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Abstract: Thanks to the continued development of experimental structural biology and the half-a-
century old Protein Data Bank, 2021 saw a big step forward in the development of protein structure 
prediction with deep learning algorithms. Recently, DeepMind’s AlphaFold has determined the 
structures of ∼ 200 million proteins from 1 million species. The speed of this progress raise the 
question of what becomes possible for computational drug discovery and design when we have 
a systems-wide account of the structures and motions of most proteins. Therefore, this article
puts forward the concept of a general intermolecular binding affinity calculator (GIBAC): K d = 
f (molA, molB, envPara), towards the acceleration of traditional computer-aided drug design (CADD) 
and artificial intelligence-integrated drug discovery (AIDD), for both small molecules and biologics 
such as therapeutic proteins.

Keywords: intermolecular binding affinity; drug target binding affinity; computer-aided drug 
design (CADD); artificial intelligence-integrated drug discovery (AIDD); machine learning 12

Intermolecular binding affinity: a definition and brief introduction 13

Intermolecular binding affinity is the strength of the binding between a single molecule 14

to its ligand/binding partner, and is typically measured and expressed as the equilibrium 15

dissociation constant (Kd), to evaluate and rank order strength of intermolecular binding 16

[1,2]. The smaller the Kd value, the greater the binding affinity; The larger the Kd value, 17

the weaker the binding affinity [3,4]. In theory, Kd is influenced by a range of factors, in- 18

cluding non-covalent intermolecular interactions such as hydrogen bonding, electrostatics, 19

hydrophobics and Van der Waals forces between the two binding molecules [5–7], and also 20

environmental parameters (envPara) such as pH, ionic strength and temperature [8–12]. 21

Furthermore, Kd may also be affected by the presence of other molecules, where there are 22

multiple interacting partners, in cases such as IL-2 [13,14] and CaV1.2 [15–17]. 23

From drug target Kd calculation to intermolecular Kd calculation: a generalization 24

Whether it is mall molecule or therapeutic protein, drugs exert their desired pharma- 25

cological effects through binding to and interacting with specific disease-related target(s) 26

[18–20]. Hence, drug target binding affinity (DT Kd) is used to describe the strength of 27

binding between a drug molecule and its target. Be it obtained through experimental 28

measurement or computational prediction, adequate and accurate knowledge of DT Kd 29

is crucial both in early drug discovery and screening, during drug repurposing, and in 30

avoiding undue risk of toxicity mediated by drug-drug interactions [21–23]. Towards this 31

end, this article proposes a general intermolecular binding affinity calculator (GIBAC), as 32

in Equation 1 below, 33

Kd = f (molA, molB, envPara) (1)

given that DT Kd can easily be generalized as intermolecular binding affinity, with 34

drug as molecule A (molA in Equation 1) and target as molecule B (molB in Equation 1). 35

Moreover, this article puts forward a road map for the construction of a GIBAC, and a set 36

of key ingredients to ensure its accuracy and efficiency. 37
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GIBAC: an integrative definition for both mall molecules and therapeutic proteins 38

As discussed above, DT Kd is an essential parameter in drug discovery and design, 39

both computationally and experimentally [24–26]. A set of computational tools have 40

therefore already been developed to calculate DT Kd with various algorithms, including 41

molecular mechanics-based calculations [27–30] and machine-learning based predictions 42

[31–33]. 43

Kd = f (molAstruc, molBstruc, ABinter f ace, envPara) (2)

Take Prodigy [2,34] for instance, protein-protein or protein-ligand Kd is calculated 44

using the binary interfacial features, i.e., interfacial contacts between the two interacting 45

partners (Equation 2), including interstructural hydrogen bonding, electrostatics, hydropho- 46

bics and Van der Waals forces between the two binding molecules [5,6,35,36]. 47

Figure 1. A flow chart of experimental (wet-lab approach) determination and computational (dry-lab
approach) prediction of Kd (Equation 2). In the wet-lab approach, Kd is measured using tools such
as isothermal titration calorimetry on the experimental sample of molA+molB complex, while with
the dry-lab approach, Kd is calculated by tools such as Prodigy with a structural (experimental or
computational) model of molA+molB complex structure.

