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Abstract 
Measurement uncertainty is typically expressed in terms of a symmetric interval 𝑦𝑦 ± 𝑈𝑈 , where 𝑦𝑦  denotes the 
measurement result and 𝑈𝑈 the expanded uncertainty. However, in the case of heteroscedasticity, symmetric uncertainty 
intervals can be misleading. In this paper, a different approach for the calculation of uncertainty intervals is introduced. 
This approach is applicable when a validation study has been conducted with samples with known concentrations. It 
will be shown how, under certain circumstances, asymmetric uncertainty intervals arise quite naturally and lead to 
more reliable uncertainty intervals. 

Keywords: In-house validation study; reproducibility precision; measurement uncertainty; prediction interval; uncertainty 
interval 
 

1 Introduction 
In this paper, a “top-down” approach for the calculation of measurement uncertainty is presented, in the sense that the 
estimate of measurement uncertainty is supported by precision data from a validation study. 
Measurement uncertainty is defined in JCGM 100 as a parameter that “characterizes the dispersion of the values that 
could reasonably be attributed to the measurand” [1]. This parameter is often expressed as a standard deviation which 
is then used to obtain a symmetric uncertainty interval around the measurement result. In the following, the approach 
yielding symmetric uncertainty intervals will be referred to as the 𝑦𝑦 ± 𝑈𝑈 approach. 
As will be discussed below, in the case of heteroscedasticity, the 𝑦𝑦 ± 𝑈𝑈 approach can yield misleading uncertainty 
intervals. For this reason, a different approach for determining measurement uncertainty is presented. This approach is 
suitable when precision data from a validation study conducted with test samples with known concentrations are 
available. While the focus in this paper is in-house validation, the approach presented here can also be applied for data 
from an interlaboratory validation study. It will be shown how, under certain circumstances, asymmetric uncertainty 
intervals arise quite naturally. For this reason, the approach presented here will be referred to in the following as the 
asymmetric measurement uncertainty approach (short form: asymmetric approach). 
The asymmetric approach is perfectly consistent with the JCGM definition given above. Indeed, in the asymmetric 
approach, the focus is explicitly on the “dispersion of values which could reasonably be attributed to the measurand.” 
Furthermore, it draws the same distinction between measurand (𝑌𝑌) and measurement (𝑌𝑌𝑚𝑚) as JCGM 106 [2]. Even 
though the approach presented here is not Bayesian, there are important connections with JCGM 106, such as the 
definition of the best estimate of the measurand as 𝐸𝐸(𝑌𝑌|𝑌𝑌𝑚𝑚). 
First, an experimental design for an in-house validation study and a statistical model are presented, allowing the 
calculation of in-house reproducibility precision as a function of concentration. Then it is shown how 𝑦𝑦 ± 𝑈𝑈 uncertainty 
intervals are calculated from such precision data. The inconsistencies of the 𝑦𝑦 ± 𝑈𝑈 approach are then discussed, and the 
asymmetric approach is presented. Throughout, the various concepts are illustrated with examples. 
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2 Experimental design and statistical model for 

an in-house validation study with samples 

with known concentrations 

It is assumed that an in-house validation study has been conducted with samples with known concentrations. In the 
simplest case, the samples with known concentrations are obtained by diluting certified reference material. For each 
concentration level, several measurement results are obtained under in-house reproducibility conditions. This is best 
achieved via a factorial design, such as described in ISO/TS 23471 [3]. 
The following table provides an example of a factorial design with 7 factors and 8 factor level combinations. 

Table 1: Factorial design with 7 factors, each with two levels. 

 Factors 

Factor level 
combination 𝒋𝒋 

Block 
(e.g. week) 

1 2 3 4 5 6 7 

1 1 1 1 1 2 2 2 1 

2 2 1 1 2 2 1 1 2 

3 3 1 2 1 1 2 1 2 

4 4 1 2 2 1 1 2 1 

5 5 2 1 1 1 1 2 2 

6 6 2 1 2 1 2 1 1 

7 7 2 2 1 2 1 1 1 

8 8 2 2 2 2 2 2 2 
 
More generally, the number of factor level combinations is denoted 𝑛𝑛. With 𝑚𝑚 (known) concentration levels and 𝑝𝑝 
replicates per concentration level, a total of 𝑚𝑚 ∙ 𝑝𝑝 ∙ 𝑛𝑛 measurements are performed. 
The statistical model is as follows: 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑗𝑗 + 𝐴𝐴(𝑗𝑗) + 𝐵𝐵(𝑗𝑗)𝑥𝑥𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑗𝑗 + 𝐵𝐵𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖  Equation 1 
 
