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Abstract: Deep Learning (DL) and Machine Learning (ML) are widely used in many fields, but 
rarely used in Frequency Estimation (FE) and Slope Estimation (SE) of signals. Frequency and slope 
estimation for Frequency-Modulated (FM) and single-tone sinusoidal signals are essential in various 
applications, such as wireless communications, sonar, and radar measurements. In this work, arti-
ficial neural network (ANN) and convolutional neural network (CNN) are used in frequency and 
slope estimation for FM signals under Additive White Gaussian Noise (AWGN) and Additive Sym-
metric alpha Stable Noise (SαSN). SαS distributions are impulsive noise disturbances found in many 
communication environments like marine systems; their distribution lacks a closed-form Probabil-
ity Density Function (PDF), except for specific cases, and infinite second-order statistic, hence Geo-
metric SNR (GSNR) is used in this work to determine the impulsiveness of noise in a mixture of 
Gaussian and SαS noise processes.  ANN is a machine learning classifier, designed with few layers 
for reducing FE and SE complexity while getting higher accuracy as compared with classical tech-
niques. CNN is a deep learning classifier, designed with many layers for FE and SE, and proved to 
be more accurate than ANN when dealing with big data and finding optimal features. Simulation 
results show that SαS noise can be much more harmful for FE and SE of FM signals than Gaussian 
noise. DL and ML can significantly reduce FE complexity, memory cost, and power consumption, 
which is important in many systems such as some Internet of Things (IoT) sensor applications. After 
training DCNN for frequency and slope estimation of LFM signals, the performance of DCNN (in 
terms of accuracy) can give acceptable results at very low signal-to-noise ratios where TFD fails, 
giving more than 20dB difference in the GSNR working range. 

Keywords: Frequency estimation; FM; sensors; Internet of Things (IoT); software-defined radio 
(SDR); alpha-stable noise; time-frequency distribution; deep learning 
 

1. Introduction 
Frequency estimation is utilized in various engineering applications, including com-

munications, RADAR, frequency identification of sinusoidal signals, and resonance sens-
ing systems [1, 2]. Many signals in practice are nonstationary, such as Frequency Modu-
lation (FM) that is signal found in communication and other application. Those signals 
can be classified as either mono-component or multicomponent signals. Machine learning 
and deep learning methods are important in many fields such as frequency classification, 
intrusion detection system (IDS) [3], landslide detection [4], Software Defined Networking 
(SDN) [5], smart logistics [6], and a gait type classification [7], that allow communication 
between devise and run task; which led to Internet of Things (IoT). When devices are in-
creased the amount of data increases (big data). Machine learning is used to analyze these 
data and to deal with efficiently to make meaningful and valid decisions [8]. Liu Jinyu 
(2020) proposes an algorithm for frequency estimation of sinusoidal FM signal using an 
interpolation of Fast Fourier Transform (FFT) and Discrete-Time Fourier Transform 
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(DTFT), relying on N-point FFT to find the position of the maximum FFT; then three spec-
tral lines located within the main lobe are used to estimate the frequency [9]. Akram J. 
(2020) studies the instantaneous frequency estimation of multi-component signals within 
the time-frequency domain, where a combination of Eigen decomposition of time-fre-
quency distributions and time-frequency filtering is used to extract signal components 
and estimate their instantaneous frequencies using the ridge detection and tracking pro-
cedure [10].  Xu S., & Shimodaira H. (2019) offer a method that relies on neural networks 
to F0 estimate. It includes two sub tasks as a classification to determine whether or not the 
frame has voice, and a regression for estimating the (F0) value. Single model is used for 
both; output is (F0) values for voice frames and zero for unvoiced frames [11]. Bruno Silva 
et al. (2018) proposes to estimate the Doppler frequency by using Artificial Neural Net-
work (ANN). The results explain that this method has a better performance and lower 
computational cost than the traditional methods like Robust Chinese Remainder Theorem 
(RCRT). They use an ANN with 3 neurons in input layer (remainders by RCRT), 10 neu-
rons in hidden layer, and 17 neurons in output layer.  It is randomly divided into 3 parts: 
60% is used for training, 10% is used for validation and 30% is used for test [12]. Chen 
Xiaolong, & et al. (2019) introduce a model that relies on convolutional neural network to 
signal frequency signal and LFM signal detection and estimation. The pre-trained model 
is based on signals with 2-dimensional domain and content multiple convolutional layers, 
pooled layers and fully connected layers, and finally softmax classification is used as the 
output layer [13]. In various applications, such as wireless communications and image 
processing, the Symmetric α-Stable (SαS) noise is widely encountered. Liu Xuelian et al. 
(2017), analyze the characteristics of α-stable noise, and the chirp signal in α-stable noise 
is converted into Gaussian-like distribution. Then, using fractional Fourier transform to 
estimate the initial frequency and chirp rate of signal in α-stable noise [14].  Generally, it 
is difficult to estimate the parameters of FM signal under a mixture of α-stable noise 
(which is a type of non-Gaussian noise) and Gaussian noise.  

The rest of this paper is outlined as follows: Section 2 introduces problem. Section 3 
introduces objective. Section 4 introduces instantaneous frequency and FM. Section 5 in-
troduces additive white Gaussian noise. Section 6 presents symmetric α-stable noise. Sec-
tion 7 introduces machine learning. Section 8 introduces deep learning. Section 9 intro-
duces metrics. Section 10 and 11 introduces IF estimation based on DNN & CNN, and 
TFD. Section 12 discusses the results, and Section 13 presents the conclusion of the paper.
  

