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Simple Summary: Histological differentiation is critical given the possibility of lymph node metas-

tasis of gastric cancer. We developed a weakly supervised learning technique for tissue-level gastric 

cancer adenocarcinoma histological classification (well-to-moderately or poorly differentiated). We 

cropped tissue regions from whole slide images (WSIs) and performed tissue-level labeling. The 

tissue-level areas under the receiver operating characteristic (AUROC) curves of the histological 

differentiation classifiers were 0.953, 0.969, and 0.943, respectively, when data from five hospitals 

were subjected to threefold cross-validation. Class-discriminatory regions can be visualized using 

Grad-CAM technique. The results of our weakly supervised model are easy to visually interpret, 

and indicate that tissue-level learning could aid histopathological classifications that require a wide 

field of view, such as grading of differentiation. 

Abstract: Histologically poor differentiation is associated with lymph node metastasis. Thus, patho-

logical evaluation of biopsy specimens is crucial when treating stomach cancers. Deep learning of 

WSIs is challenging because the images are enormous. Given the computing limitations, patch-level 

supervised learning methods have been proposed. However, valuable information is lost when di-

viding WSIs into smaller patches. Another drawback is the need for pixel-level annotation by a 

pathologist. It is acceptable to differentiate, i.e., grade, gastric cancer at the holistic tissue level (i.e., 

under low magnification). We developed a weakly supervised learning technique for tissue-level 

gastric adenocarcinoma histological differentiation (well-to-moderately or poorly differentiated) 

and applied global reasoning to tissue-level features. The tissue-level AUROCs of the histological 

differentiation classifiers were 0.953, 0.969, and 0.943, respectively when data from five hospitals 

were subjected to threefold cross-validation. Comparison of the Grad-CAM heatmaps of the trained 

classifier and the pathologists’ annotations confirmed that our weakly supervised model exhibited 

performed well. 
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1. Introduction 

According to the Global Cancer Statistics report of 2020, stomach cancer ranked fifth 

in terms of incidence and fourth in terms of mortality [1]. In Japan, gastric cancer biopsy 

specimens are histologically classified as differentiated (tubular and papillary adenocar-

cinomas) or undifferentiated (poorly differentiated [PD] adenocarcinomas and signet ring 

cell carcinomas) [2]. As histologically poor differentiation is associated with lymph node 

metastasis, pathological examination of biopsy specimens is crucial [3].  

Digital pathology employing deep learning is progressing rapidly [4]. However, 

deep learning of whole slide images (WSIs) remains challenging because the images are 

enormous. Given the computing limitations, patch-level supervised learning methods 

have been proposed. These methods divide WSIs into smaller patches (e.g., 224 × 224 pix-

els) for processing using a convolutional neural network (CNN) [5-11]. Patch-level super-

vised learning requires pixel-level annotation by pathologists, which is extremely labori-

ous; moreover, pathologists often disagree [12].  

Recent studies have explored weak supervision methods. Gradient-weighted class 

activation mapping (Grad-CAM) [13] is a visualization technique widely used by those 

researching weakly supervised learning. Grad-CAM highlights class-relevant discrimina-

tory regions by calculating gradients in feature maps.  

WSI-level weakly supervised methods [multiple instance learning (MIL) and whole-

side training methods] are emerging [14-20]. A whole-slide training method [21] facilitates 

deep learning of entire WSIs using several GPU memory optimization techniques. How-

ever, such learning is highly demanding in terms of GPU memory, which slows learning 

[22].  

We developed a weakly supervised learning technique for tissue-level gastric cancer 

histological differentiation (well-to-moderately differentiated [WMD] or PD). As large ar-

eas of biopsy images are white, tissue-level processing eliminates a great deal of unneces-

sary information. After cropping the tissue area, model training is possible without the 

need for GPU memory optimization. Our model is weakly supervised; it learns only tis-

sue-level labels; there is no need for pixel-level annotation. Class-discriminatory regions 

can be visualized using Grad-CAM after training the deep learning classifier. 

