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Abstract: Genomics involving tens of thousands of genes is a complex system determining pheno-

type. An interesting and vital issue is that how to integrate highly sparse genetic genomics data with 

a mass of minor effects into prediction model for improving prediction power. We find that deep 

learning method can work well to extract features by transforming highly sparse dichotomous data 

to lower dimensional continuous data in a non-linear way. This idea may provide benefits in risk 

prediction based on genome-wide data associated e.g. integrating most of the information in the 

genotype data. Hence, we developed a multi-stage strategy to extract information from highly 

sparse binary genotype data and applied it for risk prediction. Specifically, we first reduced the 

number of biomarkers via a univariable regression model to a moderate size. Then a trainable auto-

encoder was used to extract compact representations from the reduced data. Next, we performed a 

LASSO problem process over a grid of tuning parameter values to select the optimal combination 

of extracted features. Finally, we applied such feature combination to two prognostic models, and 

evaluated predictive effect of the models. The results of simulation studies and real data applying 

indicated that these highly compressed transformation features could better improve predictive per-

formance and did not easily lead to over-fitting. 
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1. Introduction 

Present and future are known as “the era of big data” because digital information is 

growing rapidly and strongly. Health-based big data, especially biological omics data, has 

now become more widespread used. Thanks to modern omics technologies that can gen-

erate powerful large-scale molecular data, e.g. genomic, transcriptomic, proteomic, and 

metabolomic data, an excellent opportunity is occurred to detect novel biomarkers and 

build more accurate predictive and prognostic models (Karczewski and Snyder 2018, 

Manzoni, Kia et al. 2018). For instance, such data have been used in precision medicine to 

provide tailored healthcare for individuals (Tran, Kondrashova et al. 2021). However, 

these data also present computational and statistical challenges. 

The underlying representation of many real processes is often sparse. From the per-

spective of data dimension reduction, it can be classified into feature selection and feature 

extraction. Most of the existing work on sparse learning is based on a variant of l1-norm 

regularization due to its sparsity induced property, convenient convexity, strong theoret-

ical guarantees and great empirical success in kinds of applications (El Ghaoui, Viallon et 
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al. 2012). The paper about the LASSO (full name least absolute shrinkage and selection 

operator) has had an enormous influence (Tibshirani 1996). 

Count data are increasingly ubiquitous in genetic association studies, where it is 

highly possible to observe excessive zero counts in rare mutation loci. Although the sin-

gle-variant analysis in standard genome-wide association (GWAS) studies has succeeded 

in identifying thousands of genetic variants associated with hundreds of various charac-

ters (Zhu, Zhang et al. 2016), this approach fails to take into account combining effects of 

multiple genetic markers on complex traits. In this case, many penalty methods have been 

adopted in GWAS analyses to select key genetic loci (Ayers and Cordell 2010, Long, Gia-

nola et al. 2011, Prive, Aschard et al. 2019). For example, Yang et al. detected genetic risk 

factors among millions of single nucleotide polymorphisms (SNPs) in ADNI whole ge-

nome sequencing (WGS) data via LASSO regression, along with the EDPP screening rules 

(Yang, Wang et al. 2015). Another solution lies in reducing the number of markers before 

employing a shrinkage method in genetic model such as (Tamba, Ni et al. 2017). “Clump-

ing and thresholding” (or called “C+T”) is a two-step method that often used to derive 

polygenic risk score (PRS) from results of GWAS studies (Wray, Goddard et al. 2007). 

As a matter of fact, it is well documented that large number of genetic markers and 

generally small size of their effects make much of the lost heritability hidden, as vast var-

iants with weak effects on disease usually fail to reach prespecified thresholds of signifi-

cance (Gibson 2012). It is always an interesting issue how to aggregate these small effects. 

To best utilize big data in reasoning systems, feature extraction method rather than feature 

selection method should allow for the discovery of new pathways and principles, con-

struct features with amenable distributions (Bengio, Courville et al. 2013). Based on these 

key factors, we identified auto-encoders as a promising tool (Esteva, Robicquet et al. 2019). 

The auto-encoder is a derivative of artificial neural networks (ANNs), whose aim is to 

learn compact and efficient representations from the input data (Hinton and Salakhutdi-

nov 2006). Usually these representations are with a much lower dimension. Departing 

from supervised ANNs whose performance heavily depends on the quality of gold stand-

ards, auto-encoders directly use unlabeled data, i.e. the input data itself is target of recon-

struction. Compared to commonly used feature extraction approaches like principle com-

ponent analysis (PCA) or independent component analysis (ICA) that linearly map input 

to features, auto-encoders extract features in non-linear space and work much better as a 

tool to reduce dimensionality of data (Bengio, Courville et al. 2013). 

