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Abstract: Physical roots, exemplifications and consequences of periodic and aperiodic ordering
(represented by Fibonacci series) in biological systems are discussed. The role and physical and bi-
ological roots of symmetry and asymmetry appearing in biological patterns is addressed. Generali-
zation of the Curie-Neumann Principle as applied to biological objects is presented, briefly summa-
rized as: “asymmetry is what creates a biological phenomenon”. The “up-bottom approach” and
“bottom up” approaches to the explanation of symmetry in organisms are presented in detail. The
“up-bottom approach”, implies that the symmetry of the biological structure follows the symmetry
of media in which this structure is functioning; the “bottom-up” approach, in turn, adopt that the
symmetry of biological structures emerges from the symmetry of molecules constituting the struc-
ture. A diversity of mathematical measures applicable for quantification of ordering in biological
patterns is introduced. The continuous, Shannon and Voronoi measures of symmetry/ordering and
their application to biology objects are addressed. The fine structure of the notion of “ordering” is
discussed. Informational/algorithmic roots of ordering inherent for the biological systems are con-
sidered. Ordered/symmetrical patterns provide economy of biological information, necessary for
algorithmic description of a biological entity. Application of the Landauer principle bridging phys-
ics and theory of information to the biological systems is discussed.
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1. Introduction

Biology objects demonstrate remarkably repeatable patterns, governed by simple mathe-
matical laws and regularities. Biological systems frequently exhibit symmetry and regu-
larity on various spatial scales, starting from the genomic level and biomolecules and ex-
tending to entire organism [1-6]. A nearly universal observation, which was reported re-
cently, states the subunits in protein assemblies are arranged in symmetric ways [7]. Ref.
8 hypothesized that the beautiful symmetries of biomolecules may reflect basic principles
about the energy landscape in biology, just as symmetry relations do in particle physics.
Symmetry is inherent for bodies of practically all animals (with rare exceptions); animals
are characterized by some kind of overall body symmetry, and these are of only a few
types: radial, bi-radial and bilateral symmetry [9]. Symmetry, in turn, represents a kind of
ordering in physical and biological systems [10-11]. When we address symmetry of or-
dered pattern we usually restrict ourselves to mainly consider periodic order [12]. At the
same time, order without periodicity has emerged to properly describe an increasing
number of complex systems, and in particular biological ones [12]. Such kind of ordering,
was referred in ref. 12 as aperiodic ordering. The outstanding example of the aperiodic or-
dering is supplied by the Fibonacci numbers, or Fibonacci series [13-16]. Fibonacci and
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Lucas series appear in biological patterns [17]. Perhaps the most striking example of such
samples is supplied by phyllotaxis, which is the arrangement of leaves on a plant stem
[13-17]. These patterns are surprisingly regular, so regular in fact that a physicist can com-
pare their order to that of crystals, however ordering in biological systems is usually not
perfect, and quantitative measures of the deviation from the perfect ordering, which were
introduced recently, will be discussed below in detail. It should be mentioned that non-
ordered, asymmetrical biological systems exist. It is generally agreed that sponges are
completely asymmetrical (see Figure 1), however, this thesis may be debated and will be
addressed below in detail.

Figure 1. Calcareous sponges are depicted. Sponges are usually regarded as non-ordered
biology objects/

Moreover, it was suggested that breaking symmetry is a prevalent process in biology
[3, 18]. However, to be broken symmetry in biological patterns must first appear, and it
appears on different levels of organization of biological systems [1, 2, 4, 18].

