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Abstract: Nowadays molecular research is essential for the better understanding of tumor cells path-

ophysiology. The increasing number of neoplasms is taken under ‘the molecular magnifying glass’ 

therefore it is possible to discover complex relationships between cytophysiology and tumor cells. 

Signal transducer and activator of transcription 3 (STAT3) belongs to the family of latent cytoplas-

mic transcription factors called STATs which comprises seven members: STAT1, STAT2, STAT3, 

STAT5A, STAT5B, STAT6.  Those proteins play important role in cytokine-activated gene expres-

sion by transducing signals from the cell membrane to the nucleus. Abnormal prolonged activation 

results in tumorigenesis, metastasis, cell proliferation, invasion, migration and angiogenesis. Inhi-

bition of this transcription factor inhibits previously mentioned effects in cancer cells whereas nor-

mal cells are not affected. Hence STAT3 might be a viable target for cancer therapy. 

Keywords: STAT3; prostate cancer; bladder cancer; upper tract urothelial carcinoma; renal cell car-
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1. Introduction 

All urological cancers made up 13% of incidence and 8% of mortality of all cancers 

in 2020 worldwide. Prostate cancer (PCa) is one of the most common cancer in men, being 

the most common cancer in urology, representing about 56% of all urological cancers in 

2020 [1]. The most important risk factors are age (the majority of PCa diagnosis occurs 

between the age 65 and 74) and familial history of PCa [2]. Bladder cancer is the second 

most common and deadly cancer met in urology, diagnosed, and causing death in men 

approximately 4 times those among women. Known risk factors are smoking, exposure to 

aromatic amines, chronic urinary tract infections, pelvic radiotherapy or cyclophospha-

mide chemotherapy [1,3]. Renal cell carcinoma (RCC) takes the third place in both inci-

dence and mortality among urological cancers, representing about 17% and 23% of those, 

respectively [1]. Smoking, hypertension or obesity predispose to its occurrence [4]. Upper 

tract urothelial carcinoma (UTUC) is a rare tumor with an incidence estimated at 1-2/100 

000. Major risk factors are similar to those of RCC [5]. Penile cancer (PeCa) is another 

occasional condition, accounting for 0,2% incidence and 0,1% mortality of all cancers, de-

scribed as epidemiologically significant mainly in countries of South America or Africa 

[1,6]. Similarly to PeCa, testicular cancer is one of the most uncommon cancers. It is 
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frequently diagnosed in young men, with the highest rate between the age 25-29 and 30-

43 [1,2]. 

Signal transducer and activator of transcription (STAT) protein family includes 

STAT3 [7]. In normal conditions STAT3 is latently located in cytoplasm.  However, there 

are many pathways which may activate STAT3 and the major one is interleukin 6 (IL-6) 

pathway. After stimulation STAT3 phosphorylation, dimerization and nuclear transloca-

tion occur, respectively. In the nucleus the protein acts as a transcriptional factor, resulting 

in enhanced cell survival, proliferation, migration and angiogenesis, and inhibited apop-

tosis. Main downstream genes are Bcl-2, Bcl-xL, Bcl-6, survivin, MYC, cyclin D1, MMPs 

and VEGF [8]. 

STAT3 has already been described as a prooncogenic protein in many different tu-

mors like breast, head and neck, lung, gastric or pancreatic cancer [9,10]. Moreover, the 

relationship between not only STAT3 and cancerous cells, but also STAT3 and tumor mi-

croenvironment (TME) was shown many times, also in case of urological cancers. This 

process may include changes in myeloid-derived suppressor cells (MDSCs) or tumor-as-

sociated macrophages (TAMs) phenotype or differentiation of mesenchymal stem cells 

(MSCs) into osteoblasts in PCa bone metastasis [11–13]. 

Considering epidemiological importance of urological cancers as well as multidi-

mensional STAT3 activity in tumor progression and metastasis we strongly believe that 

STAT3 is underestimated in urologic oncology. Therefore we consider this issue worth 

describing. The aim of this work is to gather and discuss the major recently published 

findings in the field of urological cancers through the prism of STAT3 used as a biomarker 

or therapeutical target to help researchers revising their view and exploring this matter. 

3. Role of STAT3 in cancers 

STAT3 belongs to the family of latent cytoplasmic transcription factors called STATs 

which comprises seven members: STAT1, STAT2, STAT3, STAT5A, STAT5B, STAT6.  

Those proteins play important role in cytokine-activated gene expression by transducing 

signals from the cell membrane to the nucleus [14,15].  

STAT3 is characterized by six main structural motifs: amino-terminal domain, coiled-

coil domain, DNA binding domain, linker domain, SRC2 Homology (SH2) and transacti-

vation domain [15]. The SH2 domain is the most specific part of the protein. It is respon-

sible for identifying and binding of phosphotyrosine motifs. Furthermore, it provides 

recognition and binding by JAK protein activation. Finally, it allows dimerization of 

STAT3 either with another STAT3 molecule or with remaining STAT family members [16].   

In regular conditions STAT3 is in a latent state in the cytoplasm, after external signals cell 

surface receptors oligomerize which leads to proximation of the tyrosine kinases and trig-

gers its transphosphorylation, finally resulting in activation of kinases. Further phosphor-

ylation of the internal domain of receptor by kinases ends up with the recruitment of 

STAT3 and its phosphorylation. Activation of STAT3 causes either homodimerization or 

heterodimerization of protein and translocation to the nucleus where it stimulates gene 

expression by binding to DNA [17].  The STAT3/JAK pathway is immediately quenched 

by suppressors of cytokine signaling (SOCS), protein inhibitors of activated STATs (PIAS), 

protein tyrosine phosphatases (PTPases), or through protein degradation by ubiquitin–

proteosome machinery [8]. STAT3 is activated mainly by IL-6 and epidermal growth fac-

tor (EGF), however many other factors were exposed to take part in this process [18].   

Upon binding to DNA STAT3 regulates the expression of many important genes such 

as Bcl-2, Bcl-xl, Bcl-6 and survivin responsible for cell survival and inhibition of apoptosis; 

MYC and cyclin D1 regulators of proliferation; MMPs (matrix metalloproteinases) pro-

motors of metastasis and migration; VEGF (vascular endothelial growth factor) mediator 

of angiogenesis; IL-6 pro-inflammatory cytokine and IL-10 immunosuppressive cytokine. 

Interestingly, the transcriptional effect of  STAT3 varies among tissue types [17]. Aber-

rant phosphorylation of STAT3 was reported in 70% of cancers and was associated with 

poor prognosis [17]. The aforementioned refers not only to solid tumors but also to hema-

tological malignancies.   
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Constitutive activation of this transcription factor was detected previously in acute 

myeloid leukemia, multiple myeloma, non-Hodgkin lymphoma, chronic lymphocytic leu-

kemia (CLL), as well as solid tumors of the lung, breast, ovary, cervix, prostate, bladder, 

kidney, colon, liver, stomach and head and neck [17]. Aberrant activation of STAT3 might 

be caused by spontaneous mutation of protein, however it is mostly assigned to autocrine 

and paracrine cytokine stimulation [7,17]. Additionally, hyperactivation of STAT3 was 

observed as a result of MEK therapeutical inhibition [19]. Abnormal prolonged activation 

results in tumorigenesis, metastasis, cell proliferation, invasion, migration and angiogen-

esis. Inhibition of this transcription factor inhibits previously mentioned effects in cancer 

cells, whereas normal cells are not affected. Hence STAT3 might be a viable target for 

cancer therapy [20]. 

 

     4. Role of STAT3 in prostate cancer 

In 2020 prostate cancer was the second most frequent cancer in men worldwide. It 

was also the fifth cause of cancer death in this group. Incidence has the highest rate in 

Northern and Western Europe, Caribbean and Australia/New Zealand area [1]. However, 

a sharp reduction in prostate cancer incidence between 2010 and 2014 was reported. Five-

year relative survival rate of localized and regional PCa is estimated to be >99%, whereas 

in distant cancer the rate dramatically decreases to 30% [21]. This may indicate why sci-

entists put so much effort into developing new strategies of managing PCa. It was also 

shown that Africans are more susceptible to develop PCa during their life and Asians are 

less affected. Such differences are yet to be explained [22]. 
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Figure 1. Schematic and simplified depiction of selected pathways and factors regulating 

STAT3 expression counting its downstream target proteins with the consequences of their 

overexpression in prostate cancer. Dashed line ended with a dot pictures inhibition; arrow 

pictures stimulation. 