To sum up, we developed a promising process called “SES” that proceeded in mul-

tiple stages to extract information from high sparse genotype data and applied it for phe-

notype prediction. In the first stage (screening), we reduced number of markers via a uni-

variate regression model to a moderate size. In the second stage (extracting), we used a 

trainable auto-encoder to extract compact and efficient representations from the reduced 

data. In the third stage (selecting), we performed a LASSO process over a grid of tuning 

parameter values to select the optimal combination of extracted features. Finally, we ap-

plied such feature combination to prediction and prognostic models, and evaluated the 

predictive effect of the models. 

2. Materials and methods 

2.1. Construction of auto-encoders  

A simple auto-encoder is much similar to the ANNs, which generally contains three 

layers: an input layer, a hidden layer and a reconstructed layer (output layer) (Tan, Ung 

et al. 2015). The hidden layer corresponds to the constructed features, with each neuron 

node representing one feature. The reconstructed layer and the input layer had the same 

dimensions, and the objective optimized function for the algorithm was to minimize the 

difference between the two layers.  

Let’s recall the traditional auto-encoder model proposed by Bengio et al. (Bengio 

2007). As many machine learning methods do, we first normalize the input data by for-

mula (x - xmin) / (xmax - xmin). Thus an auto-encoder with p features takes an input vector x 
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∈ [0, 1]p. The hidden layer representation y with d dimension is constructed through a 

deterministic mapping y = fθ(x) = s(Wx + b), parameterized by θ = {W, b}. W is a p × d 

weight matrix and b is a bias vector. Function s(x) is called activation function, which 

introduces nonlinear properties into our network. Common activation functions include 

(1) rectified linear unit (ReLU) function and (2) sigmoid function: 

f(x) = �
x, x ≥ 0
0, x < 0

 (1)

g(x) =
1

1 + e��
 (2)

Formula (1) maps a linear set of input values to an interval ranged in [0, ∞) and 

formula (2) to an interval in [0, 1]. The value contained in the latent representation y for 

each neuron node is termed the activity value. Then the resulting hidden layer y is 

mapped back to a “reconstructed” vector z ∈ [0, 1]p in a similar manner, by inputting space 

z = gθ’(y) = h(W’y + b’) with θ’ = {W’, b’}. The function h(x) is also an activation function, 

restoring the latent information to the original information. We could use tied weights if 

the two activation functions are the same, which means that the transpose of W was used 

for W’. The parameters in this neural network are optimized to minimize the average re-

construction loss between the input layer x and the reconstructed layer z: 

�∗, ��∗ = 1 n⁄
 �,��   

��� ���
� �(�(�), �(�))

�

���
 (3)

where n is the sample size, L is a loss function like squared error loss function L(x, z) = 

||x−z||2. An alternative error loss, cross-entropy loss function, is suggested by the inter-

pretation of x and z as vectors of bit probabilities:  

��(�, �) = − � [��log �� + (1 − ��)log(1 − ��)]
�

���
          (4)

Like other feed-forward ANNs, the auto-encoder takes back propagation algorithm 

and gradient descent algorithm to compute and update target parameters iteratively until 

reaching to an acceptable loss or the given epochs. The specific theory can be referred to 

the relevant literature (Kriegeskorte and Golan 2019). 

2.2. The LASSO and its selection rules 

Given a linear regression with standardized predictors xij and centered response val-

ues yi for i = 1, 2, . . . , N (samples) and j =1, 2, . . . , p (features), the LASSO solves the l1-

penalized regression problem for finding β = {βj} to minimize 

� (�� − � �����
�

)� + � � |��|
�

���

�

���
 (5)

 where λ > = 0 is a tuning parameter. 

A main reason for using the LASSO is that the l1-penalty tends to set some entries of 

�� to exactly 0, and therefore it performs a kind of variable selection. However, the com-

plexity of the algorithms grows fast with the number of variables. Hence it is of interest 

to be able to efficiently eliminate features in a pre-processing step. Tibshirani with his 

colleagues (Tibshirani, Bien et al. 2012) proposed the “strong rules” which were based on 

the Karush-Kuhn-Tucker (KKT) conditions for discarding predictors in the LASSO and 

LASSO-type penalties problems. Their results indicated that the LASSO performs quite 

well in both low signal-to-noise (SNR) and high sparse regimes when incorporate “strong 

rules”. That is the LASSO can efficaciously find most fixed non-zero coefficients from a 

mass of noise and throw others. However, the predictor matrices from their simulated 

studies were all generated from the Gaussian distribution, so the predictors were all con-

tinuous variables. Subsequent simulation studies that aimed to improving variable selec-

tion algorithm using a LASSO-type penalty still concerns continuous predictors mainly 

(Guo, Zeng et al. 2015, Wang, Wonka et al. 2015, Jiang, He et al. 2016). Guo et al. 
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considered the power of the LASSO for SNP selection in predicting quantitative traits, 

proved that the LASSO still has good selection ability for high dimensional and sparse 

binary predictors (Guo, Elston et al. 2011). But when the values of these binary predictors 

become highly sparse (such as rare mutation) e.g. 99.9% of zeros and 0.01% of ones, we 

observed that power of the LASSO to select non-zero variables may begin to decline due 

to the extensively discrete information. This will be briefly demonstrated in our following 

simulation study. 