The reasonable question is: what is the biological reasoning of periodic and aperiodic
ordering in biological systems? In other words: why nature prefers ordered patterns? The
possible answers to this fundamental question may be classified as follows: i) Appearance
of symmetry and other sample patterns are due to the external physical constraints im-
plied on the biological system [5, 19-21]. This hypothesis adopts that just physical effects,
which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis,
are also the ultimate causes (in other words) the indirect factors which provide a selective
advantage — of animal or plant symmetry, from organs to body plan level patterns [19-21].
ii) The second idea explaining abundancy of the symmetric patterns in biology implies
that symmetry of biological systems stems from the symmetry of molecules themselves
and potentials describing interactions between molecules [22-23]. It was demonstrated,
that symmetry of these potentials governs the symmetry of biological systems, such as
actin, tubulin, and the ubiquitous icosahedral shell structures of viral capsids [22-23]. iii)
The third approach relates appearance of mathematical ordering in biological systems to
the pure survival reasons. For example, periodic cicadas emerge from their underground
homes to mate every 13 or 17 years, which are primes [24-29]. The philosophy of the evo-
lutionary-based explanation of the mathematical ordering is that if cicadas have 12-year
cycles, all the predators with two, three, four, and six-year cycles will eat them, in other
words, if the cicadas mutate to 13-year cycles, they will survive [28-29]. Let us quote ref.
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29: “a prey with a 12-year cycle will meet-every time it appears-properly synchronized
predators appearing every 1, 2, 3, 4, 6 or 12 years, whereas a mutant with a 13-year period
has the advantage of being subject to fewer predators”. A second explanation, proposed
by Cox, Carlton and by Yoshimura, concerns the avoidance not of predators but of hy-
bridization with similar subspecies [25-27]. A genuine reasoning of the primes-shaped life
cycle of cicadas remains debatable and the discussion of this reasoning gave rise to the
deep philosophical discussion of the nature and roots of the notion of “explanation” of
natural/biological phenomena in ref. 30. Survival reasons were also involved for explana-
tion of symmetry appearing in the color of zebra finches, shown in Figure 2.

Figure 2. Zebra finch is depicted. Symmetrically banded males and females are preferred
by an individual of the opposite sex

It was demonstrated that symmetrically banded males produced more offspring that sur-
vived past the period of parental care than males in either of the asymmetric treatments;
this appeared to be the effect of female choice processes and female-based parental invest-
ment and not male intra-sexual dominance. Thus, it was shown, that symmetrically ma-
nipulated males gain reproductive advantages in controlled laboratory conditions and
further supports recent theories indicating the evolutionary importance of symmetry in
signalling-trait design [31]. Moreover, it was demonstrated that symmetric patterns are
attractive not only to females, and it was found that males associated more with symmet-
rical than asymmetrical females, indicating a preference for symmetry [32]. iv) And, fi-
nally, we discuss the more hypothetic relation of an appearance of symmetrical patterns
in biological systems to informational reasoning. It was suggested, that symmetric biolog-
ical structures and patterns preferentially arise not just due to natural selection but also
because they require less specific information to encode and are therefore much more
likely to appear as phenotypic variation through random mutations [33]. This novel con-
cept, which is well tailored to the general informational paradigm of exact sciences, was
criticized recently in ref. 34, will be discussed below in its relation to the Curie-Min-
nigerode-Neumann and Landauer Principles [35-37]. In our paper we focus on the physi-
cal and informational reasoning of symmetry/ordering inherent for biological systems. We
will also demonstrate that the notion of ordering has a “fine structure” and hardly could
be quantified unequivocally with a single mathematical parameter.
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2. Physical reasoning for the abundant symmetry of biological patterns

2.1. The “up-bottom approach” to the explanation of symmetry in organisms: symmetry is dictated
by the properties of media in which the organisms acts

Physical reasoning involved for the explanation of symmetry of biological objects may be
classified according to following main approaches:

i) The “up-bottom approach”, implying that the symmetry of the biological struc-
ture follows the symmetry of media in which this structure is functioning

ii) The “bottom-up” approach assuming that the symmetry of biological structures
emerges from the symmetry of molecules constituting the structure.

Let us start for “up-bottom” pure physical reasoning which may be responsible for sym-
metry abundant in the plants and animals realms. The two main symmetries that can be
observed in the animal body plan are radial and bilateral, as illustrated with Figure 3 [21,
38-39].

Right lateral

A. Bilateral body symmetry B. Radial body symmetry
Figure 3. Bilateral (a) and radial symmetry (b) in biological objects.

