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Abstract: Working memory refers to the capability of the nervous system to selectively retain short- 1

term memories in an active state. The long-standing viewpoint is that neurons play an indispensable 2

role and working memory is encoded by synaptic plasticity. Furthermore, some recent studies have 3

shown that calcium signaling assists the memory processes and the working memory might be 4

affected by the astrocyte density. Over the last few decades, growing evidence has also revealed 5

that astrocytes exhibit diverse coverage of synapses which are considered to participate in neuronal 6

activities. However, very little effort has yet been made to attempt to shed light on the potential 7

correlations between these observations. Hence, in this article we will leverage a computational 8

neuron-astrocyte model to study the short-term memory performance subject to various astrocytic 9

coverage and we will demonstrate that the short-term memory is susceptible to this factor. Our model 10

may also provide plausible hypotheses for the various sizes of calcium events as they are reckoned to 11

be correlated with the astrocytic coverage. 12

Keywords: neuron; astrocyte; network; short-term memory; spatial frequency; computational biology 13

1. Introduction 14

Over the past few decades, increasing effort has been devoted to understanding the 15

roles played by a type of glial cells, astrocytes [1–6]. Traditionally, astrocytes have been 16

reckoned as auxiliary cells to neurons and it has now become evident that astrocytes can 17

not only support the structure of the nervous system, but also modulate synaptic transmis- 18

sion [7–11]. Neuron-astrocyte coupling plays an indispensable role in the functioning of 19

neuronal networks via bidirectional communication under the notion ’tripartite synapse’ 20

[12–16]. It is found that astrocytes can sense the synaptic activities by the uptake of neuro- 21

transmitters released from the synaptic cleft and provide feedback to pre- and post-synaptic 22

neurons via gliotransmitter release caused by temporary elevation of intracellular calcium 23

concentration which normally lasts seconds to minutes [17–19,22,31]. All these findings in 24

molecular biology pave the way for a better understanding of the information processing 25

in neuron-astrocyte circuits and the formation of cognitive functions. Very recently, mathe- 26

matical and computational approaches have been used to investigate the contribution of 27

astrocytes to the organisation of spatial and temporal synchronization in neural networks 28

[20,21,29,30], formation of short-term memory [23–28] and generation of integrated infor- 29

mation in neuronal ensembles [32–35], which takes a step further to the understanding of 30

the intelligence arising from the nervous system. 31

Nowadays, a widely accepted fact is that astrocytes play an active role in various 32

types of memory and the memory improvement may be related to changes in the astrocyte 33

density [36–40]. Working memory is the ability of an entity to retain limited information 34
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in a readily accessible form and provides an interface between memory and cognition 35

[41–43]. Some biological evidence has already raised the possibility that astrocytes could be 36

highly involved in working memory [44–47] and it has been well known that the astrocytic 37

coverage of synapses is a highly dynamic process that alters throughout lifetime [48–50]. 38

Therefore, it is natural to hypothesize that there exists a potential correlation between the 39

working memory and the astrocytic coverage (or astrocyte density) but very little effort 40

has been made so far. In this work, the astrocytic coverage is equivalent to the astrocyte 41

density and it will become clear when we introduce our model. Furthermore, some studies 42

have also revealed that the attenuation of calcium events correlates with the reduction of 43

astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in mice and 44

that the size of the calcium events within astrocytes follow power law distributions [51–54]. 45

Hence, this line of research may also help explain the cause of various sizes of calcium 46

events. 47

Lately, an in silico neuron-astrocyte network model has been employed to manifest 48

that astrocytes indeed assist the formation of short-term memory and mediate analogous 49

memory [24–28]. It provides a quantitative score to measure the recall accuracy as a result of 50

the short-term memory. In this work, we will leverage this computational model and study 51

the impact of varying astrocytic coverage areas of synapses on the short-term memory 52

performance. Unlike in the original article [25], here we focus on the performance of the 53

single-item task so as to ensure that the real pattern remains unchanged throughout the 54

experiment. We also introduced a low-pass filter to the input image in order to alter the 55

spatial frequencies. In particular, it is of great interest to learn how the change in the number 56

of spatial frequency components will impact the short-term memory and how the relation is 57

affected by the astrocytic coverage. The input image is also subject to different levels of the 58

salt-and-pepper noise to make our evaluation more comprehensive. We will demonstrate 59

that the short-term memory performance is significantly affected by the astrocytic coverage. 60

