Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022 d0i:10.20944/preprints202208.0068.v1

Article

Instantaneous Frequency Estimation of FM Signals under
Gaussian and Symmetric a-Stable Noise: Deep Learning versus
Time-Frequency Analysis

Huda Saleem Razzaq !, Zahir M. Hussain 2*

1 Computer Science and Mathematics, University of Kufa, Najaf 54001, Irag; hudasaleem.hs93@gmail.com
2 School of Engineering, Edith Cowan University, Joondalup, WA 6027 Australia
* Correspondence: z.hussain@ecu.edu.au or zmhussain@ieee.org

Abstract: Deep Learning (DL) and Machine Learning (ML) are widely used in many fields, but
rarely used in Frequency Estimation (FE) and Slope Estimation (SE) of signals. Frequency and slope
estimation for Frequency-Modulated (FM) and single-tone sinusoidal signals are essential in various
applications, such as wireless communications, sonar, and radar measurements. In this work, arti-
ficial neural network (ANN) and convolutional neural network (CNN) are used in frequency and
slope estimation for FM signals under Additive White Gaussian Noise (AWGN) and Additive Sym-
metric alpha Stable Noise (SaSN). SaS distributions are impulsive noise disturbances found in many
communication environments like marine systems; their distribution lacks a closed-form Probabil-
ity Density Function (PDF), except for specific cases, and infinite second-order statistic, hence Geo-
metric SNR (GSNR) is used in this work to determine the impulsiveness of noise in a mixture of
Gaussian and SaS noise processes. ANN is a machine learning classifier, designed with few layers
for reducing FE and SE complexity while getting higher accuracy as compared with classical tech-
niques. CNN is a deep learning classifier, designed with many layers for FE and SE, and proved to
be more accurate than ANN when dealing with big data and finding optimal features. Simulation
results show that SaS noise can be much more harmful for FE and SE of FM signals than Gaussian
noise. DL and ML can significantly reduce FE complexity, memory cost, and power consumption,
which is important in many systems such as some Internet of Things (IoT) sensor applications. After
training DCNN for frequency and slope estimation of LFM signals, the performance of DCNN (in
terms of accuracy) can give acceptable results at very low signal-to-noise ratios where TFD fails,
giving more than 20dB difference in the GSNR working range.

Keywords: Frequency estimation; FM; sensors; Internet of Things (IoT); software-defined radio
(SDR); alpha-stable noise; time-frequency distribution; deep learning

1. Introduction

Frequency estimation is utilized in various engineering applications, including com-
munications, RADAR, frequency identification of sinusoidal signals, and resonance sens-
ing systems [1, 2]. Many signals in practice are nonstationary, such as Frequency Modu-
lation (FM) that is signal found in communication and other application. Those signals
can be classified as either mono-component or multicomponent signals. Machine learning
and deep learning methods are important in many fields such as frequency classification,
intrusion detection system (IDS) [3], landslide detection [4], Software Defined Networking
(SDN) [5], smart logistics [6], and a gait type classification [7], that allow communication
between devise and run task; which led to Internet of Things (IoT). When devices are in-
creased the amount of data increases (big data). Machine learning is used to analyze these
data and to deal with efficiently to make meaningful and valid decisions [8]. Liu Jinyu
(2020) proposes an algorithm for frequency estimation of sinusoidal FM signal using an
interpolation of Fast Fourier Transform (FFT) and Discrete-Time Fourier Transform
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(DTFT), relying on N-point FFT to find the position of the maximum FFT; then three spec-
tral lines located within the main lobe are used to estimate the frequency [9]. Akram ].
(2020) studies the instantaneous frequency estimation of multi-component signals within
the time-frequency domain, where a combination of Eigen decomposition of time-fre-
quency distributions and time-frequency filtering is used to extract signal components
and estimate their instantaneous frequencies using the ridge detection and tracking pro-
cedure [10]. Xu S., & Shimodaira H. (2019) offer a method that relies on neural networks
to FO estimate. It includes two sub tasks as a classification to determine whether or not the
frame has voice, and a regression for estimating the (F0) value. Single model is used for
both; output is (FO) values for voice frames and zero for unvoiced frames [11]. Bruno Silva
et al. (2018) proposes to estimate the Doppler frequency by using Artificial Neural Net-
work (ANN). The results explain that this method has a better performance and lower
computational cost than the traditional methods like Robust Chinese Remainder Theorem
(RCRT). They use an ANN with 3 neurons in input layer (remainders by RCRT), 10 neu-
rons in hidden layer, and 17 neurons in output layer. It is randomly divided into 3 parts:
60% is used for training, 10% is used for validation and 30% is used for test [12]. Chen
Xiaolong, & et al. (2019) introduce a model that relies on convolutional neural network to
signal frequency signal and LFM signal detection and estimation. The pre-trained model
is based on signals with 2-dimensional domain and content multiple convolutional layers,
pooled layers and fully connected layers, and finally softmax classification is used as the
output layer [13]. In various applications, such as wireless communications and image
processing, the Symmetric a-Stable (SaS) noise is widely encountered. Liu Xuelian et al.
(2017), analyze the characteristics of a-stable noise, and the chirp signal in a-stable noise
is converted into Gaussian-like distribution. Then, using fractional Fourier transform to
estimate the initial frequency and chirp rate of signal in a-stable noise [14]. Generally, it
is difficult to estimate the parameters of FM signal under a mixture of a-stable noise
(which is a type of non-Gaussian noise) and Gaussian noise.

The rest of this paper is outlined as follows: Section 2 introduces problem. Section 3
introduces objective. Section 4 introduces instantaneous frequency and FM. Section 5 in-
troduces additive white Gaussian noise. Section 6 presents symmetric a-stable noise. Sec-
tion 7 introduces machine learning. Section 8 introduces deep learning. Section 9 intro-
duces metrics. Section 10 and 11 introduces IF estimation based on DNN & CNN, and
TFD. Section 12 discusses the results, and Section 13 presents the conclusion of the paper.

