
Article

Real-Time and Historical Viral Variant Tracking
James Labadorf 1

1 University Hospital System of Cleveland, Population Health 1; james.labadorf@uhhospitals.org

Abstract: Viral variant analysis is a bedrock of the disease surveillance. When combined with 1

temporospatial analysis variant analysis can further the knowledge of disease spread in a study 2

area. This paper suggests a method to perform the analysis in an operational setting which will 3

allow for real-time surveillance of viral variants and allow local public health professionals to rapidly 4

respond to changes in the evolution of the disease. This method includes three main subprocesses: 5

preprocessing, analysis, and rendering. This method can be performed across multiple software 6

platforms. A use case is given in which it was found that this method helped a hospital system 7

understand the spread of SARS-CoV-2 in Northeast, Ohio. 8
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1. Introduction 10

In 2019, the first case of SARS-CoV-2 was identified in Wuhan, China[1]. SARS-CoV-2 11

quickly spread and entered the United States just one month later in January, 2020[2]. 12

SARS-CoV-2 mutations have been a concern since the beginning of the pandemic with 13

Alpha, Beta, and Gamma variants being identified in the first month of the pandemic. Over 14

the course of the pandemic, the Centers for Disease Control and Prevention would classify 15

a total of eight variants as variants being monitored. When mutations happen, they are 16

troubling because of the new variant will have different characteristics which may include 17

potency, transmission rate, and resistance to medical treatments[3]. 18

While the SARS-CoV-2 raised the public’s awareness of viral variants, variant track- 19

ing has been a bedrock of virus surveillance [4,5] and vaccine development. In vaccine 20

development, tracking variants is used to identify strains that may be resistant to current 21

vaccines[6]. 22

Another bedrock tool of the infectious disease surveillance is cluster analysis. Cluster 23

analysis involves examining the spatial correlation between different cases. A popular 24

method is hotspot analysis. Hotspot analysis identifies zones where either there is more 25

cases than otherwise expected (called a hotspot) or a zone where the infection rate is lower 26

than expected (called a cold zone). 27

While it has been recognized that hotspot analysis is useful for viral variant tracking[7– 28

9], there is currently no standard method that is designed specifically for the operational 29

setting like a hospital or public health department. As opposed to the research environment, 30

operational settings require reviewing the data at a high frequency in order to intervene, 31

usually at the cost of statistical significance. Having a real-time variant analysis report 32

will help public health professionals in deploying resources, structuring interventions, and 33

understanding the progression of the disease in their study area. 34

In this paper, a method is detailed which can be deployed inside an operational setting 35

for real-time variant tracking and analysis. Additionally, a narrative of how this method 36

was deployed inside University Hospital System of Cleveland (University Hospitals) is 37

provided. 38

2. Method 39

The task of creating cluster analyses has three subprocesses: preprocessing, analysis, 40

and rendering. Each of these subprocesses has a unique and necessary objective. The 41
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aim of the preprocessing subprocess is to extract, transform, and load the data into the 42

analysis software. Once complete the analysis subprocess performs any required analysis 43

and returns a data file which then is displayed by the rendering subprocess. 44

Figure 1. a diagram of the method workflow

2.1. Preprocessing 45

the output of this subprocess is two files, one with a spatial grid of the extent of the 46

study area; the second is a count of the number of each variant by grid cell ID and date. 47

The exact nature of this subprocess will vary based on the use case and organizational 48

procedure. However, most locations will be able to provide a tabular file with a patient 49

identifier, data of test, and variant label. With the patient identifier, the patient residential 50

address can be extracted from electronic records, geocoded, and then spatially joined to the 51

spatial grid (which will be discussed later in this section). 52

A spatial grid needs to be generated to cover the study area. Before generating the 53

grid, the spatial extent needs to be set either by crafting a bounding box or using a spatial 54

file with the extent already defined, if the software application in use allows setting the 55

extent. Additionally, a grid size parameter should be set. In setting this parameter it is 56

important to consider both the density of the cases and the underlying geography. A few 57

sample analyses may be necessary to tune this parameter. Once the extent and cell size is 58

defined the grid can be generated. This grid should consist of polygons and not be in raster 59

form. It should have an identifier for each cell. 60

The next step in the preprocessing subprocess is to join the spatial grid to the case file. 61