where 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  denotes the measurement result at concentration level 𝑖𝑖 = 1, … ,𝑚𝑚 for factor level combination 𝑗𝑗 = 1, … ,𝑛𝑛 
and replicate 𝑘𝑘 = 1, … , 𝑝𝑝 
𝑥𝑥𝑖𝑖𝑖𝑖  denotes the known concentration 
𝛼𝛼 and (𝛽𝛽 − 1) denote the absolute and the relative components of method bias. The 𝛼𝛼 + 𝛽𝛽 ∙ 𝑥𝑥 curve represents 
the expected measured concentration at known concentration 𝑥𝑥 and will be referred to in the following as the 
mean curve. 
𝐴𝐴(𝑗𝑗) and 𝐵𝐵(𝑗𝑗) denote the absolute and the relative components of the effect of factor level combination 𝑗𝑗 (each 
of these terms results from summing effects of the individual factors) 
𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑗𝑗  denote the absolute and the relative components of block effect 𝑗𝑗 
𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 denote the absolute and the relative component of the repeatability error for measurement result 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 . 
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In the following, two in-house validation data sets will be considered: Thiamphenicol in milk (Example 1) and Clopidol 
in egg (Example 2). 
The following table provide test results for Example 1 (𝑚𝑚 = 4 known concentration levels, 𝑝𝑝 = 1 replicate). 

Table 2: Example 1 – design and test results from an in-house validation study for Thiamphenicol in milk 
Block 
𝒋𝒋 

Batch of 
milk 

Storage Technician Mixer CL 01 
(25) 

[µg/kg] 

CL 02 
(50) 

[µg/kg] 

CL 03 
(75) 

[µg/kg] 

CL 04 
(100) 

[µg/kg] 

01 Milk A Storage A Technician 1 Mixer A 23.9 51.9 74.9 100.9 

02 Milk A Storage A Technician 2 Mixer B 24.3 50.5 74.2 99.3 

03 Milk A Storage B Technician 1 Mixer B 24.8 49.9 73.6 97.6 

04 Milk A Storage B Technician 2 Mixer A 29.2 55.3 79.4 102.7 

05 Milk B Storage B Technician 2 Mixer B 28.4 53.4 78.3 103.1 

06 Milk B Storage B Technician 1 Mixer A 26.5 51.3 77.9 101.8 

07 Milk B Storage A Technician 2 Mixer A 25.0 52.9 77.2 102.1 

08 Milk B Storage A Technician 1 Mixer B 25.5 51.7 74.3 98.4 

 
The test results for Example 1 are displayed in Figure 1.  

 
Figure 1: Example 1 - test results 

 
The following table provide test results for Example 2 (𝑚𝑚 = 6 known concentration levels, 𝑝𝑝 = 1 replicate). 

Table 3: Example 2 – design and test results from an in-house validation study for Clopidol in egg 
Block 
𝒋𝒋 

Breeding Operator HPLC Extract 
storage 

CL 01 
(0.2) 

[µg/kg] 

CL 02 
(0.5) 

[µg/kg] 

CL 03 
(1) 

[µg/kg] 

CL 04 
(2) 

[µg/kg] 

CL 05 
(4) 

[µg/kg] 

CL 06 
(6) 

[µg/kg] 

01 Conventional Routine Batch 1 (Old) With 0.22 0.49 0.82 2.11 4.66 6.45 

02 Conventional Routine Batch 2 (New) With 0.24 0.47 1.20 2.18 4.98 7.32 

03 Conventional Occasional Batch 1 (Old) Without 0.28 0.57 1.07 2.62 3.67 6.78 
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04 Conventional Occasional Batch 2 (New) Without 0.22 0.55 1.06 1.74 3.72 5.56 

05 Organic Routine Batch 1 (Old) Without 0.16 0.42 0.91 2.00 4.42 5.53 

06 Organic Routine Batch 2 (New) Without 0.23 0.55 1.24 2.11 4.52 5.91 

07 Organic Occasional Batch 1 (Old) With 0.42 0.73 1.19 2.26 4.44 4.99 

08 Organic Occasional Batch 2 (New) With 0.32 0.56 1.08 1.82 3.25 5.01 

 
The test results for Example 2 are displayed in Figure 2.  