Plenty of research papers highlighted the importance of STAT3 in PCa development. 

Many factors and different conditions may trigger STAT3 activation, but the core seems 

to be NF-κB/IL-6/STAT3 axis [23–27]. There is also lots of downstream targets being under 

the control of STAT3. Overexpressed STAT3 forces cyclin D1, Bcl-2, Bcl-xL and survivin 

expression which have proliferative and antiapoptotic properties [28–30]. PCa cells may 

also avoid apoptosis by inhibited expression of caspase 3 and caspase 9 through STAT3 

activity [31,32]. On the other hand, elevated levels of N-cadherin, vimentin, MMP2 and 

MMP9 (mesenchymal factors) and decreased level of E-cadherin (epithelial marker) en-

hance invasive and migrative capabilities, leading to epithelial-mesenchymal transition 

(EMT) [25,33,34]. Overexpression of VEGF results in augmented angiogenesis [35]. Lastly, 

induced expression of PD-L1 helps a tumor to avoid physiological immune response [36]. 

Collectively, high expression and activation of STAT3 result in increased cell survival, 

proliferation, angiogenesis, invasion and migration, leading to distal metastasis [37–39].  

Tumors might be described as complicated organs which consist of not only tumor-

ous cells, but also benign cells, e.g. stromal cells. All of them create TME which has re-

cently caught scientists’ interest. Exemplary stromal cells are fibroblasts – critical regula-

tors of metastatic progression in PCa. Promyelocytic leukemia zinc finger (PLZF) takes 

part in self-renewal or stem cells differentiation and may act as a tumor suppressor. Col-

lected data showed that PLZF level is decreased whereas phosphorylated STAT3 

(pSTAT3) level is increased with PCa progression. Exogenous overexpression of PLZF re-

sulted in substantial inhibition in STAT3 phosphorylation by increased SHP1 expression 

which has an ability to deactivate JAK/STAT3 pathway. On the other hand, fibroblasts 

produce CCL3, which prevents PLZF expression. Scientists presented a part of compli-

cated relationship between fibroblasts and PCa cells, describing a potentially useful 

CCL3/PLZF/SHP1/STAT3 cascade [40]. Zhao et al. reported that highly concentrated lac-

toferrin (LTF) significantly decreases STAT3 and granulocyte-macrophage colony-stimu-

lating factor (GM-CSF) levels, which result in immune TME changes [41]. One of the most 

abundant immune cell population in TME is TAMs. CCL5 is a chemokine produced by 

TAMs. Elevated CCL5 level was noticed in PCa tissues and has been associated with mi-

gration, invasion and EMT promotion. CCL5 promotes self-renewal of prostate cancer 

stem cells (PCSCs) by activating their CCL5 receptor (CCR5) and thereby stimulating β-

catenin/STAT3 signaling pathway, which results in STAT3 upregulation. In vivo studies 

revealed that CCL5 blockage leads to inhibition in PCa growth, bone metastasis and 

PCSCs self-renewal. Therapy focused on inhibiting TAMs or CCL5 and CCR5 might be a 

promising future approach [33]. TAMs may be divided into two groups – M1, which acts 

as anticancer cells, and M2, promoting cancerous characteristics. One phenotype can 

switch into the other under specific conditions. It was evidenced that the use of PC3 (hu-

man PCa cell line) supernatant results in disappearance of M1 and emergence of M2 bi-

omarkers. Additional STAT3 inhibitor completely changes this trend and forces differen-

tiation into M1 phenotype. Modifying TME by TAMs manipulations may contribute to 

develop new strategies [42]. Another study was focused on exploring the role of IL-8 se-

creted by M2. It was shown that IL-8 activates STAT3/MALAT1 (lncRNA upregulated in 

PCa tissues) pathway and therefore promotes PCa progression. MALAT1 gene knock-

down results in inhibition of proliferation and invasion. It has to be explored whether 

STAT3 activation is pivotal for MALAT1 overexpression [43]. Another part of TME are 

MDSCs. MDSCs characterized as CD33+ pSTAT+ are more frequent in PCa TME compar-

ing to benign prostate hyperplasia (BPH) tissues. Described phenomenon may be the basis 

for future studies on developing new treatment strategies [11]. MDSCs play a crucial role 

in suppressing antitumor immunity and their generation may be induced by PCa cells. 

Galiellalactone, a STAT3 inhibitor, effectively downregulates MDSCs level. Researchers 

conclude that galiellalactone may impair arising immunological immunity and suggest a 
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potential use of STAT3 inhibitors in advanced PCa [44]. Innovative approach to change 

TME in favor to patients may come with combined treatment of STAT3 inhibition and 

Toll-like Receptor 9 (TLR9) stimulation. Developed therapy significantly changed TME by 

neutrophiles and CD8+ T cells recruitment and decrease in MDSCs’ population at the 

same time. Results suggest that bifunctional and immunostimulatory combination has the 

potential to disrupt tumor immunological escape mediated by STAT3 [45]. McGuire et al. 

described a process of MSCs recruitment by PCa bone metastasis. Firstly, MSC-derived 

IL-28 leads to PCa cells apoptosis, but persistent exposure results in the selection of cells 

resistant not only to IL-28-induced apoptosis but also to chemotherapeutics like docetaxel 

or etoposide. Scientists reported that the use of STAT3 inhibitor, S32-201, selectively in-

hibited MSC-selected PCa cells. Such cells are notably susceptible to STAT3 inhibition in 

vivo [13]. Witt et al. analyzed how the use of STAT3 inhibitor will influence anti-CTLA-4 

(antibody enhancing immune response) treatment. Cotreatment resulted in a significant 

enhancement in survival time in mice when compared to group treated with antibody 

only. However, complete tumor regression was not observed. Significant CD45+ (charac-

teristic for all leucocytes) cells tumor infiltration, as well as a substantial reduction in reg-

ulatory T cells population (which may contribute to tumor’s resistance development), was 

noticed intratumorally, respectively. The authors point at the therapeutical potential of 

such an approach [46]. Apoptotic cells are supposed to produce paracrine molecules that 

promote a compensatory proliferation mechanism among survived cells. Conducted ex-

periment showed that after etoposide-induced apoptosis, PC3 repopulation, EMT and 

chemoresistance occur through caspase-3/cPLA2/COX-2/PGE-2/EP4-/2/STAT3 axis, called 

Phoenix Rising. Although Phoenix Rising is a physiological process responsible for regen-

eration in healthy tissues, some epigenetic-induced changes may lead to pathological re-

population of cancerous cells. New insight into the repopulation mechanism may result 

in new therapeutical strategies [47].  

Castration resistance prostate cancer (CRPC) often remains lethal or refractory for 

available therapies. Many researchers consider developing tools to break this resistance 

as a key to save PCa patients. Cytotoxic natural killer (NK) cells were tried to manage 

CRPC. It was shown that IL-6-producing tumors were more resistant to their cytotoxicity, 

which suggests the importance of IL-6 signaling in determining tumor cells’ sensitivity. 

What is more, high IL-6 expression led to excessed PD-L1 expression at CRPC cells, which 

in turn resulted in T cells death or inactivation, and decreased NKG2D ligand expression, 

which disrupted NK cells with recognizing tumor cells. Collected data showed that using 

JAK1 inhibitor or STAT3 inhibitor resulted in decreasing PD-L1 and increasing NKG2D 

levels. PD-L1 antibodies increased NK cells cytotoxicity as mentioned inhibitors did. Col-

lectively, combined therapy of JAK inhibitor or STAT3 inhibitor with the PD-L1 antibody 

showed much stronger effects than using these molecules in monotherapy. Combined 

therapy leads to increased susceptibility of CRPC cells to cytotoxicity mediated by NK 

cells. Inhibitory targeting of IL-6 or its downstream proteins with PD-L1 antibody might 

be a successful way of managing CRPC [36]. It was also presented that fructose-1,6-

bisphosphatase (FBP1), a glycolysis inhibiting enzyme, acts through STAT3 pathway and 

its loss leads to increased expression of PD-L1. Carried experiments revealed that FBP1, 

independently of its enzyme activity, interferes with STAT3 and inhibits STAT3 binding 

to the locus of PD-L1 gene. This effect was reversed by ionizing radiation or IL-6 admin-

istration which increased STAT3 phosphorylation. Knockdown of FBP1 gene led to a sig-

nificant enhancement of PD-L1 protein and mRNA expression and tumor growth. Inter-

estingly, loss of FBP1 gene correlated with stronger resistance to anti-PD-L1 treatment. 

