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Abstract: Physical roots, exemplifications and consequences of periodic and aperiodic ordering 

(represented by Fibonacci series) in biological systems are discussed. The role and physical and bi-

ological roots of symmetry and asymmetry appearing in biological patterns is addressed. Generali-

zation of the Curie-Neumann Principle as applied to biological objects is presented, briefly summa-

rized as: “asymmetry is what creates a biological phenomenon”. The “up-bottom approach” and 

“bottom up” approaches to the explanation of symmetry in organisms are presented in detail. The 

“up-bottom approach”, implies that the symmetry of the biological structure follows the symmetry 

of media in which this structure is functioning; the “bottom-up” approach, in turn, adopt that the 

symmetry of biological structures emerges from the symmetry of molecules constituting the struc-

ture. A diversity of mathematical measures applicable for quantification of ordering in biological 

patterns is introduced. The continuous, Shannon and Voronoi measures of symmetry/ordering and 

their application to biology objects are addressed. The fine structure of the notion of “ordering” is 

discussed.  Informational/algorithmic roots of ordering inherent for the biological systems are con-

sidered. Ordered/symmetrical patterns provide economy of biological information, necessary for 

algorithmic description of a biological entity. Application of the Landauer principle bridging phys-

ics and theory of information to the biological systems is discussed. 

Keywords: biology; symmetry; asymmetry; periodic ordering; aperiodic ordering; Curie principle; 

information; Landauer principle; continuous measure of symmetry; Shannon measure of symmetry.  

 

1. Introduction 

 

Biology objects demonstrate remarkably repeatable patterns, governed by simple mathe-

matical laws and regularities. Biological systems frequently exhibit symmetry and regu-

larity on various spatial scales, starting from the genomic level and biomolecules and ex-

tending to entire organism [1-6]. A nearly universal observation, which was reported re-

cently, states the subunits in protein assemblies are arranged in symmetric ways [7]. Ref. 

8 hypothesized that the beautiful symmetries of biomolecules may reflect basic principles 

about the energy landscape in biology, just as symmetry relations do in particle physics. 

Symmetry is inherent for bodies of practically all animals (with rare exceptions); animals 

are characterized by some kind of overall body symmetry, and these are of only a few 

types: radial, bi-radial and bilateral symmetry [9]. Symmetry, in turn, represents a kind of 

ordering in physical and biological systems [10-11]. When we address symmetry of or-

dered pattern we usually restrict ourselves to mainly consider periodic order [12]. At the 

same time, order without periodicity has emerged to properly describe an increasing 

number of complex systems, and in particular biological ones [12]. Such kind of ordering, 

was referred in ref. 12 as aperiodic ordering. The outstanding example of the aperiodic or-

dering is supplied by the Fibonacci numbers, or Fibonacci series [13-16]. Fibonacci and 
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Lucas series appear in biological patterns [17]. Perhaps the most striking example of such 

samples is supplied by phyllotaxis, which is the arrangement of leaves on a plant stem 

[13-17]. These patterns are surprisingly regular, so regular in fact that a physicist can com-

pare their order to that of crystals, however ordering in biological systems is usually not 

perfect, and quantitative measures of the deviation from the perfect ordering, which were 

introduced recently, will be discussed below in detail. It should be mentioned that non-

ordered, asymmetrical biological systems exist. It is generally agreed that sponges are 

completely asymmetrical (see Figure 1), however, this thesis may be debated and will be 

addressed below in detail.     

 

Figure 1. Calcareous sponges are depicted. Sponges are usually regarded as non-ordered 

biology objects/   

 Moreover, it was suggested that breaking symmetry is a prevalent process in biology 

[3, 18]. However, to be broken symmetry in biological patterns must first appear, and it 

appears on different levels of organization of biological systems [1, 2, 4, 18].        

The reasonable question is: what is the biological reasoning of periodic and aperiodic 

ordering in biological systems? In other words: why nature prefers ordered patterns? The 

possible answers to this fundamental question may be classified as follows: i) Appearance 

of symmetry and other sample patterns are due to the external physical constraints im-

plied on the biological system [5, 19-21]. This hypothesis adopts that just physical effects, 

which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, 

are also the ultimate causes (in other words) the indirect factors which provide a selective 

advantage – of animal or plant symmetry, from organs to body plan level patterns [19-21]. 

ii) The second idea explaining abundancy of the symmetric patterns in biology implies 

that symmetry of biological systems stems from the symmetry of molecules themselves 

and potentials describing interactions between molecules [22-23]. It was demonstrated, 

that symmetry of these potentials governs the symmetry of biological systems, such as 

actin, tubulin, and the ubiquitous icosahedral shell structures of viral capsids [22-23]. iii) 