1. Problem 
Two fundamental issues in signal processing are signal estimation and signal sepa-

ration of nonstationary signals. In signal estimation issue, we estimate the Instantaneous 
Frequency (IF) of Frequency Modulated (FM) signals under 𝛼𝛼−stable noise.  FM signals 
are used in many engineering applications, such as in radar, sonar, and communications. 
Such signals contain the intended information in the frequency content. In telecommuni-
cations when information bearing signal is sent through a communication channel, trans-
mitted FM signal is corrupted with noise or interference (other signals in the same com-
munication channel). At the receiving end, it needs to recover the intended information 
from receive signal. In case of FM signal, intended information is the frequency content. 
Accurate frequency estimation leads to accurate recovery of the true information [39, 10]. 

2. Objectives 
The problem of Frequency Estimation (FE) is processed by classical techniques such 

as Fourier and correlative techniques. Moreover, the same problem is processed by deep 
neural networks and CNN.  This work aims to provide an accurate and fast estimation 
of IF and instantons slope, thus deep learning for frequency classification is promising. 
The proposed method has RADAR and medical sonar applications, where radar functions 
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include range (localization), angle, and velocity. Medical sonar functions include diagno-
sis, classification, and tracking. The consequences are improved radar localization; im-
proved medical sonar diagnosis. Frequency Modulate (FM) is reduced antenna length, 
allowing multiple transmission within the same channel for different frequencies, and 
SNR reduction which is so important in network communication system. 

3. Instantaneous Frequency and FM 
The instantaneous frequency, which describes the frequency content's variations 

with time, is an essential characteristic of FM signals. The IF of a signal is a derivative of 
its instantaneous phase (𝜃𝜃(𝑡𝑡)) concerning time is [15, 16]: 

𝑓𝑓𝑖𝑖(𝑡𝑡) =
1

2𝜋𝜋
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (1) 

𝜃𝜃 =  2𝜋𝜋(𝑓𝑓𝑜𝑜𝑡𝑡 +  𝐸𝐸
𝑡𝑡2

2
 +  𝐺𝐺

𝑡𝑡3

3
) (2) 

In this work, the signal model having Linear Frequency Modulation (LFM) law is [17]: 

𝑠𝑠(𝑡𝑡) = 𝐴𝐴 𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓𝑜𝑜𝑡𝑡+
𝛼𝛼
2𝑡𝑡

2� (3) 

where α is the linear modulation index, 𝑓𝑓𝑜𝑜 is the initial frequency (in Hertz), and 𝐴𝐴 being 
the amplitude. Using Eq. (1), the LFM signal IF will be [18]: 

𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑜𝑜 + 𝛼𝛼𝛼𝛼 (4) 

Quadratic Frequency Modulation (QFM) signal has also been considered in this work 
with quadratic IF law as follows: 

𝑠𝑠(𝑡𝑡) = 𝐴𝐴 𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓𝑜𝑜𝑡𝑡+
𝛼𝛼
2𝑡𝑡

2+𝛽𝛽3𝑡𝑡
3� (5) 

where β is the quadratic modulation index of the QFM signal, with the quadratic IF law: 

𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑜𝑜 + 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝑡𝑡2 (6) 

4. Additive White Gaussian Noise 
Additive White Gaussian (AWG) noise has the following probability density func-

tion (PDF) with zero mean and variance (power) 𝜎𝜎2 [19]: 

𝑝𝑝(𝑛𝑛) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−𝑛𝑛2/2𝜎𝜎2 (7) 

where 𝑛𝑛 is a random variable and 𝜎𝜎 is the standard deviation of the noise.  
 

The procedures of generating AWGN is as follows:  
1. Calculating the power contained in the input signal (x), were  

𝑝𝑝𝑥𝑥 = 1
𝐿𝐿
∑  𝐿𝐿−1
𝑖𝑖=0 |𝑥𝑥[𝑖𝑖]|2,  𝐿𝐿 =  length(𝑥𝑥)    (8) 

 
2.  Converting the supplied 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆 in 𝑑𝑑𝑑𝑑) to a linear scale and finding the noise 

power in terms of SNR and signal power (𝑝𝑝𝑥𝑥), were 

𝑆𝑆𝑆𝑆𝑆𝑆 =  10𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/10 ;    𝑁𝑁0 = 𝑝𝑝𝑥𝑥/𝑆𝑆𝑆𝑆𝑆𝑆    (9) 

3.  Using the following equations to determine the AWG noise: 

𝐺𝐺𝑛𝑛 = 𝜎𝜎 × 𝑛𝑛.  if 𝑋𝑋 is real    (10 a) 

𝐺𝐺𝑛𝑛 = 𝜎𝜎 × (𝑛𝑛 + 𝑖𝑖 𝑚𝑚). if x is complex (10 b) 
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where 𝑛𝑛,𝑚𝑚 ∈ 𝒩𝒩(0,𝜎𝜎2). For a real signal 𝜎𝜎 = �𝑁𝑁0,  for a complex signal 𝜎𝜎 = �𝑁𝑁0/2. 

5. Symmetric Alpha-Stable Noise 
Symmetric α-Stable distribution noise requires 4 parameters (𝛼𝛼, 𝛾𝛾, 𝛽𝛽, and µ), with 

characteristic function defined as [20, 21]: 

𝜓𝜓(𝜔𝜔) = exp (−𝛾𝛾|𝜔𝜔|𝛼𝛼)    (11) 

where (0 < α ≤ 2) is also known as the tail index or characteristic exponent. When α < 2, 
the distribution is algebraic-tailed with a constant tail α, meaning infinite variance. The 
density tails become heavier as it gets smaller. When α = 2, the SαS distribution is reduced 
to the Gaussian distribution. When α = 1 and β = 0, the SαS distribution is reduced to the 
Cauchy distribution. When α = 0.5 and β = 1, SαS distribution is reduced to the lévy dis-
tribution. The parameter γ>0, usually called the dispersion, is a positive constant related 
to the distribution scale. The parameter γ plays a role that is analogous to that of the var-
iance for a second-order process. Skewness parameter is β ∈ [−1, 1]. Location parameter is 
µ ∈ R. The procedures of SαS are as follows: 

 
1. For β=0 any symmetric alpha-stable noise (𝑁𝑁𝑆𝑆), then generating a random varia-

ble (V) uniformly distributed, and independent exponential random variable (W) 
as follows:   

𝑉𝑉 =  𝜋𝜋
2

×  (2𝑢𝑢 −  1)    (12) 

𝑊𝑊 =  −log(𝑣𝑣)) (13) 

where 𝑢𝑢,𝑣𝑣 ∈ 𝒰𝒰, the standard uniform distribution.  