The goal here is to insert the cell identifier for each test result. The files should be spatially 62

joined by intersection. The grid file should remain unchanged, and the case file should 63

include the cell identifier, the test date, and the variant label. 64

Once the basic dataset is prepared, one last transformation should be undertaken. The 65

case file must now be summarized by cell. To do this, the data should be group by cell 66

and date, with the total count of tests and a count of each variant present. The resulting 67

cell-case file will be used to perform the analysis. 68
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2.2. Analysis 69

The analysis subprocess can now be used to identify incidence rates and dominant 70

viral variants. This paper describes how to create a dataset and perform basic analysis. 71

However, more advanced spatial methods may be performed such as a Moran’s I or Poisson 72

regression. The analyst should consider if additional analyses would be useful and setup 73

the workflow accordingly. 74

To complete the analysis, only the cell-case file will be used: the spatial grid file will 75

be used in the render subprocess. 76

Using the cell-case file, a temporally smoothed incidence rate can be calculated. 77

Smoothing is generally preferred since it reduces the effect noise may have on the analysis. 78

However, if the sequencing of test represents a large portion of the total tests administered 79

than smoothing may not be needed. The analyst should set a lookback parameter. This 80

lookback parameter will be used for calculating a rolling average case count for each cell. 81

Additionally, a rolling average case count should be calculated for each variant. 82

Using the rolling average, an incidence rate for each variant on each cell can be 83

calculated. This is done by dividing the rolling average for the variant by the rolling 84

average for the total population. If the rolling average of the total is zero, this will result in 85

a division by zero error. If, therefore, the rolling average of the total case count is equal to 86

zero, the incidence rate should be set to a null value to avoid division by zero errors. 87

Next, the dominant variant needs to be identified. The definition used is whatever 88

variant has the highest incidence rate. In the case of a tie, the cell is coded as “No Dominant 89

Variant.” Using the incidence rate allows for greater flexibility with the definition of what 90

cell is dominant. For instance, the definition can easily be coded as incidence rate greater 91

than or equal to any percentage or that the difference between the highest incidence and 92

the second must be greater than or equal to a set amount. This flexibility allows the analyst 93

to configure the process to fit whatever circumstance they are facing. 94

After completing the analysis, a tabular file should be exported, with each row con- 95

taining the cell identifier, the total count, the total incidence rate, the count and incidence 96

rate for each variant, and the date. 97

2.3. Rendering 98

This subprocess is primarily concerned with rendering the data into the final presen- 99

tation for interpretation. In this subprocess the spatial file and the cell-case file get joined 100

and displayed. Joining should only happen after a date has been selected. Joining prior to 101

date selection will result in a large computational burden which is not suitable for most 102

standard devices. This is the rationale behind having separate files since a single file will, 103

by necessity, contain a geography for every cell for every date. 104

While there are multiple methods of visualization, the two main visuals produced 105

are a dominant variant map and a variant incidence rate map. The dominant variant map 106

displays each cell with a sequenced test (from the rolling average total column) over an 107

area base map and varies the color by variant label. This gives a visual representation of 108

what variants are dominant in which areas. The incidence rate map is similar but with one 109

difference: instead of displaying color by variant type, one variant is chosen and the cell 110

color is varied by incidence rate based on a color ramp. Both these maps can be rendered as 111

a static map by specifying a date. Usually, this will be the current date and will represent 112

the newest available data. These can also be setup to be presented as an animation by 113

having the presentation software automatically change the date. This animation helps in 114

spotting how and where trends developed. 115

The author has rendered these maps in both ArcGIS Pro (v. 2.9) and Tableau (v. 116

2021.1). Both applications can be useful tools in rendering these maps. Tableau has the 117

additional functionality of setting up “Pages” which provide for the visual animation. 118