1. Problem

Two fundamental issues in signal processing are signal estimation and signal sepa-
ration of nonstationary signals. In signal estimation issue, we estimate the Instantaneous
Frequency (IF) of Frequency Modulated (FM) signals under a-stable noise. FM signals
are used in many engineering applications, such as in radar, sonar, and communications.
Such signals contain the intended information in the frequency content. In telecommuni-
cations when information bearing signal is sent through a communication channel, trans-
mitted FM signal is corrupted with noise or interference (other signals in the same com-
munication channel). At the receiving end, it needs to recover the intended information
from receive signal. In case of FM signal, intended information is the frequency content.
Accurate frequency estimation leads to accurate recovery of the true information [39, 10].

2. Objectives

The problem of Frequency Estimation (FE) is processed by classical techniques such
as Fourier and correlative techniques. Moreover, the same problem is processed by deep
neural networks and CNN. This work aims to provide an accurate and fast estimation
of IF and instantons slope, thus deep learning for frequency classification is promising.
The proposed method has RADAR and medical sonar applications, where radar functions
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include range (localization), angle, and velocity. Medical sonar functions include diagno-
sis, classification, and tracking. The consequences are improved radar localization; im-
proved medical sonar diagnosis. Frequency Modulate (FM) is reduced antenna length,
allowing multiple transmission within the same channel for different frequencies, and
SNR reduction which is so important in network communication system.

3. Instantaneous Frequency and FM

The instantaneous frequency, which describes the frequency content's variations
with time, is an essential characteristic of FM signals. The IF of a signal is a derivative of
its instantaneous phase (0(t)) concerning time is [15, 16]:

1 do(t)

fi) =—— 1)
0 = 2n(f,t + E% + G%) )

In this work, the signal model having Linear Frequency Modulation (LEFM) law is [17]:
s(t) = A emot3t") 3)

where a is the linear modulation index, f, is the initial frequency (in Hertz), and A being
the amplitude. Using Eq. (1), the LEM signal IF will be [18]:

fi®) = fo +at (4)

Quadratic Frequency Modulation (QFM) signal has also been considered in this work
with quadratic IF law as follows:

5(6) = A &/ ot5E ) )
where {3 is the quadratic modulation index of the QFM signal, with the quadratic IF law:
fi®) = fo + at + Be* )

4. Additive White Gaussian Noise

Additive White Gaussian (AWG) noise has the following probability density func-
tion (PDF) with zero mean and variance (power) ¢ [19]:

1
p(n) ="

where n is a random variable and o is the standard deviation of the noise.

e—nZ/ZUZ (7)

The procedures of generating AWGN is as follows:
1. Calculating the power contained in the input signal (x), were

pr =140 KL, L = length(x) ®)

2. Converting the supplied SNRdB (SNR in dB) to a linear scale and finding the noise
power in terms of SNR and signal power (p,), were

SNR = 10SNR4B/10. N = p /SNR )
3. Using the following equations to determine the AWG noise:

G, = o X n. if X isreal (10 a)

G, = 0 X (n +im).ifx is complex (10 b)
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where n,m € N(0,02). For areal signal o =,/N,, foracomplexsignal g = /N,/2.

5. Symmetric Alpha-Stable Noise

Symmetric a-Stable distribution noise requires 4 parameters (a, y, §, and p), with
characteristic function defined as [20, 21]:

Y(w) = exp(=y|w|?) (11)

where (0 < a < 2) is also known as the tail index or characteristic exponent. When «a < 2,
the distribution is algebraic-tailed with a constant tail o, meaning infinite variance. The
density tails become heavier as it gets smaller. When a =2, the SaS distribution is reduced
to the Gaussian distribution. When ae =1 and {3 = 0, the SaS distribution is reduced to the
Cauchy distribution. When ot = 0.5 and f =1, SaS distribution is reduced to the 1évy dis-
tribution. The parameter y>0, usually called the dispersion, is a positive constant related
to the distribution scale. The parameter y plays a role that is analogous to that of the var-
iance for a second-order process. Skewness parameter is 3 € [-1, 1]. Location parameter is
u € R. The procedures of Sa$ are as follows:

1. For =0 any symmetric alpha-stable noise (Ns), then generating a random varia-
ble (V) uniformly distributed, and independent exponential random variable (W)
as follows:

V=2x Qu-1) (12)
W = —log(v)) (13)
where u,v € U, the standard uniform distribution.

_ sin(a xV) recos(V x (1—a)) a-a)/a
Ns = osamyre ™ W (14)

2. For a # 1, generating a random variable (V) uniformly distributed, and inde-
pendent exponential random variable (W) as follows:

V =nunx (u— 0.5) (15)
W = —log(v)) (16)
. (1-a)/a
_g sm{a(V + Bayﬁ)} cos{V - a(V + Ba,[])} (17)
Ns = Sap X —osygire w
— 20,02 (T4 /e
Sap = {1 + B“tan ( > )} (18)
na
arctan ( § tan —-
Bop = ( 2 ) (19)
a
When scale and shift are applied as equation, we have
Nys = oNg + (20
3. For a =1, generating a random variable (V) and (W) as above:
2 Tweosv
N = ;{(g + BV) tanV — Blog (2%7)} (21)

When scale and shift are applied as equation, we have:
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Nys = oNs + = folog o + i (22)

6. Machine Learning

ML is kind of artificial intelligence technique which can automatically detect benefi-
cial information from huge datasets. Machine Learning systems can be classified accord-
ing to the amount and type of supervision they get during training. There are many clas-
sification algorithms [22] like Support Vector Machines (SVMs) [23], Naive Bayesian (NB)
[24], K-Nearest Neighbors (KNN) [25], Decision Tree (DT) [26], and Artificial Neural Net-
work (ANN). This work is based on artificial neural network to frequency and slope clas-
sification. ML is divided into four types: supervised learning, unsupervised learning,
Semi-supervised, and reinforcement learning, this work is based on supervised learning.