The third approach relates appearance of mathematical ordering in biological systems to 

the pure survival reasons. For example, periodic cicadas emerge from their underground 

homes to mate every 13 or 17 years, which are primes [24-29]. The philosophy of the evo-

lutionary-based explanation of the mathematical ordering is that if cicadas have 12-year 

cycles, all the predators with two, three, four, and six-year cycles will eat them, in other 

words, if the cicadas mutate to 13-year cycles, they will survive [28-29]. Let us quote ref. 
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29: “a prey with a 12-year cycle will meet-every time it appears-properly synchronized 

predators appearing every 1, 2, 3, 4, 6 or 12 years, whereas a mutant with a 13-year period 

has the advantage of being subject to fewer predators”. A second explanation, proposed 

by Cox, Carlton and by Yoshimura, concerns the avoidance not of predators but of hy-

bridization with similar subspecies [25-27]. A genuine reasoning of the primes-shaped life 

cycle of cicadas remains debatable and the discussion of this reasoning gave rise to the 

deep philosophical discussion of the nature and roots of the notion of “explanation” of 

natural/biological phenomena in ref. 30. Survival reasons were also involved for explana-

tion of symmetry appearing in the color of zebra finches, shown in Figure 2.   

 

Figure 2. Zebra finch is depicted. Symmetrically banded males and females are preferred 

by an individual of the opposite sex 

It was demonstrated that symmetrically banded males produced more offspring that sur-

vived past the period of parental care than males in either of the asymmetric treatments; 

this appeared to be the effect of female choice processes and female-based parental invest-

ment and not male intra-sexual dominance. Thus, it was shown, that symmetrically ma-

nipulated males gain reproductive advantages in controlled laboratory conditions and 

further supports recent theories indicating the evolutionary importance of symmetry in 

signalling-trait design [31]. Moreover, it was demonstrated that symmetric patterns are 

attractive not only to females, and it was found that males associated more with symmet-

rical than asymmetrical females, indicating a preference for symmetry [32]. iv) And, fi-

nally, we discuss the more hypothetic relation of an appearance of symmetrical patterns 

in biological systems to informational reasoning. It was suggested, that symmetric biolog-

ical structures and patterns preferentially arise not just due to natural selection but also 

because they require less specific information to encode and are therefore much more 

likely to appear as phenotypic variation through random mutations [33]. This novel con-

cept, which is well tailored to the general informational paradigm of exact sciences, was 

criticized recently in ref. 34, will be discussed below in its relation to the Curie-Min-

nigerode-Neumann and Landauer Principles [35-37]. In our paper we focus on the physi-

cal and informational reasoning of symmetry/ordering inherent for biological systems. We 

will also demonstrate that the notion of ordering has a “fine structure” and hardly could 

be quantified unequivocally with a single mathematical parameter.  
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2. Physical reasoning for the abundant symmetry of biological patterns  

2.1. The “up-bottom approach” to the explanation of symmetry in organisms: symmetry is dictated 

by the properties of media in which the organisms acts   

Physical reasoning involved for the explanation of symmetry of biological objects may be 

classified according to following main approaches: 

i) The “up-bottom approach”, implying that the symmetry of the biological struc-

ture follows the symmetry of media in which this structure is functioning    

ii) The “bottom-up” approach assuming that the symmetry of biological structures 

emerges from the symmetry of molecules constituting the structure.      

Let us start for “up-bottom” pure physical reasoning which may be responsible for sym-

metry abundant in the plants and animals realms. The two main symmetries that can be 

observed in the animal body plan are radial and bilateral, as illustrated with Figure 3 [21, 

38-39].  

 

Figure 3. Bilateral (a) and radial symmetry (b) in biological objects.  

Pure physical “demystification” of animal symmetry was suggested in refs. 19-20. Let us 

quote ref. 19: “symmetry is a response in the geometry of the “living matter” to physical 

forces”. As an example of such pathway of thinking, consider the directed locomotion of 

sea inhabitants. The most comprehensive idea which explains how directed locomotion is 

favored by bilateral symmetry comes from a theoretical paper [18], which argued that bi-

lateral symmetry is favorable for manoeuvrable locomotion in the macroscopic world (in 

which inertial forces dominate over viscous forces, i.e., in the high Reynolds numbers’ 

realm, because bilateral is the only type of symmetry which is streamlined in only one 

direction while being non-streamlined in others [18]. Symmetry of biological entities 

which inhabit water and air becomes more clear when the ideas developed in ref. 40 are 

taken into account. It was concluded in ref. 40 that a large proportion of fish species have 

developed compressed, elliptical body cross-sectional shapes. This shape is justified from 

the hydrodynamic point of view, as the basic issue of minimizing drag for a given volume 

would result in a body of revolution [40]. Thus, this adaptation must have had very sig-

nificant advantages, to have reappeared so many times. One such advantage is clear from 

the use of the body as a propulsor, as the sideways oscillations of a vertically compressed 