Overall, Equation 2 for Kd calculation requires sufficient structural information, in- 48

cluding a complex structure of molecule A (molAstruc in Equation 2) bound to molecule 49

B (molBstruc in Equation 2), and its binary interfacial structural features (ABinter f ace in 50

Equation 2) [5,24,35–37]. For further generalization and simplification, this article for the 51

first time puts forward a GIBAC in Equation 3 as below, 52

Kd = f (molAstring, molBstring, envPara) (3)

In Equation 3, molAstring or molBstring represents a sequence of amino acids, i.e., 53

a string of letters for protein A or B, or a string of SMILES (Simplified Molecular Input 54

Line Entry System) characters to represent the chemical structure of small molecule A 55

or B, while envPara represents environmental parameters such as pH, ionic strength and 56

temperature [8–10,12]. 57

Figure 2. A flow chart of GIBAC for Kd calculation (Equation 3).

From Figures 1 and 2, it is quite clear that Equation 3 (GIBAC) does not require as 58

input any structural information for molecule A or B, as required by computational tools 59

such as Prodigy (Equation 2) [2,34]. While the generalization from Equation 2 to Equation 60

3 aims to include DT Kd calculation even for interacting partners whose complex structural 61

information (experimental or computational) is not available yet [38], it is by no means 62
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indicating that structural information is negligible or dispensable. Instead, a vast amount 63

of reliable structural information [38], experimental complex structural information [39–43] 64

in particular, is a prerequisite for the construction of a GIBAC with reasonable accuracy for 65

early stage drug discovery and design [44,45]. 66

Experimental structural information is essential to build an accurate GIBAC 67

By definition, intermolecular binding affinity or DT Kd calculation will not be accu- 68

rate unless experimental three-dimensional structural data (intermolecular binding mode, 69

structural features such as electrostatics, hydrophobics, Van der Waals forces, etc.) are 70

experimentally characterized and measured or computationally predicted with accept- 71

able accuracy, highlighting the need for structure-based Kd calculation [46], instead of Kd 72

calculation based on sequence information alone. 73

For instance, BindProfX is a computational tool to calculate protein-protein binding 74

free-energy changes (∆∆G) induced by single- and multiple-mutations, and is particularly 75

useful for designing and engineering protein-protein interactions with desired (enhanced 76

[24] or suppressed [47]) binding affinities [42]. By definition, ∆∆G is the same as Kd, in 77

that both parameters boil down to the strength of the binding between two interacting 78

molecules, i.e., the energy required to seperate them [48–51]. When BindProfX predicts 79

∆∆G of interface residue mutations, it uses iAlign to align the protein-protein interaction 80

(PPI) interface structure of target protein to a set of PPI interface structures from PIFACE 81

database [42], highlighting the essential role of experimental structural data in DT Kd 82

calculation. 83

While resolving the three dimensional structure of a protein is a critical step in modern 84

drug discovery today, experimental three-dimensional structural data, however, is harder 85

to obtain than sequential data, because experimental methods for determining the structure 86

of protein-ligand complexes are still quite expensive and time-consuming [8]. This is where 87

computational methods come in for protein structural prediction, i.e., predicting protein 88

structure from its amino acid sequence, i.e., the holy grail of structural biology [52–54]. 89

Protein structure prediction: a brief retrospective 90

This year (2022) marks the 51st year since the beginning of the Worldwide PDB 91

Consortium (wwPDB), which has acted as a catalyst for developments in both experimental 92

and, more importantly, computational methods for integrative structural biology [41,55–57]. 93

Take protein structure prediction (PSP) for instance, where advances driven by ma- 94

chine learning techniques have occured beyond our wildest expectations [58]. To date, ∼ 95

193,455 (as of July 29, 2022) experimental structures represents only a small fraction of the 96

billions of known protein sequences [59]. As a result, accurate computational approaches 97

are needed to address this gap and to enable large-scale structural bioinformatics [59]. 98

While the progresses in PSP have ebbed and flowed historically, the past two years saw 99

dramatic advances driven by the increasing neuralization [60–63] of PSP algorithms, such 100

as AlphaFold and RoseTTAFold [59,63–66], whereby computations previously based on 101

energy models and sampling procedures are replaced by neural networks [67–73]. 102

Recently, DeepMind’s AlphaFold has determined the structures of ∼ 200 million 103

proteins from 1 million species [38], and ∼35% of them are deemed highly accurate, which 104

means they are as good as experimentally determined structures [38]. Another 45% were 105

deemed confident enough to rely on for many applications [38]. The data for the 200 million 106

structures will be freely available on a DeepMind database [38]. 107

Road map and key ingredients of an accurate and efficient GIBAC 108

Artificial intelligence algorithm is a broad field consisting of machine learning algo- 109

rithms and deep learning algorithms with four key steps: build, train, test, evaluate. Similar 110

to the development of any artificial intelligence-based tool, building an accurate GIBAC 111

requires both data and algorithm (Figure 3), and in particular, machine-learning/deep- 112
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learning algorithms (as the backbone of artificial intelligence) need to be tailored to the 113

situation where a GIBAC is applicable. 114

Figure 3. GIBAC’s accuracy requires a data+ algorithm = model approach with algorithms tailored to
GIBAC applications, and a hybrid (experimental & synthetic) approach for datasets (as the lifeblood
of artificial intelligence) with reasonable size, compared to the size of the universe of small molecules
and therapeutic proteins.

