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Abstract

This paper presents additional results of the generalized bathtub model for urban networks, including a simpler 
derivation and exact solutions for uniformly distributed trip lengths. It is shown that in steady state this trip-based 
model is equivalent to the more parsimonious accumulation-based model, and that the trip-length distribution has 
merely a transient effect o n t raffic dyn amics, whi ch con verge to the  sam e poi nt in the  mac roscopic fundamental 
diagram (MFD). To understand the statistical properties of the system, a queueing approximation method is proposed 
to compute the network accumulation variance. It is found that (i) the accumulation variance is much larger than 
predicted by traditional queueing models, due to the nonlinear dynamics imposed by the MFD, (ii) the trip-length 
distribution has no effect on the accumulation variance, indicating that the proposed formula for the variance might 
be universal, (iii) the system exhibits critical behavior near the capacity state where the variance diverges to infinity. 
This indicates that the tools from critical phenomena and phase transitions might be useful to understand congestion 
in cities.
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1. Introduction1

The aggregated modeling of urban networks has a long history dating back to Godfrey (1969), and numerous
theories and models have been published since; see Johari et al. (2021) for a recent review and reference therein. The
starting point for all macroscopic urban models is the reservoir (or bathtub) model for cities, which simply states the
conservation of Q(t), the number of vehicles inside the network at time t:

Q′(t) = λ(t) − µ(t) (1)

where λ(t), µ(t) give the inflow and outflow of the network, respectively, in units of flow. The main assumption in
these models is that the speed of vehicles inside the network at time t, v(t), is identical for all vehicles and given by
the speed macroscopic fundamental diagram (speed-MFD):

v(t) = V(Q(t)) (2)

Unlike the inflow λ(t), which can be easily determined, the network outflow µ(t) can be difficult to formalize due to
its convoluted dependence on the probability distribution of trip lengths. Depending on the assumptions to formulate
the outflow function µ(t), the literature can be divided into accumulation-based (Daganzo, 2007, Geroliminis, 2009,
Yildirimoglu et al., 2015) and trip-based models (Arnott, 2013, Daganzo and Lehe, 2015, Leclercq et al., 2017,
Lamotte and Geroliminis, 2018, Mariotte et al., 2017, Mariotte and Leclercq, 2019, Leclercq and Paipuri, 2019,
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Batista et al., 2019, Paipuri et al., 2019). Accumulation-based models assume that the outflow is given by the network
production divided by the average trip length, ℓ:

µ = Q V(Q)/ℓ. (accumulation-based model) (3)

This expression for the outflow was first presented in Daganzo (2007) assuming a constant trip length, but it turns out2

to have its origins in Vickrey (1991) although it was not published until Vickrey (2020) as described in Jin (2020).3

As pointed out in this last reference, Vickrey (1991) already shows that (3) follows from assuming exponentially4

distributed trip lengths, an important observation that surfaced in the literature not until Arnott (2013) who considers5

it an unrealistic assumption. Leclercq et al. (2015) shows that the accumulation-based models suffer from significant6

numerical viscosity even when the time step is small. Outflows may then overreact to sudden demand surge leading to7

inconsistent information propagation between opposite perimeter boundaries. They also point out that the assumption8

of constant trip length for all vehicles inside a reservoir is not consistent with what is observed when the local dynamics9

are taken into account. This has prompted several extensions of the accumulation-based model, including multi-10

reservoir partitions with explicit calculation of trip distances, possibly as a function of congestion levels (Batista11

et al., 2021, Yildirimoglu and Geroliminis, 2014, Batista et al., 2019, Batista and Leclercq, 2019, Yildirimoglu et al.,12

2018, Ramezani et al., 2015).13

Trip-based reservoir models have been proposed that guarantee that all vehicles travel their own trip length, at the
expense of mathematical tractability. Originally proposed by Arnott (2013) on a footnote, these models recognize that
each commuter i has different trip lengths, Li, which has to equal the distance traveled inside the network during their
trip time Ti(t) at the prevailing speeds:

Li =

∫ t+Ti(t)

t
V(Q(s)) ds. (trip length) (4)