Pure physical “demystification” of animal symmetry was suggested in refs. 19-20. Let us
quote ref. 19: “symmetry is a response in the geometry of the “living matter” to physical
forces”. As an example of such pathway of thinking, consider the directed locomotion of
sea inhabitants. The most comprehensive idea which explains how directed locomotion is
favored by bilateral symmetry comes from a theoretical paper [18], which argued that bi-
lateral symmetry is favorable for manoeuvrable locomotion in the macroscopic world (in
which inertial forces dominate over viscous forces, i.e., in the high Reynolds numbers’
realm, because bilateral is the only type of symmetry which is streamlined in only one
direction while being non-streamlined in others [18]. Symmetry of biological entities
which inhabit water and air becomes more clear when the ideas developed in ref. 40 are
taken into account. It was concluded in ref. 40 that a large proportion of fish species have
developed compressed, elliptical body cross-sectional shapes. This shape is justified from
the hydrodynamic point of view, as the basic issue of minimizing drag for a given volume
would result in a body of revolution [40]. Thus, this adaptation must have had very sig-
nificant advantages, to have reappeared so many times. One such advantage is clear from
the use of the body as a propulsor, as the sideways oscillations of a vertically compressed
body will produce much larger forces but this also reduces rolling, which would, in turn
induce yawing moments due to the difference in angle of attack on the pectorals and the
angle of attack on the caudal and dorso-anal fins produced by rolling. Thus, vertical com-
pression is a stabilizing development [40-41].
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We propose following development of the suggested pure “physical explanation” of
symmetry inherent for fishes and birds. The observed symmetry is to a much extent ex-
plained by the isotropy of physical properties of gases and liquids, in which fishes and
birds act. Gases and some of liquids are essentially isotropic media. Gases are isotopic due
to the random molecular motion of molecules, constituting the gaseous phase, also called
the molecular chaos hypothesis, implying that the velocities of colliding molecules are
uncorrelated, and independent of position [42-45]. The hypothesis of molecular chaos also
implies the equipartition theorem serving as a basis for the classical thermodynamics and
statistical physics, which states that in thermal equilibrium energy is shared equally
amonyg all of its various forms [46-50]. The equipartition theorem, in turn, is grounded on
two main assumptions: (1) the classical version of the canonical probability distribution is
applicable and adequate; (2) the classical expression for the total energy of the particle
splits additively into two parts: one part depends quadratically on a single variable (say
x), and the other (denoted Uy,e,) is entirely independent of that variable U = ax? +
Uotner; a = const. It is easily seen that the equipartition of energy holds whatever is the
value of the constant 2; moreover the equipartition theorem for a broad class of potentials
U = ax? + bx; a,b = const, as discussed in ref. 51. Thus, symmetry of bodies of birds, pos-
sibly emerges from isotropy of air accompanied by equipartition of energy, which is true
for air molecules. This “physically grounded” approach may be stretched even further:
actually conservation laws appearing in physics arise from the fundamental symmetries
of space-time; thus, symmetry recognized in physical systems reflects these fundamental
symmetries; hence, it is plausible to suggest, symmetry of biological systems also arises
from the fundamental space-time symmetries.

The situation with liquids is much more complicated; indeed, liquids may by iso-
tropic and non-isotropic (liquid crystals) [52]. However, the most important biological liq-
uid is water, which is considered isotropic in biophysical models, which deal with water
and water inhabitants. This assumption as a matter of fact is far from to be trivial. It was
demonstrated that the state of water in the body constituents of living organisms and in
the vicinity of biological macromolecules differs significantly from the state of water in
solutions of simple molecules and in pure water [53-54]. Biological macromolecules in-
duce a characteristic water structure in their close vicinity due to weak macromolecular-
water interactions [53-54]. Anyway, considering water as an isotropic medium is justified
at the macroscopic level of treatment of biological system. On the other hand, aqueous
solutions of DNA govern their chirality, i.e., the lack of mirror symmetry of the solutions,
which already brings us to the “bottom-up” approach to the symmetry of biological ob-
jects, implying that the symmetry of biological structures emerges from the symmetry of
molecules constituting the structure [55-60].

2.2. “Bottom-up” approach to the symmetry of biological systems, mathematical measures of order
in biological patterns and the Curie-Neumann Principle

2.2.1. Mathematical measures of symmetry and ordering in biological patterns

As we already mentioned in the previous sections that DNA constitutes the symmetry
properties (chirality) of aqueous solutions [55-59]. Not only DNA but also tobacco mosaic
virus governs lyotropic liquid crystalline behavior of the ensemble of these viruses. Thus,
we come to the “bottom-up” approach to the symmetry of biological structures and pat-
terns, adopting that the symmetry of large scale, macroscopic biological structures
emerges from the symmetry of molecules constituting the structure. High symmetry as-
semblies of proteins, resembling those inherent to the geometries of the Platonic solids
were discussed in ref. 7. Symmetry of biological macromolecules in its comparison with
the symmetry of nuclei, atoms and elementary particles was deeply analyzed in ref. 8. Let
us quote from ref. 8: “The role of symmetry in the physics of atoms, nuclei, and elementary
particles is different from its role in the biological world. In microphysics, it has been fruit-
ful to postulate symmetry as being fundamental, thereby severely constraining the form
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of the underlying laws. Furthermore, the consequences of symmetry for dynamics and
stability are profound in the subatomic world. General treatment of these symmetry ef-
fects, based on group theory, allows a nearly complete classification of states and transi-
tions. Indeed, even the deviations from exact symmetry have their own quantifiable con-
sequences. In the biological world, symmetry exists too, but it often appears to be an acci-
dent. While accidents still can have significant consequences, rationalizable on a case-by-
case basis, there has been no general unifying theory of symmetry in biology. Exact sym-
metry in biology would even seem to be antithetical to the notions of complexity, variety,
and metamorphosis that are central to the idea of life, as we know it. Nevertheless, as in
microphysics, life requires stability and sameness as well as change”... For a particular
protein, biomolecular symmetry will not be exact unless it is the result of gene duplication.
It is a quantitative issue how much the forces leading to minimal frustration, partially
determined by symmetry considerations, are dominant over the aspects of the landscape
arising from randomness”.