 
Figure 2: Example 2 - test results 

 
For each example, reproducibility standard deviation values are calculated by means of Equation 1. With the 
exception of 𝛼𝛼 and 𝛽𝛽, the terms on the right side of Equation 1 are modelled as random variables. The corresponding 
variance components are denoted as follows:  

𝐴𝐴(𝑗𝑗) = 𝐴𝐴1�𝑠𝑠1(𝑗𝑗)� + ⋯+𝐴𝐴𝑞𝑞 �𝑠𝑠𝑞𝑞(𝑗𝑗)� 

𝐵𝐵(𝑗𝑗) = 𝐵𝐵1�𝑠𝑠1(𝑗𝑗)� + ⋯+𝐵𝐵𝑞𝑞 �𝑠𝑠𝑞𝑞(𝑗𝑗)� 
where 

𝐴𝐴1(𝑠𝑠), … ,𝐴𝐴𝑞𝑞(𝑠𝑠) are random variables with zero mean and variances 𝜎𝜎𝐴𝐴,1
2 , … ,𝜎𝜎𝐴𝐴,𝑞𝑞

2 , respectively 
𝐵𝐵1(𝑠𝑠), … ,𝐵𝐵𝑞𝑞(𝑠𝑠) are random variables with zero mean and variances 𝜎𝜎𝐵𝐵,1

2 , … ,𝜎𝜎𝐵𝐵,𝑞𝑞
2 , respectively 

and where 
�𝑠𝑠1(𝑗𝑗), … , 𝑠𝑠𝑞𝑞(𝑗𝑗)� denote vector of factor levels for the 𝑞𝑞 factors and for factor level combination 𝑗𝑗 

Moreover, 
𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 are random variables with zero mean and variance 𝜎𝜎𝐴𝐴2 
𝐵𝐵1, … ,𝐵𝐵𝑛𝑛 are random variables with zero mean and variance 𝜎𝜎𝐵𝐵2. 

𝑎𝑎111, … , 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 are random variables with zero mean and variance 𝜎𝜎𝑎𝑎2 
𝑏𝑏111, … , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 are random variables with zero mean and variance 𝜎𝜎𝑏𝑏2 

 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

M
ea

su
re

d 
co

nc
en

tr
at

io
n 

[µ
g/

kg
]

Known concentration [µg/kg]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2022                   doi:10.20944/preprints202208.0179.v1

https://doi.org/10.20944/preprints202208.0179.v1


 5 of 20 
 

 

The different variance components are conveniently computed via QuoData’s webservice InterVAL® [4]. The 
variance and precision estimates for Example 1 are provided in the following two tables. 

Table 4: Example 1 – variance estimates 

Variance component  Constant (A) Proportional (B) 
Repeatability 0.90760 0.00000 

Block 0.88789 0.00000 

Factor: Batch 0.00000 0.00004 

Factor: Storage 1.06201 0.00000 

Factor: Technician 1.52630 0.00000 

Factor: Mixer 0.00000 0.00029 

 
 

Table 5: Example 1 – In-house precision estimates 
Concentration In-house 

repeatability 
Block Factors In-house 

reproducibility 
In-house 

reproducibility 
[µg/kg] [%] [%] [%] [%] [µg/kg] 

25 3.8 3.8 6.7 8.6 2.14 

50 1.9 1.9 3.7 4.6 2.28 

75 1.3 1.3 2.8 3.3 2.50 

100 1.0 0.9 2.4 2.8 2.77 
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The following two tables provide variance and precision estimates for Example 2. 

Table 6: Example 2 – variance estimates 

Variance component  Constant (A) Proportional (B) 
Repeatability 0.00000 0.01096 

Block 0.00142 0.00524 

Factor: Breeding 0.00118 0.00048 

Factor: Operator 0.00749 0.00447 

Factor: HPLC 0.00000 0.00000 

Factor: Extract storage 0.00258 0.00000 

 

Table 7: Example 2 – In-house precision estimates 
Concentration In-house 

repeatability 
Block Factors In-house 

reproducibility 
In-house 

reproducibility 
[µg/kg] [%] [%] [%] [%] [µg/kg] 

0.2 10.5 20.2 53.5 58.1 0.12 

0.5 10.5 10.4 22.3 26.8 0.13 

1 10.5 8.2 12.7 18.4 0.18 

2 10.5 7.5 8.8 15.6 0.31 

4 10.5 7.3 7.5 14.8 0.59 

6 10.5 7.3 7.3 14.7 0.88 
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3 Calculation of the 𝒚𝒚 ± 𝑼𝑼  measurement 

uncertainty  
At a given known concentration 𝑥𝑥, the in-house reproducibility standard deviation is calculated as follows: 