The resulting outflow function was proposed implicitly in Lamotte and Geroliminis (2018) without proof, arguing that
it is a direct consequence of Eq. (4) when the system is initially empty:

µ(t) = V(Q(t))
∫ t

0
λ(s) fs

(∫ t

s
V(Q(u)) du

)
ds, (trip-based model) (5)

where fs(x) is the probability density of trip lengths of vehicles entering the network at time s. Jin (2020) introduces14

one spatial dimension to the problem, x, the remaining distance to reach the destination, and shows that when the15

distribution of trip lengths f in Eq. (5) is exponential with mean ℓ, we obtain the accumulation-based model Eq.16

(3). All attempts in the literature to solve the trip-based model for other distributions have been numerical using17

discrete-event simulation (Mariotte et al., 2017, Lamotte and Geroliminis, 2018). To the best of our knowledge, with18

the exception of Jin (2020), no other attempts have been made to develop analytical solutions to the trip-based model.19

To fill this gap, section 2 below uses the framework proposed in Jin (2020) to derive analytical solutions of the trip-20

based model and to characterize its steady state, which coincides with the accumulation-based model independently of21

the trip-length distribution. Perhaps a more important gap in the literature is that the stochastic nature of arrival flows22

has been completely neglected, at least when it comes to analytical formulations; see Johari et al. (2021). Section23

3 fills this gap by drawing the analogy with the M/G/∞ queue and shows that accumulations exhibit a much larger24

variance than predicted by the M/G/∞ queue, due to the nonlinear dynamics imposed by the MFD. Finally, discussion25

and outlook are presented in section 4.26

2. Jin’s formulation: Alternative derivation and additional results27

The framework proposed in Jin (2020) introduces one spatial dimension to the problem, x, such that a vehicle
trajectory xi(t) gives the remaining distance to reach commuter i’s destination, and x′i (t) = −v(t). By considering the
probability density function of remaining trip distances, Jin (2020) derives the conservation law that unifies existing
reservoir models. Alternatively, one can simply note that these vehicle trajectories must obey the conservation law
partial differential equation (PDE):

∂

∂t
k(t, x) +

∂

∂x
q(t, x) = Λ(t, x) (6)

2
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where k(t, x) is the density of vehicles in the region at time t whose remaining distance is x, q(t, x) is the corresponding
flow, and the source term Λ(t, x) is the net inflow to the system in units of flow per km. As opposed to regular traffic,
in our problem (i) there is no fundamental diagram relating flow to density and therefore Eq. (6) it is not a hyperbolic
conservation law such as the kinematic wave model. Instead, given assumption Eq. (2) above, the flow is given by the
fundamental traffic flow relationship:

q(t, x) = v(t) · k(t, x), (7)

which turns the conservation law Eq. (6) into the transport PDE:

∂

∂t
k(t, x) − v(t)

∂

∂x
k(t, x) = Λ(t, x) (8)

where the negative sign follows from x′i (t) = −v(t). Other important differences compared to regular traffic are that
(ii) the spacing between vehicle trajectories is immaterial because these vehicles could be in different links of the
network; (iii) Λ(t, x), x > 0 only includes arrivals to the region because all departures take place at x = 0. It follows
from (iii) that the outflow from the region is simply the flow at x = 0, i.e. µ(t) = q(t, 0), or equivalently using Eq. (7)2:

µ(t) = v(t) · k(t, 0) (generalized bathtub model) (10)

It follows that all we need to solve the model is k(t, 0) but unfortunately its analytical derivation quickly becomes
intractable. For clarity, let

z(t) ≡
∫ t

0
V(Q(u)) du (11)

and the distance traveled by a vehicle during time interval (s, t):

zt
s ≡ z(t) − z(s) =

∫ t

s
V(Q(u)) du. (12)

The initial value problem (IVP) solution to the transport PDE Eq. (8) is well known in the literature. Given initial
densities k(0, x) = g(x), the solution can be expressed as:

k(t, x) = g(x + z(t)) +
∫ t

0
λ(s) fs

(
x + zt

s

)
ds, (13a)

z′(t) = V(Q(t)), (13b)