Indeed, the exact, perfect symmetry (in the rigorous mathematical sense) is rare in a
realm of biology. It is sparse on different levels of biological structures, and even on the
molecular level, it is not abundant. Now we come to the novel ideas, which appeared in
the theory of symmetry in last decades. Until now, it was usually latently accepted that
symmetry changes abruptly or intermittently, i.e. symmetry is an exact feature of the pat-
tern. In other words, symmetry is usually viewed, as a binary feature, when an object is
considered as either perfectly symmetric or asymmetric. Despite this, a fundamentally
new approach to quantifying symmetry as a continuous measure of a pattern was sug-
gested and tested recently by Avnir, Zabrodsky and co-workers [61-65]. The notion of
“continuous measure of symmetry” was introduced and developed in refs. 61-65. Contin-
uous measure of symmetry is a fundamentally new approach to quantifying symmetry
[61-65]. Continuous measure of symmetry is quantified by the sum of minimum squared
distances that are required to move the points of an original shape in order to obtain a
symmetrical shape [61-65]. The continuous measure broke the binary “yes-no” paradigm
traditionally used for the analysis of symmetry of patterns [61-65]. This approach was suc-
cessfully exploited for quantification of the symmetry of electronic wave functions [66]
and quasicrystals [67]. The continuous measure of symmetry was recently applied to the
analysis of symmetry of proteins [68-69]. It was revealed that symmetry deviations of pro-
teins are by far higher in solution, compared to the crystalline state [69]. However, only
first results in the field of the continuous analysis of symmetry of biological objects were
reported, and it seems, that the mathematical apparatus of continuous measure of sym-
metry has an enormous potential in mathematical biology.

It should be emphasized that the continuous measure of symmetry is not a single
mathematical value enabling quantification of ordering in the biological patterns. The al-
ternative measure of order in the biological patterns emerges from the Voronoi tessellation
(or Voronoi diagram). A Voronoi tessellation of an infinite plane is a partitioning of the
plane into regions based on the distance to a specified discrete set of points (called seeds
or nuclei and shown with black squares in Figure 4). For each seed, there is a correspond-
ing region, consisting of all points closer to that seed than to any other [70-77].
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Figure 4. Voronoi diagram (tessellation) emerging from the initial 25 randomly placed
points, also called seeds, represented with black squares); green polygon is a quadrangle;
yellow polygons are pentagons; grey polygons are hexagons, the orange polygon is an
octagon. Are the seeds ordered? The answer to this question is supplied by calculation of

the Voronoi (shannon) entropy of the pattern.

The Voronoi (Shannon) entropy of a given set of points located in a plane is given by:
Svor = — Xi PiInP;, 1)

where P; is the probability of finding n-sided Voronoi polygon within a given Voronoi
tessellation and i is the total number of polygon types with different numbers of edges
[24,25,26]. The summation in Equation (1) is performed from i = 3 (the smallest possible
polygon—a triangle) to the largest coordination number of the polygon, e.g., for an octa-
gon, the largest value of i is 8. Consider the Voronoi diagram built of pentagons only, in
such a diagram P; = 1 and consequently S,,, = 0. It is reasonable to relate to such a dia-
gram the maximal degree of ordering; in contrast, the Voronoi entropy of the random
pattern of seeds was established as S, = 1.71. Seeds may be displaced continuously
from their initial locations, and the Voronoi entropy, in turn, will be changed continuously.
Voronoi tessellations were already successfully applied for the analysis of ordering in the
biological systems, namely: proteins [73], cell dynamics [74] and ordering of GABAA re-
ceptors in hippocampal inhibitory synapses [75],