body will produce much larger forces but this also reduces rolling, which would, in turn 

induce yawing moments due to the difference in angle of attack on the pectorals and the 

angle of attack on the caudal and dorso-anal fins produced by rolling. Thus, vertical com-

pression is a stabilizing development [40-41].  
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 We propose following development of the suggested pure “physical explanation” of 

symmetry inherent for fishes and birds. The observed symmetry is to a much extent ex-

plained by the isotropy of physical properties of gases and liquids, in which fishes and 

birds act. Gases and some of liquids are essentially isotropic media. Gases are isotopic due 

to the random molecular motion of molecules, constituting the gaseous phase, also called 

the molecular chaos hypothesis, implying that the velocities of colliding molecules are 

uncorrelated, and independent of position [42-45]. The hypothesis of molecular chaos also 

implies the equipartition theorem serving as a basis for the classical thermodynamics and 

statistical physics, which states that in thermal equilibrium energy is shared equally 

among all of its various forms [46-50]. The equipartition theorem, in turn, is grounded on 

two main assumptions: (1) the classical version of the canonical probability distribution is 

applicable and adequate; (2) the classical expression for the total energy of the particle 

splits additively into two parts: one part depends quadratically on a single variable (say 

x), and the other (denoted 𝑈𝑜𝑡ℎ𝑒𝑟) is entirely independent of that variable 𝑈 = 𝑎𝑥2 +

𝑈𝑜𝑡ℎ𝑒𝑟; 𝑎 = 𝑐𝑜𝑛𝑠𝑡. It is easily seen that the equipartition of energy holds whatever is the 

value of the constant a; moreover the equipartition theorem for a broad class of potentials 

𝑈 = 𝑎𝑥2 + 𝑏𝑥; 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡, as discussed in ref. 51. Thus, symmetry of bodies of birds, pos-

sibly emerges from isotropy of air accompanied by equipartition of energy, which is true 

for air molecules. This “physically grounded” approach may be stretched even further: 

actually conservation laws appearing in physics arise from the fundamental symmetries 

of space-time; thus, symmetry recognized in physical systems reflects these fundamental 

symmetries; hence, it is plausible to suggest, symmetry of biological systems also arises 

from the fundamental space-time symmetries. 

 The situation with liquids is much more complicated; indeed, liquids may by iso-

tropic and non-isotropic (liquid crystals) [52]. However, the most important biological liq-

uid is water, which is considered isotropic in biophysical models, which deal with water 

and water inhabitants. This assumption as a matter of fact is far from to be trivial. It was 

demonstrated that the state of water in the body constituents of living organisms and in 

the vicinity of biological macromolecules differs significantly from the state of water in 

solutions of simple molecules and in pure water [53-54]. Biological macromolecules in-

duce a characteristic water structure in their close vicinity due to weak macromolecular-

water interactions [53-54]. Anyway, considering water as an isotropic medium is justified 

at the macroscopic level of treatment of biological system. On the other hand, aqueous 

solutions of DNA govern their chirality, i.e., the lack of mirror symmetry of the solutions, 

which already brings us to the “bottom-up” approach to the symmetry of biological ob-

jects, implying that the symmetry of biological structures emerges from the symmetry of 

molecules constituting the structure [55-60].            

2.2. “Bottom-up” approach to the symmetry of biological systems, mathematical measures of order 

in biological patterns and the Curie-Neumann Principle 

2.2.1. Mathematical measures of symmetry and ordering in biological patterns 

As we already mentioned in the previous sections that DNA constitutes the symmetry 

properties (chirality) of aqueous solutions [55-59]. Not only DNA but also tobacco mosaic 

virus governs lyotropic liquid crystalline behavior of the ensemble of these viruses. Thus, 

we come to the “bottom-up” approach to the symmetry of biological structures and pat-

terns, adopting that the symmetry of large scale, macroscopic biological structures 

emerges from the symmetry of molecules constituting the structure. High symmetry as-

semblies of proteins, resembling those inherent to the geometries of the Platonic solids 

were discussed in ref. 7. Symmetry of biological macromolecules in its comparison with 

the symmetry of nuclei, atoms and elementary particles was deeply analyzed in ref. 8. Let 

us quote from ref. 8: “The role of symmetry in the physics of atoms, nuclei, and elementary 

particles is different from its role in the biological world. In microphysics, it has been fruit-

ful to postulate symmetry as being fundamental, thereby severely constraining the form 
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of the underlying laws. Furthermore, the consequences of symmetry for dynamics and 

stability are profound in the subatomic world. General treatment of these symmetry ef-

fects, based on group theory, allows a nearly complete classification of states and transi-

tions. Indeed, even the deviations from exact symmetry have their own quantifiable con-

sequences. In the biological world, symmetry exists too, but it often appears to be an acci-

dent. While accidents still can have significant consequences, rationalizable on a case-by-

case basis, there has been no general unifying theory of symmetry in biology. Exact sym-

metry in biology would even seem to be antithetical to the notions of complexity, variety, 

and metamorphosis that are central to the idea of life, as we know it. Nevertheless, as in 

microphysics, life requires stability and sameness as well as change”… For a particular 

protein, biomolecular symmetry will not be exact unless it is the result of gene duplication. 