1. A supervised learning algorithm takes a known set of features and known re-
sponses to the data (decision) and trains a model to generate reasonable predic-
tions for new data. It is mainly used in classification algorithms and regression
algorithms. The aim of the supervised learning is to construct a model that makes
predictions based on evidence in the presence of uncertainty [27].

2. Unsupervised learning It is used to draw inferences from a dataset consisting of
features without a decision. When new data is introduced, it uses the previously
learned features to recognize the decision of the data. It is mainly used for cluster-
ing techniques and feature reduction [28].

3. Semi-supervised is the type of ML used that combines supervised and unsuper-
vised by combination unlabeled data and small amount labeled data.

4. Reinforcement learning is a type of learning which makes decisions based on
which procedures give a more positive result. The learner has no knowledge
which procedures to take until it has been given a situation.

Artificial Neural Network (ANN) is a kind of ML, it imitates the way human brains
work. It contains an input layer, many hidden layers, and an output layer. The nodes in
neighboring layers are fully connected. ANN includes a large number of nodes; it has
strong ability for recognizing nonlinear functions. ANN with complex structure has train-
ing is time-consuming. ANN types are single layer neural networks and multi-layer neu-
ral networks. Single layer is neurons connect from input layer to output layer; it cannot
include hidden layer. In multi-layer networks, single hidden layer is called shallow neural
network, while two or more layers are called deep neural network [29]. This work is based
on deep neural network.

In ANN, there is a need for activation function and optimization algorithm. Activa-
tion function is mathematical operations run on the output. The activation functions are
chosen depending on the type of problem to be solved by the network. The most common
of activation functions are Sigmoid or logistic, and Hyperbolic tangent or tanh [30].

Optimization algorithm is used to calculates the weights update, its four types are
Gradient Descent (GD), RMSProp, Adam, and Levenberg-Marquardt optimization. GD is
very popular optimization technique in machine learning. There are three types of GD:
Batch, Mini-batch, and Stochastic Gradient Descent (SGD). Levenberg-Marquardtin ANN
training and Adam in CNN training are used in this study. SGD is finding the error for
each training data and adjusting the weights [31].

where 7 is Learning rate, §; is generalized delta rule, and output from the input node j,
6; = e; if linear activation function, §; = ¢'(v;)e; if non-linear activation function, ¢’ is
derivative of activation function and v; weighted sum of output node i.
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Adaptive Moment Estimation (Adam) is the method used for computing adaptive
learning rates for each parameter. Adam method is design depends on combining the ad-
vantages of two methods AdaGrad and RMSProp. Advantages of Adam are magnitudes
of parameter updates are invariant, proper for problems that have large data, appropriate
for problems with noise. The procedures of Adam are as follows [32].

1. Inputs: a.B;.B,.f(6).6,, where a = 0.001, B; =09, ,=0.999, ¢ = 1078, G,
is gradients and Bf.B5 we denote B; and B, of power t.

2. Output: 6,.

Initial parameters: my = 0.v, = 0.t = 0.

4. while 6, notconverged do {

@

t=t+1; Gt = Vofe(0c-1)
me=B.me; +(1—=PB1).Gs  Ve=PB2veg + (1 —B1).G7
m§=mt+(1—~§); vi =vi+(1-BY)
et:et—l_a.mt/ =

(\/Vt +€)

7. Deep Learning

Deep learning is subset of machine learning. Deep learning techniques are used for
big-data process such as image pattern recognition, speech recognition and synthesis, etc.
It is required for CPU power increase, and powerful GPUs. The word "deep" refers to the
large number of hidden layers that include the neural network [33]. Deep learning relies
on Convolutional Neural Networks (CNN). A CNN is a kind of ANN that consists input
layer, output layer, and hidden layers [34]. Deep learning models consist of various deep
networks, such as  deep neural networks (DNNSs), deep brief networks (DBNs), convo-
lutional neural networks (CNNs), and recurrent neural networks (RNNs) which are su-
pervised learning models, but generative adversarial networks (GANSs), auto encoders,
and restricted Boltzmann machines (RBMs) which are unsupervised learning models.
DNN works with multiple hidden layers and it works on 2-Dimensional (2D) data, thus
the input data must be transformed into 2D matrices for frequency or slope detection.
Convolutional Neural Networks (CNNs), the name “convolutional neural network” indi-
cates that the network employs a mathematical operation called convolution. Convolution
is a specialized kind of linear operation. Convolution help improve a machine learning
system. There are two types of convolutions: valid and same. Deep learning CNN models
train and test, each input image will pass it through a series of convolution layers with
filters (Kernels), Pooling, Fully Connected layers (FC) and apply Softmax function to clas-
sify an object [35, 31]. CNN converts the manual methods for extracting features into au-
tomatic processes. DCNN architecture is illustrated in Figure (1).

1. Convolutional layer: It computes feature map as follows:

OFea(x.y.f) = AF(X_o Xico XS0 AX + 1y +).v) X W(ij.v.f) + b(f)) (24)

where i.j index of filter, v number of channels, f number of filters, AF is activation
function.

Three hyperparameters control the size of the output volume: the depth is number
of filters, stride (S slide the filter) and zero-padding (P zeros around the border). Calcu-
lating number of neurons as follow:

n—f+2xP
N

H=W= +1 (25)
where f is the size of filter and n is the size of input image.
P== (26)

2. ReLU: is Rectified Linear Unit. The ReLU activation function performs depend-
ing on zero threshold.
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f(x) = max(0.x). (27)

3. Pooling layers: It reduces the number of parameters. Pooling can be of different
types: Max, mini, and average pooling. Max pooling takes the maximum element
from feature map, Mini take the minimum element from feature map, and aver-
age take the average element from feature map.