2. Materials and Methods 

2.1. Subsection 

A total of 680 hematoxylin-and-eosin (H&E)-stained histopathological stomach can-

cer specimens were collected from the surgical pathology files of five South Korean hos-

pitals cooperating to build an AI algorithm for pathologists (the AI-ALPA consortium): 

CHA Bundang Medical Center (CHABMC), Keimyung University Dongsan Medical Cen-

ter (KUDMC), Dankook University Hospital (DUH), Yonsei University Hospital (YUH), 

and Ewha Womans University Medical Center (EWUMC). 

2.2. Pathological Diagnosis 

Pathologists from all five institutions performed annotation using QuPath software 

[23]. The AI-ALPA consortium classifies gastric cancer as WMD or PD adenocarcinomas. 

First, the pathologists selected the gastric biopsy regions of the WSIs with the most repre-

sentative high-quality adenocarcinoma areas and drew regions of interest (ROIs). Then, 

selected tissues were annotated at the pixel level as WMD or PD. An example is shown in 

Figure 1A. 
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Figure 1. Extraction of tissue of interest from an annotated WSI (A) The annotated WSI (the green 

rectangle indicates the region of interest; WMD areas are indicated in blue within the rectangle). (B) 

The tissue from the annotated WSI. The rectangle was resized to 2,048 × 2,048 pixels. 

2.3. The Deep Learning Model 

For tissue-level labeling, we first cropped the tissue regions on all annotated WSIs. 

The ROIs drawn during annotation were extracted. As an example (Figure 1), the WSI is 

very large (155,376 × 28,456 pixels). However, the size of the green ROI rectangle contain-

ing the tissue of interest is only 11,256 × 12,384 pixels. When resizing the ROI regions, 

12,384 × 12,384-pixel squares were used; each side of the square was as long as the longer 

side of the rectangle. Each tissue was resized to 2,048 × 2,048 pixels (Figure 1B). The 

OpenSlide [24] library was used to extract specific regions from WSI images.  

Figure 2 illustrates the entire workflow. Figure 2A shows tissue-level labeling. As 

described above, 2,048 × 2,048-pixel tissue images were extracted from annotated AI-

ALPA WSIs, followed by tissue-level labeling based on annotations within the ROI region. 

We classified the ROI type as mixed when WMD and PD annotations co-existed. Mixed-

type ROIs were used for testing only, i.e., not for training. To train the classifier, we used 

only pure WMD and PD tissues.  

The ResNet-50 [25, 26] classifier was trained to classify the 2,048 × 2,048-pixel images 

as WMD or PD (Figure 2B). Figure 3 shows the architecture of the ResNet-50 network; this 

CNN has 50 layers in five convolution blocks. The blocks differ slightly from those of 

conventional CNNs; identity connections between the layers deal with the vanishing gra-

dient problem of deep neural networks. The network was implemented using the PyTorch 

[27] library. We used an NVIDIA RTX A6000 GPU (which supports 2,048 × 2,048-pixel 

images) to train the classifier and performed threefold cross-validation to test the perfor-

mance of the algorithm when evaluating the multi-institutional data. 

Figure 2C shows the inference step. For each WSI, the tissue regions are individually 

identified, and the histological classes predicted, using the ResNet-50 classifier; the Grad-

CAM heatmap of the predicted class is then displayed. 

The foreground extraction technique was used for automatic WSI tissue identifica-

tion. Other foreground extraction algorithms have been described. Bug et al. [28] devel-

oped a filter-based algorithm, and Bandi et al. [29] a fully convolutional deep learning 

approach, for tissue segmentation. In contrast, we used a simpler empirical method. Note 

that we only require the bounding box containing the tissue region; it is not necessary to 

precisely segment tissue. Figure 2C shows an automatic tissue identification result. For 

each WSI, we converted the RGB (red, green, blue) scale to an HSV (hue, saturation, and 

value) scale. H, S, and V were expressed as values between 0 and 255. The S channel value 

indicates that 0 is achromatic (gray), while 255 is clear (pure color). We extracted only the 

portion wherein the S value was ≥ 4. Next, dilation and erosion were applied for noise 

reduction. Finally, we drew bounding boxes (on the original WSI) around each compo-

nent of the extracted foreground. The algorithm accurately identified the foreground. To 

visualize the result, we subjected the trained ResNet-50 classifier to Grad-CAM analysis. 