2.3. Simulation study 

2.3.1. The LASSO selection for highly sparse binary predictors 

We set up five scenarios. For each scenario, we generated n (= 200) observations, each 

subject i with a survival response, consisting of an observed censored survival time t(i) and 

a censoring indicator d(i), and a vector of m (= 15, 100, 200, 300, 400) binary predictors x(i) 

= (x(i)1, . . . , x(i)m). In particular, we used R package bhGLM (Yi, Tang et al. 2019) (functions 

“sim.x()” and “sim.y()” are used to generate different types of high dimension variables 

and responses, and specify the correlation between covariates within and between 

groups) to generate the simulated survival responses and genotype predictors. The vector 

x(i) was generated with 50 elements in a group, where the intra-group correlation was set 

to 0.6 and the inter-group correlation was 0. Detailed process referenced to (Tang, Shen et 

al. 2017). Specially, with a genotype predictor an individual was coded 1 if a rare allele 

was present and 0 otherwise. Thus the genotype predictors were binary. 

We set fifteen coefficients β1 to β15 as non-zero, six of which were negative, and the 

rest of others to be zero. Table S1 shows the preset 15 non-zero coefficient values for five 

simulation scenarios. We set the mutation frequency of these 15 genotype predictors to 

0.01, and the rest of others to 0.002. Thus the overall proportion of zero is more than 99%. 

We analyzed each simulated scenarios using the LASSO Cox model with penalty param-

eter tuning conducted by 10-fold cross-validation that was implemented in the R package 

glmnet (Engebretsen and Bohlin 2019) for replication with 100 times and recorded average 

numbers of non-zero predictors that were caught by the LASSO. The result is shown in 

Table S2. As noise variables increase, power of the LASSO to selecting non-zero coeffi-

cients plummeted (from 10.83 to 2.96) and it was prone to select more zero coefficient 

variables. In addition, the possibility that the LASSO would not be able to pick any pre-

dictors increases (from 0.02 to 0.23). 

2.3.2. The property of auto-encoder to feature selection 

We explore the feature extraction capability of auto-encoder using two visualized 

image data sets from: Mixed National Institute of Standards and Technology database 

(MNIST) (http://yann.lecun.com/exdb/mnist/) (Lecun, Bottou et al. 1998) and fashion 

MNIST (https://jobs.zalando.com/en/tech/?gh_src=281f2ef41us). The MNIST is one of the 

most widely used benchmark data set for isolated handwritten digit recognition from 0 to 

9. Digits are transformed to 28×28 images, and represent as 784×1 vectors. Each compo-

nent is a number between 0 and 255 which means the gray levels of each pixel. The num-

ber of zeros accounts for about 81%. It has a training set of 60,000 examples, and a test set 

of 10,000 examples. The fashion MNIST is a substitute for the MNIST data set and is more 

complex, consisting of ten types of wearing images. The number of zeros accounts for 

about 51%. The above datasets are loaded and accessed through “Keras” module of Py-

thon's TensorFlow library. The deep learning framework of the auto-encoder is con-

structed by TensorFlow library (2.3.0) of Python (3.7) in Jupyter Notebook platform (6.3.0). 

2.3.2.1 Handwritten digit recognition 

We took the first 1000 examples of training set as training data and the first 1000 

examples of test set as testing data from the MNIST to study the property of our auto-

encoder. First, as mentioned above, we reshaped the 28×28 images to 784×1 vectors and 

normalized the input data from [0, 255] to [0, 1]. Thus the dimension of input layer as well 

as reconstructed layer was 784. We set the hidden layer dimension to 100 (this number is 
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optional). See construction of the auto-encoder in Figure S1. Activation function s(x) was 

specified to ReLU function because of its good property and therefore the activity values 

in the hidden layer y ranged in [0, ∞). The activation function h(x) could be either ReLU 

function or sigmoid function, corresponding to mean squared error (MSE) loss and mean 

cross-entropy (MCE) loss. We used the two activation functions respectively and com-

pared the fitting effects. 