𝑁𝑁𝑆𝑆 =
sin(𝛼𝛼 × 𝑉𝑉)
{cos (𝑉𝑉)}1/𝛼𝛼 × �

cos(𝑉𝑉 × (1 − 𝛼𝛼))
𝑊𝑊

�
(1−𝛼𝛼)/𝛼𝛼

 (14) 

 
2. For 𝛼𝛼 ≠ 1 , generating a random variable (𝑉𝑉) uniformly distributed, and inde-

pendent exponential random variable (𝑊𝑊)  as follows: 

𝑉𝑉 =  𝜋𝜋 ×  (𝑢𝑢 −  0.5)    (15) 

𝑊𝑊 =  −log(𝑣𝑣)) (16) 

𝑁𝑁𝑆𝑆 = 𝑆𝑆𝛼𝛼,𝛽𝛽 ×
sin�𝛼𝛼�𝑉𝑉 + 𝐵𝐵𝛼𝛼,𝛽𝛽��

{cos (𝑉𝑉)}1/𝛼𝛼 × �
cos�𝑉𝑉 − 𝛼𝛼�𝑉𝑉 + 𝐵𝐵𝛼𝛼,𝛽𝛽��

𝑊𝑊
�

(1−𝛼𝛼)/𝛼𝛼

 (17) 

𝑆𝑆𝛼𝛼,𝛽𝛽 = �1 + 𝛽𝛽2tan2 �
𝜋𝜋𝜋𝜋
2
��

1/(2𝛼𝛼)
 (18) 

𝐵𝐵𝛼𝛼,𝛽𝛽 =
arctan �𝛽𝛽 tan𝜋𝜋𝜋𝜋2 �

𝛼𝛼
 (19) 

When scale and shift are applied as equation, we have 

𝑁𝑁𝑠𝑠𝑠𝑠 = 𝜎𝜎𝑁𝑁𝑆𝑆 + 𝜇𝜇    (20) 

3. For 𝛼𝛼 = 1, generating a random variable (𝑉𝑉) and  (𝑊𝑊)  as above:   

𝑁𝑁𝑆𝑆 = 2
𝜋𝜋
��𝜋𝜋

2
+ 𝛽𝛽𝛽𝛽� tan 𝑉𝑉 − 𝛽𝛽log �

𝜋𝜋
2𝑊𝑊cos 𝑉𝑉
𝜋𝜋
2+𝛽𝛽𝛽𝛽

��    (21) 

When scale and shift are applied as equation, we have:  
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𝑁𝑁𝑠𝑠𝑠𝑠 = 𝜎𝜎𝑁𝑁𝑆𝑆 + 2
𝜋𝜋
𝛽𝛽𝛽𝛽log 𝜎𝜎 + 𝜇𝜇    (22) 

6. Machine Learning 
ML is kind of artificial intelligence technique which can automatically detect benefi-

cial information from huge datasets. Machine Learning systems can be classified accord-
ing to the amount and type of supervision they get during training. There are many clas-
sification algorithms [22] like Support Vector Machines (SVMs) [23], Naïve Bayesian (NB) 
[24], K-Nearest Neighbors (KNN) [25], Decision Tree (DT) [26], and Artificial Neural Net-
work (ANN). This work is based on artificial neural network to frequency and slope clas-
sification. ML is divided into four types: supervised learning, unsupervised learning, 
Semi-supervised, and reinforcement learning, this work is based on supervised learning. 

1. A supervised learning algorithm takes a known set of features and known re-
sponses to the data (decision) and trains a model to generate reasonable predic-
tions for new data. It is mainly used in classification algorithms and regression 
algorithms. The aim of the supervised learning is to construct a model that makes 
predictions based on evidence in the presence of uncertainty [27].  

2. Unsupervised learning It is used to draw inferences from a dataset consisting of 
features without a decision. When new data is introduced, it uses the previously 
learned features to recognize the decision of the data. It is mainly used for cluster-
ing techniques and feature reduction [28]. 

3. Semi-supervised is the type of ML used that combines supervised and unsuper-
vised by combination unlabeled data and small amount labeled data. 

4. Reinforcement learning is a type of learning which makes decisions based on 
which procedures give a more positive result. The learner has no knowledge 
which procedures to take until it has been given a situation. 

 
Artificial Neural Network (ANN) is a kind of ML, it imitates the way human brains 

work. It contains an input layer, many hidden layers, and an output layer. The nodes in 
neighboring layers are fully connected. ANN includes a large number of nodes; it has 
strong ability for recognizing nonlinear functions. ANN with complex structure has train-
ing is time-consuming. ANN types are single layer neural networks and multi-layer neu-
ral networks. Single layer is neurons connect from input layer to output layer; it cannot 
include hidden layer. In multi-layer networks, single hidden layer is called shallow neural 
network, while two or more layers are called deep neural network [29]. This work is based 
on deep neural network. 