Additionally, we will also underlie some other observations that may interest biologists. 61

2. Models and Methods 62

Our work employed the neuron-astrocyte network developed in [25] and an illus- 63

trative diagram for the architecture is shown in Figure 1. From left to right are the input 64

image, neuronal network and astrocytic network, respectively. The neuronal network is 65

of dimension W × W and the astrocytic network is of dimension M × M. All the neurons 66

are excitatory neurons and each astrocyte from the astrocytic network regulates an l × l 67

neuronal square from the neuronal network. The connections in the neuronal network will 68

be defined later and the astrocytes in the astrocytic layer are connected to their nearest 69

neighbours vertically and horizontally. The input digital image is converted into electric 70

current and is applied to the neuronal network in that one image pixel corresponds to 71

exactly one neuron. The values used for the parameters introduced in section 2.1, 2.2 and 72

2.3 are listed in [25], unless otherwise specified. 73
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Figure 1. An illustrative diagram for the neuron-astrocyte network [25].

2.1. Neuronal Network 74

Considering we will be simulating a relatively large network, we use the Izhikevich
model to characterize the dynamics of neurons as it demonstrates computational efficiency
while maintaining the biological plausibility of the canonical Hodgkin-Huxley model [55]:

dV(i,j)

dt
= 0.04V(i,j)2

+ 5V(i,j) − U(i,j) + 140 + I(i,j)app + I(i,j)syn

dU(i,j)

dt
= a(bV(i,j) − U(i,j))

(1)

where V denotes the membrane potential of the particular neuron and U represents the
membrane recovery variable, with post-spike resetting: if V(i,j) ≥ 30mV, then{

V(i,j) = c

U(i,j) = U(i,j) + d
(2)

The superscript (i, j) denotes the positional index of the neuron. Iapp represents the applied
input current converted from the digital image and Isyn represents the net current receiving
from all presynaptic neurons which takes the form (generalized from [56,57]):

I(i,j)syn = ∑
k

g(i,j)syn (Esyn − V(i,j))

1 + exp (
−Vk

pre
ksyn

)
(3)

where the summation is over all presynaptic neurons. The synaptic weight is dictated 75

by g(i,j)syn = η + ν(i,j) where η reflects the baseline weight and ν(i,j) describes the impact of 76

astrocytic calcium events which will be defined later. Esyn denotes the reversal potential for 77

excitatory synapses and Vk
pre denotes the membrane potential of the neuron k. For clarity, 78

we need to point out that here the short-term synaptic plasticity is not considered in our 79

model. By convention, we use a = 0.1, b = 0.2, c = −65, d = 2. 80

In this work, we fixed the number of out-connections per neuron as Nout in that
each presynaptic neuron interacts with Nout postsynaptic neurons. The connections are
established according to an exponential distribution with R being the distance between
each pair of neurons:

f (R) =


1
λ

exp (−R/λ) R ≥ 0

0 R < 0
(4)
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2.2. Action potential-induced elevation of glutamate and IP3 81

For each presynaptic neuron, the amount of glutamate, a type of neurotransmitter
released into the synaptic cleft is dictated by the spiking events of the neuron [58]:

dG(i,j)

dt
= −αgluG(i,j) + kgluΘ(V(i,j) − 30) (5)

where Θ denotes the Heaviside function. 82

IP3 is a ligand and is produced in a response to the external stimuli such as neurotrans-
mitters [59]. It regulates many pathways including the release of Ca2+ from Endoplasmic
Reticulum (ER) into cytoplasm [60] which will be described in due course. The dynamics
of intracellular concentration of the molecule IP3 within each astrocyte is described by

dIP(m,n)
3
dt

=
IP⋆

3 − IP(m,n)
3

τIP3

+ J(m,n)
PLCδ

+ J(m,n)
glu + di f f (m,n)