In terms of configuration training method, we used the “Adam” optimizer from the 

“Keras” module. The size of each update is controlled by learning rate. To speed up the 

training, samples were randomly grouped into batches, and the number of samples con-

tained in a batch was termed the batch size, with weight and bias being updated after each 

batch. Training proceeded through epochs, and samples were re-batched at the beginning 

of each epoch. Training was stopped after a specified number of epochs (termed epoch 

size) was reached. We performed a full factorial design over all combinations of the fol-

lowing parameters: learning rate of 0.001, 0.005, 0.010; batch size of 32, 64, 128; epoch size 

of 50, 100, 150. After a full factorial parameter sweep, the parameters that we selected 

were: a learning rate of 0.005, a batch size of 128, an epoch size of 100, which could achieve 

fast training speed and smooth loss. 

When using the sigmoid function as activation function, the MCE was 0.0683 with a 

binary accuracy (calculates how often predictions matches labels) of 0.8156 in the training 

data (See Figure S2A) and 0.0898 with 0.8244 in the testing data using the same model. 

We read the first five images of the training data and testing data, as shown in Figure 

S3A-B. The first row shows the original images, the second row shows the extracted fea-

tures, and the third row shows that the images were restored accurately with the extracted 

features. The results show that the model can be used to extract the key features well. 

Meanwhile, we used the reconstructed data for handwritten digit prediction and found 

that the probability of predicting the correct classification was close to 1 (See Table S3). 

While using the ReLU function as activation function, the MSE was 0.0067 with an 

accuracy (calculates how often predictions matches labels) of 0.0150 in the training data 

(See Figure S2B) and 0.0125 with 0.0200 in the testing data using the same model. We also 

read the first five images of the training data and testing data, as shown in Figure S3C-D. 

It shows that the ReLU function performed quite poorer compared to sigmoid function. 

Because the labels of corresponding output data are normalized data ranged in [0, 1], sig-

moid function could work more suitably. 

2.3.2.2 Fashion images recognition 

We took the same procedure as section 2.3.2.1 to study the fashion MNIST data. We 

selected the first 1000 examples of training set as training data. The activation function 

h(x) was directly specified to sigmoid function. Then we set the same configuration train-

ing method except an epoch size of 200. The MCE was 0.2667 with a binary accuracy of 

0.5166 in the training data (See Figure S4A). We read the first five images of the training 

data, as shown in Figure S5A. We found that the fitting effect was poorer in the fashion 

MNIST data than the MNIST data, because the proportion of zeros is lower in the fashion 

MNIST data (about 51%) than the MNIST data (about 81%).  

Inspired by the denoising auto-encoders (Vincent, Larochelle et al. 2008), we artifi-

cially added some corruption to the training data. Specifically, we set values below 0.21 

to zeros in the input data, resulting the proportion of zeros to about 58.5%. Then we re-

trained the model, the MCE was 0.2440 with a binary accuracy of 0.5924 in the new (cor-

rupted) training data (See Figure S4B). The first five images of the new training data are 

shown in Figure S5B. The black icon became a little clearer. Images before and after the 

corruption are shown in Figure S5C. The first and third images were before the corrup-

tion, the second and fourth images were after the corruption. Our results show that the 

higher the proportion of 0 and 1, the better the feature extraction effect of the auto-encoder 

using the sigmoid function. 
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2.3.3. Auto-encoder feature selection for highly sparse binary predictors 

We tried to use auto-encoder to extract features from the highly sparse binary pre-

dictors data. We randomly selected a simulation data generated from section 2.3.1. The 

sample size was 200 with 400 binary predictors. Thus in the testing auto-coder, the dimen-

sion of the input layer as well as reconstructed layer was 400. We set hidden layer dimen-

sion to 100, i.e. extracting 100 important features. We used the “Adam” optimizer, the 

parameters that we selected were: a learning rate of 0.005, a batch size of 32, an epoch size 

of 200. The activation function h(x) was set to sigmoid function with MCE loss. 

As a result, the MCE was 0.0001 with a binary accuracy of 1.0000 (See Figure S6A). 

We read the first five “images” of this simulated data, as shown in Figure S6B. The auto-

encoder could recover the scattered genetic signals and when there was no genetic signal 

in the sample, an identical noise signal was given. The extracted 100 signal features were 

then used in LASSO Cox regression, and 9 features were selected. We calculated Harrell's 

concordance index (C-index) with 0.670 (standard error, SE = 0.035) and the R square was 

0.215. If the LASSO Cox regression were applied directly using 400 binary predictors, a 

total of 65 predictors were selected (of which 5 were real nonzero predictors). The C-index 

was 0.721 (SE = 0.030) and the R square was 0.379. The result obtained using auto-encoder 

was much more closed to the performance of scenario1 in section 2.3.1 (average C-index: 

0.647, average R square: 0.244, see Table S2). Due to selecting much more noise predictors, 

using the LASSO directly had a virtual height of C-index and R square which would in-

duce to over fit. 