It is a quantitative issue how much the forces leading to minimal frustration, partially 

determined by symmetry considerations, are dominant over the aspects of the landscape 

arising from randomness”. 

 Indeed, the exact, perfect symmetry (in the rigorous mathematical sense) is rare in a 

realm of biology. It is sparse on different levels of biological structures, and even on the 

molecular level, it is not abundant. Now we come to the novel ideas, which appeared in 

the theory of symmetry in last decades. Until now, it was usually latently accepted that 

symmetry changes abruptly or intermittently, i.e. symmetry is an exact feature of the pat-

tern. In other words, symmetry is usually viewed, as a binary feature, when an object is 

considered as either perfectly symmetric or asymmetric. Despite this, a fundamentally 

new approach to quantifying symmetry as a continuous measure of a pattern was sug-

gested and tested recently by Avnir, Zabrodsky and co-workers [61-65]. The notion of 

“continuous measure of symmetry” was introduced and developed in refs. 61-65. Contin-

uous measure of symmetry is a fundamentally new approach to quantifying symmetry 

[61-65]. Continuous measure of symmetry is quantified by the sum of minimum squared 

distances that are required to move the points of an original shape in order to obtain a 

symmetrical shape [61-65]. The continuous measure broke the binary “yes-no” paradigm 

traditionally used for the analysis of symmetry of patterns [61-65]. This approach was suc-

cessfully exploited for quantification of the symmetry of electronic wave functions [66] 

and quasicrystals [67]. The continuous measure of symmetry was recently applied to the 

analysis of symmetry of proteins [68-69]. It was revealed that symmetry deviations of pro-

teins are by far higher in solution, compared to the crystalline state [69]. However, only 

first results in the field of the continuous analysis of symmetry of biological objects were 

reported, and it seems, that the mathematical apparatus of continuous measure of sym-

metry has an enormous potential in mathematical biology.  

It should be emphasized that the continuous measure of symmetry is not a single 

mathematical value enabling quantification of ordering in the biological patterns. The al-

ternative measure of order in the biological patterns emerges from the Voronoi tessellation 

(or Voronoi diagram). A Voronoi tessellation of an infinite plane is a partitioning of the 

plane into regions based on the distance to a specified discrete set of points (called seeds 

or nuclei and shown with black squares in Figure 4). For each seed, there is a correspond-

ing region, consisting of all points closer to that seed than to any other [70-77].  
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Figure 4. Voronoi diagram (tessellation) emerging from the initial 25 randomly placed 

points, also called seeds, represented with black squares); green polygon is a quadrangle; 

yellow polygons are pentagons; grey polygons are hexagons, the orange polygon is an 

octagon. Are the seeds ordered? The answer to this question is supplied by calculation of 

the Voronoi (shannon) entropy of the pattern.  

The Voronoi (Shannon) entropy of a given set of points located in a plane is given by: 

                          𝑆𝑣𝑜𝑟 = − ∑ 𝑃𝑖𝑙𝑛𝑃𝑖𝑖 ,                               (1) 

where 𝑃𝑖  is the probability of finding n-sided Voronoi polygon within a given Voronoi 

tessellation and i is the total number of polygon types with different numbers of edges 

[24,25,26]. The summation in Equation (1) is performed from i = 3 (the smallest possible 

polygon—a triangle) to the largest coordination number of the polygon, e.g., for an octa-

gon, the largest value of i is 8. Consider the Voronoi diagram built of pentagons only, in 

such a diagram 𝑃5 = 1 and consequently 𝑆𝑣𝑜𝑟 = 0. It is reasonable to relate to such a dia-

gram the maximal degree of ordering; in contrast, the Voronoi entropy of the random 

pattern of seeds was established as 𝑆𝑣𝑜𝑟 = 1.71. Seeds may be displaced continuously 

from their initial locations, and the Voronoi entropy, in turn, will be changed continuously. 