Thus, we already have two alternative continuous measures of ordering in biological
systems, namely the continuous measure of symmetry [68-69] and Voronoi Entropy (and
this is not an exhaustive list) [73-77]. And the reasonable question immediately arises: are
these measures correlated? It was recently demonstrated that the continuous measure of
symmetry and the Voronoi entropy of the pattern are not necessarily correlated; moreover,
anti-correlation of these values was registered [67, 78]. Alternative measures of ordering in
biological patterns, such as Minkowski functionals were also introduced [79-80]. Shannon
(informational) measure of symmetry was also suggested recently [81]. Consider a 2D pat-
tern built of 1D and/or 2D shapes or lines, demonstrating a number of symmetry elements
(rotational symmetry, centers of symmetry, axes of symmetry, etc.), denoted G;, i=12..k,
where k is a number of non-identical symmetry operations [81]. Elements G; form the sym-
metry group of the shape G (which should be clearly distinguished from the symmetry
group of the entire pattern). Thus, the informational measure of symmetry of the pattern
Hgym(G) is defined in a Shannon-like form (compare with Eq. 2) as:

Hsym(G) =- 2;6:1 Pi(G)InPy(Gy), (2)

where P;(G;) is the probability of appearance of the symmetry operation G; within the

shapes (lines) constituting the pattern, defined as:
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where N; = ¥, m(G,) is the total number of symmetry elements (operations) appearing
in the 1D or 2D shapes, recognized in a given pattern, and m(G;) is the number of the same
symmetry elements (operations) G;, calculated for a given pattern. The normalization con-

dition given by Eq. 4 takes place:
LP(G) =1 4)

The informational (Shannon) measure of symmetry, defined with Eq. 2, is applicable for
the the mixed patterns built of curves and shapes, thus it is suitable for the analysis of the
biological patterns (such as those, depicted in Figure 5). Thus, we necessarily conclude that
the notion of “ordering in biology patterns” has a fine structure, and the correlation between
various mathematical measures of order remains an open problem and should be elucidated
in a future research.

J A ﬁAvpu/t

Figure 5. Mixed pattern built of p=5 irregular non-symmetric curves and p=5 equilateral tri-
angles. The symmetry group of the equilateral triangle is the dihedral symmetry group
D; containing 3p symmetry axes and 3p rotations (including the 2m rotation, denoted G,).
One more G; operation comes from the irregular curves; thus, we have in total 7p symmetry
operations in this pattern. The IMS is easily calculated, according to Eq. 2: Hgy, =

_(élns-};ln%) = 2.23.

2.2.2. ”Bottom-up approach to the symmetry” of biological systems and the Curie-Neumann Principle

Obviously properties of biomolecules influence properties of macroscopic biological
objects. But what is the interrelation between symmetry of biomolecules and eventual
properties of macroscopic structures? In the realm of crystallography this interrelation is
constituted by the Curie-Minnigerode-Neumann Principle, which in its simplest form was
formulated by Minnigerode “The group of the structure of a crystal is contained in the
group of each of its physical properties”, or in other words: all elements of symmetry of a
crystal are at the same time elements of symmetry of its macroscopic properties [82-83].
This statement may be mathematically expressed, as:

Gobject c Gproperty/ (5)

which is understood as follows: in order that a physical property is allowed to exist within
an object it is a necessary but not sufficient condition that the group of the symmetry op-
erations of the object G,pjec be at least a subgroup of the group of the symmetry opera-
tions of the physical property G,,operty., OF alternatively: the tensor describing a physical
property (the so-called "property tensor") has to be invariant against all symmetry opera-
tions of the object (crystal), or alternatively: the symmetry elements of the causes must be
found in their effects, but the converse is not true; that is, the effects can be more symmet-
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ric than the causes. [82-83]. However, Curie already clearly understood the role of asym-
metry in constituting the physical phenomena. The phenomenon of piezoelectricity just
emerges from the symmetry breaking in certain crystals [83]. This idea was aphoristically
formulated by Curie as follows: “Asymmetry is what creates a phenomenon”. And it
seems that this approach may be extended to biology; however, there is a long way ahead
in order to understand the role of asymmetry in constituting biological phenomena.