Collectively, FBP1 loss may be involved in the tumor immune escape. Further studies are 

needed to define new strategies [48]. Hepatocyte cell adhesion molecule (HepaCAM) is 

an immunoglobulin-like molecule poorly expressed or absent in malignant tumors. Re-

cent study showed HepaCAM interferes IL-22/STAT3 axis and consequently blocks 

STAT3 phosphorylation and noticeably decreases proliferation, migration and invasion of 

CRPC cells. Results were pictured not only by reduced levels of STAT3 target genes, but 

also by the absence of any lung metastatic areas in mice. Restoring expression of 
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HepaCAM might be a promising perspective for CRPC patients [29]. Lin et al. reported 

that CYP1B1, an enzyme catalyzing the synthesis of 4-hydroxy-17β-estradiol (4-OHE2) 

from estradiol, might contribute to the development of CRPC by promoting PCSCs char-

acteristics. 4-OHE2 is supposed to increase IL-6 expression which in turn intensifies IL-

6/STAT3 pathway and its downstream genes. Scientists found out that CYP1B1 expression 

positively correlates with the Gleason Score (GS) and is higher expressed in CRPC tissues 

comparing to androgen-dependent PCa cells. Moreover, CYP1B1 enhanced CRPC re-

sistance to bicalutamide while its knockdown reversed this effect. CYP1B1 seems to be a 

new therapeutic target in CRPC patients [49].  

Different therapeutical strategies have a potential to induce resistance in PCa cells 

which may contribute to cancerous cells survival. Hu et al. focused on autophagy phe-

nomenon, which may lead to chemoresistance acquirement, in CRPC cells induced by 

docetaxel. Collected data showed that STAT3 negatively regulates this process. Activated 

STAT3 is supposed to decrease CRPC cells viability during chemotherapy by apoptosis 

promotion. Finding a molecular explanation for these outcomes may be a basis to new 

treatment strategies [50]. Therefore, managing acquired resistance may be a key to de-

velop the proper treatment. It was shown that alantolactone (ALT) decreases cancer stem 

cells (CSCs) viability through STAT3 inhibition and sensitizes those cells to cisplatin [51]. 

Galiellalactone, a direct STAT3 inhibitor, was reported to significantly decrease docetaxel-

resistant PCa cells viability and may be used in combined therapy [52]. Similarly, another 

team proved galiellalactone’s efficacy in managing enzalutamide-resistant PCa both in 

monotherapy and in combination [53]. Furthermore, metformin is capable of reversing 

EMT promoted by enzalutamide (ENZ) by targeting TGF-β1/STAT3 axis. Combined ther-

apy of metformin and ENZ was especially effective and promising [24]. Although ENZ 

prolongs PCa patients’ lives by about 5 months, it can also induce neuroendocrine differ-

entiation (NED) by activating lncRNA-p21/EZH2/STAT3 pathway. Developed neuroen-

docrine PCa cells (NEPCs) are insensitive to androgen deprivation therapy (ADT) and 

therefore exacerbate the course of illness. Scientists suggest that EZH2 targeting may re-

duce enzalutamide-induced changes [54]. Collected data implied that STAT3 activation 

may result in radioresistance. Zhang et al. proved that the use of STAT3 inhibitor or 

STAT3 knockdown increase sensitivity of PCa cells to irradiation. Complex treatment of 

radio- and chemotherapy (STAT3 inhibition or knockdown) demonstrated synergistic ef-

fect pictured by augmented apoptosis. These results seem to be an interesting approach 

to PCa managing, combining two methods of cancer treatment [55].  

Recently some studies focused on targeting NF-κB/IL-6/STAT3 axis have been pub-

lished. It was shown that IL-8 level is elevated in PCa cells and it considerably promotes 

proliferation as well as migration and invasion while inhibiting apoptosis. Mechanisti-

cally, IL-8 works by activating STAT3/AKT/NF-κB axis. This finding may contribute to 

develop new treatment strategies [56]. Considering the pivotal role of mentioned axis in 

PCa progression, scientists developed dual STAT3/NF-κB inhibitor. Iridium(III), showing 

anti-NF-κB properties, was conjugated with benzofuran, which acts as a STAT3 inhibitor. 

Collected data shows that synthesized complex not only inhibits STAT3 activation and 

binding of already activated STAT3 to DNA but also decreases nuclear translocation of 

NF-κB from the cytoplasm. Interestingly, benzofuran-iridium(III) was relatively more 

toxic against DU145 cells than cisplatin and doxorubicin with simultaneous lower toxicity 

to normal human cell lines. This conjugation seems to be an interesting and promising 

way of treatment [27]. N-myc downstream-regulated gene 1 (NDRG1) is an important 

molecular regulator, inhibiting PCa progression and metastasis. It inhibits many precan-

cerous signaling pathways which promote CRPC development. It was proved that 

NDRG1 significantly decreases levels of activated STAT3, IL-6 and NF-κB. Considering 

that NDRG1 affects crucial steps in NF-κB/IL-6/STAT3 axis, and therefore disrupts andro-

gen-independent AR activation pathways, it might be a promising solution for CRPC pa-

tients [57].  

Some scientific teams have recently tried to use RNA molecules as a treatment tar-

geted at STAT3. Wei et al. found out that long non-coding RNA (lncRNA) called MAGI2-
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AS3 is one of the most downregulated lncRNA in PCa tissues. MAGI2-AS3 is supposed 

to act as a sponge for another lncRNA appearing in PCa cells – miR-424-5p, which acti-

vates STAT3 pathway. It was shown that MAGI2-AS3 forced overexpression decreases 

STAT3 concentration and, in turn, inhibits cell viability and enhances apoptosis [58].  An-

other study presented that miRNA-583 expression in PCa tissues is significantly inhibited. 

miRNA-583 transfection resulted in considerable diminished proliferation and invasion 

of PCa cells due to JAK1 inhibition and, as a result, abolished activation of STAT3. Col-

lected data suggest a potential use of miRNA-583 as a treatment. Described mechanism of 

action has remained unknown until this study [59]. A relationship between specific 

lncRNA and TAMs has also been described. It was proved that LINC00467 induces mac-

rophage polarization from M1 to M2 phenotype which is responsible for STAT3 pathway 

activation through miR-494-3p/STAT3 cascade. Potential use of blocking this molecule 

might benefit patients by inhibiting proliferation and infiltration of PCa cells [60].  Simi-

lar properties to those mentioned before are represented by another lncRNA – LINC00473. 

It activates JAK/STAT3 pathway and therefore contributes to proliferation of PCa cells. 

Consequently, inhibitory targeting of LINC00473 might be a new way of treatment [61].  

It is commonly known there are many environmental risk factors of developing can-

cers. The way we live and create our habits might also contribute to PCa emerging. Kwan 

et al. proved that a high-fat diet increases tumor size, STAT3 phosphorylation and pal-

mitic acid (PA) levels in the xenograft tissues. PA upregulates STAT3 mRNA and protein. 

Moreover, PA strongly binds to STAT3, which changes its conformation and activity [26]. 

Another team noted that LDL cholesterol significantly increases pSTAT3 level by en-

hanced JAK1 and JAK2 phosphorylation. LDL intensifies the proliferative and invasive 

abilities of PCa cells. The use of statins may benefit PCa patients [28]. The impact of obesity 

on PCa development was investigated by exploring the role of leptin. It was shown that 

increased leptin concentration boosts EMT by inducing STAT3 phosphorylation. What is 

more, it was noticed that the level of leptin receptor is much higher in adenocarcinoma 

than in BPH [25]. 27-hydroxycholesterol (27HC) was found to impair lipid rafts and in-

hibit their signaling pathways. In vivo experiment showed that 27HC treatment resulted 

in a statistically significant difference in tumor size in treated group when compared to 

control group. Mechanistically, 27HC disrupts IL-6/JAK/STAT3 pathway and, what is 

more, acts synergistically with STAT3 inhibitors. Further studies are needed to apply 

these findings clinically [62]. Despite calcitriol’s importance in regulating calcium and 

phosphorus metabolism, it also has anti-inflammatory or anti-tumor properties. It was 

revealed that calcitriol inhibits lipopolysaccharide(LPS)-induced migration and invasion 

of PCa cells. Calcitriol enhances physical interaction between STAT3 and vitamin D re-

ceptors (VDR), resulting in disrupted nuclear translocation of STAT3. Moreover, calcitriol 

leads to VDR and NF-κB binding, which in turn downregulate IL-6 and IL-8. Clinical rel-

evance and in vitro studies have to be carried out [63]. Same pro-cancerous mechanism 

was analyzed through the prism of melatonin activity. This molecule not only inhibited 

LPS-induced invasion and migration but also affected not stimulated cells in the same 

way. Expression of NF-κB was noticed to be downregulated as well as IL-6 and STAT3 

levels. In vivo studies might confirm therapeutical potential [64].  