Voronoi tessellations were already successfully applied for the analysis of ordering in the 

biological systems, namely: proteins [73], cell dynamics [74] and ordering of GABAA re-

ceptors in hippocampal inhibitory synapses [75],       

Thus, we already have two alternative continuous measures of ordering in biological 

systems, namely the continuous measure of symmetry [68-69] and Voronoi Entropy (and 

this is not an exhaustive list) [73-77]. And the reasonable question immediately arises: are 

these measures correlated? It was recently demonstrated that the continuous measure of 

symmetry and the Voronoi entropy of the pattern are not necessarily correlated; moreover, 

anti-correlation of these values was registered [67, 78]. Alternative measures of ordering in 

biological patterns, such as Minkowski functionals were also introduced [79-80]. Shannon 

(informational) measure of symmetry was also suggested recently [81]. Consider a 2D pat-

tern built of 1D and/or 2D shapes or lines, demonstrating a number of symmetry elements 

(rotational symmetry, centers of symmetry, axes of symmetry, etc.), denoted 𝐺𝑖, i = 1,2 … 𝑘, 

where k is a number of non-identical symmetry operations [81]. Elements 𝐺𝑖  form the sym-

metry group of the shape G (which should be clearly distinguished from the symmetry 

group of the entire pattern). Thus, the informational measure of symmetry of the pattern 

𝐻𝑠𝑦𝑚(𝐺) is defined in a Shannon-like form (compare with Eq. 2) as: 

𝐻𝑠𝑦𝑚(𝐺) = − ∑ 𝑃𝑖(𝐺𝑖)𝑙𝑛𝑃𝑖(𝐺𝑖)
𝑘
𝑖=1 ,       (2) 

where 𝑃𝑖(𝐺𝑖) is the probability of appearance of the symmetry operation 𝐺𝑖  within the 

shapes (lines) constituting the pattern, defined as: 
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𝑃𝑖(𝐺𝑖) =
𝑚(𝐺𝑖)

𝑁𝐺
≤ 1,        (3) 

where 𝑁𝐺 = ∑ 𝑚(𝐺𝑖)
𝑘
𝑖=1  is the total number of symmetry elements (operations) appearing 

in the 1D or 2D shapes, recognized in a given pattern, and 𝑚(𝐺𝑖) is the number of the same 

symmetry elements (operations) Gi, calculated for a given pattern. The normalization con-

dition given by Eq. 4 takes place: 

                                ∑ 𝑃𝑖(𝐺𝑖) = 1𝑘
𝑖=1                         (4)  

    The informational (Shannon) measure of symmetry, defined with Eq. 2, is applicable for 

the the mixed patterns built of curves and shapes, thus it is suitable for the analysis of the 

biological patterns (such as those, depicted in Figure 5). Thus, we necessarily conclude that 

the notion of “ordering in biology patterns” has a fine structure, and the correlation between 

various mathematical measures of order remains an open problem and should be elucidated 

in a future research.  

     

 

Figure 5. Mixed pattern built of p=5 irregular non-symmetric curves and p=5 equilateral tri-

angles. The symmetry group of the equilateral triangle is the dihedral symmetry group 

𝐷3 containing 3p symmetry axes and 3p rotations (including the 2𝜋 rotation, denoted 𝐺1). 

One more 𝐺1 operation comes from the irregular curves; thus, we have in total 7p symmetry 

operations in this pattern. The IMS is easily calculated, according to Eq. 2: 𝐻𝑠𝑦𝑚 =

− (
2

7
𝑙𝑛

2

7
+

5

7
𝑙𝑛

1

7
) = 2.23.   

2.2.2. “Bottom-up approach to the symmetry” of biological systems and the Curie-Neumann Principle 

Obviously properties of biomolecules influence properties of macroscopic biological 

objects. But what is the interrelation between symmetry of biomolecules and eventual 

properties of macroscopic structures? In the realm of crystallography this interrelation is 

constituted by the Curie-Minnigerode-Neumann Principle, which in its simplest form was 

formulated by Minnigerode “The group of the structure of a crystal is contained in the 

group of each of its physical properties”, or in other words: all elements of symmetry of a 

crystal are at the same time elements of symmetry of its macroscopic properties [82-83]. 

This statement may be mathematically expressed, as:    

                                 𝐺𝑜𝑏𝑗𝑒𝑐𝑡 ⊆ 𝐺𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦,                         (5) 

which is understood as follows: in order that a physical property is allowed to exist within 

an object it is a necessary but not sufficient condition that the group of the symmetry op-

erations of the object 𝐺𝑜𝑏𝑗𝑒𝑐𝑡  be at least a subgroup of the group of the symmetry opera-

tions of the physical property 𝐺𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦., or alternatively: the tensor describing a physical 

property (the so-called "property tensor") has to be invariant against all symmetry opera-

tions of the object (crystal), or alternatively: the symmetry elements of the causes must be 

found in their effects, but the converse is not true; that is, the effects can be more symmet-
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ric than the causes. [82-83]. However, Curie already clearly understood the role of asym-

metry in constituting the physical phenomena. The phenomenon of piezoelectricity just 

emerges from the symmetry breaking in certain crystals [83]. This idea was aphoristically 

formulated by Curie as follows: “Asymmetry is what creates a phenomenon”. And it 

seems that this approach may be extended to biology; however, there is a long way ahead 

in order to understand the role of asymmetry in constituting biological phenomena.       