3. Informational Reasoning for Symmetry in Biological Systems
3.1. Symmetry and ordering in biological system has informational/algorithmic roots

Alternative reasoning for abundance of symmetrical patterns in biological systems
was suggested in ref. 33. The authors of ref. 33 noted that it is plausible to assume (by a
certain analogy to engineering design) that symmetry may stem from natural selection, as
discussed in Section 2.1, in which it was demonstrated that bilateral symmetry of sea in-
habitants is favorable for their manoeuvrable locomotion in water [19]. However, evolu-
tion, unlike engineers, cannot plan ahead, and so these symmetrical features must also
afford some immediate selective advantage which is hard to reconcile with the breadth of
systems where symmetry is observed. It was suggested in ref. 33 that the symmetric struc-
tures preferentially arise not just due to natural selection but also because they require less
specific information to encode and are therefore much more likely to appear as phenotypic
variation through random mutations. Arguments from algorithmic information theory
enabled formalization of this hypothesis, leading to the prediction that many genotype—
phenotype maps are exponentially biased toward phenotypes with low descriptional
complexity (preference for symmetry is a special case of the bias toward compressible de-
scriptions). The authors of the aforementioned hypothesis validated this idea predictions
with biological data, showing that protein complexes, RNA secondary structures, and a
model gene regulatory network all exhibit the expected exponential bias toward simpler
(and more symmetric) phenotypes [33]. The authors of ref. 33 supplied arguments, sup-
porting their concept, rooted in the algorithmic information theory, in which it is well-
accepted, that when the space of algorithms is considered, outputs that can be generated
by short programs are exponentially more likely to be produced than outputs that can
only be generated by long programs. It was demonstrated in ref. 33, that formalism devel-
oped in the algorithmic information theory may be successfully applied for the analysis
of genotype—phenotype maps. Thus, symmetry, appearing in biological systems emerges
from the “informational arguments”, providing economy of biological information, nec-
essary for description of a biological entity [33].

The “informational biological paradigm” introduced and developed in ref. 33 was
recently criticized in ref. 34, in which the role of symmetry breaking in biological systems
was stressed. It was noted that, while symmetry may arise more commonly in biological
structures with low complexity, there is evolutionary pressure to develop asymmetry in
many biological structures with high complexity. The emergence of symmetry cannot be
fully understood without considering the emergence of asymmetry as well [34]. Consider,
for example, the human brain, one of the most complex and mysterious biological struc-
tures [34, 86]. While the two halves of the brain look roughly symmetric at first glance, a
recent large-scale neuroimaging demonstrated that structural left-right asymmetries are
the rule, rather than the exception, for cortical brain areas [86]. Importantly, the human
central nervous system is not the only one that shows such striking asymmetries. Breaking
symmetry is therefore a crucial step in the development of all nervous systems [34]. This
statement is in the striking correspondence with the Curie-Minnigerode-Neumann Prin-
ciple, formulated by Curie as follows: “Asymmetry is what creates a phenomenon” [83],
which may re-shaped as follows: “Asymmetry is what creates a biological phenomenon”.

Anyway, explanation of symmetrical patterns, abundant to biological systems with
arguments rooted in the algorithmic information theory seems deep and promising. We
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propose to stretch this approach to grounding of other kinds of periodic and aperiodic
ordering appearing in biological systems, such as Fibonacci series and Archimedian and
Lucas spirals [13-17, 87]. Indeed, the Fibonacci series found in phenotypic structures of
plants and animals, defined by Eq. 6

Fo=Fy 1+ F 2 Fp =0 Fp=1 (6)
and Archimedian spiral, defined by Eq. 7
r=a+ bO,a = const; b = const (7)

represent an examples of simple, and informationally effective mathematical regularities,
which may be specified by short algorithms. Ref. 87 reported created a model of the cell
division implying asymmetric cell division. In the model cells divide asymmetrically to
generate a mature and an immature cell [87]. Model output on the number of cells gener-
ated over time fits specific Fibonacci p-number sequences depending on the maturation
time [87]. Thus, the relation of the Fibonacci series to asymmetry of biological processes
became elucidated [87].