D™ = pt-bH (28)
HED _ W@
L) —
HO = —+1 (29)
w1 _ @)
) =_
WO =1 (30)

where D is depth of filters; H & W is high and width of images, L islayer, L — 1 is pre-
vious layer, F(V) size of filters, and S®) stride.

4. Fully Connected Layer: It is ANN, its input is 1D-array, where Flattening is con-
verted data into vector, all neurons in layer have full connections to all nodes in
the previous layer.

5. Softmax layer: It is used probabilities associated with many classes, where prob-
abilities summation equal one. Computing softmax layer is as follow:

eYi
Softmax (y;) = (31)

= Zjey]'

6. Classification layer: It takes input value from the Softmax layer and assigns into
one class by using the cross-entropy function. Cross entropy measure of different
between actual outputs and predict outputs of the training data. It used as a loss
function.

E@.y) = — XL, Yilog() (32)

Where € number of classes, ¥; is actual value and y; predicted value.

— CAR
— TRUCK
= VAN
= : - :
\D [] — sicreis

s

¥ FULLY
.L‘_ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 1. An illustration of the CNN architecture.

Reduction of Overfitting in DNN: Overfitting usually happens when the amount of
the used parameters (the capability of the network) is much larger than the number of
training samples. A model with the problem of overfitting makes great predictions for
training samples but poor ones for validation data. There are two ways to reduce the over-
fitting which are dropout and Data augmentation [36]. Dropout is introduced by Sri-
vastava et al [37], which means that each hidden neuron with probability 0.5 settings to
Zero.
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Data augmentation: It is well-known that DNNs need to be trained on a large number
of training samples to achieve satisfactory prediction and prevent overfitting. Data aug-
mentation is a simple and commonly-used method to artificially enlarge the dataset by
methods such as: random crops, intensity variations, horizontal flipping, etc. [41]. Train-
ing DNN parameters are learning rates that improve learning output. Backpropagation is
used to update weights, it relies on optimal algorithms, and epoch is training iterative for
all training data.

8. Maetrics

Many metrics are applied to evaluate machine learning and deep learning methods.
The perfect models are chosen by using these measures [38].

1)  Accuracy (Ac) is the rate of correctly classified samples to overall samples.

TP+TN
Ac =—————
TP+FP+FN+TN

(33)

2)  Precision (P) is rate of true positive samples to predicted positive samples.

p= TP (34)

T TP+FP

3) Recall (R)is rate of true positive samples to total positive samples.

_ TP
TP+FN

(35)

4)  F-measure (F) is average of the precision and the recall.

__ 2xPxR
T P+R

(36)

5)  False Negative Rate (FNR) is rate of false negative samples to total positive
samples.

FN
TP+FN

FNR =

37)

6) False Positive Rate (FPR) is rate of false positive samples to predicted posi-
tive samples.
where TP is the true positives; FP is the false positives; TN is the true negatives; and FN
is the false negatives.

9. IF Estimation Based on DNN and CNN

A non-stationary signal is a signal that has a changing frequency content across time.
This work relies on FM signals, which are affected by noise (AWGN and SaSN). SaSN
requires four parameters (a.y.f.and p). the most important parameters are tail index
() and scale of the distribution (y > 0); while the less important parameters are
p and p. Gaussian noise is fixed power, SaS noise is geometric power.

Thermal noise is the primary cause of noise in electronic and communication sys-
tems. This noise process (typically additive) occurs due to the random thermal agitation
of free electrons caused by an electrical current flowing through a conductor. This type of
noise is white, meaning that its power spectral density is nearly equal throughout the fre-
quency spectrum. Therefore, thermal noise-affected communication systems are fre-
quently represented as an additive white Gaussian noise (AWGN) channel.

Geometric SNR (GSNR) is used to determine noise impulsiveness, which is charac-
terized by zero-order statistics. Since all 2nd order moments are infinite, the standard SNR
does not apply. Geometric power of SaS is defined as follows:

ps = y2 cla) (38)
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C is the exponential of Euler's constant, € = ef¢ =~ 1.7811, Ec is Euler's constant
(Ec = 0.5772156649). When a =2 , SaS noise is Gaussian noise with finite variance

0% =y2.
GSNR = p,/y* (39)
GSNRAB = 10 X log;,(GSNR) (40)
px = A%/2 (41)

The received signals in wireless networks are corrupted by a noise that is a mixture
of both Gaussian (Ng) and SaS (Ns) noises. Total noise (Nt) represented in the equation:

Ny = Ng + Ng (42)
Overall GSNR is defined as follows,

FN
TP+FN

FNR =

(43)

Let pr = p; + ps, where pr total noise power, and p; be the Gaussian power. If

Pe = b Xps, then pr = (14 b) Xps, p5=p—T and

1+b

b = pg/ps (44)

If b less than one, then p; less than ps, else p; greater than ps. The scale param-

eter is:
y = /,,S /G (45)

Consider AWG and SaS$ noise affected by a single-tone sinusoidal and FM signals
as follows:

x(t) = A.cos(p + @y) + Ny (46)

where A signal amplitude, ¢ is an instantaneous phase, and @, initial phase. In this
work, dataset generates FM noisy signals with frequencies and slopes different. It also
uses Geometric SNR range sr € [-50 50] dB. Dataset are included three types of FM
signals are single tone sinusoidal, LFM, and QFM signals. Frequencies values are [10 19];
while slopes values are [0.1: 0.2: 1.0]. Frequencies and slopes estimation or classification
by ANN and CNN are as follows:

ANN Model: We used multi layered ANN. Its structure is input layer, two hidden
layers, and output layer. Number of nodes in input layer is 101 nodes. Number of nodes
in first and second hidden layers are 3 & 3 nodes that use Log sigmoid as transfer function.
Number of nodes in output layer is 10 nodes, for frequencies classification and slopes
classification. In output layer positive linear transfer function is used as shown in Fig. (2).
Fig. (1) shows ANN architecture for frequencies and slopes classification. Number of
epoch equals 100. Scaled conjugate gradient optimization algorithm is used for update
parameters. All samples in dataset are used for training with GSNR € [—50 : 2: 50], and
generate new samples for test with GSNR € [—50 : 2 : 50]. Number of input samples
equals 2550, where each sample length equals 101. Estimating frequency of range is [10
19], and slope of range is [0.1: 0.2: 0.9] using classical methods taking a lot of complexity,
where a multi-layer ANN is designed to estimate frequency and slope with less complex-
ity and higher efficiency.
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Input
101

3 3 10

Figure 2. ANN architecture for frequencies classification.