3. Real data applying 

The Cancer Genome Atlas (TCGA) project was started in 2006 by the National Cancer 

Institute (NCI) and the National Human Genome Research Institute (NHGRI) 

(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). 

Over the past dozen years, the database has contained a variety of cancer data from more 

than 20,000 samples of 33 types of cancer, including transcriptome expression data, ge-

nomic variation data, methylation data, clinical data, etc. As the largest cancer gene data-

base, TCGA has become the first choice for cancer research due to its large sample size, 

diverse data types and standardized data formats. 

We downloaded the latest (in July 2022) simple nucleotide variation (SNV) data and 

phenotype data of GDC TCGA Breast Cancer (BRCA) cohort (female) and GDC TCGA 

Ovary Cancer (OV) cohort from the given official website “GDC Data Portal” (https://por-

tal.gdc.cancer.gov/repository). A total of 977 SNV documents and 1,085 phenotype docu-

ments were obtained from BRCA and 480 SNV documents and 597 phenotype documents 

were obtained from OV. 

The data type of SNV is masked somatic mutation, read and collated by the R pack-

age mafTools. The overview of SNV in BRCA and OV is shown in Figure S7. We eliminated 

data with variants that was nonsense mutation. Next we used the R package reshape2 to 

reshape the mutation data by counting how many SNV mutations were present in each 

gene per patient. Zero means wild-type, and one means mutated (genotype). The inter-

ested phenotype in this study was overall survival (OS). 

3.1. BRCA data 

There were a total of 66,780 SNV items in which 4,910 were nonsense mutation. Many 

genes had more than one mutation but we deemed all of them as “mutated”. Thus 952 

BRCA patients with 15,124 genotype data were available. After merging survival data, 

samples with missing survival data were eliminated and 939 subjects were left. Univariate 

Cox analysis was performed on these 15,124 genotype data as preliminary screening to 

identify potential contributors, and 1,936 of them with P-value less than 0.05 (a rough 

threshold) were selected for subsequent analysis. We found that if the LASSO Cox regres-

sion were applied directly to these data, no variables would be selected by the LASSO (See 

Figure S8). This was reasonable in such scenario because the proportion of zeros reaches 
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for 99.6%. Thus we thought of using auto-coder to extract features from these highly 

sparse binary variables. We also consider random survival forest (RSF) as an alternative 

to screen the key variables because random forest method is employed to detect signifi-

cant SNPs in large-scale GWAS (Bureau, Dupuis et al. 2005). 

3.1.1. Feature extraction using auto-encoder and construction of prognosis 

Specifically, in our BRCA auto-coder, the dimension of the input layer as well as re-

constructed layer was 1,936. We set hidden layer dimension to 100, i.e. extracting 100 im-

portant features. Figure 1 shows the construction of the auto-encoder. We used the 

“Adam” optimizer, the parameters that we selected were: a learning rate of 0.005, a batch 

size of 32, an epoch size of 150. The activation function h(x) was set to sigmoid function 

with MCE loss. 

 

Figure 1. The construction of the auto-encoder in BRCA data. 

As a result, the MCE was 0.0006 with a binary accuracy of 1.0000 (Figure 2). We read 

the first five “images” of this data, as shown in Figure 3. The auto-encoder could recover 

the scattered genetic signals well as expected. The extracted 100 signal features were con-

tinuous variables (see Table S4 for example) and then thrown into the LASSO Cox regres-

sion. Finally, 25 features were selected (see Figure 4). We then build a prognosis signature 

called SNV-signature based on these 25 features using R function “predict()” among 

BRCA patients. The C-index of this prognosis signature was 0.877 (SE = 0.023) and the R 

square was 0.329. 

 

Figure 2. Loss function value and accuracy of the auto-encoder in BRCA data by the epoch times. 
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Figure 3. The first five visualized genetic signal of BRCA data. The first row shows the original 

images, the second row shows the extracted features, and the third row shows that the images were 

restored accurately with the extracted features. 

 

(A) 
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(B) 

Figure 4. The process of the LASSO to select optimal predictors in BRCA data. (A) Penalty pa-

rameter tuning conducted by 10-fold cross-validation. (B) The solution pathway of the 25 features. 