There are many different approaches to manage PCa. Krüpple-like transcription fac-

tor 5 (KLF5) is a zinc-finger transcription factor regulating proliferation, apoptosis or in-

vasion. It was observed that PCa tissues are characterized by downregulation of KLF5. 

KLF5 expression is significantly inhibited in tissues described as GS8-GS10 and its con-

centration is lower in PCa metastasis rather than in localized PCa. That is why scientists 

assumed that loss of KLF5 might promote invasive abilities of PCa and consequently it 

was proved in experiments. Mechanistically KLF5 downregulation activated IGF1/STAT3 

pathway which in turn led to PCa invasion. KLF5 was also reported to cooperate with 

HDAC1 (histone deacetylase) in binding to the promoter of IGF1 gene [23]. The role of 

insulin-like growth factor (IGF) and its receptor (IGF1R) was also explored in another 

study. MDA-9/syntenin is a protein overexpressed in many types of human cancers and 

its upregulation caused enhanced invasive abilities of PCa cells. Overexpression of MDA-
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9/syntenin was observed to correlate with STAT3 overactivation. MDA-9/syntenin physi-

cally interacts with IGF1R and leads to its autophosphorylation which consequently acti-

vates STAT3. All in all, MDA-9/syntenin-IGF1R interaction is yet to be explored [65]. Eth-

acrynic acid (EA) is a diuretic with a potential of inhibiting STAT3 by activating phospha-

tases SHP2 and PTP1B which consequently dephosphorylate STAT3 at Tyr705. In vivo 

experiments revealed EA’s antiproliferative properties [66]. Similar effects were previ-

ously observed using capsazepine (Capz), a synthetic analogue of capsaicin. Capz re-

duced STAT3 phosphorylation and nuclear translocation by blocking phosphorylation at 

Tyr705. It was discovered that Capz increases the expression of protein tyrosine phospha-

tase ε (PTPε) which consequently deactivates STAT3. Capz dramatically reduces down-

stream STAT3 target genes levels. Potential involvement of NF-κB axis in this mechanism 

is still unknown [67]. Post-translational modifications (PTMs) of STAT3 might not only be 

useful as a biomarker, but also as a potential therapy. Inhibiting STAT3 phosphorylation, 

acetylation or glutathionylation at specific amino-acids could be a way to disturb driving 

intracellular signals conducting to PCa progression [68].  Commonly used antiandrogens 

might inhibit PCa proliferation, but excessing PCa invasive abilities at the same time. It 

was shown that ASC-J9® is able to induce STAT3 sumoylation which leads to decreased 

STAT3 phosphorylation. Adding this result to previous known ability of degrading AR, 

ASC-J9® seems to be a promising candidate for supporting ADT or radiotherapy [69]. 

Virotherapy seems to be an interesting and promising way of managing PCa. In vitro 

studies showed that Newcastle disease virus (NDV) induces immunogenic cell death 

(ICD) markers of PC cells. Addition of STAT3 inhibitor resulted not only in decreased 

STAT3 phosphorylation but also significant enhancement of released ICDs. The mecha-

nism of this synergistic effect waits to be explored [70]. Metformin is a drug widely used 

for type 2 diabetes. Tang et al. tried to use its potential to inhibit EMT of PCa cells induced 

by ADT. Metformin reduced migration and invasion by about 50% which was statistically 

significant and it was consistent with biomarkers’ levels specific for EMT. Finally, it was 

shown that metformin significantly decreased pSTAT3 level without influencing total 

STAT3 (tSTAT3) by inhibiting COX2/PGE2/STAT3 axis. Interestingly, highly concentrated 

metformin is capable of inhibiting STAT3 directly even with exogenous PGE2 presence 

[34]. S-adenosylmethionine (SAM), which acts as a biological methyl donor, seems to be 

another promising STAT3 inhibitor. Studies showed a significant reduction of STAT3 pro-

tein and phosphorylated form after 72h and 120h of SAM treatment [39]. It was demon-

strated that cell lines without androgen receptor (AR) expression show the highest levels 

of fibrinogen. Knockdown fibrinogen gene, which remains under IL-6/STAT3 control, re-

sulted in inhibited proliferation and mobility of PCa cells [71].  

A large number of recently published research papers focused on exploring anti-

tumor properties of natural compounds may suggest that many scientists pin their hopes 

on mother nature. Lots of molecules have a potential to become an anticancer drug indeed. 

Fucoidan, a polysaccharide sourced from brown algae, was found to reduce activated JAK 

and STAT3 levels in PCa tissues, presenting a massive antiangiogenic ability [35]. At-

ractylenolide II, a natural sesquiterpene lactone, inhibits JAK2/STAT3 pathway activity 

[72]. Proscillaridin A, a cardiac glycoside obtained from Urginea maritima, disrupts the 

same pathway and, even more importantly, substantially enhances antiapoptotic abilities 

of doxorubicin [73]. Liu et al. reported acetyl-11-keto-β-boswellic acid, a pentacyclic 

triterpenic acid collected from gum resin trees, as a strong cytotoxic agent in PC3 cells 

resistant to docetaxel. This compound downregulates not only pJAK2 and pSTAT3, but 

also IGF1R or pAKT levels [74]. Ganoderma lucidum, a mushroom used in Chinese medi-

cine, contains triterpenes which are supposed to act as an anticancer factor. It was shown 

G. lucidum is also cytotoxic to PC3 cell line through JAK1/STAT3 pathway deactivation 

[32]. On the other hand, carvacrol, a natural flavoring approved for food use, significantly 

reduces IL-6 and STAT3 expressions, resulting in limited invasion, migration, prolifera-

tion and viability of PCa cells. The whole mechanistic picture is yet to be explored [75]. 

There are also some organic molecules or their derivatives that inhibit STAT3 activity 

through direct binding, preventing STAT3 dimerization and nuclear translocation [76–
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78]. Compound K (CK), a saponin obtained from ginseng, was reported to increase 

miR193a-5p expression in DU145 cell line, which leads to attenuated STAT3 and PD-L1 

expression. Thanks to those, CK demonstrates its proapoptotic properties through the lack 

of T cells inactivity [30]. Similarly, PD-L1 inhibition through STAT3 pathway deactivation 

seems to be possible with the use of CFF-1, a traditional Chinese medicine cure. CFF-1 is 

likely to act alone or with docetaxel combination to present its effects. It is reported to 

inhibit tumor growth and lung metastasis [79]. Methyllucidone, a cyclopentenedione iso-

lated from some Lauraceae family plants’ fruit, has abilities to inhibit STAT3 activation 

even by 90%. Mechanistically, methyllucidone exerts MEG2 expression, a PTP known 

from its capability of STAT3 dephosphorylation [80]. On the other hand, Qi Ling, another 

medication from traditional Chinese medicine, has the potential to alter TME and force 

TAMs to switch from M2 to M1 phenotype through IL-6/STAT3 pathway inhibition. 

Moreover, Qi Ling is supposed to decrease the paclitaxel resistance in PCa tissues [12]. 

Furthermore, a polymethoxyflavone obtained from citrus called nobiletin was reported to 

decrease STAT3 expression with consecutive enhancement in bicalutamide cytotoxicity 

[81]. Astaxanthin, which is naturally produced by marine organisms like algae, was 

proved to inhibit proliferation and colony forming by PCa cells through disrupting STAT3 

and related pathways, e.g. JAK2 or NF-κB [31]. The final described product of Chinese 

medicine called compound 154 is collected from the skin of giant toads and was evidenced 

to work as a STAT3 and AR inhibitor. Besides its increased cytotoxicity to normal tissue, 

it might be a therapeutical option after molecular modifications [82]. 