Figure 3. A- positive Linear transfer function; B- Log sigmoid as transfer function.

CNN Model: It deals with 2-dimensional images, so after generating noisy signals,
they are converted into 2-dimensional images. The proposed CNN model runs on given
a particular set of sample data, which divides data into designing and test, starts training
a CNN by splitting the designing set into two sets one set is used for training the CNN
and the other one is used as a validation set for testing the generalization ability of the
network during the learning process and storing the configuration of the weight that per-
forms best on it with minimum validation error. The aim of the split designing data to
training and validation is to reserve a part of the designing data and uses it to monitor the
performance. Our samples are divided into 90% for design and 10% for testing, then de-
sign data are divided into 90% for training and 10% for validation. Number of samples is
5100, they have 10 classes represent frequency [10 19] Hz & slopes [0.1: 0.1: 1.0]; each class
has 510 samples. Fig. (3) shows proposed CNN model layers.

The training procedure is performed by using the backpropagation algorithm and
Adam, with the mini-batch equals 5 where each set of the training data is divided into
mini-batches and the training errors are calculated upon each mini-batch in the Softmax
layer and get backpropagation to the lower layers. The number of epochs is ten. Finally,
after the training procedure is finished, the testing set is used to measure the efficiency of
the final. The main steps of the proposed training methodology can be summarized as
follows:

1. Splitting the database into three sets: training, validation, and testing.
Determining the parameter and the architecture of CNN.

Training a CNN using a training set.

Evaluating the training CNN using the validation set.

For N epochs, do steps 3 to 4.

Selecting the best CNN with minimal error on the validation set.
Evaluating the selection CNN using the test set.

N LN

Architecture CNN has many layers that are used for feature extraction and classifi-
cation, Fig. (4) shows feature extraction and classification for proposed CNN model.
CNN model contains 19 layers, the input layer is the first layer which defines the input
dimensions, where input image size is 80-by-80, then there is batch normalization layer.
The middle layers consist of four convolutional layers, four rectified linear units (ReLU)
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layers, and four max-pooling layers, there are dropout, two fully-connected layer, Soft-
max and classification layers. Table (1) shows the topology of the proposed CNN model.

ReLU activation functions: It is often used with convolutional and fully connected
layers to add non-linearity for the network. In addition to that, it results in neural network
training several times faster than other activation functions. Dropout method: the dropout
is often used to remove overfitting in the fully connected (FC) layers. This layer helps
prevent all neurons from meeting the same target and speed up the training process.

N
N\

7

EERE

0 1 -
= i

Convolution ~ Convolution ~ Convolution  Convolution
3x3x30 3 X 3x%x60 3x3x%x90 3x3x128
& MaxPooling & MaxPooling & MaxPooling & MaxPooling

Feature learning

()

L)

J

OS

O O O

Fully connected layer Softmax layer  Classification layer

Classification

Figure 4. Proposed CNN model layers.

Table 1. Topology of the proposed CNN model.

Indexes Layers Name Kernels Size  Stride  Padding
1. Image input 80 x 80 - -
2. Convolution 3x3x30 1 1
3. Batch Normalization - - -

4. ReLU - - -
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5. Max Pooling 2x2
6. Convolution 3x3x60
7. ReLU -
8. Max Pooling 2x2
9. Convolution 3x3x90
10. ReLU -
11. Max Pooling 2x2
12. Convolution 3x3x128
13. ReLU -
14. Max Pooling 2X2 1 -
15. Fully-Connected - - -
16. Dropout 50% - -
17. Fully-Connected - - -
18. Softmax - - -
19. Classification - - -

10. IF Estimation Based on TFD

The Fourier Transform (FT) cannot detect the time-varying characteristics of non-sta-
tionary signals with time-varying frequency content (such as FM signals and biological
signals). This is because the FT employs a time-averaging process (time integration). Time-
Frequency Distribution (TFD) are two-dimensional double transforms from the time do-
main to the time-frequency domain representing the Fourier transform of the instantane-
ous autocorrelation of an analytical signal. The Short-Time Fourier Transform (STFT), a
windowed frequency distribution, is the simplest formula for a time-frequency distribu-
tion [23, 44-45]. A non-stationary signal is a signal that has a changing frequency con-
tent across time. A non-stationary signal's spectrogram provides an estimate of the time
evolution of its frequency content. IF estimation by TFD, where FM signals are affected
by noise (AWGN and SaSN). Estimation of the IF for analytical signals using TFD and
STFT. Prior to estimate, employed Hilbert transformation to obtain the analytic signal
linked with the noise signal. First, we find spectrogram of STFT (spec(t. f)). Then estimate
the IF from the peak (max) of the spec as follows:

fi(t) = arg(max{spec(t, H}; 0 < f <= 47)

Then, we calculate the relative squared error for each GSNR as follows:

e= |(f1 xdf — IFt)/fo

where f, fundamental frequency, f; estimated frequency, IF, theoretical IF with spec-

I’ (48)
trogram timing, df =% and N = 1024. Used spectrogram and pspectrum MATLAB
function for IF estimation by TFD; Pspectrum is different from spectrogram in segment
lengths, overlapping segments, and window. Spectrogram length = 1 X [% + 1]. pspec-
trum length = 1 X N. Pspectrum used time resolution and overlap percent pair argu-
ments to control the length of the segments and the overlap between adjacent segments;

it is dividing the signal into overlapping segments, applying a Kaiser window to each
segment.