3.2. Symmetry and ordering in biological systems and the Landauer principle: informational par-
adigm of biology

The idea that symmetry in biological patterns is deeply rooted in informational basic
structure of the reality fits with ideas, introduced by John Archibald Wheeler, who sug-
gested that fundamentals of physics should be re-built on the informational groundings
and assumed that the main notions of physics are deeply rooted in the “bit-based” scien-
tific paradigm [88]. This approach was may be very briefly and aphoristically summarized
as follows: “all things physical are information-theoretic in origin”, aphoristically reduced
to “it from bit” [88]. The idea was developed recently within the highly debated and con-
troversial Landauer principle, suggesting the thermodynamic equivalent of information,
establishing the lower theoretical limit of energy consumption of computation. It holds
that "any logically irreversible manipulation of information, such as the erasure of a bit or
the merging of two computation paths, must be accompanied by a corresponding entropy
increase in non-information-bearing degrees of freedom of the information-processing ap-
paratus or its environment" [35-36]. In other words, there is a minimum possible amount
of energy E required to erase one bit of information, known as the Landauer limit and
supplied by Eq. 8:

E = kyTIn2, )

where kp = 1.38 x 1023£ is the Boltzmann constant and T is the absolute temperature of

heat sink [89-92]. The Landauer Principle was experimentally tested in refs. 93-94. Exten-
sion of the Landauer Principle to the realms of quantum mechanics [95] and general rela-
tivity [96] were reported. The Landauer Principle applied to mechanical motion demon-
strates that dissipation of energy is the key process through which mechanical motion
becomes observable [97]. The analysis of performance of photon detectors (such as eyes)
brings to the conclusion that just efficiency that is limited the Landauer energy bounds on
information gain and information erasure [98]. Estimation of information contained in
molecular motion based on the Landauer Principle was performed in ref. 99. The Lan-
dauer Principle restricts the informational capacity of biological systems; thus, it closely
related to the abundance of ordering in biologic systems; indeed, periodic and aperiodic
ordering enable saving of memory, available for the organism. The Landauer Principle
bridges between the informational and thermodynamic paradigms of life, which explains
an ability of organisms to maintain low levels of entropy that explain order [100]. The
informational paradigm of life enabled the analysis of the SARS-CoV-2 virus using Shan-
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non’s information theory [101]. A relationship between the information entropy of ge-
nomes and their mutation dynamics was established. In particular, it was revealed that
genomes undergo genetic mutations over time driven by a tendency to reduce their over-
all information entropy [101]. Let us estimate with the Landauer Principle roughly the
informational capacity of living cells. Consider that the characteristic spatial range of liv-
ing cells, namely, [ = 1 — 100um spans the dimensions of a majority of prokaryotic and
eukaryotic cells [101]. Thus, maximal informational capacity of a living cell may be esti-
mated, according to the Landauer Principle according to Eq. 9; if we speculate that infor-
mation exchange occurs only via the surface of a living cell we estimate:

~_ B - Vinel®
¢ = kgTIn2 ~ kgTin2’ ©)

where E5 and y;,, the total and specific interfacial energies of a cell. Assuming y;,; =
1.0x 1073 # yields & = 3.5 x 10° — 3.5 x 10° [102]. (This value should not be confused

with the genomic capacity of a cell [103-104]). Thus, we may estimate the informational
interfacial capacity of a small micro-scaled cell a § = 3.5 x 10° bits; compare with the
DNA-based code, which enables the storage of 5.2 x 10° bits of information [105]. Thus,
the informational capacity of DNA and cells is restricted; hence, assessing the thermody-
namic efficiency of the computations performed by organisms becomes crucial. Ref. 106
posed and addressed following fundamental question: how close life has come to maxi-
mally efficient computation (presumably under the pressure of natural selection)? The an-
swer suggested in ref. 106 is summarized as follows: despite inevitable shifts across the
architectures of life, the authors revealed a surprising consistency in the efficiency of trans-
lation, one of the most universal types of computation carried out in biological systems
[106]. The analyses demonstrated that as bacteria become larger their overall translational
efficiency converges on that of a single ribosome [106]. In addition, this efficiency is main-
tained for unicellular eukaryote and mammalian cells [106]. Astonishingly, this efficiency
is only about an order of magnitude larger than the Landauer bound, supplied by Eq. 8
(see ref. 106). And it should be emphasized that symmetry and ordering (periodic and
aperiodic) inherent in biological systems improve the efficiency of biological computation,
indeed, when an n-fold symmetry is present, the single computation act governs the loca-
tion of a number of n “spots” in the biological pattern. An interface between artificially
created digital information and information produced by organisms was addressed in ref.
107. It was demonstrated that human-related digital information has reached a similar
magnitude to information in the biosphere [107].