𝜎𝜎Ri
2 (𝑥𝑥) = 𝜎𝜎𝐴𝐴,1

2 + ⋯+ 𝜎𝜎𝐴𝐴,𝑞𝑞
2 + 𝑥𝑥2�𝜎𝜎𝐵𝐵,1

2 + ⋯+ 𝜎𝜎𝐵𝐵,𝑞𝑞
2 �+𝜎𝜎𝐴𝐴2 + 𝑥𝑥2𝜎𝜎𝐵𝐵2 + 𝜎𝜎𝑎𝑎

2 + 𝑥𝑥2𝜎𝜎𝑏𝑏2. 
This can be used to derive an estimate of the standard measurement uncertainty for the measurand 𝑌𝑌 as a function of 
𝑥𝑥: 

𝑢𝑢(𝑥𝑥) = �𝜎𝜎Ri
2 (𝑥𝑥) 

The expanded measurement uncertainty is then obtained as follows: 
𝑈𝑈(𝑥𝑥) = 𝑘𝑘 ∙ 𝑢𝑢(𝑥𝑥) 

where 𝑘𝑘 denotes the coverage factor. 
It should be noted that it may be necessary to include the uncertainty of bias correction and the uncertainty of the 
(certified reference) values for the known concentrations used in the validation study, as appropriate (see Section 5.1.3). 
Based on the precision values from the previous section, and using 𝑘𝑘 = 2 (for the sake of simplicity), one obtains the 
following expanded uncertainty values: 

Table 8: Example 1 – Expanded uncertainty 
Concentration Expanded 

measurement 
uncertainty 

Expanded 
measurement 

uncertainty 
[µg/kg] [%] [µg/kg] 

25 17.1 4.28 

50 9.1 4.56 

75 6.7 5.00 

100 5.5 5.54 
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Table 9: Example 2 – Expanded uncertainty 
Concentration Expanded 

measurement 
uncertainty 

Expanded 
measurement 

uncertainty 
[µg/kg] [%] [µg/kg] 

0.2 116.3% 0.23 

0.5 53.6% 0.27 

1 36.8% 0.37 

2 31.2% 0.62 

4 29.6% 1.19 

5.5 29.4 % 1.62 

6 29.3% 1.76 

 

4 The inconsistency of the 𝒚𝒚 ± 𝑼𝑼  approach in 

the case of heteroscedasticity 
Typically, the expanded measurement uncertainty is used to construct a measurement uncertainty interval of the form 
𝑦𝑦 ± 𝑈𝑈. Such symmetric measurement uncertainty intervals are not always appropriate. This will be demonstrated on 
the basis of theoretical example. 
In this example, it is assumed that the relative measurement uncertainty is already known and is constant at 35 % across 
the applicable range of concentrations as specified in the scope of the analytical method. If the measurement result is 
𝑦𝑦 = 10  (in this theoretical example, the unit plays no role and is therefore suppressed), then, applying the 𝑦𝑦 ± 𝑈𝑈 
approach with 𝑘𝑘 = 2 (for the sake of simplicity) and with the standard uncertainty obtained from the known 35 % RSD 
value, a measurement uncertainty interval of [3, 17] is obtained. According to the JCGM definition of measurement 
uncertainty discussed in the introduction, this means that the value 𝑦𝑦 = 3 could reasonably be attributed to the measurand. 
However, if the measurement result had been 𝑦𝑦 = 3 (instead of 𝑦𝑦 = 10), applying the same 35 % relative measurement 
uncertainty would result in an uncertainty interval of [0.9, 5.1]. Since the original value of 𝑦𝑦 = 10 does not lie within 
this second interval, it can be seen that the 𝑦𝑦 ± 𝑈𝑈 approach is inconsistent in such a situation. 
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The two uncertainty intervals just discussed are summarized in the following table. 

Table 10: Two 𝒚𝒚 ± 𝑼𝑼 measurement uncertainty intervals in the case of a constant 35 % relative measurement 
uncertainty across the applicable range of concentrations. (In this theoretical example, the unit plays no role 
and is therefore suppressed.) 

Lower limit Measurement result Upper limit 

0.9 3 5.1 

3 10 17 

 
The inconsistency of the 𝑦𝑦 ± 𝑈𝑈 approach discussed above is illustrated in the following figure. Due to the constant RSD 
of 35 %, the width of the uncertainty interval (in the diagram: the height of the uncertainty interval) depends on the 
measurement result. Considered on its own, each uncertainty interval characterizes the dispersion of values that could 
be reasonably be attributed to the measurand on the basis of the measurement result. However, considered together, 
the different uncertainty intervals display inconsistencies. In particular, the value 10 does not lie within the uncertainty 
interval for the measurement result 3, even though the latter lies within the uncertainty interval constructed around the 
former. 

 
Figure 3: Uncertainty intervals (vertical axis) following the 𝒚𝒚 ± 𝑼𝑼 approach for a constant RSD of 35 %, for two 
measurement results (horizontal axis). (In this theoretical example, the unit plays no role and is therefore sup-
pressed.) 