Diagnostics is the first step of a long journey of treatment. Well-developed bi-

omarkers characterized by high sensitivity and specificity might act as a powerful weapon 

in clinicians’ hands. Early and accurate diagnosis yields appropriate treatment, which 

may provide better outcomes. It seems to be crucial to diagnose benign conditions like 

BPH before their progression to PCa. Sanaei et al. tried to use pSTAT3 as a biomarker of 

MDSCs – immature cells which accumulate in pathological condition of inflammation and 

exist in TME. These cells were described as CD33+ pSTAT3+ and pSTAT3 marking was 

used to differentiate MDSCs from other myeloid cells, which might act as anticancer fac-

tors. The research showed that CD33+ pSTAT3+ cells were significantly frequent in the 

patients with PCa in comparison to the control group with BPH. However, there were no 

relevance between MDSCs level and GS. Researchers conclude that elevated MDSCs level 

might indicate progression from BPH to PCa [11]. STAT3 molecule undergoes some spe-

cific PTMs. Researchers found out that these alterations are characteristic for different cel-

lular conditions. STAT3 acetylation at Lys685 was observed in overall inflammation, 

whereas glutathionylation or phosphorylation at Ser727 was more specific for conditions 

of oxidative stress. What is more, mentioned PTMs were correlated with GS. Lys685 acet-

ylation was detected in tissues described as GS6. On the other hand, Ser727 glutathionyla-

tion or phosphorylation were noticed in GS9. In turn, phosphorylation at Tyr705 was com-

mon for all STAT3 signaling pathways. Results suggest that detecting specific STAT3 

PTMs might be a biomarker for PCa prevention or differentiation [68]. Marginean at al. 

assessed the nuclear expression of STAT3 phosphorylated at Tyr705 and Ser727 in the 

prostate stromal compartment of cancer and non-cancer areas in hormone-naïve patients 

after radical prostatectomy due to localized PCa. Lower nuclear expression of STAT3Tyr705 

and STAT3Ser727 in the stromal compartment was observed in cancer tissues comparing 

with non-cancer tissues. This decreased expression was correlated with shorter time to 

biochemical recurrence (BCR). Although non-cancer tissues were collected from distant 

areas of the tumor from patients with PCa, the data has a potential to be the foundation 

of developing useful biomarkers. Presented evidence reveals similar prognostic power to 

GS, staging or surgical margin status, which are widely used in early PCa [83]. Similar 

studies were carried out earlier by another Swedish team which focused on investigating 

the expression of tSTAT3 and two phosphorylated forms mentioned before – STAT3Tyr705 

and STAT3Ser727 – in prostate epithelial cells and their impact on disease outcome. Surpris-

ingly, all forms of STAT3 were lower expressed in the cancer cores than in the benign 

cores and the lowest expression was detected in the tissues with higher GS. Collected data 
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suggests a correlation between nuclear and cytoplasmic STAT3Ser727 and nuclear 

STAT3Tyr705 expression in cancerous tissues and shorter time to BCR. The lower expression 

of STAT3, the poorer prognosis of the disease is. However, using gathered outcomes re-

sulted in impairing prognostic values of GS and pT staging. Scientists conclude it might 

not be a good way to diagnose early stages of PCa [84]. 

 

     5. Role of STAT3 in bladder cancer 

Bladder cancer is the most common malignancy of the urinary tract [85]. It is also the 

tenth most prevalent cancer in the world with roughly 573 000 new cases and 213 000 

deaths [1]. The incidence varies between geographical regions and the highest rates are 

observed in Europe and North America, additionally among the male population in 

Egypt, Syria, Israel and Turkey. The lowest incidence rates are reported in Sub-Saharan 

Africa, Latin America and some Middle Eastern and Central Asian countries [86]. The 

disorder can occur as non-muscle-invasive bladder cancer (NMIBC), muscle-invasive 

bladder cancer (MIBC) and metastatic form of the disease [87]. NMIBC comprises 80% of 

diagnosed bladder cancer cases and is often associated with FGFR3 mutation [87]. It is 

estimated that 15% to 20 % of NMIBCs progress to MIBCs in which the neoplasm has 

advanced beyond epithelial cell lining and into the muscles [87,88].  

Recent investigations exposed that STAT3 plays a significant role in the progression 

of the disease [89]. STAT3 was not only found to be upregulated in 10 types of bladder 

cancer cell lines but also in invasive bladder cancer tissue samples [90]. The higher values 

of pSTAT3 were associated with basal bladder cancer whereas lower values were detected 

in luminal bladder cancer. Furthermore, the dependence on STAT3 was differentiated fol-

lowing the cancer cell line. 5637 cell line had the most significant response to STAT3 inhi-

bition. The values of pSTAT3 were increasing concurrently with the progression of the 

disease. In addition, MIBC has shown enhanced expression of nuclear STAT3 in compar-

ison with NMIBC [91]. The differences in STAT3 expression were also observed within 

urothelial cancers. Specimens with papillary patterns demonstrated significantly lower 

parameters of STAT3 expression than non-papillary variants [92].  

Numerous research teams inspected the role of STAT3 in bladder cancer. The inhibi-

tion of the STAT3 resulted in a decrease in cell amount, which was assigned to the process 

of apoptosis. The anti-apoptotic genes Bcl-xL, Bcl-2 and survivin levels were downregu-

lated in treated cell lines. The effect was observable in WH and UMUC-3 cell lines whereas 

no change was found in bladder smooth muscle cells. Interestingly, inhibition of the 

STAT3 not only led to expression reduction of apoptotic genes but also induced the cleav-

age of caspases 3, 8 and 9 [89]. Another study also reported that the apoptosis phenome-

non was accompanied by expression attenuation of Bcl-xL and Bcl-2 in the T24 cell line 

[93]. Treatment with Stattic, a STAT3 inhibitor, significantly reduced the weight of the 

tumor xenografts. The reduction of tumour growth was up to 50%. During Stattic treat-

ment a reduction of Ki-67 positive cells also was observed [90]. 

STAT3 is also implicated in process of EMT in bladder cancer. Blockage of the STAT3 

pathway decreased the motility and invasiveness by inhibition of MMP2 and MMP9 ex-

pression  [93]. Treatment of bladder cancer cell lines with Tanshinone IIa, extract derived 

from Salvia miltiorrhiza, contributed to an increase of epithelial marker E-cadherin level 

and reduction of mesenchymal markers like N-cadherin and vimentin. Additionally, tran-

scription regulators of EMT like SLUG and SNAIL were also downregulated after therapy. 

This data implicated that Tanshinone IIa can suppress the process of EMT. It was estab-

lished that extract from Tanshinone IIa exerts its action through inhibition of the STAT3 

phosphorylation, which ends in the downregulation of CCL2 [94]. The correlation be-

tween STAT3 and EMT was spotted during examinations of IDO1 enzyme. IDO1 was 

found to be overexpressed in bladder cancer cell lines and tissues. The enzyme is respon-

sible for the breakdown of tryptophan to kynurenine. It was demonstrated that IDO1 may 

promote EMT through the IL-6/STAT3/PD-L1 pathway. Suppressed expression of IDO1 

resulted in decreased proliferation, migration and invasiveness of bladder cancer cells 

[95]. Cancer-associated fibroblasts were reported to be involved in process of bladder 
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cancer progression through stimulation of STAT3 phosphorylation. Cancer-associated fi-

broblasts secreted IL-6, which activated its receptor on bladder cancer cells subsequently 

leading to increased phosphorylation of STAT3 and providing IL-6-activated EMT pro-

gramming [96]. Certain RNA molecules affect EMT by influencing STAT3 level as well. 

For instance, miR-4500 was determined to be downregulated in bladder cancer cells. Ec-

topic expression of miR-4500 stimulated apoptosis, impaired proliferation and retarded 

EMT. The study demonstrated that RNA suppressed STAT3 through base pairing with 

the 3’-untranslated region of STAT3. Interestingly the phosphorylated STAT3 levels cor-

related with CCR7, increased expression of miR-4500 and repressed STAT3 which led to 

a decrease in CCR7 [97]. Conversely, lncRNA CARLo-7, which was established as the only 

bladder cancer specific lncRNA in the CARLo cluster, is dramatically overexpressed in 

bladder cancer cells. Silencing of CARLo-7 repressed activation of JAK/STAT and Wnt/β-

catenin pathways and therefore migration, invasiveness and EMT were diminished [98]. 