With respect to the data + algorithm = model approach (Figure 3), a varity of artificial 115

intelligence algorithms have already been developed and applied in drug discovery and 116

design and DT Kd calculation [74–79]. Thus, another key aspect to build an accurate 117

GIBAC is a hybrid (experimental & synthetic) approach for data sets used to train machine- 118

learning/deep-learning algorithms. For example, deep learning is a subdiscipline of 119

artificial intelligence that uses neural networks to extract patterns and make predictions 120

from large data sets. As a result, building a deep-learning-based GIBAC would require a 121

vast amount of structural and Kd data, including but not limited to 122

1. experimental structural data from PDB [40,56]. 123

2. computational structural data from AlphaFold database [38], and synthetic structural 124

data obtained from homology structural modeling tools [53,80,81]. 125

3. experimental complex (molA+molB, Figure 1) structural data from PDB [40,56]. 126

4. computational complex structural data from AlphaFold-Multimer [82] and synthetic 127

complex structural data from homology structural modeling tools [53,80,81] with 128

experimentally measured structures as modeling templates, such as antigen-antibody, 129

ligand-receptor, small molecule-target complexes. 130

5. experimental Kd data from PDBbind, a comprehensive collection of experimentally 131

measured binding affinity data for the protein-ligand complexes deposited in the PDB 132

[39,40,83–86]. 133

6. synthetic Kd data from computational tools such as Prodigy [2,34] with complex 134

structural data as input. 135

Since collecting experimental structural and Kd data from the real world is complicated, 136

expensive and time-consuming, this is where synthetic data comes in. In the history 137

of artificial intelligence, synthetic data is not a new idea, but it is now approaching a 138

critical inflection point in terms of real-world impact. According to a widely referenced 139

Gartner study, 60% of all data used in the development of artificial intelligence will be 140

synthetic rather than real by 2024. In the case here for the building of an accurate GIBAC, a 141

huge amount of synthetic structural and Kd data is needed, because currently available 142

experimental structural and Kd data is far from enough, compared with the size of the 143

universe of small molecules and therapeutic proteins [38]. 144

Take small molecule for example, the number of possible compounds up to molecular 145

weight 500 Dalton is ∼ 1060 [87], a huge number that the human mind is not well equipped 146

to handle. Yet, this number (1060) is able to describe the degree of complexity of only a 147

peptide consisting of ∼ 47 amino acid residues, that is, excluding the complexity due to 148

installations of nonnatural amino acids, antibody- and polyethylene glycol (PEG)-coupling, 149

and with modified glycosylation(s), methylation(s) or phosphorylation(s), etc. However, 150

the entire protein universe, as we currently know it, possesses a complexity much more 151

larger than that of a 47 amino-acid peptide. To this end, an example of CaV1.2 (consisting 152
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of more than 2000 AA) [15–17] should suffice to support this hypothesis and make a solid 153

call for: (A) the applications of AI algorithms to ensure the feasibility of an accurate GIBAC; 154

and (B) vast amount of computational power to ensure the efficiency of GIBAC. 155

Conclusion and Discussion 156

Towards the acceleration of traditional CADD and AIDD [88,89], this article puts 157

forward the concept of a GIBAC, and argues that the time is now ripe to build an accurate 158

and efficient GIBAC for the prediction of novel interactions with desired affinities [24,47,90, 159

91] on the genome scale, better characterization of signaling networks and design of novel 160

binding partners, either small molecules or therapeutic proteins, for various disease-related 161

targets [43,92–95]. 162

With regard to the entire protein universe, however, further challenges still remain for 163

GIBAC, when it comes to Kd calculations involving intrinsically disordered proteins, ba- 164

cause the flexibility involved makes structural modeling and structure-based Kd prediction 165

a rather difficult (if possible) problem, to which an experimental approach is perhaps the 166

only feasible solution in practice [54,96–99]. 167
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