We used this signature to divide the population. The optimal cutoff value of signa-

ture was determined using R package survminer. R package survival was used to perform 

survival analysis between this two groups. Kaplan-Meier (K-M) curve was used to show 

difference of survival curves between groups (discrimination). Log-rank test evaluated 

statistically differences of survival. Receiver operating characteristic (ROC) curves and its 

area under the curve (AUC) values were utilized to evaluate the specificity and sensitivity 

of the signature in a time-dependent manner using package timeROC. The agreement be-

tween the expected and observed outcome rates was using calibration curve. 

Patients were divided into low risk group (n = 820) and high risk group (n = 119) (See 

Figure 5A). Low risk group had a much higher survival rate compared to high risk group 

(P < 0.0001). The 8-year survival rate of low risk group was more than 0.75 whereas high 

risk group was lower than 0.10. Time-dependent AUC curve was around 0.9 (Figure 5B). 

The 3-year, 5-year and 8-year AUC of the signature were 0.912 (CI95%: 0.851 - 0.973), 0.894 

(CI95%: 0.840 - 0.949), 0.879 (CI95%: 0.821 - 0.937), respectively. (Figure 5C). Calibration 

plot was shown in Figure 5D (the agreement was not very high). We looked at the sum-

mary of SNVs in both low risk group (Figure 6A) and high risk group (Figure 6B). The 

median of variants per sample in low risk group was 30 but 74 in high risk group. The 

rank and distribution of top 10 mutated genes in low risk group was similar to the whole 

population (Figure S7A). Peculiarly, we plotted the detailed distribution of top 10 mu-

tated genes in high risk group (Figure 6C). 57% samples had TP53 mutation in high risk 

group compared to 31% in low risk group. 38% samples had TTN mutation in high risk 

group compared to 14% in low risk group. 
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(C)                                                   (D) 

Figure 5. Discrimination and calibration of SNV-signature in BRCA data. (A) The K-M curve of 

low risk group and high risk group. (B) Time-dependent AUC of SNV-signature. (C) The 3-, 5- and 

8-year AUC of SNV-signature. (D) Calibration plot for 3-, 5- and 8-year of SNV-signature. 
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(C) 

Figure 6. The summary of SNVs in two groups in BRCA data. (A) Low risk group. (B) High risk 

group. (C) The detailed distribution of top 10 mutated genes in high risk group. 

3.1.2. RSF for variables screening 

RSF is using for prediction and variable selection for right censored survival and 

competing risk data (Ishwaran, Gerds et al. 2014). A random forest of survival trees is 

used for ensemble estimation of cumulative hazard function in right-censored settings. 

Different survival tree splitting rules are used to grow trees. An estimate of C-index is 

provided for assessing prediction accuracy. Variable importance for single, as well as 

grouped variables, can be used to filter variables and to assess variable predictiveness. 

We used R package randomSurvivalForest to build RSF model and ranked the im-

portance of variables. Number of trees to grow was set to 10,000 in order to ensure that 

every input row got predicted at least a few times. The result of the model was shown in 

the Figure S9. Prediction error is measured by 1 - C-index. The estimate of prediction error 

rate of this model was 0.449 (Figure S9A). We selected variables with importance index 

greater than 0.3 (21 mutant genes) and plotted them in Figure S9B. However, we selected 

the most 100 important variables (See Table S5) throwing into the LASSO Cox regression. 

23 predictors were left (Figure S10). They offered 0.694 (SE = 0.029) of C-index and 0.168 

of R square. It was not surprising the C-index and R square were much lower using RSF 

model when compared to using auto-encoder (where they used similar number of varia-

bles: 25 versus 23) because RSF model only selected the most 100 important variables and 

auto-encoder used the whole information. 

3.1.3. Genotype and gene expression 

We also performed univariate Cox analysis with gene expression data of BRCA. Data 

category is transcriptome profiling, data type is gene expression quantification and work-

flow type is “STAR-Counts”. We also selected 1,936 of them with lowest P-value. Then 

we used the LASSO Cox to select predictors. A total of 60 predictors were left (Figure S11). 

They offered 0.903 (SE = 0.014) of C-index and 0.417 of R square. We drew a Venn plot 

about 1,936 genotype, 1,936 genes and 60 predictors (Figure S12), and found many com-

mon genes. Based on an explicit assumption of temporal ordering from genotype, gene 

expression and survival outcome, survival mediation analysis of gene expression with 

multiple genotype exposures is feasible, referring to (Shao, Wang et al. 2021). 
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3.2. OV data 

There were a total of 30,210 SNV items in which 1,650 were nonsense mutation. 406 

OV patients with 11,322 genotype data were available. After merging survival data, sam-

ples with missing survival data were eliminated and 359 subjects were left. Univariate 