IP3
(6)

Here IP⋆
3 denotes the steady state of the intracellular IP3 concentration and JPLCδ

encapsu-
lates the IP3 produced by phospholipase Cδ which takes the form

JPLCδ
=

v4(Ca + (1 − α)k4)

Ca + k4
(7)

where Ca denotes the Ca2+ concentration in the astrocytic cytoplasm. We use di f f IP3 to
represent the diffusion of IP3 via gap junctions between adjacent astrocytes and is given by

di f f IP3 = dIP3(∆IP3) (8)

where ∆IP3 denotes the discrete Laplace operators reflecting the diffusion as a result of Ca2+

exchange with neighbouring astrocytes. The production of IP3 stimulated by glutamate via
metabotropic glutamate receptors (mGluRs) and phospholipase Cβ is characterised by

Jglu =

{
Aglu t0 < t ≤ t0 + tglu

0 otherwise
(9)

where tglu denotes the duration persists since time t0, when the total level of glutamate
associated with a particular astrocyte reaches the threshold Fact:

1
Na

∑
(i,j)∈Na

Θ(G(i,j) − Gthr) > Fact (10)

Here we use tglu = 0.06s. 83

2.3. Astrocytic network 84

Although voltage-gated calcium channels (VGCC) have been shown to be able to
elevate intracellular calcium concentration and many authors included them in their mod-
els [61–64], here we use the Ullah model [65] to simplify the description of the calcium
dynamics within astrocytes where only the impact of glutamate is considered:

dCa(m,n)

dt
= J(m,n)

ER − J(m,n)
pump + J(m,n)

leak + J(m,n)
in − J(m,n)

out + di f f (m,n)
Ca

dh(m,n)

dt
= a2

(
d2

IP(m,n)
3 + d1

IP(m,n)
3 + d3

(1 − h(m,n))− Ca(m,n)h(m,n)

) (11)
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The explicit forms of the individual terms are summarised as below:

JER = c1v1Ca3h3 IP3
3

c0/c1 − (1 + 1/c1)Ca
(IP3 + d1)3(Ca + d5)3

Jpump =
v3Ca2

k2
3 + Ca2

Jleak = c1v2(c0/c1 − (1 + 1/c1)Ca)

Jin =
v6 IP2

3
k2

2 + IP2
3

Jout = k1Ca

di f fCa = dCa(∆Ca)

(12)

Here Ca denotes the Ca2+ concentration within cytoplasm and h denotes the fraction 85

of opened IP3 receptors (IP3Rs) on the ER. We assume that the astrocytes are spatially 86

homogeneous. ER is a continuous membrane system that stores a reservoir of Ca2+ within 87

astrocytes. The released IP3 then binds to IP3Rs on the ER and opens the channel allowing 88

for the flow of Ca2+ from the ER into the cytoplasm, which is characterised by JER. In this 89

model, we assume the co-existence of the ER and the cytoplasm in individual astrocytes 90

and the homogeneous distribution of ER in the interior of astrocytes. Jpump denotes the 91

ATP-dependent pump recovering Ca2+ from the cytoplasm back to the ER. Jleak denotes 92

the leakage of Ca2+ from the ER to the cytosol due to the concentration gradient. Jin and 93

Jout denote the Ca2+ exchange with the extracellular space. di f fCa represents the diffusion 94

of Ca2+ via gap junctions. 95

Finally, the calcium-dependent gliotransmitter-induced modulation of synaptic weight
by the associated astrocyte via the N-methyl-D-asparate receptors (NMDARs) is defined as

