distinct natures, and, a priori, different. γD represents the curvature of space, proper to
R, while γD

′ represents the time dilation between two inertial reference frames, Rloc and
R′. On the other hand, the γD = γD

′ assumption is quite logical because the reasoning
of the Ehrenfest’s paradox is based on local inertial reference frames and in this case the
length contraction factor equals the time dilation factor. The experiment proposed in
Section 5 can be an opportunity to verify this hypothesis.

Note that, as set in subsection 3.2, γD
′ = 1/

√
1− βD ′2 with βD

′c = vD
′ = w′ρ′ = wρ

the disk speed with respect to the laboratory at ρ′ = ρ, but, a priori, the laboratory
speed vD with respect to the disk at ρ is different: vD 6= vD

′. Indeed, for an observer
at rest at ρ on the disk, the laboratory make one revolution of distance 2πργD during
τ = T/γD

′ then the speed measured locally is vD loc = γDγD
′vD

′, the coordinate speed

is vD = γDvD
′, and, with γD = γD

′, we obtain γD =
√

1 + βD
2. The observer of the

disk sees the laboratory rotating faster than the observer of the laboratory sees the disk
rotating, especially as the observers get closer to rmax.

We find the limit of the circle from the polygon by applying the assumptions of special
relativity (including the principle of local equivalence). We then understand that the
trajectory is fundamentally polygonal (and not cicular), and that the counterclockwise
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and clockwise trajectories are different. Thus the luminous Sagnac effect does not conflict
with the principle of local isotropy of the speed of light as suggested, for example, by
Selleri and Klauber [8].

It is sometimes stated that there is no non-relativistic Sagnac effect. This is of course
true in the relativistic regime, but by simply considering the Sagnac effect as the difference
in travel time of any particle depending on the direction of rotation of the disk, we have
proved that the effect also has a classical component. The Sagnac effect was first considered
in reference to the historical experiment carried out with light in 1913 by Georges Sagnac
[1], the effect has then been generalized for the particles of matter always with ∆τ =
4ωA/c2, but by omitting the classical term of equation 18.

In this article, we study the rotating disk from the point of view of special relativity, we
do not talk about general relativity or gravitation, because the Riemann curvature tensor
is identically null [10] and the spacetime flat, which is normal because we can switch
to an inertial reference frame by a global change of coordinates. But often the rotating
disk is treated in the framework of general relativity, for example in Landau’s book The
Classical Theory of Fields [3], the rotating disk is studied in the chapter Particle in a
Gravitational Field. As in Rindler’s book Relativity, Special, General, and Cosmological
[4], it is dealt with in the chapter General Relativity. Same in the book of Møller The
Theory of Relativity [5]. And especially in Einstein’s book Relativity: the Special and
General Theory [6], which is consistent because the primary goal was to find a guiding
thread to build the general relativity. Let us quote Malykin [9]: “the use of [the general
theory of relativity] is unnecessary when purely kinematic effects are considered”. The
two approaches give, of course, the same results, but, in my opinion, it is not justified in
this context to use general relativity, it complicates unnecessarily, it hides the simplicity
and depth of special relativity, and it can mislead the uninitiated.

7 Conclusion

We have shown that the well known formula of the Sagnac effect ∆τ = 4ωA/c2 corre-
sponds to the time difference of particle paths in opposite directions for a slow disk in the
relativistic regime. In the general case we no longer have a closed loop, we have different
trajectories conterclockwise and clockwise, and the results differ. Here, the definition of
the Sagnac effect has been considered in a broad way including particles of non-zero mass,
we then highlight, in the particular case of the regular polygon, two types of behavior and
a transition between a slow Sagnac effect which can be explained by classical mechanics
and a fast Sagnac effect of relativistic nature. It would be very interesting to conduct
experiments to study the transition. The more we know about the theoretical aspects of
the Sagnac effect, the better the accuracy of future gyrometers can be.
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A Classical

Slow disk: v′ >> ωr, v ' v′, T >> ntn, ωtn = 2πtn/T << 1


r2 = (v cosαntn + r)2 + (v sinαn + ωr)2tn

2

tan θ′n =
y′n
x′n

⇒ tan (±2π/n+ ωtn) =
(v sinαn + ωr)tn
v cosαntn + r
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We eliminate αn:

v cosαntn
r

=
1√

1 + tan2 θ′n
− 1 if n > 4 then x′n > 0

v sinαntn
r

= ± 1√
1 + 1/ tan2 θ′n

− ωtn if clockwise y′n > 0 else y′n < 0

then
vtn
r

=

√√√√( 1√
1 + tan2 θ′n

− 1

)2

+

(
± 1√

1 + 1/ tan2 θ′n
− ωtn

)2

vtn/r order zero.