We compared the Grad-CAM heatmap to the pathologists’ annotations to confirm that 

our weakly supervised model performed well. 
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Figure 2. Workflow of the weakly supervised approach toward gastric cancer histological differen-

tiation and adenocarcinoma classification. (A) Tissue extraction from the WSIs and categorization 

into two classes (well-to- moderately differentiated [WMD] or poorly differentiated [PD]) based on 

the pathologists’ annotations (the ROI rectangle, WMD, and PD areas are indicated in green, blue, 

and black respectively). (B) The ResNet-50WMD/PD classifier was trained using the categorized 

WMD/PD 2,048 × 2,048-pixel tissues. (C) Inference: For each WSI, all tissue regions are identified 

individually using bounding boxes. The trained ResNet-50 classifier predicts the histological differ-

entiation and the Grad-CAM heatmap interprets the predictions. 
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Figure 3. The ResNet-50 model architecture. The notation [n×n Conv, m] in each block denotes a 

filter of size n with m channels. FC 2 is the fully connected layer with two neurons. The numbers on 

top of the blocks are the repetitions of each unit. The connections within the residual blocks are the 

skip connections applied (using the summation function) to connect all predictive feature-maps. 

3. Results 

3.1. Tissue Extraction 

A total of 714 ROIs were marked on 680 slides. Figure 4 shows the distribution of the 

longest ROI side lengths. A total of 673 tissues were used; we excluded areas with side 

lengths > 20,000 pixels. The average length (longer side) of an ROI was 8,246 pixels. When 

resizing to 2,048 × 2,048 pixels, the average ROI downscaling was 4.03-fold. Chen et al. 

[21] downscaled the WSIs fivefold (i.e., to 0.2-fold the original size) for whole-slide train-

ing. As the lung cancer type classification performance was excellent (AUROC of 0.959 for 

adenocarcinomas), our smaller downscaling process is acceptable.  

Tissue-level labels were assigned based on annotations in the ROIs. Table 1 lists the 

numbers of tissues for each institution and class. CHABMC and EWUMC were grouped, 

as well as DUH and YUH, prior to cross-validation. We used three groups because 

EWUMC and YUH process fewer tissues than the other institutions (Table 2). 

 

Figure 4. The ROI lengths of the AI-ALPA-annotated dataset. 

Table 1. Numbers of labeled tissue of the AI-ALPA consortium. 

Hospitals WMD PD Mixed Total 

CHABMC 91 45 9 145 

EWUMC 51 14 0 65 

KUDMC 114 61 10 185 

DUH 109 59 11 179 

YUH 47 47 5 99 

Total 412 226 35 673 
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Table 2. The threefold cross-validation scheme involving five institutions. 

 Train Validation 

Fold 1 DUH+YUH, KUDMC CHABMC+EWUMC 

Fold 2 CHABMC+EWUMC, KUDMC DUH+YUH 

Fold 3 CHABMC+EWUMC, DUH+YUH KUDMC 

3.2. Classification Performance  

The WMD and PD tissue classification performances are shown in Table 3. The areas 

under the receiver operating characteristic (AUROC) curves and accuracies of the valida-

tion datasets for all folds are listed. The AUROC 95% confidence intervals were estimated 

using the Delong method [30]. The AUROC scores were > 0.943 for all folds. Figure 5 

shows the confusion matrices and ROC curves for all folds. 