3. Informational Reasoning for Symmetry in Biological Systems 

3.1. Symmetry and ordering in biological system has informational/algorithmic roots 

Alternative reasoning for abundance of symmetrical patterns in biological systems 

was suggested in ref. 33. The authors of ref. 33 noted that it is plausible to assume (by a 

certain analogy to engineering design) that symmetry may stem from natural selection, as 

discussed in Section 2.1, in which it was demonstrated that bilateral symmetry of sea in-

habitants is favorable for their manoeuvrable locomotion in water [19]. However, evolu-

tion, unlike engineers, cannot plan ahead, and so these symmetrical features must also 

afford some immediate selective advantage which is hard to reconcile with the breadth of 

systems where symmetry is observed. It was suggested in ref. 33 that the symmetric struc-

tures preferentially arise not just due to natural selection but also because they require less 

specific information to encode and are therefore much more likely to appear as phenotypic 

variation through random mutations. Arguments from algorithmic information theory 

enabled formalization of this hypothesis, leading to the prediction that many genotype–

phenotype maps are exponentially biased toward phenotypes with low descriptional 

complexity (preference for symmetry is a special case of the bias toward compressible de-

scriptions). The authors of the aforementioned hypothesis validated this idea predictions 

with biological data, showing that protein complexes, RNA secondary structures, and a 

model gene regulatory network all exhibit the expected exponential bias toward simpler 

(and more symmetric) phenotypes [33]. The authors of ref. 33 supplied arguments, sup-

porting their concept, rooted in the algorithmic information theory, in which it is well-

accepted, that when the space of algorithms is considered, outputs that can be generated 

by short programs are exponentially more likely to be produced than outputs that can 

only be generated by long programs. It was demonstrated in ref. 33, that formalism devel-

oped in the algorithmic information theory may be successfully applied for the analysis 

of genotype–phenotype maps. Thus, symmetry, appearing in biological systems emerges 

from the “informational arguments”, providing economy of biological information, nec-

essary for description of a biological entity [33].  

The “informational biological paradigm” introduced and developed in ref. 33 was 

recently criticized in ref. 34, in which the role of symmetry breaking in biological systems 

was stressed. It was noted that, while symmetry may arise more commonly in biological 

structures with low complexity, there is evolutionary pressure to develop asymmetry in 

many biological structures with high complexity. The emergence of symmetry cannot be 

fully understood without considering the emergence of asymmetry as well [34]. Consider, 

for example, the human brain, one of the most complex and mysterious biological struc-

tures [34, 86]. While the two halves of the brain look roughly symmetric at first glance, a 

recent large-scale neuroimaging demonstrated that structural left–right asymmetries are 

the rule, rather than the exception, for cortical brain areas [86]. Importantly, the human 

central nervous system is not the only one that shows such striking asymmetries. Breaking 

symmetry is therefore a crucial step in the development of all nervous systems [34]. This 

statement is in the striking correspondence with the Curie-Minnigerode-Neumann Prin-

ciple, formulated by Curie as follows: “Asymmetry is what creates a phenomenon” [83], 

which may re-shaped as follows: “Asymmetry is what creates a biological phenomenon”. 

Anyway, explanation of symmetrical patterns, abundant to biological systems with 

arguments rooted in the algorithmic information theory seems deep and promising. We 
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propose to stretch this approach to grounding of other kinds of periodic and aperiodic 

ordering appearing in biological systems, such as Fibonacci series and Archimedian and 

Lucas spirals [13-17, 87]. Indeed, the Fibonacci series found in phenotypic structures of 

plants and animals, defined by Eq. 6 

                   𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2;𝐹0 = 0; 𝐹1 = 1                       (6)   

and Archimedian spiral, defined by Eq. 7 

                      𝑟 = 𝑎 + 𝑏𝜃, 𝑎 = 𝑐𝑜𝑛𝑠𝑡; 𝑏 = 𝑐𝑜𝑛𝑠𝑡                        (7) 

represent an examples of simple, and informationally effective mathematical regularities, 

which may be specified by short algorithms. Ref. 87 reported created a model of the cell 

division implying asymmetric cell division. In the model cells divide asymmetrically to 

generate a mature and an immature cell [87]. Model output on the number of cells gener-

ated over time fits specific Fibonacci p-number sequences depending on the maturation 

time [87]. Thus, the relation of the Fibonacci series to asymmetry of biological processes 

became elucidated [87].    