 

The inconsistency of the 𝑦𝑦 ± 𝑈𝑈 approach will now be shown on the basis of the uncertainty intervals for Example 2 
provided in Table 9. At a Clopidol concentration of 4 µg/kg Clopidol, the 𝑦𝑦 ± 𝑈𝑈 approach yields the uncertainty interval 
y ± 1.19 µg/kg. In routine testing, if the measurement result is 𝑦𝑦 = 4 is obtained, it will be concluded that values above 
5.19 µg/kg cannot reasonably be attributed to the measurand. However, from the same Table 9, we know that the lower 
limit of the uncertainty interval for a sample with 5.5 µg/kg Clopidol concentration is 3.88 µg/kg (or 3.98 µg/kg if bias 
is considered). In other words, we know that a measurand value of 5.5 µg/kg is perfectly compatible with a 
measurement result of 4 µg/kg. It follows that the value 5.5 µg/kg should lie within the measurement uncertainty 
interval for a measurement result of 4 µg/kg. This is not the case for the uncertainty interval obtained via the 𝑦𝑦 ± 𝑈𝑈 
approach. 
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Figure 4: Uncertainty intervals (vertical axis) following the 𝒚𝒚 ± 𝑼𝑼 approach on the basis of the data from Exam-
ple 2 (Clopidol in egg) for two measurement results (horizontal axis). For a measurement result of 4 µg/kg 
(say in routine testing), values above 5.19 do not lie within the uncertainty interval. However, according to the 
evaluation of the data from the in-house validation study, measurement results ≤ 4 µg/kg were consistent 
with a measurand value of 5.5 µg/kg. 

 
As has just been seen, in the presence of heteroscedasticity, the 𝑦𝑦 ± 𝑈𝑈 approach leads to inconsistencies. For this reason, 
a different approach for the determination of measurement uncertainty in the case to heteroscedastic data is required. 
Such an approach will now be presented. 

5 Asymmetric measurement uncertainty 

approach 

5.1 Description of the approach 

5.1.1 Step 1: prediction range 

For each known concentration, the distribution of test results can be characterized in terms of a prediction interval. This 
interval reflects the degree to which the test results agree with one another, at the given concentration level and under 
the specified conditions (e.g. repeatability or in-house reproducibility). For a chosen prediction probability level (e.g. 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 95 %), a subsequent test result will lie inside the prediction interval with probability 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . 
If measurements are performed at different known concentrations, then it is possible to construct a prediction range, 
rather than individual prediction intervals. This step involves applying one statistical model to all the data, as described 
in Section 2. The construction of a prediction range is described in the following figure. 
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Figure 5: Construction of a prediction range. For each known concentration, the diamonds represent the 
measurement results and the solid vertical line represents the prediction interval. The prediction range is rep-
resented by the dashed lines. 

 
For further information regarding the computation of a prediction range, the reader is referred to the discussion of 
variance functions in ISO 5725-2 [5] and to the in-house validation approach described in Gowik et al. [6] and Jülicher 
et al. [7]1. 

5.1.2 Step 2: measurement uncertainty interval 

Once a prediction range has been calculated, the measurement uncertainty interval for a given test results (obtained e.g. 
in routine testing) can be determined. Step 2 no longer involves the data from the validation study. Rather, for Step 2, it 
is assumed that a prediction range has previously been calculated and is thus available. 
Accordingly, the meaning of the axes is now different. The vertical axis now represents the measurement result 
obtained, say, in routine testing and denoted 𝑦𝑦𝑚𝑚, while the horizontal axis now represents the measurand (which is to 
be characterized via the measurement) denoted 𝑦𝑦. (This notation is chosen so as to be consistent with JCGM 106, though, 
strictly speaking, 𝑦𝑦𝑚𝑚  is one realization of a random variable 𝑌𝑌𝑚𝑚  and 𝑦𝑦  is one realization of a random variable 𝑌𝑌 . 
However, a distinction between random variables and their realizations is not required in this paper.) 
The starting point for Step 2 is a test result, displayed on the 𝑦𝑦𝑚𝑚-axis. The intersection of the 𝑦𝑦𝑚𝑚-value with the upper 
prediction curve is projected onto the 𝑦𝑦-axis to obtain the lower measurement uncertainty limit. Indeed, for measurand 
values below this 𝑦𝑦-value, measurement results can be expected to be less than the 𝑦𝑦𝑚𝑚-value. Secondly, the intersection 
of the 𝑦𝑦𝑚𝑚 -value with the lower prediction curve is projected onto the 𝑦𝑦 -axis to obtain the upper measurement 
uncertainty limit. Indeed, for a measurand values above this 𝑦𝑦-value, measurement results can be expected to be greater 
than the 𝑦𝑦𝑚𝑚-value. The resulting 𝑦𝑦-axis interval (grey horizontal band hugging the y-axis) thus corresponds to the values 
which could “reasonably be attributed to the measurand.” 
This procedure is illustrated in the following figure. 