 

Figure 5. Three-fold validation of the tissue classifiers used for histological differentiation of gastric 

cancer. (A–C) Confusion matrices and receiver operating characteristic curves for folds 1–3, respec-

tively. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2022                   doi:10.20944/preprints202208.0080.v1

https://doi.org/10.20944/preprints202208.0080.v1


 

 

Table 3. AUROC and accuracy values obtained by applying our method to the validation sets of all 

folds for histological classification of gastric cancer. 

 AUROC Accuracy (%) 

Fold 1 0.953 [CI: 0.922-0.984] 89.0 

Fold 2 0.969 [CI: 0.950-0.988] 92.0 

Fold 3 0.943 [CI: 0.913-0.974] 85.6 

3.3. Visual Interpretation 

Our model performed impressively, but it was necessary to understand how it made 

decisions. Class-discriminant regions can be visualized by Grad-CAM. Figure 6 compares 

the Grad-CAM visualizations (right panels) and pathologist annotations (left panels) of 

the validation set. The numbers in parentheses are the classifier output scores for the pre-

dicted class. All output scores are between 0 and 1 because we normalized the classifier 

outputs using the SoftMax activation function. 

 

Figure 6. Comparison of pathologists’ annotations and the Grad-CAM heatmaps generated by a 

classifier acting on the validation set. (A) A tissue with a PD annotation (black contour) and the 

heatmap for the PD class. (B) A tissue with a WMD annotation (blue contour) and the heatmap for 

the WMD class. 

We next explored whether our model could identify representative information with-

out pixel-level annotation. We used a ”pointing game” to quantify model performance 

[31]. We extracted the location of the largest Grad-CAM pixel from each heatmap to 
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determine if it was included in the reference annotation (Figure 7). A ”hit” occurs when 

the largest Grad-CAM pixel was within the reference annotation; all other cases were 

“misses”. The Grad-CAM performance was given by the hit rate across the dataset (Table 

4). The human experts and artificial intelligence were in good agreement. 

 

Figure 7. Evaluation of visualization performance using a pointing game. (A) A “hit” result; the 

largest Grad-CAM pixel is inside the reference annotation (B) A “miss” result. 

 

Figure 8. Drawing the inference for a mixed-type tissue. (A) Annotations of the mixed-type tissue 

(WMD and PD areas are indicated by blue and black contours, respectively). (B) The Grad-CAM 

score thresholding result for each class. (C) The Grad-CAM heatmap for the WMD class. (D) The 

Grad-CAM heatmap for the PD class. 
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Table 4. Grad-CAM performance, as indicated by the hit rate for each class. 

 WMD PD 

Fold 1 0.859 0.780 

Fold 2 0.917 0.847 

Fold 3 0.886 0.770 

For mixed-type tissues, (with both PD and WMD annotations), representative infor-

mation is disclosed when both PD and WMD heatmaps are drawn. A pathologist’s anno-

tation of one mixed-type case is shown in Figure 8A. To compare the annotation and Grad-

CAM heatmap, we used a threshold to binarize the heatmap (Figure 8B). The threshold 

was 20% of the maximum Grad-CAM score. Figure 8C, D show the original WMD and 

PD Grad-CAM heatmaps. Similarity is evident between the pathologist’s annotation and 

binarized Grad-CAM heatmap. 

4. Discussion 

We developed a weakly supervised learning technique for tissue-level gastric cancer 

histological differentiation without the need for pixel-level annotation. The ResNet-50 bi-

nary classifier well-discriminated WMD and PD tissues. The data of five hospitals were 

visually interpretable and robust following threefold cross-validation.  

Jang et al. [32] used deep learning to build a gastric cancer classification system. They 

divided WSIs into patches and used different classifiers to sequentially discriminate nor-

mal/tumor and differentiated/undifferentiated tumor patches. As each WSI was divided 

into small patches, a two-stage approach was necessary. The AUROC was 0.932 for dif-

ferentiated/undifferentiated patch classification. However, the performance of the nor-

mal/tumor patch classifier should be considered when discussing differentiated/undiffer-

entiated classification performance. Although the AUROC of the former classifier was 

high (0.993), it was not 1. Thus, when the two stages are considered together, the overall 

differentiated/undifferentiated patch classification performance is reduced. 