Q(t) =
∫ ∞

0
k(t, x) dx (13c)

which cannot be solved analytically in our case. However, it can be used to show the following:28

Proposition 2.1. Lamotte and Geroliminis’s (Lamotte and Geroliminis, 2018) conjecture in Eq. (5) can now be29

proven.30

Proof. From Eq. (13a) we see that for x = 0 and empty initial conditions:

k(t, 0) =
∫ t

0
λ(s) fs

(
zt

s

)
ds, (14)

which in combination with Eq. (10) gives the desired result.31

2This result can also be obtained by integrating the conservation law Eq. (8) for all trip distances, which gives the generalized bathtub model:

Q′(t) = λ(t) − v(t) · k(t, 0) (9)

after noting that λ(t) =
∫ ∞

0 Λ(t, x) dx,
∫ ∞

0 ∂ k(t, x) /∂x dx = k(t,∞) − k(t, 0) and that k(t,∞) = 0.

3
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2.1. Analytical solutions for Q(t)32

Although Eq. (13) cannot be solved analytically for k(t, x), we have been able to find explicit solutions for33

Q(t) =
∫ ∞

0 k(t, x) dx for exponential and uniform trip length distributions under a time-independent conditions λ(t) =34

λ, fs(·) = f (·) and a Greenshields speed-accumulation relationship, V(Q) = 1 − Q, where we assume that both35

the free-flow speed and jam accumulation are 1, without loss of generality. Let µ̂ the maximum outflow of the36

accumulation-based model in this case:37

µ̂ ≡ max
Q
{Q(1 − Q)/ℓ} =

1
4ℓ
, (15)

and let the intensity be ρ ≡ λ/µ̂, or:38

ρ ≡ 4λℓ. (16)

In this case, one needs to solve the following system of equations:39

Q′(t) = λ(t) − v(t) · k(t, 0), (17a)

k(t, 0) = g(z(t)) +
∫ t

0
λ(s) f

(
zt

s

)
ds, (17b)

z′(t) = V(Q(t)), (17c)

subject to appropriate boundary conditions. When the distribution of trip lengths f is exponential with mean ℓ,40

we obtain the accumulation-based model Eq. (3), whose analytical solution was presented in Laval et al. (2017).41

Alternatively, here we solve Eq. (17) with initial conditions Q(0) = Q0 to obtain:42

Q(t) =
1
2

(
1 − c1 tan

(
sec−1 (−c2) − c3t

))
, (18a)

z(t) =
t
2
+ ℓ log

(
c2 cos

(
c3t + sec−1 c2

))
, (18b)

where c1 ≡
√
ρ − 1, c2 =

√
ρ − 4Q0V (Q0)/c1, and c3 = c1/(2ℓ) are constants. If we let the distribution of trip

lengths f be uniform in (0, 2ℓ), which also has a mean ℓ, analytical solutions can also be found. The general case
λ > 0, Q0 > 0 looks complicated and not particularly insightful. However, for arbitrary initial conditions and no
inflow:

Q(t) = 1 − (1 − Q0) ec4t, (19a)

z(t) = (1 − Q0)
(
ec4t − 1

)
/c4 , (19b)

where c4 = Q0 /2ℓ . Since c4 > 0 when Q0 > 0, the accumulation decreases more rapidly with time.43

Fig. 1 shows a comparison of the exponential and uniform models with the same input parameters. It can be seen in44

the first row of the figure that under uniform trip lengths the accumulation tends to zero much more slowly than in the45

exponential case for earlier times, while the opposite is true for later times. The second row shows an initially empty46

network being loaded at a constant intensity, where one can see that both distributions tend to the same equilibrium47

point but at slightly different speeds. Notice that models Eq. (18) and Eq. (19) are valid only in 0 ≤ Q(t) ≤ 1, and as48

soon as we hit one of these boundaries one should stop the evaluation; see points “a” in the figure. Similarly, because49

the uniform distribution is only defined in (0, 2ℓ), as soon as z(t) = 2ℓ then Eq. (19) no longer applies.50

We can conclude that the effect of the trip-length distribution affects the time to reach steady state, but not the51

equilibrium point itself. This is confirmed in the next section.52

4
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Figure 1: Comparison of the exponential and uniform models with the same input parameters and ℓ = 1.