11. Discussion of the Results

This section simulates the estimation of the instantaneous frequency and slope of
single-tone and FM signals with additive white Gaussian noise and symmetric stable
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noise. Geometric SNR range is € [-50: 2: 50] dB. Number of samples is (5100) samples with
frequencies [10 19] & slopes [0.1: 0.1: 1.0]. This data is divided 10 classes each class is of
510 samples. The network trains the on-input data and predict the frequency once and the
slope again. The simulation of frequency and slope estimation for single tone frequency
and LFM signals by ANN and CNN model. The results show high accuracy for parame-
ters estimation by confusion matrix and some measures such as (accuracy, precision, F1-
score, FNR, & FPR), also few errors rate, and SaS is impulsive model, alpha is more harm-
ful even if it is of small value, where it effects the slope and frequency guess. The ratio
between AWGN & SaS is determined by a variable b. Fig. (4) show a-stable probability
density functions with different parameters. Fig. (5) show Alpha-Stable noise in time do-
main. It is impulsive. Fig. (6) show a single tone and noise signals.

Figs. (7-8) show Frequency Estimation (FE) of single tone, and LFM signals by ANN.
Figs. (9) Slope Estimation (SE) of single tone, and LFM signals by ANN. Figs. (10-12) show
accuracy and loss rate of FE and SE for noisy LFM. Figs. (11-13) show confusion matrix
for FE and SE for noisy LFM. Tab. (2) show performance evaluation criteria of noisy LFM
signals. Fig. (14) show accuracy of frequency estimation of LFM. Figs. (15) show test er-
ror of frequency estimation for LFM. Fig. (16) show accuracy of slope estimation of LEM.
Fig. (17) show test error of slope estimation for LEM. Figs. (18-19): show MSE versus GSNR
for TFD of noise single tone signal by spectrogram and pspectrum, where a=1 and b=20.
Figs. (20-21): show MSE versus GSNR for TFD of noise LFM signal by spectrogram and
pspectrum, where a=1 and b=20. Figs. (22-23): show accuracy of FE for noise single tone,
and LFM signals by TFD (Pspectrum). Fig. (24) show accuracy of FE for noise LFM by
DNN & TFD (spectrogram & Pspectrum). Fig. (25) show error test of FE for noise LEM by
DNN & TFD (spectrogram & Pspectrum). Fig. (26): show test error rate for SE of noise
LFM by DCNN, where fo = 19.0005.

The results showed that artificial neural networks are better than time-frequency dis-
tribution for estimating the instantaneous frequency, and deep CNN is better than artifi-
cial neural networks in estimating the instantaneous frequency of non-stationary signals.
In time-frequency distribute, spectrogram and pspectrum used, where the results showed
that pspectrum is better than spectrogram for IF estimate.

12. Conclusion

This paper has presented overall description of the performance of a machine learn-
ing and deep-learning approaches for the frequency and slope estimation of a noisy Linear
Frequency-Modulated (LFM) and single-tone sinusoid signal. The simulate is a relevant
signal under additive white Gaussian noise and symmetric stable noise (impulsive
model). Geometric SNR range is € [-50 50] dB. This work processes the problems in
classical approaches, it relies on machine learning and deep learning. It views analysis of
the frequency and slope estimation error under a range of Geometric signal to noise ratios
(GSNRs). In ANN, few hidden layers only two are used. They include ten nodes in first
hidden layer and eight nodes in second hidden layer. In CNN model 14 layers are used,
where three convolution layers are used with three ReLU activation functions two Max-
pooling layers, dropout layer, two fully connect layer, Softmax layer, and classification
layer relies on cross entropy to find cost function. The simple structure designed for ANN
or CNN model works on reducing the complexity, power consumption, and cost of the
communication system. These characteristics are beneficial for systems with finite
memory and computational processes, such as Wireless Sensor Networks (WSNs), that
connect with applications on the Internet of Things. The simulation result shows that al-
pha is more harmful even if it has small incapacity, and it has a significant effect on guess
frequency and slope. The ratio between AWGN & SaS is determined by a variable (b).


https://doi.org/10.20944/preprints202208.0068.v1

reprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022

14 of 20

frequency single [one estimation using NN under Gaussian & SaS noise

fo=14 ;e=0;N=101
T T T T

0.235 4

5 0= i 4
5
" <
e 5
T
. £

a7 gt o £ o225 | ]
3
K
[}
S
5
o

Z 022 | 4
k]
°
@

0215 | 4

. . . . . . . . .
-50 -40 -30 -20 -10 0 10 20 30 40 50
SNR(dB)

Figure 4. a-stable probability density functions
with different parameters.

Figure 7. FE of noisy single tone signals by ANN.

frequency LFM estimation using NN under Gaussian & SasS noise

fo=14 ;e=0.7;N=101
O lizati f alpha stable RV: =1 =0; =0.5; =0 T T T T T T T T T
500 ne realization of alpha stable a ﬂ ,Y 6 B
400 | 4
300 | | 5 1
T
s ]
k=]
200 | 1 g
o E ]
E] [
E 100 E 7]
< 1 :
A @
¢ ]
4 rW\A LLJ\M (J\A I SR | I N - %
1‘ vy T 2 1
-100 ,“ H /\ 1
V v -40 -30 -20 10 0 10 20 30 40 50
-200 . . . . . . . . . SNR(dB)
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (sec) Figure 8. Error rate for FE of noisy LFM signals
Figure 5. a -Stable noise in time domain. It is by ANN.
impulsive.
slope LFM estimation using NN under Gaussian & SaS noise
A single-tone sinusoid, fo (Hz) = 13 fo=14 ;e=07;N=101
4 T T T T T T T T T T T T T
2] | 055 [ 1
’ \/\N\N\/\/\/\/\/\/W T ]
2| | 5
= 045 L 4
B
2
4 L L L L L L L L L o
0 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 g
Time, sec z 04 L .
g
Noisy signal; GSNRAB =25 ; a=13b=5 3
4 T T T T T T T T T )
z
o 035 [ 4
2| 1 2
K
s
['3
03 [ 4
21 | 1 1 L L L L L L
50 40 30 20 10 0 10 20 30 40 50
4 L L L L L L L L L SNR(dB)
0 01 02 03 0.4 05 0.6 07 0.8 09 1

Time, sec

Figure 9. Error rate for SE of noisy LFM signals

Figure 6. A single tone and noise signals. by ANN.