ν = ν⋆Θ(Ca − Cathr) (13)

where ν⋆ denotes the weight of the synapse as a result of the astrocytic modulation of 96

synaptic transmission if the Ca2+ concentration is beyond the threshold required for glio- 97

transmitter release, Cathr, and the fraction of spiking neurons associated with that astrocyte 98

during the time interval τsyn is Fastro. The duration of feedback is denoted by τastro and we 99

use τastro = 250ms. 100

2.4. Variation of astrocytic coverage 101

In order to study the working memory performance of the network under various
astrocytic coverage areas, we need to vary the size of the astrocytic layer M. However, to
ensure that each astrocyte modulates an identical size of neuronal square and there is no
leftover neuron, the following equation must be satisfied:

W − 1
l − p

= M (14)

where p is the size of the overlapping edge. In this work, we fixed p = 1. Since the 102

input image is of dimension 79 × 79, if W = 79, the equation is satisfied for l = 2, 3, 4, 7. 103

To analyze the effect of l = 5, 6, 9, the image is adjusted by adding a periphery of stripe 104

of width 1 outside of the edge, the intensity of which is chosen to be the same as the 105

background. Now W = 81 and the equation is satisfied. Similarly, the equation is satisfied 106

for l = 8 by choosing W = 78 (edge removal on one side). In this way, the size of the image 107

is by and large maintained and the digital patterns are least damaged. 108

2.5. Variation of spatial frequencies 109

In this work, we utilized low-pass filter to alter the spatial frequencies of the input 110

image. 111
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The 2D discrete forward Fourier transform converts the image from the spatial domain
into the frequency domain with:

F(k, l) =
W−1

∑
x=0

W−1

∑
y=0

f (x, y)e−i2π( kx
W +

ly
W ) (15)

The inverse transform converts from the frequency domain back to the spatial domain
with:

f (x, y) =
1

W2

W−1

∑
k=0

W−1

∑
l=0

F(k, l)ei2π( kx
W +

ly
W ) (16)

where f (x, y) denotes the intensity at pixel (x, y) whilst F(k, l) consists of the spectrum and 112

the phase angle at frequency (k, l). In general, one is more concerned with the spectrum 113

as compared to the angle so the angle is not within the scope of our discussion. Figure 2 114

displays what digit zero looks like in the spatial domain (left) and spectral domain (right) 115

respectively. By convention, the image mean F(0, 0) is placed at the center of the spectral 116

domain and is also the largest component of the image. Moreover, we display the frequency 117

domain on the logarithmic scale so as to make the other frequency components more visible. 118

The frequency increases as we move farther away from the center in the spectral domain. 119
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Figure 2. Spatial domain and spectral domain of digit 0.

A low-pass filter applies a threshold f0 to the spectral domain and set all the compo- 120

nents above f0 to zero. In this work, the filter will be applied to the input current at each 121

time step. By slowly increasing the threshold, we hope to figure out the sensitivity of the 122

short-term memory performance to the change in the spatial frequencies. 123

2.6. Simulation protocols 124

Most of the parameter values and protocols used in this work are identical to those 125

used in [25]. Here we only made a few adjustments in order to study the impact of spatial 126

frequencies in a more effective way. Therefore, unless otherwise specified, one can assume 127

we herein use the same protocol as in [25]. 128

The dynamics of the astrocytic network is simulated using the Runge-Kutta fourth- 129

order method and the remaining part using forward Euler method with time-step ∆t = 130

0.1ms. The input current Iapp is converted from a digital image (0-9) with the same size of 131

the neuronal network by scaling the pixel intensity, which will be used in the learning and 132

testing stage. The pixel intensity is scaled in the range [0, Astim] for learning and [0, Atest] for 133

testing in order to prevent over-excitation of neurons. In this work, we employ the binary 134

encoding that converts intensity over 127 to Astim (Atest) and to 0 otherwise. The input is 135

also subject to salt-and-pepper noise which will also alter the frequency domain in addition 136

to the low-pass filter. Different from a low-pass filter which will cut off the frequency 137

components above a threshold, increasing the salt-and-pepper noise tends to increase more 138