 STAT3 besides being involved in EMT participates in bladder cancer angiogenesis. 

Occludin is a protein which is a part of the tight junction proteins family.  This protein 

was overexpressed in bladder cancer tissue and was linked to the progression of cancer. 

Importantly, occludin facilitated angiogenesis by stimulating IL-8 secretion mediated by 

STAT4. High levels of IL-8 triggered phosphorylation of STAT3 and led to angiogenesis 

[99].  

STAT3 plays a significant role in bladder cancer metabolism. Phospholipase C epsi-

lon (PLCε) was found to be upregulated in bladder cancer and caused stimulation of 

STAT3 phosphorylation which regulates the transcription of LDHA and, as a result, af-

fects glucose consumption and lactate production. Knockdown of PLCε in T24 cells atten-

uated STAT3 phosphorylation and resulted in LDHA expression, cells proliferation, glu-

cose consumption and lactate production downregulation [100].  The Gasdermin B pro-

tein, which is responsible for the regulation of pyroptosis in cells, similarly to PLCε was 

demonstrated to upregulate glucose metabolism via STAT3 activation. This interaction 

resulted in increased expression of LDHA, ENO2, HK2 and IGFBP3 which enhanced gly-

colysis [101]. What is worth mentioning is that the deprivation of glutamine decreased the 

values of phosphorylated STAT3. What is more, the study implied that GLN is responsible 

for cell growth stimulation mediated by STAT3. GLN not only regulate STAT3 by glu-

taminolysis and ATP supplementation but also through reactive oxygen species (ROS) 

level modulation in bladder cancer cell lines [102]. In addition, it was revealed that an 

elevated amount of RORC, which expression is considered to be downregulated in blad-

der cancer, has probably led to inhibition of cell proliferation and glucose metabolism by 

suppressing the binding of STAT3 to the promoter of STAT3-mediated genes.  

Furthermore, RORC via blocking STAT3 might have sensitized bladder cancer cells’ 

response to cisplatin [103]. Another study revealed that STAT3 can be a part of a process 

that facilitated doxorubicin resistance in bladder cancer. Phosphorylated protein was re-

sponsible for the recruiting of DNMTB3 to the promoter region of ESR1 which ended up 

with its hypermethylation and downregulation of ESR1. Subsequently, it led to the down-

regulation of miR-4324. The microRNA decreased RACGAP1 protein levels which is sup-

posed to be a tumor promoter and doxorubicin resistance factor. Bladder cancer was 

proved to be resistant to radiotherapy [104]. Fractional irradiation enhanced the invasive-

ness, motility and stem-like characteristics of bladder cancer cells. Responsibility for this 

effect was assigned to STAT3 which was previously reported to be significantly phosphor-

ylated in irradiated cells [105]. Knockdown of STAT3 brought a loss of tumor formation 

in immunodeficient mice. It was suggested that excessive secretory of cytokines resulted 

in activation of the JAK/STAT pathway. Notably, it was demonstrated that IL-6/STAT3 

pathway is important to maintain stem like properties [106]. Interesting findings were 

made during concomitant utilization of Stattic and chemotherapeutic agent approved for 

bladder cancer. The combined therapy of Stattic with one of chemotherapeutics – gem-

citabine, docetaxel, paclitaxel or cisplatin – showed an additive effect. This effect may find 

an application in the future within a group of patients with chemoresistant tumors [90]. 
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Besides, the combination of Stattic and Palbociclib (CDK4/6) inhibitor showed an additive 

effect in T24 and UMUC-3 cell lines [90].  

STAT3 may be considered a new potential biomarker. It was determined that its level 

correlates with a poor prognosis but due to conflicting reports, it is still disputed if the 

utilization of STAT3 as a new survival biomarker would be relevant [90,91]. However, it 

may prove to be useful in the differentiation of bladder cancer types. As an aforemen-

tioned urothelial type of bladder cancer was enriched in STAT3 [92]. Moreover, it is sug-

gested that the high expression of pSTAT3 is a strong predictor of the basal type of urothe-

lial bladder cancer [91]. Interestingly,  the value of pSTAT3 is elevated in high grade 

NMBIC in comparison to low grade, which indicates a possibility to detect more aggres-

sive cells in NMBIC [91]. 

 

Figure 2. Schematic and simplified depiction of selected pathways and factors regulating 

STAT3 expression counting its downstream target proteins with the consequences of their 

overexpression in bladder cancer. Dashed line ended with a dot pictures inhibition; arrow 

pictures stimulation. 

 

6. Role of STAT3 in upper tract urothelial carcinoma 

Upper tract urothelial carcinoma (UTUC) is a rare type of neoplasm. It is defined as 

urothelial lining cells’ malignancy within renal calyces, renal pelvis, ureter down and ure-

ter orifice. It comprises 5% of urothelial cancers and 10% of renal cancers. Two times as 

frequent urothelial pelvicalyceal cancer is diagnosed as urothelial ureter cancer [107]. 

     

    

      

       

         
         

           

           

      

      

      

          

          

                   

             

    

      

                

             

         

         

         

     

     

     

         

          

   

       

          

           

     

    

      

        

       

               

        

        

     

        

      

    

        

       

      

        

    

     

       

    

          

                  

          

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2022                   doi:10.20944/preprints202208.0163.v1

https://doi.org/10.20944/preprints202208.0163.v1


 

UTUC is associated with FGFR3 signaling, papillary-luminal phenotype and T-cell de-

pleted environment [108]. It is challenging to treat multifocal disease and relapses are of-

ten reported after initial therapy.  25% of patients present with metastasis when diag-

nosed [107]. Standard treatment in case of high-risk UTUC remains radical nephroureter-

ectomy (RCU).  Surgery is combined with platinum-based chemotherapy, which im-

proved the prognosis in comparison with RCU solely. Furthermore, platinum agents are 

also utilized in metastatic cancer at first line [108]. 

STAT3 was proved to be a cancer-promoting factor and valuable prognostic marker 

in UTUC. Higher values of STAT3 were reported in ureteral UTUC than in renal UTUC. 

Surprisingly, no differences in levels of protein were found in muscle-invasive and non-

muscle invasive cancer [109].  The expression of pSTAT3Tyr705 in the upper urinary tract 

was similar to the lower urinary tract despite the diversity of these two cancer types in 

clinical features. Increased phosphorylation of STAT3 may be connected to invasiveness 

and degree of histological differentiation [110].  

Investigations demonstrated that elevated amounts of pSTAT3Ser727 were marked in 

52% of patients. Higher values were identified with lower recurrence survival and cancer 

specific survival. Patients with increased pSTAT3Ser727 were linked to significantly poorer 

prognosis, higher cancer recurrence rate and lower cancer specific survival. Elevated ex-

pression of pSTAT3Ser727 in UTUC tissues within the advanced cancer stage group of pa-

tients was significantly associated with advanced cancer stage, and poor prognosis [111]. 

Another study demonstrated that STAT3 expression in the nucleus was connected to dis-

ease progression and lower cancer specific survival. The results were similar to the afore-

mentioned investigation in that high STAT3 levels indicate UTUC progression and the 

risk of exacerbation of the disease is considerably higher in the advanced stage group 

[109].  

STAT3 is demonstrated to be a viable biomarker for invasiveness of cancer and me-

tastasis, it may provide a prediction of the need for more aggressive treatment. Interest-

ingly, it was indicated that STAT3 could be a possible therapeutic target in UTUC [111].  

 

     7. Role of STAT3 in renal cell carcinoma 

RCC is the deadliest urological cancer. Five-year survival rate prognosis is esteemed 

at 76%, although it decreases to 12% in late stages [112]. Only in the year 2020, 432,288 

new incidence cases and 179,368 death cases were reported. Hence it was ranked as the 

sixteenth most common neoplasm in the world [1]. RCC can be distinguished according 

to the histological subtypes. Ninety percent of RCCs are of the clear cell carcinoma, papil-

lary and chromophobe histological subtype. The ccRCC (clear cell carcinoma) appears to 

be the most common and aggressive histological subtype whereas the decreasing inci-

dence of remaining subtypes is reported, respectively [112].  