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022 d0i:10.20944/preprints202208.0068.v1

15 of 20

Confusion Matrix

" f 51 o o o o 5 o o o o Jo.1%
1
oo |oow |0 |oow [oow |1ow |oow |oms [oow |oow fam
o | = ) o o o o ) o o [woon
0
oo [10% [oms |oow |oow |oow |oow |oms |oow |oow fooe
o o | = o o o o 0 o o
2
oo |oow [wow |oow |oow |oow |oow |1ms |oow | oow
o o o | = ) B o o B o =
a
oo |oow [oms f100% |oow |oow |oow |oms |oow |oow fooe
o o ) o | = B o o o o =
B
oo% |oow [oms |oow [wow |oow |oow |oms |oow |oow fooe
o o o o o | w o o o o -
g s
] oo% |oow |oms |oow |oow |oow |oow |oms |oow |oom foou
z o o ) o o o | = o B o oo
£ .
3 oo% |oow [oms |oow |oom |oow [wow |oms |oow |oom foou
o o ) o o o o | = o
i
oo% |oow |oms |oow |oom |ome |oow |sms |oow
o o o o o B o o | =
s
oo |oow |oms |oow |oom |om |oow |oow |woom
o o o o o o o o o
B
' . 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
= Toow  [toe |00 |oow |00 oo [smaw [oms |10 [orew
oow |oow [oow |oow |oow oon [uew |oms |oow [z
S
i ~ s " - N « « « o -

Target Class

Figure 10. Accuracy and loss rate of FE for noisy Figure 13. A confusion matrix of SE for LFM.
LFM by DCNN.

f0=19.0005 ; 50=0.40005 » GSNRdB=-50:50
Contusion Matrix 1
E) o o o ) 0 o o o o oo
B
oms |oow |oow |oow |oow |oow |oow |oow |oow |oow | oo
09 4
o 5 o o o o o o o o [
10
oo [100% |oow |oow |oow |oow |oow |oow |oow |oow | oo
o o B o o o o o o o
2
0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 08 —
o o o B ) o o o o o
a
oo |oow |oow (100w |oow |oow |oow |oow | oo | oow | oo
07 1
o o o o B o T o o o
oo |oow |oow |oow [w00% |oow [0 [oos [oow |oow |1
>
o o o ) ) £ o o o o oo 2 e
oo% |oow |oow |oow |oow |os [oow [oow [oo |oow foo g 1
E
g
o o o o ) o EY o o o [oon 2
oo |oow |oow |oow |oow |oow |eme [oow [oow |oow [oon 5
> 05 4
N o o o ) T o B o o [wee g
ome |ome |oow |owe |owe |om |ome |wooe |oms |ome e H
<
o o o o o o o o = o oo 04
R y 1
oo |oow |oow |oow |oow |oow |oow |oow |00w |oow | oo
o o o o o o o o o s oo
s
oo |oow |oow |oow |oow |oow |oow |oow |oow |o0w | oo 03
oo |ome  |some |lome |lomw [smow [omow | oo |00 |0 [oeae
20 [oow [oow |oow |oow [20m |20% [oo% |oow |oow |oew
R N N N " N N - N 02 . . . . . . . . .
50 40 30 20 10 o 10 20 30 40 50
Target Class
GSNR

Figure 11. A confusion matrix of FE for LFM Figure 14. Accuracy of FE for noise LFM by
signals by DCNN. DCNN, where £o=19.0005.

10=19.0005  50=0.40005 ; GSNRAB=-50:50
ming P (1R 1ERMY e 08

Test Error Rate of Frequency

- GSNR

e

Figure 12. Accuracy and loss rate of SE for noisy Figure 15. Test error rate of FE for noise LEM by
LFM by DCNN. DCNN, where £,=19.0005.


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022

16 of 20

f0=18.001 150=08 ; GSNRdB=-50:50

0% T T RMSE of freq estimation using pspectrogram vs. GSNR , @=1b=20
X fo=13 ,Ts=001, L=10, E=0,G=0, A=1,R=50
045 i 10 T T T T T T T T T
o 1 AWGN & SasN
10°L
035 |
03 1 10t L
c
2 o2 2
k; 1 g
g E 2
5 S
3 02 it
g 1 =
3 ®
§ b
< 5
015 1 w107 L
)
=
01 i
10}
0.05 i
0 I I I I I I I | | 105 | | | | | | | | |
50 o 0 2 10 0 10 2 o “ 50 -50 -40 30 20 10 0 10 20 30 40 50
GSNR GSNRdB

Figure 16. Accuracy of SE for noise LFM by Figure 19. MSE versus GSNR for TFD of noise single
DCNN, where fo=18.001. tone signal by pspectrum, where a=1 and b=20.