Cox analysis was performed on these 11,322 genotype data, and 1,089 of them with P-

value less than 0.05 were selected for subsequent analysis. Then the LASSO Cox regres-

sion were applied directly to these data, a total of 95 predictors were selected by the 

LASSO (See Figure S13A). This was also common that the LASSO did select predictors in 

this scenario that the proportion of zeros takes account for 99.4%. The C-index of the 95 

predictors was 0.857 (SE = 0.017) and the R square was 0.791. We also used the auto-coder 

to extract features from 1,089 binary variables. 19 features were selected from 100 ex-

tracted features using the LASSO process (See Figure S13B). C-index of the 19 features 

was 0.777 (SE = 0.019) and R square was 0.443. We thought that although the C-index and 

R square obtained directly by the LASSO were much higher, the reason was that the pre-

dictors were much more, and noise variables selected might be also more, thus there was 

possibly over-fitting. 

4. Discussion 

The use of transcriptome data to construct predictive and prognostic models has be-

come very popular, and its performance in the internal verification is often pretty. How-

ever, due to different sequencing platforms, sequencing methods, instability of transcrip-

tome data expression and data standardization problems, extrapolation is still questiona-

ble. Trying to get the same well-performed results from a random external data is always 

going to be less than expected. 

SNV is a widely studied type of gene mutation (of which SNP is the most common 

type, see Figure S7), which exists stably in somatic cells and plays a key role in regulating 

transcriptome expression. However, the giant number of SNVs and the generally tiny size 

of their effects make it very hard for researchers to detect important genetic factors with 

a desired statistical significance in a small sample study. What’s more, in standard GWAS, 

the contribution rate of positive SNPs obtained through rigorous variable screening pro-

cess is often limited. Therefore, aggregating these small effects is a more convincing 

method and has more promising applications. To best utilize such data in reasoning sys-

tems, the feature extraction method may play to more advantages than feature selection 

method. 

Based on these key factors, we identified auto-encoders as a promising approach. 

Our simulated research shows that the auto-encoder can extract effective information 

from dichotomous data very well, even in the case of highly sparse variable values. It 

maps the linear combination of input dichotomous variables to a continuous value space 

that is lower dimensional by neural networks and activation function. These features can 

retain most of the original information without the need for worrying about over-fitting 

issue, because our goal is to get the original information as possible. The use and analysis 

of these extracted feature information may achieve unexpected results, as compared to 

highly sparse binary variables, low-dimensional continuous variables are better used. In 

our proposed process called “SES”, considered that the underlying representation is often 

sparse, we start by sifting through a huge number of variables (screening) to find the ones 

that might work. Then we do efficient feature extraction by deep learning method (ex-

tracting) to make full use of most of the information, while obtaining data types that are 

easier to analyze. Finally, we use the classical l1-norm penalty method to select (select-

ing)the extracted features and build predictive models. The first step of this process is 

probably the most time-consuming because the training process of the latter two steps 

usually only take a few seconds. 

Studies have shown that inherited genetic variation is associated with cancer prog-

nosis (Lu, Katsaros et al. 2012, Rafiq, Tapper et al. 2013, Barrdahl, Canzian et al. 2015). 

However, few studies have used SNV information to predict cancer prognosis in female 
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patients. A study using multi-omics data (including gene expression data, copy number 

variation (CNV) data and SNP) to predict the prognosis of BRCA patients gained the five-

year survival AUC for 0.65 through their 6-gene signature (Mo, Ding et al. 2020). By con-

trast, our study shows the power of feature extraction using deep learning method. Based 

on the aggregated SNV information, we can greatly improve the ability to predict patient 

outcome. In our study, BRCA patients were stratified into low risk group and high risk 

group based on the SNV-signature. The high risk group had higher TP53 and TTN muta-

tion. TP53 is well known mutated gene and is mutant in 30% of all breast cancers. It is 

clear that the role of TP53 in the management of breast cancer maters (Shahbandi, Nguyen 

et al. 2020). TTN-AS1 is a long noncoding RNAs (lncRNA) that binds to titin mRNA 

(TTN). Many studies have shown that over-expression of TTN-AS1 correlates with poor 

prognosis in breast cancer and with more advanced pathology (Zheng, Wang et al. 2021). 

It is not difficult to think of the poor prognosis of breast cancer may cause by TTN muta-

tion. 