3.2. Symmetry and ordering in biological systems and the Landauer principle: informational par-

adigm of biology   

The idea that symmetry in biological patterns is deeply rooted in informational basic 

structure of the reality fits with ideas, introduced by John Archibald Wheeler, who sug-

gested that fundamentals of physics should be re-built on the informational groundings 

and assumed that the main notions of physics are deeply rooted in the “bit-based” scien-

tific paradigm [88]. This approach was may be very briefly and aphoristically summarized 

as follows: “all things physical are information-theoretic in origin”, aphoristically reduced 

to “it from bit” [88]. The idea was developed recently within the highly debated and con-

troversial Landauer principle, suggesting the thermodynamic equivalent of information, 

establishing the lower theoretical limit of energy consumption of computation. It holds 

that "any logically irreversible manipulation of information, such as the erasure of a bit or 

the merging of two computation paths, must be accompanied by a corresponding entropy 

increase in non-information-bearing degrees of freedom of the information-processing ap-

paratus or its environment" [35-36]. In other words, there is a minimum possible amount 

of energy E required to erase one bit of information, known as the Landauer limit and 

supplied by Eq. 8:  

                                𝐸 = 𝑘𝐵𝑇𝑙𝑛2,                                (8) 

where 𝑘𝐵 = 1.38 × 1023 𝐽

𝐾
 is the Boltzmann constant and T is the absolute temperature of 

heat sink [89-92]. The Landauer Principle was experimentally tested in refs. 93-94. Exten-

sion of the Landauer Principle to the realms of quantum mechanics [95] and general rela-

tivity [96] were reported. The Landauer Principle applied to mechanical motion demon-

strates that dissipation of energy is the key process through which mechanical motion 

becomes observable [97]. The analysis of performance of photon detectors (such as eyes) 

brings to the conclusion that just efficiency that is limited the Landauer energy bounds on 

information gain and information erasure [98]. Estimation of information contained in 

molecular motion based on the Landauer Principle was performed in ref. 99. The Lan-

dauer Principle restricts the informational capacity of biological systems; thus, it closely 

related to the abundance of ordering in biologic systems; indeed, periodic and aperiodic 

ordering enable saving of memory, available for the organism. The Landauer Principle 

bridges between the informational and thermodynamic paradigms of life, which explains 

an ability of organisms to maintain low levels of entropy that explain order [100]. The 

informational paradigm of life enabled the analysis of the SARS-CoV-2 virus using Shan-
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non’s information theory [101]. A relationship between the information entropy of ge-

nomes and their mutation dynamics was established. In particular, it was revealed that 

genomes undergo genetic mutations over time driven by a tendency to reduce their over-

all information entropy [101]. Let us estimate with the Landauer Principle roughly the 

informational capacity of living cells. Consider that the characteristic spatial range of liv-

ing cells, namely, 𝑙 ≅ 1 − 100𝜇𝑚 spans the dimensions of a majority of prokaryotic and 

eukaryotic cells [101]. Thus, maximal informational capacity of a living cell may be esti-

mated, according to the Landauer Principle according to Eq. 9; if we speculate that infor-

mation exchange occurs only via the surface of a living cell we estimate:  

                            𝜉 ≅
𝐸𝑠

𝑘𝐵𝑇𝑙𝑛2
≅

𝛾𝑖𝑛𝑡𝑙2

𝑘𝐵𝑇𝑙𝑛2
,                              (9)                      

where 𝐸𝑆 and 𝛾𝑖𝑛𝑡 the total and specific interfacial energies of a cell. Assuming 𝛾𝑖𝑛𝑡 ≅

1.0 × 10−3 𝐽

𝑚2 yields 𝜉 ≅ 3.5 × 105 − 3.5 × 109 [102]. (This value should not be confused 

with the genomic capacity of a cell [103-104]). Thus, we may estimate the informational 

interfacial capacity of a small micro-scaled cell a  𝜉 ≅ 3.5 × 105  bits; compare with the 

DNA-based code, which enables the storage of 5.2 × 106 bits of information [105]. Thus, 

the informational capacity of DNA and cells is restricted; hence, assessing the thermody-

namic efficiency of the computations performed by organisms becomes crucial. Ref. 106 

posed and addressed following fundamental question: how close life has come to maxi-

mally efficient computation (presumably under the pressure of natural selection)? The an-

swer suggested in ref. 106 is summarized as follows: despite inevitable shifts across the 

architectures of life, the authors revealed a surprising consistency in the efficiency of trans-

lation, one of the most universal types of computation carried out in biological systems 

[106]. The analyses demonstrated that as bacteria become larger their overall translational 

efficiency converges on that of a single ribosome [106]. In addition, this efficiency is main-

tained for unicellular eukaryote and mammalian cells [106]. Astonishingly, this efficiency 

is only about an order of magnitude larger than the Landauer bound, supplied by Eq. 8 

(see ref. 106). And it should be emphasized that symmetry and ordering (periodic and 

aperiodic) inherent in biological systems improve the efficiency of biological computation, 

indeed, when an n-fold symmetry is present, the single computation act governs the loca-

tion of a number of n “spots” in the biological pattern. An interface between artificially 

created digital information and information produced by organisms was addressed in ref. 