1√
1 + tan2 θ′n

= |cos θ′n| = cos

(
2π

n
(1± x)

)
, with x =

ntn
T

<< 1 and x′n > 0,

and
1√

1 + 1/ tan2 θ′n
= |sin θ′n| = sin

(
2π

n
(1± x)

)
If x′n < 0 the signs balance out and we obtain the same expression.

then
vtn
r

=

√(
cos

(
2π

n
(1± x)

)
− 1

)2

+

(
± sin

(
2π

n
(1± x)

)
− ωtn

)2

=

√
2− 2 cos

(
2π

n
(1± x)

)
∓ 2 sin

(
2π

n
(1± x)

)
2π

n
x+

(
2π

n

)2

x2

Series expansion on x:

vtn
r︸︷︷︸

order 0

= 2 sin
(π
n

)
︸ ︷︷ ︸

order 0

+ 2 sin
(π
n

)(πx
n

)2
︸ ︷︷ ︸

order 2

± 8

3
cos
(π
n

)(πx
n

)3
︸ ︷︷ ︸

order 3

+...

= 2 sin
(π
n

)
+

1

2
sin
(π
n

)
(ωtn,1)

2 ± 1

3
cos
(π
n

)
(ωtn,0)

3 + ...

= 2 sin
(π
n

)
+ 2

(ωr
v

)2
sin3

(π
n

)
± 8

3

(ωr
v

)3
cos
(π
n

)
sin3

(π
n

)
+ ...

With at order one: tn,1 = tn,0 = 2r/v sin (π/n).

B Relativistic

Slow disk: v′ >> ωr, v ' v′ and ε = ωr/v << 1.
0 6 β = vloc

c = γD
v
c 6 1, 0 6 βc = vcoord

c = v
c 6 β 6 1, βDβ = εβ2c and βD = ωr/c.

If ε << 1 then βc ' β.

r2 =
[v cosαntn + r(1 + βDβ sinαn)]2 + (β sinαn + βD)2c2t2n

(1 + βDβ sinαn)2

and tan (±2π/n+ ωtn) =
(β sinαn + βD)ctn

v cosαntn + r(1 + βDβ sinαn)
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

v cosαntn
r

= (1 + βDβ sinαn)

(
1√

1 + tan2 θ′n
− 1

)
if n > 4 then x′n > 0

v sinαntn
r

=
1

γD

(
± 1 + βDβ sinαn√

1 + 1/ tan2 θ′n
− ωtn

)
if counterclockwise y′n > 0 else y′n < 0

ωtn,p+1 = ε(1 + βDβ sinαn,p−1)×√(
cos

(
2π

n
± ωtn,p

)
− 1

)2

+
1

γD2

(
± sin

(
2π

n
± ωtn,p

)
− ωtn,p

1 + βDβ sinαn,p−1

)2 (27)

sinαn,p = ε
1 + βDβ sinαn,p−1

γDωtn,p+1

(
± sin

(
2π

n
± ωtn,p

)
− ωtn,p

1 + βDβ sinαn,p−1

)
(28)

βDβ = εβc
2γD, γD = 1/

√
1− ε2βc2 and we consider ωtn as a function of ε.

First non-null orders for a series expansion on ε: ωtn,1 = 2ε sin π
n and sinαn,0 = ± cos πn .

Then with Eq. 27 and p = 1, we obtain ωtn,2, and with Eq. 28 sinαn,1:
ωtn,2 = 2ε sin π

n ± 2ε2βc
2 sin π

n cos πn and sinαn,1 = ± cos πn − 2ε sin2 π
n .

We iterate and we obtain:
ωtn,3 = ωtn,2 + ε3 sin π

n(2 sin2 π
n + βc

2(1− 5 sin2 π
n))

and sinαn,2 = sinαn,1 ∓ 3
2ε

2 sin2 π
n cos πn(2 + βc

2).
Then: ωtn,4 = ωtn,3 ± ε4 sin π

n cos πn [83 sin2 π
n − 4βc

2 sin2 π
n − 2βc

4(2 sin2 π
n − 1)].
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