For diagnosis, low magnification is used for a global overview, followed by high 

magnification to examine local features [33]. Our global reasoning process focuses on tis-

sue-level features (analogous to low magnification). We expect that performance can be 

improved by adding other global (e.g., glandular architecture) and local (e.g., nuclear) 

features.  

Valuable information is lost when slides are divided into small patches. In particular, 

geometric relationships between patches are discounted [34]. Another drawback is the 

need for pixel-level annotation by a pathologist. Our weakly supervised approach does 

not require such annotation, so the burden on experts is reduced. Unlike earlier ap-

proaches, we do not apply patching. We found that histological classification of gastric 

adenocarcinoma and visual interpretation were possible using only tissue-level (weak) 

annotations. In addition, our one-stage model is simpler than the previous model. 

Chen et al. [21] used entire WSIs for training, but resized them to 0.2-fold the original 

size. The downscaled images were then “padded” to 21,500 × 21,500 pixels. In other 

words, the original WSI must be smaller than 107,500 × 107,500 pixels. We could not use 

this method because our WSIs were too large. 

WSI-level weakly supervised learning consumes a large amount of GPU memory; 

patch-level learning ignores wide features and requires pathologist annotations. A tissue 

is larger than a patch and smaller than a WSI. Tissue-level weakly supervised learning 

does not consume much GPU memory, can be used to explore a wide range of histological 

features, and does not require annotations. Despite these advantages, few tissue-level 

deep learning studies have been conducted because tissue area extraction is manual [35]. 

However, due to developments in WSI foreground extraction, we can now automatically 

extract tissues from images, such that there are now no obstacles to tissue-level analysis.  

Our downsizing method could be improved. We extracted 2,048 × 2,048-pixel images. 

Thus, each ROI was downscaled to some extent, and the microns (μm) per pixel varied. 
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Also, image quality may be reduced by downscaling. Nevertheless, we obtained the 

global features despite these disadvantages. 

The visual interpretability of the Grad-CAM heatmap is important. Grad-CAM high-

lights areas that strongly affect predictions, and showed excellent agreement with the 

pathologists. The heatmap also explains false predictions. The Grad-CAM heatmaps for 

some falsely predicted cases are shown in Supplementary Figure S1. Reactive atypia may 

have contributed to misclassification [36]. Glands that are inflamed become slightly de-

formed, which can lead to misclassification. 

Hwang et al. [37] showed that PD gastric cancer components were associated with 

lymph node metastasis. Pathologist judgments of differentiation are subjective and time-

consuming. Our method yields a Grad-CAM score in cases of poor differentiation. We 

plan to work with pathologists to understand how Grad-CAM scores vary according to 

the extent of differentiation. We expect that our method will accurately predict lymph 

node metastasis. 

5. Conclusions 

In general, whole WSIs are too large, while patches are too small, for pathological 

analysis. Tissue-level analysis is thus appropriate. We found that class-discriminative fea-

tures were revealed by Grad-CAM visualization of deep learning classifications. Thus, 

tissue-level annotations suffice for deep learning of gastric adenocarcinoma histological 

differentiation. Such learning is applicable to many histopathological classification prob-

lems that require wide fields of view (such as normal/abnormal decision-making). Our 

work will aid the development of deep learning-based pathological diagnoses. Our 

weakly supervised method automatically visualizes the PD component of gastric cancer. 

If the algorithm can be improved to quantify PD components in WSIs, gastric cancer treat-

ment could be optimized. Also, lymph node metastasis and the need for surgery could be 

predicted. 

Supplementary Materials: Figure S1: The Grad-CAM heatmaps for each class of false predictions. 
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