2.2. Steady-state53

In this section all input variables are time-independent, i.e. λ(t) = λ, fs(·) = f (·), and all other steady-state54

variables denoted with a star.55

Proposition 2.2. The accumulation-based model under steady-state conditions is valid regardless of the distribution56

of trip lengths.57

Proof. In steady-state the network production Q∗v∗ has to match the incoming production λℓ,58

Q∗v∗ = λℓ, (20)

where v∗ = V(Q∗). From Eq. (10) we can see that the steady-state condition Q′(t) = 0 implies59

µ∗ = λ, (21)

as expected. Combining Eq. (21) and Eq. (20) gives:60

µ∗ = Q∗v∗/ℓ, (22)

which establishes the result.61

62

This result implies that in steady state one may use the simple accumulation-based model to evaluate traffic con-
ditions, regardless of the distribution of trip lengths. For instance, as shown previously in Laval et al. (2017), solving
for Q∗ in Eq. (20) gives two equilibrium solutions; the first solution is stable and in the free-flow regime, and in the
Greenshields approximation it reads as:

Q∗(ρ) =
1
2

(
1 −

√
1 − ρ

)
, (23)

while the second solution, 1
2

(
1 +

√
1 − ρ

)
, is in the congested regime and acts as a repellor; see Laval et al. (2017) for63

details.64
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Figure 2: The network accumulation Q(t) is the difference between cumulative vehicle arrivals to the network, A(t), and departures from the
network, D(t).

Proposition 2.3 (Steady-state density). In steady-state, the density is given by:65

k∗(x) = [1 − F(x)] λ/v∗. (24)

Proof. Since in steady state characteristics are straight lines of slope −v∗, the density66

k(t, x) = λ
∫ t

0 f (x + zt
s) ds can be computed explicitly with the change of viable z = (t − s)v∗ to obtain:67

k(t, x) = [F(x + tv∗) − F(x)] λ/v∗. (25)

Taking the limit t → ∞ we obtain the steady-state density k∗(x) = k(t → ∞, x) as claimed.68

It follows that the probability density function (PDF) of remaining trip distances,69

fX(x) = k∗(x)/Q∗, is given by:70

fX(x) = [1 − F(x)]/E {L}, (26)

and it can be shown that their moments are given by Eick et al. (1993) as:71

E {X} =
E {L}

2

(
1 +C2

L

)
, (27)

E {Xm} =
E

{
Lm+1

}
(m + 1)E {L}

. (28)

Notice that for the exponential distribution, Eq. (26) gives fX = f , as expected given the memoryless property of72

this distribution3. This means that the expected remaining trip length is E {X} = E {L}, as can be verified in Eq. (28)73

with C2
L = 1. For other distributions this is not the case, however, where in general we find that E {X} < E {L}. 4

74

3. Queueing approximation for the stochastic problem75

In this section, we present a queuing approximation for the stochastic version of our problem. For simplicity, we
start with empty initial conditions and assume that the only sources of randomness are the arrival process and trip
lengths, while the travel speed remains deterministic given the accumulation, as in the previous sections. The network

3For the exponential distribution with mean ℓ, F(l) = 1 − exp(−l/ℓ), which gives fX(x) = f (x) = exp(−x/ℓ)/ℓ.
4For distributions more positively skewed than the exponential distribution, E {X} > E {L}, but this is unlikely to arise in practice.
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accumulation (or queue) Q(t) ≡ A(t) − D(t) is the difference between cumulative vehicle arrivals to the network, A(t),
and departures from the network, D(t); see Fig. 2. The mean and variance of the accumulation is then given by:

E {Q(t)} = E {A(t)} − E {D(t)} , (29a)
Var {Q(t)} = Var {A(t)} + Var {D(t)} − 2 Cov {A(t),D(t)} . (29b)

In traditional queuing systems the departure rate is independent of the accumulation, which acts as a buffer between76

arrivals and departures: as long as the queue is not zero, departures tend to be independent of arrivals. As argued in77