IL-6 was supposed to be an important autocrine growth factor of RCC. This cytokine 

proved to be detectable in renal carcinoma cell lines and genuinely stimulated the prolif-

eration of the cancer cells [113]. However, it is still hard to say whether IL-6 is an autocrine 

growth factor due to contradictory data [114]. Further investigations demonstrated that 

IL-6 stimulate proliferation via activation of STAT3 [113]. Aberrantly phosphorylated 

STAT3 was observed in renal carcinoma with notably elevated expression in the meta-

static stage. Moreover, STAT3 was an indicator of poor prognosis and metastasis [115]. 

Interestingly, the number of tumors with activated STAT3 was similar in clear cell and 

papillary subtypes (57%-59%),  while a decreased amount of cases were found within the 

chromophobe subtype (33%). Furthermore, STAT3 is reported to be a key player in clear 

cell carcinoma as it upregulates 16 out of 32 genes which expression was evaluated. A 

minor quantity of genes was upregulated in papillary and chromophobe subtypes (10 and 
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7 genes,  respectively). MMP9, BIRC5 and BCL2 genes were notably upregulated, 

whereas FOS gene was downregulated [114]. 

Figure 3. Schematic and simplified depiction of selected pathways and factors regulating 

STAT3 expression counting its downstream target proteins with the consequences of their 

overexpression in renal cell carcinoma. Dashed line ended with a dot pictures inhibition; 

arrow pictures stimulation. 

 

Inhibition of STAT3 leads to induction of apoptosis, reduction of cell viability and 

proliferation in renal cancer cell lines. Suppression of transcription factor also downregu-

lated Bcl-2 levels, although levels of  Bcl-xL and Mcl-1 remained unchanged. Addition-

ally, angiogenesis was suppressed concomitantly with STAT3 inhibition [93]. Investiga-

tions demonstrated increased phosphorylation and nuclear localization of STAT3 during 

hypoxic conditions in Caki I cell line. pSTAT3 was observed to increase the stability of 

hypoxia-inducible factor 1α (HIF-1α) by delaying protein degradation and accelerating its 

synthesis. The interaction of two proteins enhanced the expression of VEGF [116]. Nota-

bly, HIF-1α and VEGF are often upregulated in ccRCC due to VHL gene mutation and are 

involved in process of angiogenesis [117]. Inhibition of STAT3 suppressed VEGF expres-

sion regardless of VHL gene mutation eventually leading to reduced tumor angiogenesis. 

This fact might find an application in the future [116].  

A well-known marker of acute kidney injury HAVCR/KIM1 is also associated with 

elevated levels of pSTAT3. Overexpression of this marker was spotted on 60% of ccRCC. 

HAVCR/KIM1 after cleavage by metalloproteinases triggers IL-6 secretion. This results in 
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increased STAT3 phosphorylation and HIF-1α levels. Increased level of activated STAT3 

also leads to enhanced expression of glucose transporter 1 (GLUT-1) and VEGF genes. 

Given that renal cell carcinoma is an angiogenic-rich neoplasm, it might be another po-

tential pathway of cancer progression. RCC is considered as highly invasive cancer as it 

is speculated that 33% of cases become metastatic [118], especially within the lungs, bones 

and brain [119]. Investigation on G3BP1 revealed that IL-6 stimulates invasiveness and 

migration of RCC cells through STAT3 activation. G3BP1 was reported to be upregulated 

and mediate the process of STAT3 activation. Moreover, inhibition of G3BP1 decreased 

the STAT3 activation and, as a result, alleviated tumor growth and metastasis were ob-

served not only in vitro but also in orthotopic xenografts [120]. 

Additionally, the change in EMT markers was spotted, indicating that STAT3 pro-

motes the metastatic process. EZH2 was discovered to be overexpressed in RCC cells and 

to regulate the proliferation and invasive potential of RCC cells. Subsequently, it was de-

termined that this effect is exerted by STAT3 activation. In addition, EZH2 increased 

MMP2 expression, which is responsible for extracellular matrix degradation, related to 

tumour invasion and metastasis [119]. Low levels of vitamin D3 were associated with in-

creased stimulation of the IL-6/STAT3 pathway. Treatment of cell lines with calcitriol de-

creased almost completely STAT3 phosphorylation. This data suggested that calcitriol can 

block the EMT process through STAT3 inhibition, at least partially [121]. Studies con-

ducted on cancer-associated fibroblasts exposed the stimulatory effect on the migration of 

RCC cells. Increased amount of kynurenine due to tryptophan 2,3-dioxygenase (TDO) 

overexpression contributed to the activation of aromatic hydrocarbon receptors on renal 

cancer cells and activation of STAT3 [122]. Surprisingly, normal fibroblasts were also as-

sociated with increased cell migration in the ccRCC. Fibroblasts were reported to promote 

renal cancer cells to secrete IL-6 and phosphorylate STAT3. However, they did not demon-

strate to facilitate the EMT. Nevertheless, the elevated expression of MMP2 was marked 

[123].  

Cancer-associated fibroblasts were also revealed to have an impact on drug re-

sistance to sunitinib and sorafenib in renal cancer cells [122]. IL-6 was linked with doxo-

rubicin resistance in RCC cells which was triggered by STAT3 phosphorylation. Attenu-

ated STAT3 activity by si-IL6 sensitized renal cancer cells to doxorubicin [124]. Interferon-

α is utilized as an immunotherapy agent in the treatment of metastatic or recurrent RCC. 

Nevertheless, resistance to this drug is reported. It was observed that phosphorylation of 

STAT3 was increased by IL-6 but also by INF-α. IL-6 is regarded as a negative regulator 

of the antiproliferative effect of INF-α. Further studies have shown that IL-6 inhibition 

induced the efficacy of INF-α, concluding addition of tocilizumab may overcome the re-

sistance of renal cancer to INF-α [125].   

An interesting fact is that STAT3 is suggested to be involved in the immune escape 

of RCC cells. Overexpression of miR-129-3p, which is usually downregulated, reduced 

STAT3 and PD-L1 values and inhibited proliferation, invasion and immune escape of RCC 

cells. Additionally, overexpressed microRNA led to enhancement of cytotoxicity, cytokine 

secretion and proliferation of CD8+ T cells.  This process was regulated by lncRNA 

SNHG1 which inhibited the activity of miR-129-3p. This makes SNHG1 a potential treat-

ment target due to the ability of immune escape regulation [126].  

STAT3 is suggested to present diagnostic value as the phosphorylated protein at S727 

residue correlated with prognosis and recurrence free survival. This investigation implies 

that pSTAT3S727 would be a valuable biomarker for improved stratification and follow up 

of patients during the same stage of cancer and clinical score [127]. High expression of  

STAT3 mRNA was also associated with shorter overall survival contrary to low expres-

sion. However, due to the lack of statistical difference in the study, mRNA expression 

might not be useful as a biomarker [128]. Treatment with multiple tyrosine kinases inhib-

itors (mTKI)  is a standard method in metastasis, although this therapy often results in 

many adverse effects such as stomatitis or hands and foot reactions [129,130]. In addition, 

the differentiated response efficacy to mTKI is observed. Adverse effects and treatment 

success were associated with the distribution of STAT3 polymorphisms. Therefore, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2022                   doi:10.20944/preprints202208.0163.v1

https://doi.org/10.20944/preprints202208.0163.v1


 

assessment of STAT3 polymorphism might be a significant predictor of therapy efficacy 

and susceptibility to adverse effects [131]. 

 

     8. Role of STAT3 in penile cancer 

Penile cancer is one of the most uncommon cancers in the world. In 2020 there were 

36 068 new cases and 13 211 deaths due to PeCa worldwide [1]. Although the incidence in 

Europe remains at a relatively low level of 1/100 000, PeCa seems to be a more serious 

problem in central or southern parts of America like Brazil, where the incidence is 6-8 

times higher [6]. Risk factors of PeCa include phimosis, HPV infection or smoking. What 

is more, scientists reported that socioeconomic factors like educational level or marital 

status may help predicting the occurrence of this disease [132]. 

Much attention has been recently paid to the role of specific chemokines which are 

capable of regulating STAT3 expression in penile cancer. It was shown that CCL20, 

CXCL13 and CXCL5 are highly expressed in PeCa tissues. Elevated levels of those were 

also noticed in patients’ serum preoperatively. Knockdown of CCL20, CXCL13 or CXCL5 

gave the same results pictured by a significant suppression of pSTAT3 level and inhibition 

of MMP2 and MMP9 expression. Consequently, diminished proliferation, migration and 

invasion of PeCa cells were observed. High preoperative serum levels of mentioned chem-

okines were associated with tumor progression and poor outcomes. That is why scientists 

suggest using CCL20, CXCL13 and CXCL5 as diagnostic and prognostic biomarkers [133–

135]. 