                                                           
1 This in-house validation approach is referenced in CD 657 [8] and CIR 808 [9] and is fully implemented in InterVAL 
[10]. 
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Figure 6: Procedure for obtaining a measurement uncertainty interval from a measurement result. 

 

5.1.3 Step 3: best estimate for the measurand 

The “best estimate of the measurand” is the projection onto the 𝑦𝑦-axis of the intersection of the measurement result (𝑦𝑦𝑚𝑚-
value) with the mean curve 𝛼𝛼 + 𝛽𝛽 ∙ 𝑦𝑦 (see Section 2, with the measurand 𝑦𝑦 replacing the known concentration 𝑥𝑥). If the 
bias is negligible (i.e. 𝛼𝛼 is close to zero and 𝛽𝛽 is close to 1), then this 𝑦𝑦-value will be close to the 𝑦𝑦𝑚𝑚-value. However, if a 
bias is present, then the two values will differ, and taking the 𝑦𝑦-axis projection corresponds to a bias or recovery 
correction. For this reason, the 𝑦𝑦-axis projection is denoted 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . If such a bias or recovery correction is performed, it is 
recommended to include the “uncertainty of the bias correction” (see [1]) as an additional variance component in the 
calculation of the prediction intervals at each known concentration 𝑥𝑥 during the validation study. The uncertainty of 
bias correction, in turn, may consist of various sources of uncertainty such as the statistical uncertainty of the parameters 
𝛼𝛼 and 𝛽𝛽 and the uncertainty of reference values used as known concentrations. 
Finally, it should be noted that the symmetry of the measurement uncertainty interval is determined in relation to 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 

5.2 Calculation of the measurement uncertainty intervals 

In this section, it is shown how to calculate the lower and upper limits of asymmetric measurement uncertainty 
intervals. 
It is assumed that there is no bias and that, for each concentration level in the recovery experiment, the measurement 
results follow a normal distribution. 
Let 𝑦𝑦𝐿𝐿  denote the lower limit of the expanded uncertainty interval and 𝑦𝑦𝑈𝑈 the corresponding upper limit. Furthermore, 
let 𝑓𝑓𝑈𝑈(𝑦𝑦) denote the upper limit of the prediction interval at measurand value 𝑦𝑦, and let 𝑓𝑓𝐿𝐿(𝑦𝑦) denote the lower limit of 
the prediction interval at 𝑦𝑦 . For a given measurement result 𝑦𝑦𝑚𝑚 , the two limits 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝑈𝑈  can then be computed 
iteratively, using the implicit relationships 

 𝑓𝑓𝑈𝑈(𝑦𝑦𝐿𝐿) = 𝑦𝑦𝑚𝑚 Equation 2 

 𝑓𝑓𝐿𝐿(𝑦𝑦𝑈𝑈) = 𝑦𝑦𝑚𝑚 Equation 3 
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In the case of a constant relative standard deviation 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟  across all concentration levels, and in the absence of bias, 
explicit expressions for 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝑈𝑈 can be provided. Indeed, in such a situation, a given measurement result 𝑦𝑦𝑚𝑚 obtained 
to characterize the (unknown) measurand 𝑦𝑦 will lie with 95 % probability2 in the interval [𝑦𝑦 − 2 ∙ 𝑦𝑦 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑦𝑦 + 2 ∙ 𝑦𝑦 ∙
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟  ], i.e. 

 𝑦𝑦 − 2 ∙ 𝑦𝑦 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟  ≤ 𝑦𝑦𝑚𝑚 ≤  𝑦𝑦 + 2 ∙ 𝑦𝑦 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 Equation 4 

 
The above inequality can be rewritten as 

 𝑦𝑦 ∙ (1 − 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟)  ≤ 𝑦𝑦𝑚𝑚 ≤  𝑦𝑦 ∙ (1 + 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟) 

Equation 5 

 

⟺ 
1 − 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

𝑦𝑦𝑚𝑚
 ≤

1
𝑦𝑦
≤  

1 + 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
𝑦𝑦𝑚𝑚

  

⟺ 
𝑦𝑦𝑚𝑚

1 + 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
 ≤ 𝑦𝑦 ≤

𝑦𝑦𝑚𝑚
1 − 2 ∙ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

  

 

Thus, the measurand 𝑦𝑦 will lie in the interval � 𝑦𝑦𝑚𝑚
1+2∙𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

 ,
𝑦𝑦𝑚𝑚

1−2∙𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
� with 95 % probability. 