In ANN, there is a need for activation function and optimization algorithm. Activa-
tion function is mathematical operations run on the output. The activation functions are 
chosen depending on the type of problem to be solved by the network. The most common 
of activation functions are Sigmoid or logistic, and Hyperbolic tangent or tanh [30].  

Optimization algorithm is used to calculates the weights update, its four types are 
Gradient Descent (GD), RMSProp, Adam, and Levenberg-Marquardt optimization. GD is 
very popular optimization technique in machine learning. There are three types of GD: 
Batch, Mini-batch, and Stochastic Gradient Descent (SGD). Levenberg-Marquardt in ANN 
training and Adam in CNN training are used in this study. SGD is finding the error for 
each training data and adjusting the weights [31]. 

∆𝑊𝑊𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝛿𝛿𝑖𝑖𝑥𝑥𝑗𝑗     (23) 

where 𝜂𝜂 is Learning rate, 𝛿𝛿𝑖𝑖 is generalized delta rule, and output from the input node 𝑗𝑗, 
𝛿𝛿𝑖𝑖 = 𝑒𝑒𝑖𝑖  if linear activation function, 𝛿𝛿𝑖𝑖 = 𝜑𝜑′(𝑣𝑣𝑖𝑖)𝑒𝑒𝑖𝑖  if non-linear activation function, 𝜑𝜑′ is 
derivative of activation function and 𝑣𝑣𝑖𝑖  weighted sum of output node 𝑖𝑖. 
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Adaptive Moment Estimation (Adam) is the method used for computing adaptive 
learning rates for each parameter. Adam method is design depends on combining the ad-
vantages of two methods AdaGrad and RMSProp. Advantages of Adam are magnitudes 
of parameter updates are invariant, proper for problems that have large data, appropriate 
for problems with noise. The procedures of Adam are as follows [32]. 

 
1. Inputs: 𝛼𝛼.𝛽𝛽1.𝛽𝛽2. 𝑓𝑓(𝜃𝜃).𝜃𝜃0, where 𝛼𝛼 = 0.001, 𝛽𝛽1 = 0.9, 𝛽𝛽2= 0.999, 𝜀𝜀 = 10−8, 𝒢𝒢𝑡𝑡 

is gradients and 𝛽𝛽1𝑡𝑡 .𝛽𝛽2𝑡𝑡 we denote 𝛽𝛽1 and 𝛽𝛽2 of power 𝑡𝑡. 
2. Output: 𝜃𝜃𝑡𝑡. 
3. Initial parameters:  𝑚𝑚0 = 0. 𝑣𝑣0 = 0. 𝑡𝑡 = 0. 
4. while  𝜃𝜃𝑡𝑡 not converged do { 

t = t + 1;                                      𝒢𝒢t = ∇θft(θt−1) 
mt = β1. mt−1 + (1 − β1).𝒢𝒢t;    vt = β2. vt−1 + (1 − β1).𝒢𝒢t2 
mt

~ = mt + (1 − β1t );                vt~ = vt + (1 − β2t ) 
θt = θt−1 −

α. mt
~

(�vt~ + ϵ)�  

7. Deep Learning 
Deep learning is subset of machine learning. Deep learning techniques are used for 

big-data process such as image pattern recognition, speech recognition and synthesis, etc. 
It is required for CPU power increase, and powerful GPUs. The word "deep" refers to the 
large number of hidden layers that include the neural network [33]. Deep learning relies 
on Convolutional Neural Networks (CNN).  A CNN is a kind of ANN that consists input 
layer, output layer, and hidden layers [34]. Deep learning models consist of various deep 
networks, such as   deep neural networks (DNNs), deep brief networks (DBNs), convo-
lutional neural networks (CNNs), and recurrent neural networks (RNNs) which are su-
pervised learning models, but generative adversarial networks (GANs), auto encoders, 
and restricted Boltzmann machines (RBMs) which are unsupervised learning models. 
DNN works with multiple hidden layers and it works on 2-Dimensional (2D) data, thus 
the input data must be transformed into 2D matrices for frequency or slope detection. 
Convolutional Neural Networks (CNNs), the name “convolutional neural network” indi-
cates that the network employs a mathematical operation called convolution. Convolution 
is a specialized kind of linear operation. Convolution help improve a machine learning 
system. There are two types of convolutions: valid and same. Deep learning CNN models 
train and test, each input image will pass it through a series of convolution layers with 
filters (Kernels), Pooling, Fully Connected layers (FC) and apply Softmax function to clas-
sify an object [35, 31]. CNN converts the manual methods for extracting features into au-
tomatic processes. DCNN architecture is illustrated in Figure (1). 

1. Convolutional layer: It computes feature map as follows: 

OFea(x. y. f) = AF�∑ ∑ ∑ A(x + i. y + j. v) × W(i. j. v. f) + 𝑏𝑏(f)k
j=0

k
i=0

c
v=0 �    (24) 

where 𝑖𝑖. 𝑗𝑗 index of filter, 𝑣𝑣  number of channels, 𝑓𝑓  number of filters, 𝐴𝐴𝐴𝐴  is activation 
function. 

Three hyperparameters control the size of the output volume: the depth is number 
of filters, stride (𝑆𝑆 slide the filter) and zero-padding (𝑃𝑃 zeros around the border). Calcu-
lating number of neurons as follow: 

𝐻𝐻 = 𝑊𝑊 = 𝑛𝑛−𝑓𝑓+2×𝑃𝑃
𝑆𝑆

+ 1    (25) 

where 𝑓𝑓  is the size of filter and n is the size of input image. 

𝑝𝑝 = 𝑓𝑓−1
2

    (26) 

2. ReLU: is Rectified Linear Unit. The ReLU activation function performs depend-
ing on zero threshold. 
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ƒ(𝑥𝑥) =  max(0. 𝑥𝑥).    (27) 

3. Pooling layers: It reduces the number of parameters. Pooling can be of different 
types: Max, mini, and average pooling. Max pooling takes the maximum element 
from feature map, Mini take the minimum element from feature map, and aver-
age take the average element from feature map. 