SHCBP1 is a gene which physiologically takes part in T cell proliferation or signaling 

in neural progenitor cells. Scientists reported its association with development of some 

cancers where it acts through STAT3 pathway. Mo et al. explored its role in PeCa. SHCBP1 

was significantly expressed in PeCa tissues compared to the control group. The correla-

tion between HPV infection and SHCBP1 expression was denied. On the other hand, it 

was highly correlated with grading, staging and lymph nodes status. Researchers con-

clude SHCBP1 may be used as a prognostic biomarker. In vitro and in vivo experiments 

clearly showed that SHCBP1 knockdown results in decreased proliferation, migration and 

invasion of PeCa cells and forced activation of STAT3 reverses this process. All in all, 

SHCBP1 has the potential to be used not only as a biomarker but also as a target for future 

treatment strategies [136]. 

 

     9. Role of STAT3 in testicular cancer 

Testicular cancer is one of the rarest cancers worldwide with 74 458 new cases and 

9 334 new deaths in 2020 [1]. Nevertheless, it is the most frequent cancer among young 

men between 15 and 35 years. The incidence varies geographically – the highest rates oc-

cur in Europe (8,0-9,0/100 000), the lowest rates are reported in Asia and Africa (<1,0/100 

000). The greatest risk factor is a prior history of testicle cancer contralaterally [2].  

 A high survival rate as well as relatively low mortality rate may explain the lack of 

recently published research papers concentrated on the potential role of STAT3 in testic-

ular cancer. Cardoso et al. underlined the importance of describing how JAK/STAT sig-

naling pathway affects testicular cancer development [137]. 

HOXA10 is a transcriptional factor regulating testicles’ development. Scientists ex-

plored its role and mechanism of action in testicular cancer. It was shown that HOXA10 

is expressed and localized in the nuclei of spermatocytes in normal tissues, whereas it is 

often dislocated in testicular germ cell tumor (TGCT) cells, both seminoma and non-sem-

inoma. Although its antiproliferative properties through STAT3 pathway inhibition were 

proved, the exact mechanistic explanation remains unknown. Researchers admitted that 

detecting HOXA10 levels might not be useful in diagnostics due to its unchanged expres-

sion in TGCT. Nevertheless, this study might be the basis for further experiments [138].  

10. Discussion and future perspectives  

The total amount of urological cancer cases is quickly increasing due to prolonged 

life expectancy and population growth. Prevalent number of cases is observed in 
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developed countries where widespread is an energy-dense diet, obesity and large tobacco 

use. Besides, not without significance is the advance in medicine and the common access 

to medical services in high-income countries which translates into greater diagnosed cases 

[21]. Urological cancers remain a challenging problem in modern society what triggers the 

need of novel intervention strategies and medical tools which can really tackle this issue 

[2]. 

 STAT3 is believed to be a promising molecular target in terms of dealing with uro-

logical cancers. STAT3 act as a transcription factor transmitting signals from multiple re-

ceptors. STATs proteins activation is a physiological process. However, abnormal STAT3 

protein activity was spotted in several cancer types. It was proved that its atypical activa-

tion is associated with tumorigenesis and invasive abilities [3]. 

 STAT3 was revealed to be dysregulated in urological cancers. This results in stimu-

lated proliferation and survival of cancer cells due to elevated expression of antiapoptotic 

genes like cyclin D1, Bcl-2, Bcl-xL or surviving [4–6]. Furthermore, cancer cells avoid 

apoptosis through downregulated expression of caspases 3, 8 and 9 caused by STAT3 ac-

tivation [6,132]. STAT3 was noticed to induce invasiveness capabilities, EMT and promote 

metastasis in prostate, bladder, renal and penile cancer through enhancement of MMP2 

and MMP9. The upregulation of EMT markers like vimentin and N-cadherin was ob-

served and additional downregulation of E-cadherin was spotted [7,8,14–18]. STAT3 also 

promotes angiogenesis by increasing transcription of VEGF, especially in RCC. It was 

found that STAT3 inhibition causes loss of ability to form new blood vessels in such cases 

[1,19,20].  

 Undoubtedly, TME is significant for disease progression. Investigations exposed that 

cancer-associated fibroblasts are involved in enhancement of migratory properties of 

prostate, kidney and renal cancer by secretion several stimulating factors like IL-6 or CCL3 

that activate STAT3. TAMs were also implicated in migration, invasion and EMT in PCa 

by CCL5 secretion [15,22–25].  

 Interestingly, STAT3 was found to bind to the PD-L1 promoter in cancerous cells. It 

is considered to be crucial in the regulation of the immune response in TME. Cancers rich 

in IL-6, a STAT3 activator, were more resistant to cytotoxic NK cells, and the inhibition of 

JAK1 or STAT3 resulted in decreased PD-L1 level in PCa cells [26]. IL-6/STAT3/PD-L1 

pathway was shown to take part in EMT promotion in bladder cancer [27]. Moreover, 

reduced STAT3 and PD-L1 levels were linked to inhibited proliferation, invasion and im-

mune escape of RCC cells [29]. 

 Chemoresistance is considered as a substantial problem during cancer therapy. 

STAT3 is capable of inducing chemoresistance in cancer cells. Resistance to doxorubicin 

due to atypical STAT3 activation was observed in renal and bladder cancer [28,30]. Inter-

estingly, STAT3 inhibition led to sensitization of PCSCs to cisplatin and docetaxel [31,32]. 

Additionally, increased cells’ invasiveness. Motility and stem-like characteristics after 

fractional radiation was observed and assigned to the overactivation of STAT3. According 

to this, STAT3 protein inhibition in PCa cells was examined and resulted in boosted effi-

cacy of radiotherapy [33,34].  

 Risk factors such as high-fat diet or obesity turned out to have significant impact on 

STAT3 activation. PA upregulates STAT3 mRNA and protein. Similarly, LDL cholesterol 

increases pSTAT3 levels by enhanced JAK1 and JAK2 phosphorylation [4,25]. Leptin was 

proved to promote EMT by STAT3 activation [14]. Furthermore, low level of vitamin D3 

was associated with IL-6/STAT3 pathway stimulation in prostate and renal cancer. Calcit-

riol used as a treatment decreased STAT3 phosphorylation [35,36]. STAT3 was proven to 

affect cell metabolism by upregulated glucose consumption and lactate production in 

bladder cancer by enhanced transcription of LDHA, ENO2, HK2 and IGFBP3 [37,39]. 

 It is worth mentioning that STAT3 might be utilized as a valuable biomarker of tu-

morigenesis. The level of STAT3 was increased in high-grade NMIBC tumors. It was also 

found useful to distinguish cancer type [38,40]. Elevated pSTAT3Ser727 level was associated 

with significantly poorer prognosis, higher cancer recurrence rate and lower cancer-spe-

cific survival in UTUC. This investigation implies that pSTAT3Ser727 may also be a valuable 
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biomarker for improved stratification and follow-up patients during the same cancer 

stage and clinical score in RCC [33,41,42]. Based on STAT3 polymorphism it seems to be 

possible to predict response to mTKI therapy and probability of adverse effects. Moreo-

ver, detecting specific STAT3 post-translational modifications might be a biomarker for 

PCa prevention or differentiation [43]. 

 To sum up, STAT3 seems to be an up-and-coming molecular target in the context of 

diagnosing and treatment urological cancers. It is a convergent point of many signaling 

pathways induced by cytokines, growth factors or oncoproteins [11]. Either direct or in-

direct (via blockage of inflammatory factors) STAT3 inhibition might result in apoptosis 

initiation, angiogenesis inhibition, EMT attenuation or reduced metastasis risk. Combined 

therapy of STAT3 inhibitors and chemotherapeutics may overcome tumor cells’ chemo-

resistance and reduce the chance of relapse. Moreover, it might be a significant biomarker 

in the assessment of the patient prognosis and cancer recurrence. It has capabilities of 

finding application in cancer type differentiation or helping evaluating either response to 

therapy or the probability of adverse effects. 
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