Furthermore, we searched for studies on SNPs analysis with the auto-encoder in Pub-

Med (Prive, Aschard et al. 2019, Fergus, Montanez et al. 2020, Li, Han et al. 2020, Massi, 

Gasperoni et al. 2020). The most cutting-edge methods take auto-encoders to extract fea-

tures from SNP data too (Li, Han et al. 2020). Specifically, the authors applied deep ca-

nonically correlated sparse auto-encoder to extract key features from SNPs data and func-

tional magnetic resonance imaging (fMRI) data, and then stacked these features together 

for classification. Their approach is very interesting and engaging for they addressed the 

nonlinear dimension reduction and considered the correlation between the above two 

types of data. The AUC scores of their proposed model for the SNP data were 0.984 and 

for fMRI data were 0.953, which were the highest AUC scores than other models. The 

difference of our study is that we have made an interesting experiment on the feature 

extraction property of auto-encoders. We compared the selection of activation functions 

in the output layer and find that sigmoid function was more suitable for feature extraction 

than ReLU function. And the effect of dichotomous data was better than continuous data. 

In addition, the data involved in our study were from publicly available databases, so all 

results are reliable and reproducible (We will provide the R scripts and Python codes on 

Github). 

There is still some limitation. First, although the deep neural network can almost fully 

extract information of the SNV data, a person’s entire sequencing genome is not easy to 

come by. This may be easy to achieve in the future. Second, it’s important to note, how-

ever, due to the randomness of parameter initialization, the results of deep neural network 

training are also random. Therefore, the characteristics obtained from each training are 

always different, or, random. For example, in the BRCA dataset, each time the auto-en-

coder was retrained, the features obtained that were used for the LASSO analysis were 

different, and so the C-index. However, the difference was not apparent, only causing the 

C-index to move around an interval, say 0.85 to 0.91 (see Table S6). Therefore, any training 

result is feasible in a single test. Of course, there may be many other scenarios where deep 

neural networks can be used to extract features and make use of them. This remains to be 

discovered by the scholars. 

5. Conclusion 

Integrating minor effects from highly sparse genetic genome data could improve pre-

diction power. We studied the feature extraction property of the auto-encoder and found 

that deep learning method can work well to extract features by transforming highly sparse 

dichotomous data (which is a special data type) to lower dimensional continuous data in 

a non-linear way. This idea may provide benefits in analyzing genome-wide data associ-

ated risk prediction issues. We applied this method to cancer prognosis studies which had 

genome-wide data, and achieved good results. 
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Supplementary Materials 

TableS1: The preset 15 non-zero coefficient values for simulation study. 

TableS2: The performance of the LASSO in different scenarios. 

TableS3: The predicted probability distribution of the true label using the extracted features.  

TableS4: The original input data and the extracted features. 

TableS5: The ranking of the 100 most important variables using RSF. 

TableS6: The influence of randomness of neural network training on results. 

 

FigureS1: The construction of the auto-encoder in MNIST data. 

FigureS2: Loss function value and accuracy of the auto-encoder in MNIST training data by the epoch times. (A) 

Using sigmoid function. (B) Using ReLU function. 

FigureS3: The first five image of MNIST training data and testing data. (A) Training data using sigmoid function. (B) 

Testing data using sigmoid function. (C) Training data using ReLU function. (D) Testing data using ReLU function.  

FigureS4: Loss function value and accuracy of the auto-encoder in fashion MNIST training data by the epoch times. 

(A) Original data using sigmoid function. (B) Corrupted data using sigmoid function. 

FigureS5: The first five image of fashion MNIST training data. (A) Original data using sigmoid function. (B) 

Corrupted data using sigmoid function. (C) Images of original data V.S. corrupted data. The first and third images were 

original data, the second and fourth images were corrupted data. 

FigureS6: Auto-encoder feature selection for highly sparse binary predictors. (A) Loss function value and accuracy of 

the auto-encoder in simulated data by the epoch times. (B) The first five visualized genetic signal of simulated data. The 

first row shows the original images, the second row shows the extracted features, and the third row shows that the 

images were restored accurately with the extracted features. The auto-encoder could recover the scattered genetic 

signals and when there was no genetic signal in the sample, an identical noise signal was given. 

FigureS7: The summary of SNVs in BRCA data and OV data. (A) BRCA data. (B) OV data. 

FigureS8: The process of the LASSO to directly select predictors using 1,936 genotype data in BRCA. 

FigureS9: The process of variables selection using RSF. (A) Error rate by number of trees. (B) 21 variables with 

importance index greater than 0.3. 

FigureS10: The process of the LASSO to select predictors using 100 most important variables selected using RSF in 

BRCA. 
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FigureS11: The process of the LASSO to directly select predictors using 1,936 gene expression data in BRCA. 

FigureS12: The Venn plot about 1,936 genotype, 1,936 genes and 60 predictors. 

FigureS13: The process of the LASSO to select predictors using genotype data in OV. (A) Directly select predictors 

using 1,089 genotype data. (B) 19 features were selected from 100 extracted features using the LASSO process 
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