𝐷𝐷(𝐿𝐿) = 𝐷𝐷(𝐿𝐿−1)    (28) 

𝐻𝐻(𝐿𝐿) =
𝐻𝐻(𝐿𝐿−1) − 𝐹𝐹(𝐿𝐿)

𝑆𝑆(𝐿𝐿) + 1 (29) 

𝑊𝑊(𝐿𝐿) =
𝑊𝑊(𝐿𝐿−1) − 𝐹𝐹(𝐿𝐿)

𝑆𝑆(𝐿𝐿) + 1 (30) 

where 𝐷𝐷 is depth of filters; 𝐻𝐻 &  𝑊𝑊 is high and width of images, 𝐿𝐿 is layer, 𝐿𝐿 − 1 is pre-
vious layer, 𝐹𝐹(𝐿𝐿) size of filters, and 𝑆𝑆(𝐿𝐿) stride. 

4. Fully Connected Layer: It is ANN, its input is 1D-array, where Flattening is con-
verted data into vector, all neurons in layer have full connections to all nodes in 
the previous layer. 

5. Softmax layer: It is used probabilities associated with many classes, where prob-
abilities summation equal one. Computing softmax layer is as follow: 

Softmax (𝑦𝑦𝑖𝑖) = 𝑒𝑒𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑦𝑦𝑗𝑗𝑗𝑗
     (31) 

6. Classification layer: It takes input value from the Softmax layer and assigns into 
one class by using the cross-entropy function. Cross entropy measure of different 
between actual outputs and predict outputs of the training data. It used as a loss 
function. 

𝐸𝐸(𝑦𝑦�. 𝑦𝑦) = −∑ 𝑦𝑦�𝑖𝑖log(𝑦𝑦𝑖𝑖)𝐶𝐶
𝑖𝑖=1     (32) 

          Where 𝐶𝐶 number of classes, 𝑦𝑦�𝑖𝑖 is actual value and 𝑦𝑦𝑖𝑖  predicted value. 

 
Figure 1. An illustration of the CNN architecture. 

Reduction of Overfitting in DNN: Overfitting usually happens when the amount of 
the used parameters (the capability of the network) is much larger than the number of 
training samples. A model with the problem of overfitting makes great predictions for 
training samples but poor ones for validation data. There are two ways to reduce the over-
fitting which are dropout and Data augmentation [36]. Dropout is introduced by Sri-
vastava et al [37], which means that each hidden neuron with probability 0.5 settings to 
zero.  
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Data augmentation: It is well-known that DNNs need to be trained on a large number 
of training samples to achieve satisfactory prediction and prevent overfitting. Data aug-
mentation is a simple and commonly-used method to artificially enlarge the dataset by 
methods such as: random crops, intensity variations, horizontal flipping, etc. [41]. Train-
ing DNN parameters are learning rates that improve learning output. Backpropagation is 
used to update weights, it relies on optimal algorithms, and epoch is training iterative for 
all training data. 

8. Metrics 
Many metrics are applied to evaluate machine learning and deep learning methods. 

The perfect models are chosen by using these measures [38]. 
 

1) Accuracy (Ac) is the rate of correctly classified samples to overall samples. 

Ac = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

    (33) 

2) Precision (P) is rate of true positive samples to predicted positive samples. 

𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (34) 

3) Recall (R) is rate of true positive samples to total positive samples. 

𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (35) 

4) F-measure (F) is average of the precision and the recall. 

𝐹𝐹 = 2∗𝑃𝑃∗𝑅𝑅
𝑃𝑃+𝑅𝑅

    (36) 

5) False Negative Rate (FNR) is rate of false negative samples to total positive 
samples. 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (37) 

6) False Positive Rate (FPR) is rate of false positive samples to predicted posi-
tive samples. 

where TP is the true positives; FP is the false positives; TN is the true negatives; and FN 
is the false negatives. 

9. IF Estimation Based on DNN and CNN 
A non-stationary signal is a signal that has a changing frequency content across time. 

This work relies on FM signals, which are affected by noise (AWGN and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
requires four parameters (𝛼𝛼. 𝛾𝛾.𝛽𝛽. 𝑎𝑎𝑎𝑎𝑎𝑎 µ). the most important parameters are tail index 
(𝛼𝛼)  and scale of the distribution  (𝛾𝛾 > 0) ; while the less important parameters are  
𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 µ. Gaussian noise is fixed power, 𝑆𝑆𝑆𝑆𝑆𝑆 noise is geometric power. 

Thermal noise is the primary cause of noise in electronic and communication sys-
tems. This noise process (typically additive) occurs due to the random thermal agitation 
of free electrons caused by an electrical current flowing through a conductor. This type of 
noise is white, meaning that its power spectral density is nearly equal throughout the fre-
quency spectrum. Therefore, thermal noise-affected communication systems are fre-
quently represented as an additive white Gaussian noise (AWGN) channel.  

Geometric SNR (GSNR) is used to determine noise impulsiveness, which is charac-
terized by zero-order statistics. Since all 2nd order moments are infinite, the standard SNR 
does not apply. Geometric power of  𝑆𝑆𝑆𝑆𝑆𝑆  is defined as follows: 

𝑝𝑝𝑆𝑆 = γ2.  𝐶𝐶�
2
𝛼𝛼−1�     (38) 
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𝐶𝐶 is the exponential of Euler's constant, 𝐶𝐶 = 𝑒𝑒𝐸𝐸𝐸𝐸   ≈ 1.7811, 𝐸𝐸𝐸𝐸 is Euler's constant 
(𝐸𝐸𝐸𝐸 = 0.5772156649). When 𝛼𝛼 = 2 , SαS noise is Gaussian noise with finite variance 
σ2 = γ2.  