Newell (1982), the more the accumulation in the system, the more independent the departure and arrival process will78

be and is typically assumed that the covariance term Cov {A(t),D(t)} = 0. This is true even for limited storage, which79

can be treated as a boundary condition. But in our case, by definition of the MFD there is a dependency between80

accumulation and service rate and therefore the covariance term Cov {A(t),D(t)} in Eq. (29b) cannot be neglected. In81

any case, as long as the accumulation is not close to zero, its distribution should be approximately normal with mean82

and variance given above. The challenge here is to characterize the terms Var {D(t)} and Cov {A(t),D(t)} due to the83

nontrivial dependencies in the reservoir model.84

As customary in the queueing literature, we introduce the variance-to-mean ratio of arrivals, IA, departures, ID,
and accumulations, IQ:

IA(t) ≡
Var {A(t)}
E {A(t)}

, ID(t) ≡
Var {D(t)}
E {D(t)}

, IQ(t) ≡
Var {Q(t)}
E {Q(t)}

(30)

Notice that IA = 1 for Poisson arrivals, and that if service times are independent, then ID gives the squared coefficient
of variation of service times (Newell, 1982), and equals one for exponential service times. It will be convenient to
define:

IAD(t) ≡
Cov {A(t),D(t)}

E {D(t)}
(31)

which is one for the M/G/∞ queue (Newell, 1982), and is in the range 0 ≤ IAD ≤ ID. With these definitions the
variance-to-mean ratio of the accumulation can be written as:

IQ =
E {A(t)} IA − E {D(t)} (2IAD − ID)

E {A(t)} − E {D(t)}
, (32)

which is the main focus of this section. Although this ratio is time dependent we will be interested in its state-state85

behavior and what follows.86

The traditional queuing model most similar to our problem is the M/G/∞ queue, with Poisson arrivals (so IA = 1),87

a general service time distribution, and an infinite number of servers. In our case, each commuter is its own server88

and the service time play the role of the travel time from origin to destination, which is governed by the reservoir89

model dynamics. As it turns out, these dynamics will make a big difference: it is known that for the M/G/∞ queue the90

distribution of departures is Poisson, so ID = IAD = 1 and therefore accumulations are also Poisson, as can be seen in91

(32) that gives IQ = 1. But our discrete-event simulation (described in appendix) results presented in Fig. 3 and Fig. 492

show that IQ > 1 depending on the intensity ρ. The simulation experiments consider, separately, three trip-length93

distributions: exponential, uniform and the “square” distribution arising when origins and destinations are uniformly94

distributed on a square; see Aghamohammadi and Laval (2020). The parameters of these distributions were set such95

that they all have the same mean, but different coefficient of variation: the C2
L is 1, 1/27 and 1/4 for the exponential,96

uniform and square distribution, respectively.97

Fig. 3(Top) shows a typical simulation output in terms of cumulative count curves for departures (left) and ac-98

cumulations (right) for several realizations of the experiment. Arrivals are omitted as they look very similar to the99

departure plot. From these outputs one can calculate the sample means of E {A(t)}, Var {A(t)}, etc. to estimate the100

ratios IA, ID, IQ and IAD, all functions of time. The bottom part of the figure shows simulation time series showing the101

evolution of E {Q(t)} /Q∗ and IQ ≈ Var {Q(t)} /Q∗ with the exponential and uniform distributions for different values102

of E {ρ}. It becomes clear that the distribution with the highest coefficient of variation, the exponential distribution,103

implies longer relaxation times to reach the steady state, but this steady state is unaffected by the distribution of trip104

lengths.105

Fig. 4 shows the steady-state time-average values of parameters IA, ID, IAD and IQ as a function of the average106

intensity E {ρ}. It can be seen that all the columns in the figure look very similar, which indicates that the impact of the107
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Figure 3: Top: Typical simulation output in terms of cumulative count curves for departures (left) and accumulations (right), for 50 realizations of
the experiment. Notice in the left panel that E {D(t)} > Var {D(t)}, which is typically the case, and from the right panel that E {Q(t)} < Var {Q(t)}.
Bottom: Simulation time series with the exponential and uniform distributions for different values of E {ρ}, showing the evolution of E {Q(t)} /Q∗

in blue and IQ ≈ Var {Q(t)} /Q∗ in green. The solid thin lines represent these quantities for a single experiment as in the top part of the figure, while
solid thick lines correspond to the average of 1000 such experiments. The dashed green lines give the 0.05 and 0.95 percentiles from the chi-square
distribution with parameter 50-1=49.