For example, for a constant relative standard deviation of 40 % (i.e. 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4) and for the measurement result 𝑦𝑦𝑚𝑚 =
100, the lower and upper uncertainty limits are computed as: 

 𝑦𝑦𝐿𝐿 =
100
1.8

≈ 56  

 𝑦𝑦𝑈𝑈 =
100
0.2

= 500  

 
As long as the exact quantile is used and the assumptions are valid, this uncertainty interval is statistically exact in the 
sense that the coverage probability is exactly 95 %. 

5.3 Symmetric versus asymmetric intervals 

5.3.1 When is the proposed uncertainty interval symmetric? 

If the prediction limits run parallel to the mean curve 𝛼𝛼 + 𝛽𝛽 ∙ 𝑥𝑥 (see Section 2), the uncertainty interval is perfectly 
symmetric. This is the case when it is the absolute rather than the relative standard deviation which is constant across 
concentration levels. It should also be noted that, when the prediction limits run parallel to the mean curve 𝛼𝛼 + 𝛽𝛽 ∙ 𝑥𝑥 
and when there is no bias (100 % recovery), then the prediction and measurement uncertainty intervals are identical. 
This is illustrated in the following figure. 

                                                           
2 For the sake of legibility, the exact 95 % quantile has been replaced by the value 2. 
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Figure 7: Uncertainty intervals (A) following the 𝒚𝒚 ± 𝑼𝑼 approach and (B) following the asymmetric approach. If 
there is no bias and if the prediction limits run parallel to the mean curve 𝜶𝜶 + 𝜷𝜷 ∙ 𝒙𝒙, then the intervals obtained 
from the two approaches are identical. 

The assumption that an uncertainty interval is symmetric is justified if the following two conditions are met: 
Condition 1: Measurement results are distributed symmetrically around the corresponding mean value at a given 
known concentration in the validation study. 
Condition 2: Heteroscedasticity is negligible. 
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5.3.2 When is the proposed uncertainty interval asymmetric? 

In the field of analytical chemistry, in most cases, the distribution of results obtained from measurements performed on 
one and the same sample is more or less symmetric, so that symmetry condition 1 above is met. Condition 2, however, 
is almost never met. In the case of weakly heterogeneous variances, uncertainty intervals may still be approximately 
symmetric. Similarly, if the spread of measurement results at any given concentration level remains small (i.e. the 
relative standard deviations are small), uncertainty intervals may still be approximately symmetric. However, if the 
dispersions vary considerably across concentration levels and the corresponding relative standard deviations are large 
(say, greater than 10 %), then it is necessary to take the asymmetry of the uncertainty intervals into account. Restricting 
the concentration range under consideration in order to avoid variance heterogeneity is common analytical practice. In 
some cases, this expedient may allow the symmetry assumption to be applied. 
The following figure illustrates the relationship between magnitude of dispersion and symmetry of the uncertainty 
interval. 

RSD: 2 % 
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 7.14 µg/kg 
𝑦𝑦𝐿𝐿: 6.87 µg/kg 
𝑦𝑦𝑈𝑈: 7.44 µg/kg 

 
RSD: 10 % 
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 7.14 µg/kg 
𝑦𝑦𝐿𝐿: 5.95 µg/kg 
𝑦𝑦𝑈𝑈: 8.93 µg/kg 
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RSD: 15 % 
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 7.14 µg/kg 
𝑦𝑦𝐿𝐿: 5.49 µg/kg 
𝑦𝑦𝑈𝑈: 10.20 µg/kg 
 

  

Figure 8: Measurement uncertainty intervals constructed following the asymmetric approach, starting from 
the same measurement result 𝒚𝒚𝒎𝒎 = 𝟓𝟓. The degree of asymmetry depends on the magnitude of the variance.  

 

6 Applying the alternative approach to the data 

from the factorial in-house validation studies 

(Example 1 and Example 2) 
The uncertainty intervals for Example 1 and Example 2 are provided in the following tables. The degree of asymmetry 
of a given uncertainty interval can be gauged by comparing the values of the differences 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . (See 
Section 5.1.3 and Section 5.2 for the notation 𝑦𝑦𝐿𝐿 , 𝑦𝑦𝑈𝑈  and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . The two values 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 − 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  can also be 
compared with the expanded uncertainty from the 𝑦𝑦 ± 𝑈𝑈 approach. Accordingly, the 𝑈𝑈 values from Table 8 and Table 
9 are reproduced here for convenient reference. 