GSNR = 𝑝𝑝𝑥𝑥/ γ2    (39) 

GSNRdB =  10 × log10(GSNR) (40) 

𝑝𝑝𝑥𝑥 = 𝐴𝐴2/2 (41) 

The received signals in wireless networks are corrupted by a noise that is a mixture 
of both Gaussian (NG) and SαS (NS) noises. Total noise (NT) represented in the equation: 

𝑁𝑁𝑇𝑇 = 𝑁𝑁𝐺𝐺 + 𝑁𝑁𝑆𝑆    (42) 

Overall GSNR is defined as follows,  

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (43) 

Let 𝑝𝑝𝑇𝑇  =  𝑝𝑝𝐺𝐺  + 𝑝𝑝𝑆𝑆, where pT total noise power, and  𝑝𝑝𝐺𝐺  be the Gaussian power.  If  
𝑝𝑝𝐺𝐺  =  𝑏𝑏 × 𝑝𝑝𝑆𝑆, then 𝑝𝑝𝑇𝑇  =  (1 + 𝑏𝑏) × 𝑝𝑝𝑆𝑆,   𝑝𝑝𝑆𝑆 = 𝑝𝑝𝑇𝑇

1+𝑏𝑏
, and 

𝑏𝑏 = 𝑝𝑝𝐺𝐺/𝑝𝑝𝑆𝑆    (44) 

If 𝑏𝑏 less than one, then 𝑝𝑝𝐺𝐺  less than 𝑝𝑝𝑆𝑆, else  𝑝𝑝𝐺𝐺  greater than 𝑝𝑝𝑆𝑆. The scale param-
eter is: 

𝛾𝛾 = �𝑝𝑝𝑆𝑆/𝐶𝐶�
2
𝛼𝛼−1�    (45) 

Consider AWG and 𝑆𝑆𝑆𝑆𝑆𝑆 noise affected by a single-tone sinusoidal and FM signals 
as follows: 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴. cos(𝜑𝜑 + ∅0) + 𝑁𝑁𝑇𝑇    (46) 

where 𝐴𝐴  signal amplitude, 𝜑𝜑 is an instantaneous phase, and  ∅0 initial phase. In this 
work, dataset generates FM noisy signals with frequencies and slopes different. It also 
uses Geometric SNR range 𝑠𝑠𝑠𝑠 ∈ [−50   50] dB. Dataset are included three types of FM 
signals are single tone sinusoidal, LFM, and QFM signals. Frequencies values are [10 19]; 
while slopes values are [0.1: 0.2: 1.0]. Frequencies and slopes estimation or classification 
by ANN and CNN are as follows: 

ANN Model: We used multi layered ANN. Its structure is input layer, two hidden 
layers, and output layer. Number of nodes in input layer is 101 nodes. Number of nodes 
in first and second hidden layers are 3 & 3 nodes that use Log sigmoid as transfer function. 
Number of nodes in output layer is 10 nodes, for frequencies classification and slopes 
classification. In output layer positive linear transfer function is used as shown in Fig. (2). 
Fig. (1) shows ANN architecture for frequencies and slopes classification. Number of 
epoch equals 100. Scaled conjugate gradient optimization algorithm is used for update 
parameters. All samples in dataset are used for training with GSNR ∈ [−50 ∶ 2: 50], and 
generate new samples for test with GSNR ∈ [−50 ∶ 2 ∶ 50]. Number of input samples 
equals 2550, where each sample length equals 101. Estimating frequency of range is [10 
19], and slope of range is [0.1: 0.2: 0.9] using classical methods taking a lot of complexity, 
where a multi-layer ANN is designed to estimate frequency and slope with less complex-
ity and higher efficiency. 
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Figure 2. ANN architecture for frequencies classification. 

 

Figure 3. A- positive Linear transfer function; B- Log sigmoid as transfer function. 

CNN Model: It deals with 2-dimensional images, so after generating noisy signals, 
they are converted into 2-dimensional images. The proposed CNN model runs on given 
a particular set of sample data, which divides data into designing and test, starts training 
a CNN by splitting the designing set into two sets one set is used for training the CNN 
and the other one is used as a validation set for testing the generalization ability of the 
network during the learning process and storing the configuration of the weight that per-
forms best on it with minimum validation error. The aim of the split designing data to 
training and validation is to reserve a part of the designing data and uses it to monitor the 
performance. Our samples are divided into 90% for design and 10% for testing, then de-
sign data are divided into 90% for training and 10% for validation. Number of samples is 
5100, they have 10 classes represent frequency [10 19] Hz & slopes [0.1: 0.1: 1.0]; each class 
has 510 samples. Fig. (3) shows proposed CNN model layers. 

The training procedure is performed by using the backpropagation algorithm and 
Adam, with the mini-batch equals 5 where each set of the training data is divided into 
mini-batches and the training errors are calculated upon each mini-batch in the Softmax 
layer and get backpropagation to the lower layers. The number of epochs is ten. Finally, 
after the training procedure is finished, the testing set is used to measure the efficiency of 
the final. The main steps of the proposed training methodology can be summarized as 
follows: 

1. Splitting the database into three sets: training, validation, and testing. 
2. Determining the parameter and the architecture of CNN. 
3. Training a CNN using a training set. 
4. Evaluating the training CNN using the validation set. 
5. For N epochs, do steps 3 to 4. 
6. Selecting the best CNN with minimal error on the validation set. 
7. Evaluating the selection CNN using the test set. 