The “Pages” functionality allows for a time series to be created in which the disease 119

progression is animated over the current map making it easy to see changes overtime using 120

this functionality. Whether using tableau or another software visualization process, the 121
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time series analysis maybe an important tool in understanding the disease development 122

and progress throughout the study area. 123

3. Empirical Illustration: COVID-19 Sequencing at University Hospitals 124

On March 9th, 2020 the first case of COVID-19 was reported in Ohio(DeWine 2020). 125

Rapidly, the virus spread throughout the community. University Hospital System of 126

Cleveland (University Hospitals) was among the leaders coordinating the surveillance in 127

Northeast Ohio. Started in 1866, University Hospitals is a research hospital affiliated with 128

Case Western Reserve University which has served the Northeast Ohio community with 129

over 150 locations which include hospitals, outpatient facilities, and primary care offices. 130

Early into the pandemic, it became clear that sequencing at a large scale would be 131

necessary to best respond to ongoing emergency. University hospitals started sequencing 132

tests on January 31st, 2021, averaging around 10% of all positive tests gathered being 133

sequence to determine the specific coronavirus variant. This data was compiled daily and 134

included the date of the test, the patient medical record number, and the World Health 135

Organization COVID-19 variant label (e.g., Delta), among other data points. Using the 136

medical record number, the patient residential location was added to this dataset. This 137

provided the bases for the dataset that was needed to complete the visualization. 138

Using the software Alteryx Designer (v. 2021.1) the spatial grid was created for the 139

University Hospitals market, which covers eighteen counties in Northeast Ohio. A shapefile 140

of the University Hospitals market was used to define the spatial extent of the grid. A grid 141

cell size of 1.6 km2 was used as this provided detail while still returning results that had 142

enough sequenced tests to be considered useful. A smoothing period of seven days was 143

used to reduce noise. 144

This data was then displayed inside Tableau (v. 2021.1). The spatial grid was first 145

imported as a dataset and the geography information was added to a new worksheet and 146

the cell identification was used in the detail plane to differentiate each cell. The incidence 147

dataset was then imported and related to the spatial grid. The dominant variant type was 148

used to determine the cell color with each variant given a unique color. Using the Tableau 149

“Pages” functionality, the map was animated. The final product allows individual end 150

users to examine the spatiotemporal history of COVID-19 variants over the Northeast Ohio 151

area. 152

Figure 2. a example of the dashboard created at University Hospitals using simulated data
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Ultimately the data latency at University Hospitals limited this product to historical 153

review only. This is an important point, this tool is only as good as the data it is provided. 154

However, it was concluded that this tool may be useful in the future of monitoring other 155

infectious diseases, such as influenza, which have a better data latency at University 156

Hospitals. 157

4. Discussion 158

Viral variant analysis will continue to be a major aspect of disease surveillance. The 159

method which is suggested above can help operationalize that analysis by providing a 160

real-time data tool to track the variant’s progression. Real-time surveillance is important 161

to crafting response to disease development and allocating resources. Additionally, this 162

surveillance will all decision leaders to construct narratives about the spread which will 163

inform the intervention strategies used to arrest the development of the disease. 164

While the importance of disease surveillance has been recognized, there is little re- 165

search into the methods of crafting a real-time surveillance reporting tool. In this paper 166

such a tool was presented. The method suggested by the author gives a reasonably efficient 167

way of examining and reporting on disease development in a specific area. This method 168

can be deployed using publicly available tools, such as Python, or commonly available 169

tools to most public health institutions, such as Tableau. 170

This tool was developed at University Hospitals during the SARS-CoV-2 outbreak. It 171

was used to survey the developing variant evolution in gain actionable insights into how 172

to best stage interventions. 173

This tool assumes that the data are readily available. this can be measured in the data 174

latency which is the time between when a datum is available and when the report is made. 175