frequency components (high frequency components in particular) as the noise will break 139

the image down into pieces. We are interested in investigating the effect of both on the 140

short-term memory performance. In this work, we do not introduce it in the learning stage 141
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to keep the real pattern intact and alter the noise level in the testing stage. Here our work 142

is only focused on the single-item implementation. This is to ensure that the real spatial 143

pattern is fixed during the experiment. Unless otherwise specified, in the learning stage, 144

the input current Iapp is applied to the network at t1 = 0.1s for tstim = 200ms and in the 145

testing stage, Iapp is applied to the network at t2 = 2s for ttest = 150ms. The simulation 146

ends at te = 2.3s. We will alter t2 and te when investigating the impact of the time interval 147

between training and testing. Also note that changing the frequency domain will result 148

in complex values in the spatial domain when conducting the inverse transform. To this 149

end, we take the absolute values and re-scale them with Astim (Atest). Our simulation time 150

is shorter as compared to the one used in [25] but the time interval between the learning 151

and the testing stage is already long enough for the activation of calcium release within 152

astrocytes. 153

2.7. Performance measure 154

To measure the performance of our model, i.e., to what extent the model is able to
memorize the real pattern, we came up with a correlation measure Cp that compares the
recalled pattern (during testing) with the real pattern:

Mij(t) = I

[( t+ω

∑
k=t

I[Vij(k) > 30]
)
> thr

]

CD(t) =
1
|P| ∑

(i,j)∈P
Mij(t)

CB(t) =
1

W2 − |P| ∑
(i,j) ̸∈P

(1 − Mij(t))

C(t) =
1
2
(CD(t) + CB(t))

Cp = max
thr

C(t)

(17)

Here t is the start time of the testing stage and we use ω = 250ms. P represents the set of 155

pixels belonging to the real pattern. CD represents the true positive rate in our context, 156

namely, how many pixels that belong to the real pattern have been recalled. Similarly, CB 157

represents the true negative rate. Therefore, C can accurately reflect the overall performance 158

of the neuron-astrocyte network. We select Cp that maximizes C(t) over the whole-number 159

thresholds, thr = 1, 2, ..., 30. 160

3. Results 161

In this chapter, we will mainly exhibit how the short-term memory performance is 162

affected by astrocytic coverage under various spatial frequencies and salt-and-pepper noise 163

levels. 164

Figure 12 and 13 display the model’s performance scores Cp for digit zero (a symmetric 165

digit) and two (an asymmetric digit) under various conditions respectively. Each square 166

represents one single simulation using the protocol described in the last chapter. In each 167

sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing 168

stage. The horizontal axis denotes the moving threshold f0 (increased by 2 units) of the 169

low-pass filter from f0 = 4 to f0 = 58. Namely, more frequencies will be included as we 170

move farther away from the origin. The plot starting from f0 = 4 is to ensure the visual 171

contrast for the performance over f0 = 4 and we will explain in more details why there 172

exists a sharp rise in performance from 4 later. The filter threshold terminates at f0 = 58 173

because it will already incorporate all frequency components with respect to the largest 174

picture (W = 81) in this study. 175

On the one hand, for all sizes (l = 2, 3, 4, 5, 6, 7, 8, 9) of the astrocytic coverage and noise 176

level during the testing stage, the performance plunges when moving the filter threshold 177
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from 5 to 4, which corresponds to (5 × 2)/79 ≈ 1/8 − (4 × 2)/79 ≈ 1/10 of the distance 178

from the center to the edge in the spectral domain. On the other hand, the trace width of 179

the digit in the image we use is about 8-10 pixels. By trace width we mean the interval 180

between the boundaries of the digit. This makes it a wavelength of 16-20 (so a frequency of 181

1/16-1/20, namely 1/8-1/10 of the distance from the center to the edge in the frequency 182

domain). This correspondence demonstrates that our short-term memory model does 183

manage to detect the dominant frequency pattern of the input image. The performance 184

of the other integer threshold (1,2,3) is not shown in Figure 12 and 13 because we would 185

like to have a contrasting color scale for higher thresholds. As expected, the performance 186

decreases sharply from f0 = 4 to f0 = 0 which is demonstrated in Figure 3. Here the 187

threshold is increased by 1 unit. 188
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Figure 3. The performance score Cp at diverse levels of noise with l = 8 for digit 0 including all the
whole-number thresholds.