 
Architecture CNN has many layers that are used for feature extraction and classifi-

cation, Fig. (4) shows feature extraction and classification for proposed CNN model.  
CNN model contains 19 layers, the input layer is the first layer which defines the input 
dimensions, where input image size is 80-by-80, then there is batch normalization layer. 
The middle layers consist of four convolutional layers, four rectified linear units (ReLU) 
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layers, and four max-pooling layers, there are dropout, two fully-connected layer, Soft-
max and classification layers. Table (1) shows the topology of the proposed CNN model. 

  
ReLU activation functions: It is often used with convolutional and fully connected 

layers to add non-linearity for the network. In addition to that, it results in neural network 
training several times faster than other activation functions. Dropout method: the dropout 
is often used to remove overfitting in the fully connected (FC) layers. This layer helps 
prevent all neurons from meeting the same target and speed up the training process. 

 
 

 

Figure 4. Proposed CNN model layers. 

 
Table 1. Topology of the proposed CNN model. 

 
Indexes Layers Name Kernels Size Stride Padding 

1.  Image input 80 × 80 - - 

2.  Convolution 3 × 3 × 30 1 1 

3.  Batch Normalization - - - 

4.  ReLU - - - 

  

Softmax layer     Classification layer  

. 

. 

. 

. 

. 

. 

Convolution  
3 × 3 × 30 
MaxPooling & 

   

. 

. 

. 

Fully connected layer    

Feature learning  

Classification  

Convolution  
3 × 3 × 60 
MaxPooling & 

   

Convolution  
3 × 3 × 90 
MaxPooling & 

   

Convolution  
3 × 3 × 128 
MaxPooling & 
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10. IF Estimation Based on TFD 
The Fourier Transform (FT) cannot detect the time-varying characteristics of non-sta-

tionary signals with time-varying frequency content (such as FM signals and biological 
signals). This is because the FT employs a time-averaging process (time integration). Time-
Frequency Distribution (TFD) are two-dimensional double transforms from the time do-
main to the time-frequency domain representing the Fourier transform of the instantane-
ous autocorrelation of an analytical signal. The Short-Time Fourier Transform (STFT), a 
windowed frequency distribution, is the simplest formula for a time-frequency distribu-
tion [23, 44-45].   A non-stationary signal is a signal that has a changing frequency con-
tent across time. A non-stationary signal's spectrogram provides an estimate of the time 
evolution of its frequency content. IF estimation by TFD, where FM signals are affected 
by noise (AWGN and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). Estimation of the IF for analytical signals using TFD and 
STFT. Prior to estimate, employed Hilbert transformation to obtain the analytic signal 
linked with the noise signal. First, we find spectrogram of STFT (spec(𝑡𝑡. 𝑓𝑓)). Then estimate 
the IF from the peak (max) of the spec as follows: 

𝑓𝑓𝑖𝑖(𝑡𝑡) = arg (max {spec(𝑡𝑡,𝑓𝑓)}); 0 ≤ 𝑓𝑓 ≤ 𝑓𝑓𝑠𝑠
2

    (47) 

Then, we calculate the relative squared error for each GSNR as follows: 

𝑒𝑒 = ��𝑓𝑓𝑖𝑖 × 𝑑𝑑𝑑𝑑 − IF𝑡𝑡�/𝑓𝑓𝑜𝑜�
2    (48) 

where 𝑓𝑓𝑜𝑜 fundamental frequency,  𝑓𝑓𝑖𝑖 estimated frequency, IF𝑡𝑡 theoretical IF with spec-
trogram timing, 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑠𝑠

𝑁𝑁
  and 𝑁𝑁 = 1024. Used spectrogram and pspectrum MATLAB 

function for IF estimation by TFD; Pspectrum is different from spectrogram in segment 
lengths, overlapping segments, and window.  Spectrogram length = 1 × �𝑁𝑁

2
+ 1�. pspec-

trum length = 1 × 𝑁𝑁 . Pspectrum used time resolution and overlap percent pair argu-
ments to control the length of the segments and the overlap between adjacent segments; 
it is dividing the signal into overlapping segments, applying a Kaiser window to each 
segment. 

11. Discussion of the Results  
 This section simulates the estimation of the instantaneous frequency and slope of 

single-tone and FM signals with additive white Gaussian noise and symmetric stable 

5.  Max Pooling 2 × 2 1 - 
6.  Convolution 3 × 3 × 60 1 1 
7.  ReLU - - - 

8.  Max Pooling 2 × 2 1 - 

9.  Convolution 3 × 3 × 90 1 1 
10.  ReLU - - - 
11.  Max Pooling 2 × 2 1 - 
12.  Convolution 3 × 3 × 128 1 1 
13.  ReLU - - - 
14.  Max Pooling 2 × 2 1 - 
15.  Fully-Connected - - - 
16.  Dropout 50% - - 
17.  Fully-Connected - - - 
18.  Softmax - - - 

19.  Classification - - - 
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noise. Geometric SNR range is ∈ [-50: 2: 50] dB. Number of samples is (5100) samples with 
frequencies [10 19] & slopes [0.1: 0.1: 1.0]. This data is divided 10 classes each class is of 
510 samples. The network trains the on-input data and predict the frequency once and the 
slope again. The simulation of frequency and slope estimation for single tone frequency 
and LFM signals by ANN and CNN model. The results show high accuracy for parame-
ters estimation by confusion matrix and some measures such as (accuracy, precision, F1-
score, FNR, & FPR), also few errors rate, and SαS is impulsive model, alpha is more harm-
ful even if it is of small value, where it effects the slope and frequency guess. The ratio 
between AWGN & SαS is determined by a variable b. Fig. (4) show α-stable probability 
density functions with different parameters. Fig. (5) show Alpha-Stable noise in time do-
main. It is impulsive. Fig. (6) show a single tone and noise signals.  