Table 11: Example 1 – Lower and upper limits of the uncertainty intervals  

Measured 
concentration 

[µg/kg] 
Lower limit Upper limit 

Best estimate 
of 

measurand 

Difference 
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝐿𝐿 

Difference 
𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Expanded 
uncertainty 

for y±𝑈𝑈 
𝑦𝑦𝑚𝑚 𝑦𝑦𝐿𝐿 𝑦𝑦𝑈𝑈 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   𝑈𝑈 

25 19.2 27.8 23.51 4.31 4.29 4.28 

50 44.2 53.3 48.66 4.46 4.64 4.56 

75 68.9 78.9 73.81 4.91 5.09 5.00 

100 93.5 104.7 98.97 5.47 5.73 5.54 
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Table 12: Example 2 – Lower and upper limits of the uncertainty intervals 

Measured 
concentration 

[µg/kg] 
Lower limit Upper limit 

Best estimate 
of 

measurand 

Difference 
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝐿𝐿 

Difference 
𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Expanded 
uncertainty 

for y±𝑈𝑈 
𝑦𝑦𝑚𝑚 𝑦𝑦𝐿𝐿 𝑦𝑦𝑈𝑈 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   𝑈𝑈 
0.2 0.00 0.39 0.14 0.14 0.25 0.23 

0.5 0.21 0.75 0.44 0.23 0.31 0.27 

1 0.65 1.40 0.94 0.29 0.46 0.37 

2 1.45 2.76 1.93 0.48 0.83 0.62 

4 3.02 5.53 3.91 0.90 1.62 1.19 

6 4.57 8.31 5.90 1.34 2.41 1.76 

 
As can be seen, for Example 1, the values for the differences 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  lie relatively close to one another 
and to the 𝑈𝑈 values. By contrast, for Example 2, the difference values differ considerably from one another and from the 
𝑈𝑈 values. For instance, for 𝑦𝑦𝑚𝑚 = 2 µg/kg, we have 

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝐿𝐿 = 0.48 µg/kg 
𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =0.83 µg/kg 

while 
𝑈𝑈 = 0.62 µg/kg. 

The calculation of the upper and lower limits, as well as the best estimate of the measurand 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is illustrated in the 
following figure. 

(A) 
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(B) 

 
Figure 9: Calculation of uncertainty limits and best measurand values for (A) Example 1 and (B) Example 2 
from Section 2 
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7 Discussion 
As has been seen, asymmetric measurement uncertainty intervals arise naturally in the case of heteroscedasticity. 
Accordingly, in such cases, the symmetric uncertainty interval y ± U should be seen as a mere approximation of the exact 
measurement uncertainty interval. This approximation is adequate if variability is low (say, less than 10 % RSD). In the 
case of both high variability and heteroscedasticity, symmetric measurement uncertainty intervals can be misleading. 
An awareness of these issues is thus particularly important in fields where these two conditions are expected, such as 
chemical trace analysis. 
In the examples considered in this paper, it is assumed that data follow a normal distribution. If data follow another 
distribution, the uncertainty interval is different. Lognormal data are a familiar case in point. Indeed, consider the case 
that for any given concentration 𝑥𝑥, the log-transformed test results can be expected to lie between ln(𝑥𝑥) − 2𝜎𝜎 and ln(𝑥𝑥) +
2𝜎𝜎. Then, in the original domain (i.e. prior to the log-transformation), the RSD will remain constant across concentration 
levels and the dispersion will thus increase monotonically with the concentration. 
In many cases a log-transformation stabilizes the variance, meaning that, in the log domain, all the data are normally 
distributed with one and the same standard deviation 𝜎𝜎 , independently of the concentration. Back-transformation 
(“anti-log”) then again provides asymmetric uncertainty intervals, from y/exp (kσ) to y ∙ exp (kσ). These intervals are 
asymmetric, but to a lesser extent that the interval derived under the assumption that the original data follow a normal 
distribution. Take the case σ = RSD = 0.25  and k = 2 . Then the asymmetric uncertainty interval based on the 

assumption that the original data follow a normal distribution (see Equation 5 in Section 5.2) is � 𝑦𝑦

1.5
 ,2𝑦𝑦�, and the 

asymmetric uncertainty interval based on the log-normal distribution is � 𝑦𝑦

1.65
 ,1.65𝑦𝑦�. 

However, a log-transformation does not always have this variance stabilization effect, even if the data follow a 
lognormal distribution. For instance, if the standard deviations in the original domain are constant across 
concentrations, then, in the log domain, the 𝜎𝜎 value will depend on the concentration. 
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