From Figure 12 and 13, we note that our model is mostly tolerant of noise up to the 189

noise level equal to 0.1. This manifests that our network is able to precisely recall very 190

analogous patterns but have some trouble recalling the exact patterns for less analogous 191

inputs. Another notable feature is that there exists a shift in performance pattern under 192

different filter thresholds as the astrocytic coverage size is increased from l = 2 to l = 9, 193

and next we will use l = 4 and l = 8 to explain it at greater length. 194

From Figure 12 we observe that for l = 4, the performance color transitions from 195

red to blue and back to red at a relatively high noise level. Take for example noise level 196

equal to 0.2 (Figure 4), a low filter threshold, f0 = 10 smooths the picture and prevents 197

over-firing of neurons. A high filter threshold, f0 = 58, ensures that most of the digital 198

pixels are firing, although at the cost of a slight over-firing. However, a middle one, f0 = 40 199

corrupts the picture to a certain degree and yields a relatively low performance. For l = 8, 200

the performance color transitions from red to blue and there exists a slight recovery before 201

going down again at high noise levels. At the noise level equal to 0.2 (Figure 5), the firing 202

patterns of f0 = 10 and f0 = 40 are very similar to those in l = 4, despite the alteration 203

in the astrocytic coverage. However, for f0 = 58, l = 8 significantly favors the over-firing 204

which results in many misclassifications, and f0 = 50 is somewhere in the middle. 205
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(a) Input current, f0 = 10
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(b) Firing pattern, f0 = 10
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(c) Calcium pattern, f0 = 10
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(d) Input current, f0 = 40
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(f) Calcium pattern, f0 = 40
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(g) Input current, f0 = 58
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(h) Firing pattern, f0 = 58
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(i) Calcium pattern, f0 = 58

Figure 4. Snapshots for l = 4. The left panel displays the input current after being transformed by
the low-pass filter at testing. The middle panel displays the firing pattern of neurons at t = 2.1s. The
right panel displays the calcium pattern of astrocytes at t = 2s. The brightness has been scaled in the
range 0-255 for visualization.
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(a) Input current, f0 = 10
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(b) Firing pattern, f0 = 10
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(c) Calcium pattern, f0 = 10
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(d) Input current, f0 = 40
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(e) Firing pattern, f0 = 40
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(f) Calcium pattern, f0 = 40
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(g) Input current, f0 = 50
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(h) Firing pattern, f0 = 50
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(i) Calcium pattern, f0 = 50
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(j) Input current, f0 = 58
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(k) Firing pattern, f0 = 58
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(l) Calcium pattern, f0 = 58

Figure 5. Snapshots for l = 8. The left panel displays the input current after being transformed by
the low-pass filter at testing. The middle panel displays the firing pattern of neurons at t = 2.1s. The
right panel displays the calcium pattern of astrocytes at t = 2s. The brightness has been scaled in the
range 0-255 for visualization.

In order to better summarize the results shown in Figure 12, we will use box plots 206

to exhibit our statistical analysis. Figure 6(a) displays the overall short-term memory 207

performance subject to low salt-and-pepper noises by grouping the noise level from 0 to 208

0.1. Similarly, the performance subject to high salt-and-pepper noises is shown in Figure 209

6(b) by grouping the noise level from 0.12 to 0.2. We note that at the low noise level, 210

the overall performance starts to decrease at l = 6 and there does not exist a significant 211

change in performance when it comes to the high noise, although l = 4 and l = 5 have a 212

higher median. Figure 7(a) displays the overall short-term memory performance subject to 213

low filter thresholds by grouping the threshold from 4 to 22 and Figure 7(b) displays the 214

performance subject to high filter thresholds by grouping the threshold from 24 to 58. In 215

both of them, we have witnessed a slight decrease in performance from l = 6. The cutting 216

points of ’low’ and ’high’ in the above cases is chosen based on the patterns shown in 217