Figs. (7-8) show Frequency Estimation (FE) of single tone, and LFM signals by ANN. 
Figs. (9) Slope Estimation (SE) of single tone, and LFM signals by ANN. Figs. (10-12) show 
accuracy and loss rate of FE and SE for noisy LFM. Figs. (11-13) show confusion matrix 
for FE and SE for noisy LFM. Tab. (2) show performance evaluation criteria of noisy LFM 
signals. Fig. (14) show accuracy of frequency estimation of LFM.  Figs. (15) show test er-
ror of frequency estimation for LFM. Fig. (16) show accuracy of slope estimation of LFM. 
Fig. (17) show test error of slope estimation for LFM. Figs. (18-19): show MSE versus GSNR 
for TFD of noise single tone signal by spectrogram and pspectrum, where α=1 and b=20. 
Figs. (20-21): show MSE versus GSNR for TFD of noise LFM signal by spectrogram and 
pspectrum, where α=1 and b=20. Figs. (22-23): show accuracy of FE for noise single tone, 
and LFM signals by TFD (Pspectrum). Fig. (24) show accuracy of FE for noise LFM by 
DNN & TFD (spectrogram & Pspectrum). Fig. (25) show error test of FE for noise LFM by 
DNN & TFD (spectrogram & Pspectrum).  Fig. (26): show test error rate for SE of noise 
LFM by DCNN, where 𝑓𝑓𝑓𝑓 = 19.0005. 

The results showed that artificial neural networks are better than time-frequency dis-
tribution for estimating the instantaneous frequency, and deep CNN is better than artifi-
cial neural networks in estimating the instantaneous frequency of non-stationary signals.   
In time-frequency distribute, spectrogram and pspectrum used, where the results showed 
that pspectrum is better than spectrogram for IF estimate.    

12. Conclusion 
This paper has presented overall description of the performance of a machine learn-

ing and deep-learning approaches for the frequency and slope estimation of a noisy Linear 
Frequency-Modulated (LFM) and single-tone sinusoid signal. The simulate is a relevant 
signal under additive white Gaussian noise and symmetric stable noise (impulsive 
model). Geometric SNR range is ∈ [-50   50] dB. This work processes the problems in 
classical approaches, it relies on machine learning and deep learning. It views analysis of 
the frequency and slope estimation error under a range of Geometric signal to noise ratios 
(GSNRs). In ANN, few hidden layers only two are used. They include ten nodes in first 
hidden layer and eight nodes in second hidden layer. In CNN model 14 layers are used, 
where three convolution layers are used with three ReLU activation functions two Max-
pooling layers, dropout layer, two fully connect layer, Softmax layer, and classification 
layer relies on cross entropy to find cost function. The simple structure designed for ANN 
or CNN model works on reducing the complexity, power consumption, and cost of the 
communication system. These characteristics are beneficial for systems with finite 
memory and computational processes, such as Wireless Sensor Networks (WSNs), that 
connect with applications on the Internet of Things. The simulation result shows that al-
pha is more harmful even if it has small incapacity, and it has a significant effect on guess 
frequency and slope. The ratio between AWGN & SαS is determined by a variable (b).  
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stable probability density functions -α Figure 4.
with different parameters. 

 

Stable noise in time domain. It is -α  Figure 5.
impulsive. 

 

A single tone and noise signals. Figure 6.    

Figure 7. FE of noisy single tone signals by ANN. 
 

Figure 8. Error rate for FE of noisy LFM signals 
by ANN. 
 

Figure 9. Error rate for SE of noisy LFM signals 
by ANN. 
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Figure 10. Accuracy and loss rate of FE for noisy 
LFM by DCNN. 

A confusion matrix of FE for LFM  .Figure 11
signals by DCNN. 

 

Accuracy and loss rate of SE for noisy  .Figure 12
LFM by DCNN. 

Figure 13. A confusion matrix of SE for LFM. 
 

 
Figure 14. Accuracy of FE for noise LFM by 
DCNN, where fo=19.0005. 
 

Figure 15. Test error rate of FE for noise LFM by 
DCNN, where fo=19.0005. 
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Figure 16. Accuracy of SE for noise LFM by 
DCNN, where fo=18.001. 
 

 
Figure 17. Test error rate for SE of noise LFM by 
DCNN, where fo=18.001. 
 

 
Figure 18. MSE versus GSNR for TFD of noise single 
tone signal by spectrogram, where α=1& b=20. 
 

 
Figure 19. MSE versus GSNR for TFD of noise single 
tone signal by pspectrum, where α=1 and b=20. 
 

 
Figure 20. MSE versus GSNR for TFD of noise 
LFM signal by spectrogram, where α=1 and b=2. 
 

 

 
Figure 21. MSE versus GSNR for TFD of noise 
LFM signal by pspectrum, where α=1 and b=20. 
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Figure 22. Accuracy of FE for noise single tone 
signal by TFD (Pspectrum). 
 

 
Figure 23. Accuracy of FE for noisy LFM by 
TFD (Pspectrum). 
 

 
Figure 24. Accuracy of FE for noise LFM by DNN 
and TFD for spectrogram (TFDs) & Pspectrum 
(TFDp). 

 
Figure 25. Error rate of FE for noisy LFM by DNN 
and TFD for spectrogram (TFDs) & Pspectrum 
(TFDp) 
 
Table 1. Measures of FE & SE for noisy LFM 
signals. 

Measures 
LFM 

Frequency Slope 

Accuracy 99.4118 97.8431 

Precision 99.4303 98.0545 

Recall 99.4118 97.8431 

F1_Score 99.4210 97.9487 

FNR 0.0059 0.0216 

FPR 0.0057 0.0195 

 

 
Figure 26. Test error rate for SE of noise LFM 
by DCNN, where fo=19.0005. 
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