107. It was demonstrated that human-related digital information has reached a similar 

magnitude to information in the biosphere [107].    

4. Conclusions 

Biological systems demonstrate remarkable symmetry and ordering which may be peri-

odic or aperiodic [1-2, 4, 12]. These ordering and symmetry span all of biological spatial 

scales starting from biomolecules [7, 8] up to entire organisms and biological patterns, 

created by organisms [9, 19-21]. The symmetry may be even regenerated with time as it 

occurs with damaged jellyfish [108]. The challenging and fundamental questions are: what 

are the physical and biological reasoning of periodic and aperiodic ordering in biological 

systems? In other words: why living nature prefers ordered/symmetrical patterns? The 

possible answers to this fundamental question may be summarized as follows: i) Appear-

ance of symmetry/ordering is due to the external physical constraints implied on the bio-

logical system [5, 19-21]. ii) The second hypothesis explaining abundancy of the highly 

ordered patterns in biology adopts that symmetry of biological systems emerges from the 

symmetry of molecules themselves and potentials describing interactions between mole-

cules [22-23]. iii) The third approach relates appearance of mathematical ordering in bio-

logical systems to the pure survival, evolutionary reasons [24-29]. iv) The most recent hy-

pothesis relates an appearance of symmetrical patterns in biological systems to informa-

tional reasoning. It was suggested, that symmetric biological structures and patterns pref-

erentially arise not just due to natural selection but also because they require less specific 
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information to encode [33]. We addressed this approach within the general informational 

scientific paradigm, proposed by John Archibald Wheeler, who suggested that fundamen-

tals of physics should be re-built on the informational groundings and assumed that the 

main notions of physics are deeply rooted in the “bit-based” scientific paradigm [88]. The 

ideas discussed in ref. 33 stretch this approach to the “bit-based” biological paradigm, 

which may be formulated as follows: economy of information is essential in the constitut-

ing of biological patterns. Thus, it becomes understandable why just the simplest mathe-

matical regularities such as Fibonacci series [13-17, 87] and symmetrical patterns are abun-

dant in biology; these regularities decrease the algorithmic complexity of biological sys-

tems [33]. The informational paradigm of biology is closely related to the Landauer Prin-

ciple bridging theory of information of physics and suggesting the thermodynamic equiv-

alent of information, under establishing the lower theoretical limit of energy consumption 

of biological computation [35-37, 89-99]. The analyses of the computational efficiency of 

bacteria demonstrated that as bacteria become larger their overall translational efficiency 

converges on that of a single ribosome [106]. Moreover, this efficiency is universal for uni-

cellular eukaryote and mammalian cells and it only about an order of magnitude larger 

than the Landauer bound [35-37, 89-99, 106]. Thus, the Landauer briefly formulated as 

“information is physical” may be re-shaped to “biological information is physical and 

strictly speaking thermodynamically-rooted”. Symmetry and ordering increase essen-

tially computational/informational effectivity of biological systems. 

 It should be emphasized that the role of symmetry in biological systems is very dif-

ferent from that in physics (such as symmetry of crystals). Symmetry in the biologically-

rooted patterns is never perfect. Thus, mathematical methods enabling quantification of 

symmetry and its deviation from the mathematically perfect symmetrical patterns were 

suggested [61-69]. It turns out that the notion of ordering has a fine structure, and may be 

quantified mathematically with essentially different mathematical measures such as the 

continuous measure of symmetry, Voronoi (Shannon) entropy and Minkowski function-

als [61-81]. Thus, a unique mathematical measure quantifying “order” in biological sys-

tems does not exist. It was demonstrated that the maxima and minima of the Shannon 

entropy and continuous measure of symmetry are not necessarily correlated; moreover, 

in certain cases, maxima of the continuous measure of symmetry may correspond to the 

minima of the Shannon entropy [78]. Accurate quantification of ordering and symmetry 

in biological patterns is well-expected to be a hot theme of the nearest future mathematical 

biology investigations. Consider, that “physical ordering”, as quantified by the Boltzmann 

entropy, and symmetry are in the intimate relation: symmetry usually decreases the Boltz-

mann entropy of systems [10, 11].      

Moreover, breaking of symmetry and asymmetry are crucial for understanding bio-

logical phenomena [34, 86-87]. For example, breaking symmetry is a crucial step in the 

development of all of biological systems [34]. Thus, the Curie-Minnigerode-Neumann 

Principle, may re-shaped for biological systems as follows: “Asymmetry is what creates a 

biological phenomenon” [82, 83]. Thus, we conclude that symmetry and ordering, abun-

dant in biologically rooted patterns, could be hardly related to a single, unique physical 

or evolutionary reason. We conclude that general unifying theory of symmetry in biology 

does not exist, and, perhaps, has no chance to be developed. However, the role of sym-

metry/asymmetry reasoning in understanding biological phenomena is crucial. 
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