Figure 12 and 13. However, if we investigate the performance subject to individual filter 218

thresholds, it could look very different from what is shown in Figure 7. For instance, at 219
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f0 = 46 (Figure 8(b)) the best performance is achieved at l = 7 whilst with f0 = 18 there is a 220

decrease in performance after l = 6 which is similar to the overall result (Figure 7(a)). This 221

demonstrates that different sizes of astrocytic coverage might optimize the performance at 222

different spatial frequencies. 223
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(a) Low noise
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(b) High noise

Figure 6. short-term memory performance subject to low and high salt-and-pepper noises. The
horizontal axis denotes the size of astrocytic coverage and the vertical axis denotes the performance
score.
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(a) Low-pass filter with low thresholds

2 3 4 5 6 7 8 9

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b) Low-pass filter with high thresholds

Figure 7. short-term memory performance subject to low-pass filter with low and high thresholds.
The horizontal axis denotes the size of astrocytic coverage and the vertical axis denotes the perfor-
mance score.
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(a) f0 = 18

2 3 4 5 6 7 8 9

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b) f0 = 46

Figure 8. short-term memory performance subject to two individual filter thresholds. The horizontal
axis denotes the size of astrocytic coverage and the vertical axis denotes the performance score.
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We also observe that for a large astrocytic coverage, l = 8 for instance, a shorter 224

time interval between training and testing tends to outperform a longer one when most 225

of the frequency components have been included (Figure 9 right-end). Conversely, the 226

performance barely changes with respect to a small astrocytic coverage such as l = 4 (Figure 227

10). For high filter thresholds, a longer time interval will result in more activated astrocytes 228

as a result of calcium diffusion. However, a smaller astrocytic coverage has relatively little 229

impact on the firing patterns of neurons at the testing stage because each astrocyte controls 230

fewer neurons. Conversely, a bigger coverage will result in the over-firing of neurons in 231

that more neurons that should not be activated have been activated, which decreases the 232

performance. The above analysis is supported by the calcium patterns of astrocytes with 233

different astrocytic coverage sizes and time intervals between training and testing shown in 234

Figure 11. For relatively low filter thresholds, the firing pattern remains largely unchanged 235

because of smoothing, as demonstrated previously. 236
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(a) t2 = 2s, te = 2.3s
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Figure 9. The performance score Cp with different starting time t2 with l = 8. In each sub-figure, the
vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The horizontal
axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
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(a) t2 = 2s, te = 2.3s
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(b) t2 = 1.5s, te = 1.8s

Figure 10. The performance score Cp with different starting time t2 with l = 4. In each sub-figure, the
vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The horizontal
axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
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(a) l = 8, t2 = 2s

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

50

100

150

200

250

(b) l = 8, t2 = 1.5s
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(c) l = 4, t2 = 2s

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

50

100

150

200

250

(d) l = 4, t2 = 1.5s

Figure 11. Calcium patterns of astrocytes with different astrocytic coverage areas and time intervals
between training and testing. Here we use f0 = 58 and noise level equal to 0.2 as an example.

4. Discussions 237

In light of the results shown in Figure 7, 8, 12 and 13, there are two hypotheses that 238

may sound plausible: 239

1. Astrocytes may adjust their coverage areas in response to the change in spatial fre- 240

quencies in order to optimize the short-term memory. 241

2. Different astrocytes may have different coverage areas in order to process different 242

frequency components in order to optimize the short-term memory. 243

To the best of our knowledge, these open questions have not been given enough 244

consideration yet and therefore, our work aims to raise the awareness of these plausible 245

relations so that interested researchers may test and verify them in laboratory. Hypothesis 246