trip length distribution is almost negligible when it comes to the statistical properties of IA, ID, IAD and IQ. Notice that108

around intensity 0.9 there is a consistent drop in all the parameters, followed by a sudden increase at E {ρ} > 1. The109

drop is a consequence of arrival flows being throttled in congestion (see appendix), which causes a reduction in the110

variance of the relevant variables since the system is forced to maintain the same accumulation. The sudden increase111

can be explained by the non-stationary of the system when ρ > 1. Notice that for E {ρ} < 0.9 the first three columns of112

the figure are as expected, with 1 ≈ IA > ID ≈ IAD ≈ 0.9 as we have Poisson arrivals, whose variability is dampened113

slightly due to the interactions in the bathtub, leading to smaller ID and IAD.114

But not as expected is the behavior of IQ observed in the last column of Fig. 4, which is not captured by (32).
As shown next, this can be explained by the reservoir dynamics brought about by the MFD causing the variance
to diverge to infinity near the critical point ρ = 1. (Notice that this is not the case for the M/G/∞ queue because
it has no exit capacity constraint such as µ̂ here; see (15).) To see this, we series expand (23) around the critical
point ρ = 1 up to first order and compute its variance assuming Poisson arrivals, i.e. Var {ρ} = E {ρ}. This gives
Var {Q∗(ρ)} ≈ (Q∗

′

(E {ρ}))2E {ρ} = E {ρ} /(16(1 − E {ρ})), which goes to infinity as E {ρ} → 1. This behavior is typical
of systems that undergo a phase transition (Halperin and Hohenberg, 1969), e.g. from liquid to solid or from free-flow
to congestion in our case. The usual way to deal with this divergence in the phase transition literature is to assume a
power-law divergence, in this case of the type:

Var {Q∗(ρ)} = aE {ρ} (1 − E {ρ})−b, (33)

where a > 0, b > 0 are constants and b is known as a critical exponent. Assuming E {Q∗(ρ)} ≈ Q∗(E {ρ}) we can
compute:

IQ ≈
1
2

(
1 + (1 − E {ρ})−1/2

)
(34)

where we have used a = 1/4, b = 1/2 that provide a good fit to the data. This is shown by the red line in Fig. 4, which115
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Figure 4: Steady-state time-average values of parameters IA, ID, IQ and IAD as a function of the intensity ρ. Each row corresponds to a different
distribution of trip length: exponential, uniform and square distribution. The red line corresponds to Eq. (34)

corresponds to Eq. (34). The good fit to the simulated data is apparent, and confirms that the steady-state behavior116

of the system is not affected by the different trip-length distributions. Therefore, we can conclude that the statistical117

properties of congestion are largely independent of the trip-length distribution.118

4. Discussion119

This paper has presented additional results of the generalized bathtub model for urban networks. Section 2 was120

devoted to deterministic arrivals, as is invariably the case in the literature, which included a simpler derivation of121

the model, exact solutions for uniformly distributed trip lengths, and the characterization of the steady-state. While122

the variability of trip lengths has an impact on the time to reach steady-state, it was found that under steady-state123

conditions the accumulation-based model remains valid regardless of the distribution of trip lengths. This is good124

news because in steady state or in the common case of slowly-varying demand, one may use the accumulation-based125

model, which is a much more parsimonious model that only requires a good estimation of the average trip length.126