The lower that time the faster and more accurate the data is to the current environment. 176

well this tool cannot speed up institutional processes. It makes the reporting available as 177

soon as the data is ready. This is because it automates all analysis tasks removing any need 178

for an analyst to prepare this report prior to its consumption. 179

Any institution looking to implement this tool should consider carefully the environ- 180

ment in which they are instituting it. This is because parameters must be set according 181

to the need of the moment. This includes the size of each grid cell and the lag effect 182

overtime. As long as these parameters are set-up appropriately this report will provide 183

useful information as soon as it is available. 184

This tool does have its limits. The most prevalent limit is data availability. That 185

availability both encompasses the amount of data and the latency of the data (which was 186

discussed above). While this tool is not meant to be Used for statistical analysis, care should 187

be taken to make sure that the data gathered represents the underlying population. One 188

way to do this is to compare the sequenced tests versus the total test administered versus 189

the total population. this method allows for the analyst to make sure that the sequence 190

tests represent not only the population but also the total number of tests administered. This 191

also can be used to spot areas that are not receiving sufficient testing. 192

Gathering representative data may be particularly hard for smaller institutions without 193

the resources to sequence a large number of tests. This tool may not be appropriate in 194

situations where representative samples cannot be collected. However, adjusting the grid 195

cell size may help representativeness at the expense of granularity. Additionally, hospital 196

systems and public health institutions may band together to increase the effectiveness 197

of their resource allocation. While there are barriers to sharing data, there may be ways 198

of providing collaborative care without being non-compliant with regulations. Several 199

institutions including University Hospitals participated in a data sharing agreement for 200

SARS-CoV-2 testing. 201

As with any project that aggregates point data to a geography, in this case grid cells, 202

the modifiable areal unit problem (MAUP) should be accounted for. The problem stems 203

from the aggregation itself. one way to test to make sure that there is no MAUP is to change 204

the geography by a fraction of a cell grid. if, for instance, your grid cell was one square 205
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mile you could shift your geography by half a square mile in order to see if the results 206

would be different. Should a drastically different map be generated after this adjustment 207

you should examine your parameters to make sure that the MAUP is not a major factor in 208

further analysis. 209

5. Conclusion 210

This data visualization tool and method allow decision makers the ability to get real- 211

time data visualized in a fast-paced environment. This tool works best when the data 212

are readily available, for infectious diseases, for institutions with the ability to provide 213

interventions. This was the case during the height of the SARS-CoV-2 outbreak in Northeast 214

Ohio when this tool was first built. 215

There are uses for this tool beyond SARS-CoV-2. This tool may be useful particularly 216

for influenza surveillance. Since influenza is a fast spreading, seasonal disease, using this 217

tool would allow the public health officials to quickly response to developing outbreaks. 218

This could include ensuring the proper vaccines targeted at the specific variant of this 219

disease are available, increase outreach and advocacy in communities experiencing high 220

transmission rates, and quickly identifying areas where new variants are developing. 221

This tool, however, has limitations. The first limitation is data latency, which is the 222

limitation that University Hospitals faced. Testing, sequencing, and reporting take time. In 223

rapidly spreading diseases the time to get the data may be to long for effective real-time 224

analysis. One core assumption this tool holds is that data is available in near-real-time. 225

This limitation is less about the method and more about operational realities: this tool will 226

not speed up an already complicated process. Before implementing this tool, any decision 227

leaders should ensure that the processing time is sufficient to make sure that the reporting 228

the dashboard provides is actionable. 229

A second limitation is the availability of data. Sequencing of viral variants at scale is a 230

resource intensive task. Many smaller hospital systems and public health departments may 231

lack the means to be able to sequence on the scale required to use this tool. 232

A third limitation is the modifiable areal unit problem (MAUP). This method is 233

susceptible to the MAUP since the grid is completely arbitrary. In order to avoid the MAUP, 234

multiple analyses with varied cell sizes should be conducted. Additionally, the extent can 235

be extended by a fraction of a unit to vary the distinction between units. These analyses 236

should be compared visually to ensure that similar spatial patterns are seen across the 237

analyses. 238

While the environment is changing rapidly, surveillance must also be able to handle 239

those rapid changes. This tool, if properly configured, can provide detailed real time 240

analysis to the decision makers in a rapidly changing environment. additionally, this tool 241

can be configured and deployed at most institutions at little to no additional infrastructure 242

needed. 243
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