4. Conclusions

Biological systems demonstrate remarkable symmetry and ordering which may be peri-
odic or aperiodic [1-2, 4, 12]. These ordering and symmetry span all of biological spatial
scales starting from biomolecules [7, 8] up to entire organisms and biological patterns,
created by organisms [9, 19-21]. The symmetry may be even regenerated with time as it
occurs with damaged jellyfish [108]. The challenging and fundamental questions are: what
are the physical and biological reasoning of periodic and aperiodic ordering in biological
systems? In other words: why living nature prefers ordered/symmetrical patterns? The
possible answers to this fundamental question may be summarized as follows: i) Appear-
ance of symmetry/ordering is due to the external physical constraints implied on the bio-
logical system [5, 19-21]. ii) The second hypothesis explaining abundancy of the highly
ordered patterns in biology adopts that symmetry of biological systems emerges from the
symmetry of molecules themselves and potentials describing interactions between mole-
cules [22-23]. iii) The third approach relates appearance of mathematical ordering in bio-
logical systems to the pure survival, evolutionary reasons [24-29]. iv) The most recent hy-
pothesis relates an appearance of symmetrical patterns in biological systems to informa-
tional reasoning. It was suggested, that symmetric biological structures and patterns pref-
erentially arise not just due to natural selection but also because they require less specific
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information to encode [33]. We addressed this approach within the general informational
scientific paradigm, proposed by John Archibald Wheeler, who suggested that fundamen-
tals of physics should be re-built on the informational groundings and assumed that the
main notions of physics are deeply rooted in the “bit-based” scientific paradigm [88]. The
ideas discussed in ref. 33 stretch this approach to the “bit-based” biological paradigm,
which may be formulated as follows: economy of information is essential in the constitut-
ing of biological patterns. Thus, it becomes understandable why just the simplest mathe-
matical regularities such as Fibonacci series [13-17, 87] and symmetrical patterns are abun-
dant in biology; these regularities decrease the algorithmic complexity of biological sys-
tems [33]. The informational paradigm of biology is closely related to the Landauer Prin-
ciple bridging theory of information of physics and suggesting the thermodynamic equiv-
alent of information, under establishing the lower theoretical limit of energy consumption
of biological computation [35-37, 89-99]. The analyses of the computational efficiency of
bacteria demonstrated that as bacteria become larger their overall translational efficiency
converges on that of a single ribosome [106]. Moreover, this efficiency is universal for uni-
cellular eukaryote and mammalian cells and it only about an order of magnitude larger
than the Landauer bound [35-37, 89-99, 106]. Thus, the Landauer briefly formulated as
“information is physical” may be re-shaped to “biological information is physical and
strictly speaking thermodynamically-rooted”. Symmetry and ordering increase essen-
tially computational/informational effectivity of biological systems.

It should be emphasized that the role of symmetry in biological systems is very dif-
ferent from that in physics (such as symmetry of crystals). Symmetry in the biologically-
rooted patterns is never perfect. Thus, mathematical methods enabling quantification of
symmetry and its deviation from the mathematically perfect symmetrical patterns were
suggested [61-69]. It turns out that the notion of ordering has a fine structure, and may be
quantified mathematically with essentially different mathematical measures such as the
continuous measure of symmetry, Voronoi (Shannon) entropy and Minkowski function-
als [61-81]. Thus, a unique mathematical measure quantifying “order” in biological sys-
tems does not exist. It was demonstrated that the maxima and minima of the Shannon
entropy and continuous measure of symmetry are not necessarily correlated; moreover,
in certain cases, maxima of the continuous measure of symmetry may correspond to the
minima of the Shannon entropy [78]. Accurate quantification of ordering and symmetry
in biological patterns is well-expected to be a hot theme of the nearest future mathematical
biology investigations. Consider, that “physical ordering”, as quantified by the Boltzmann
entropy, and symmetry are in the intimate relation: symmetry usually decreases the Boltz-
mann entropy of systems [10, 11].

Moreover, breaking of symmetry and asymmetry are crucial for understanding bio-
logical phenomena [34, 86-87]. For example, breaking symmetry is a crucial step in the
development of all of biological systems [34]. Thus, the Curie-Minnigerode-Neumann
Principle, may re-shaped for biological systems as follows: “Asymmetry is what creates a
biological phenomenon” [82, 83]. Thus, we conclude that symmetry and ordering, abun-
dant in biologically rooted patterns, could be hardly related to a single, unique physical
or evolutionary reason. We conclude that general unifying theory of symmetry in biology
does not exist, and, perhaps, has no chance to be developed. However, the role of sym-
metry/asymmetry reasoning in understanding biological phenomena is crucial.
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