Section 3 examines the case of Poisson arrivals drawing the analogy with the well-know M/G/∞ queue, which127

predicts Poisson accumulations. In contrast, we found that accumulations exhibit a much larger variance than pre-128

dicted by the M/G/∞ queue, which can be explained by the nonlinear dynamics imposed by the MFD, where the129

critical density acts as a critical point of a dynamical system subject to phase transitions. As in the case with deter-130

ministic arrivals, we find that the trip length distribution has an impact only on the transient accumulation trajectory,131

but it does not affect its variance-to-mean ratio in steady-state. This indicates that the proposed approximation method132

for the variance-to-mean ratio IQ in Eq. (34) will be robust, and perhaps universal as it is typically the case with133

power-law relationships arising in phase transitions. This universality would imply that the proposed approximation134

should be accurate independently of the shape of the MFD (so long as it is concave) and of other details such as the135

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 August 2022                   doi:10.20944/preprints202208.0226.v1

https://doi.org/10.20944/preprints202208.0226.v1


degree of randomness in the arrival process. That traffic flow behaves as a fluid undergoing phase transitions has136

been known for a few decades now (Nagatani, 2002, Helbing, 2001, Chowdhury et al., 2000, Nagatani, 2020) but its137

consequences have not permeated the MFD . More research is needed to explore the analogy with phase transitions to138

better understand the complex power-law dynamics taking place and the possible universal aspects of this problem.139

The high values for IQ found in this paper are unusually high for traditional queuing systems, but perhaps as140

expected given our experience as commuters on congested networks. This index can be seen as a proxy for the141

reliability of the network, a topic that is worth investigating with the tools provided here. We have seen that the142

demand capping has a strong effect in lowering the IQ, which strongly suggests that perimeter control can be used143

effectively to improve reliability. Additional research is warranted to investigate different implementations of the144

demand capping assumption in its impact in the reliability of the urban network.145

As pointed out in the introduction, assuming exponentially distributed trip lengths has been considered unrealistic,146

starting with Arnott (2013) who argues that this is akin to assuming that commuters do not know their trip distance147

until initiating the trip, which clearly does not make any sense. However, this is an unfair criticism since the argument148

follows from the memoryless property of the exponential distribution, which is only a sufficient condition, not a149

necessary one. This means that there are stochastic processes, such as bus bunching, that exhibit the exponential150

distribution and therefore appear to be memoryless but in fact they are generated by physically sound mechanisms.151

In addition, the empirical trip length distributions from American and European cities reported in Martı́nez and Jin152

(2021), Thomas and Tutert (2013) strongly suggest that the exponential distribution exhibits the correct overall trend153

of the data. Adding the main result of this paper that the statistical properties of congestion are largely independent of154

the distribution choice, which only affects the transient behavior of the system, makes a compelling argument in favor155

of the exponential assumption. More research is needed, however, to settle the debate.156
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Appendix A. Simulation experiments217

This section explains the simulation experiments presented in section 3 of the paper, used to estimate the parame-218

ters IA, ID, IAD and IQ, and to verify the accuracy of the approximation presented here. Our simulation model imple-219

ments the discrete-event simulation proposed in Mariotte et al. (2017) with the exceptions that arrivals are driven by a220

Poisson processes instead of being deterministic. In the simulation, each vehicle has its own trip length and reservoir221

speeds are updated each time a vehicle either enters or leaves the system. As customary in the literature, in congestion222

the arrival flow is capped; i.e, restricted to remain at or below the prevailing flow on the network; see Daganzo (2007),223

Leclercq and Paipuri (2019), Mariotte and Leclercq (2019). We use a Greenshields speed-accumulation relationship,224

V(Q) = 80(1 − Q/120), where the free-flow speed is 80 km/hr and the jam accumulation is 120 vehs.225

A single experiment consists of an initially empty system with Poisson arrivals with a constant rate λ. Each arrival226

has a trip length drawn from the distribution f , which can be the exponential, uniform distributions and the “square”227

distribution of trip length when origins and destinations are uniformly distributed on a square; see Aghamohammadi228

and Laval (2020) for details. Notice that all these distributions have the same mean of ℓ = 3, but different coefficient of229

variation: the C2
L is 1, 1/27 and 1/4 for the exponential, uniform and square distribution, respectively. The simulation230

stops once a steady state has been reached for 30 minutes.231
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