1 and 2 are not identical but they are somehow similar and could co-exist. As shown 247

in Figure 7 and 8, although the majority of l = 4 outperforms l = 7, at some specific 248

thresholds ( f0 = 46 for instance) l = 7 gives a slightly better performance. This may 249

raise an open question for experimentalists to validate whether the astrocytes adjust their 250

coverage areas in response to the changing spatial frequencies (hypothesis 1), or whether 251

different astrocytes have different coverage areas (hypothesis 2), so as to assist the short- 252

term memory. More precisely, it may be plausible to hypothesize that individual astrocytes 253

are free to select from a wide range of coverage areas in order to optimally process the 254

spatial information containing diverse frequency components; or at a particular time point, 255

individual astrocytic modules, in which all astrocytes have identical coverage area, process 256

some particular frequency components and hierarchically summarize the information to 257

achieve the optimal short-term memory. In all, one is interpreted from a dynamic viewpoint 258

and the other one from a static viewpoint, but they do not contradict with each other. The 259

former one may also help to explain the findings that the astrocytic coverage of synapses 260

is highly dynamic. Additionally, over the last decade, emerging evidence has shown 261

that astrocytes actively participate in the brain energy mechanisms and potentially assist 262

the energy-efficient coding of neuronal circuits [66–68]. It is reasonable to reckon that a 263
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compactly connected astrocytic network tend to consume more energy, therefore it seems 264

plausible that a sparse layout could become more favorable so long as the precision is not 265

considerably compromised. The results may provide a new perspective for those who 266

study the roles played by astrocytes in cerebral energy-efficiency. 267

In regards to the small noise level, on the whole, a small astrocytic coverage tends to 268

outperform a big one irrespective of the filter threshold. This may indirectly support the 269

experimental result that the increasing density of astrocytes enhances short-term memory 270

performances [40]. The comparison of l = 2, l = 3 and l = 4 also raises the potential to 271

study whether over-crowded astrocytes will have negative effect on short-term memory 272

for biologists. 273

As for the relatively high noise level, it appears that the performance score remains 274

relatively low in a threshold interval and the more noisy the image is, the wider the interval 275

is. We suppose the phenomenon is due to the fact that a higher salt-and-pepper noise 276

distorts the original image more massively and the image decomposes into more frequency 277

components (including many high frequencies). A relatively high filter threshold retains 278

these frequencies (as a result of noise) which leads to a decrease in performance. 279

Finally, the sensitivity to the filter threshold also validates the necessity of introducing 280

convolutional layers in spiking neural network for pattern recognition tasks because the 281

idea of introducing filters is to extract the local patterns such as curves and straight lines. 282

One open question is whether the pattern displayed in Figure 12 will scale up with the 283

size of the input image. Namely, when the size of the input is scaled up or down, whether 284

the same pattern will be observed when the astrocytic coverage alters with the same ratio. 285

This may shed light on the correspondence between the size of the input image and the 286

astrocytic coverage. 287

In this work, we leveraged a computational neuron-astrocyte model for short-term 288

memory that has been recently developed to study the impact of astrocytic coverage and 289

spatial frequencies on short-term memory. We expect that the article can bring these 290

unattended aspects to biologists’ attention as a better understanding of this topic may pave 291

the way for some transformative findings as to how neurons and glial cells adapt their 292

behaviors in response to the external stimuli. 293
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(a) l = 2
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(b) l = 3
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(c) l = 4
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(d) l = 5
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(e) l = 6
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(f) l = 7
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(g) l = 8
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Figure 12. Performance score Cp for digit zero with various astrocytic coverage areas. In each
sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing stage.
The horizontal axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
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(b) l = 3

4 10 16 22 28 34 40 46 52 58

filter threshold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

te
s
t 
n
o
is

e

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(c) l = 4
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(d) l = 5
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(e) l = 6
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(f) l = 7
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(g) l = 8
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(h) l = 9

Figure 13. Performance score Cp for digit two with various astrocytic coverage areas. In each
sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing stage.
The horizontal axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
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