LFM ;fo=18.001 150=0.8 ; GSNRdB=-50:50

1 RMSE of freq estimation using spectrogram vs. GSNR , @=1b=20
[ [ [ [ [ [ [ [ [ 110213 ,Ts =0.01, L=10, E=07,G=0, A=1,W=32,Q=8R=50
10 T T T T T T T T T
T AWGN
AWGN & SaSN
1 10° L 4
107
7 c
3 S
g ]
g 4 E
g F 107
£ I
&
= =
° + 2
] i
& 5
K
s | w 10
w =
3
8
e
1 10
10° L L L L L L L L L
" " o T » . ° s 50 40 30 20 10 0 10 20 30 40 50
GSNRdB

GSNR

Figure 20. MSE versus GSNR for TFD of noise

Figure 17. Test error rate for SE of noise LFM by LFM signal by spectrogram, where =1 and b=2

DCNN, where f,=18.001.

RMSE of freq estimation using spectrogram vs. GSNR @=1b=2 RMSE of freq estimation using pspectrogram vs. GSNR , a=1b=20
. fo=13  Ts=001, L=10, E=0,G=0, A=1,W=32,Q=8R=50 fo=13 | Ts=0.01, L=10, E=07,G=0, A=1,R=50
10 T T T T T T T T T 10! . . : : ; ; ; . .
\WGN
s AWGN & SaSN \WGN & SaSN

100}

0tk
c c
S S
E 2 E
B0 7
f g
I i
= 5
w107 w
) @
2 =

0% L

10° | 10° L L L L L L L L L

50 40 50 40 30 20 10 0 10 20 30 40 50

GSNRdB GSNRdB

Figure 18. MSE versus GSNR for TFD of noise single Figure 21. MSE versus GSNR for TFD of noise
tone signal by spectrogram, where a=1& b=20. LFM signal by pspectrum, where o=1 and b=20.


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022

17 of 20
Acc. of freq estimation using pspectrogram vs. GSNR , a=1b=20 Test error rate of LFM by TFD & DCNN vs. GSNR , a=18b=20
fo=13  Ts=0.01, L=10, E=0,G=0, A=1,R=50 fo =19.0001 ,Ts=0.01, L=1, E=09,G=0, A=1,W=32,Q=8R=50
0° . . . T . = 08 : . . ! : . . . :
A\ DCNN
/\/\ —TFD
05 |- D
04
E | g o3 |
8 10| H =
E ; 02 |
g o
<
01 L
0
102 L L L L L L L L L -50 40 30 20 -10 0 10 20 30 40 50
-50 -40 -30 -20 -10 0 10 20 30 40 50 GSNRdB
Figure 22. Accuracy of FE for noise single tone Figure 25. Error rate of FE for noisy LFM by DNN
signal by TFD (Pspectrum). and TFD for spectrogram (TFDs) & Pspectrum
(TFDp)
Acc. of freq estimation using pspectrogram vs. GSNR , a=1b=20
100 fot13 .TezooL  L710. ES07.650. AZLR=S0 Table 1. Measures of FE & SE for noisy LFM
signals.
LFM
Measures
Frequency Slope
£ m Accuracy 99.4118 97.8431
g 107 b ]
Precision 99.4303 98.0545
;? Recall 99.4118 97.8431
F1_Score 99.4210 97.9487
10°? : : : : : ; ‘ ‘ ‘ FNR 0.0059 0.0216
-50 -40 -30 -20 -10 0 10 20 30 40 50
GSNRAR
Figure 23. Accuracy of FE for noisy LFM by FPR 0.0057 0.0195
TFD (Pspectrum).
Test error rate of LFM by TFD & DCNN vs. GSNR , @=18b=20 Test error rate of LFM by DCNvs. GSNR , a=18b=20
od0T10000L  Ts=0oL L=l E=09.6=0, A=1,W=32,Q=8R=50 07 '°:1‘9°°°5 ‘ JS:?vl
— ‘ ‘ ‘ ‘ ‘ ‘ ——
TFD s
05 TED
0.4
Z oa H
5 02
01
-50 74‘0 73‘0 -20 -10 0 10 20 30 40 50
0 L L L L L L GSNR
-50 -40 -30 -20 -10 0 10 20 30 40 50
GSNRdB Figure 26. Test error rate for SE of noise LFM
Figure 24. Accuracy of FE for noise LFM by DNN by DCNN, where £=19.0005.

and TFD for spectrogram (TFDs) & Pspectrum
(TFDp).


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022 d0i:10.20944/preprints202208.0068.v1

18 of 20

Author Contributions: H.S.R. and Z.M.H. contributed equally to this
work. H.S.R. contributed to the initial tasks of this work during her post-
graduate preparatory year of coursework in 2019, where she had ob-
tained the top rank of high-distinction before she started her research
project on deep learning for frequency estimation under the supervision
of Z.M.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This project was partially funded by Edith Cowan University
via the ASPIRE Program.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All types of data were generated using
mathematical equations.

Acknowledgments: The authors would like to thank Edith Cowan Uni-
versity for partially supporting this project.

Conflicts of Interest: The authors declare that no conflict of interest is
associated with this work.

References

1. Boashash B., "Estimating and Interpreting the Instantaneous Frequency of a Signal. I. Funda-
mentals," Proceedings of the IEEE, 1992.

2. Boashash B., "Estimating and Interpreting the Instantaneous Frequency of a Signal. II. Algo-
rithms and Applications," Proceedings of the IEEE, 1992.

3. LiuHongyu and Bo Lang, "Machine learning and deep learning methods for intrusion detection
systems: A survey”, applied sciences, 2019.

4. Boashash B., "Estimating and Interpreting the Instantaneous Frequency of a Signal. I. Funda-
mentals," Proceedings of the IEEE, 1992.

5. Boashash B., "Estimating and Interpreting the Instantaneous Frequency of a Signal. II. Algo-
rithms and Applications," Proceedings of the IEEE, 1992.

6. Liu Hongyu and Bo Lang, "Machine learning and deep learning methods for intrusion detection
systems: A survey”, applied sciences, 2019.

7. Ghorbanzadeh O., Blaschke T., Gholamnia K., MeenaS. R., Tiede D., & Aryal J., "Evaluation of
different machine learning methods and deep-learning convolutional neural networks for land-
slide detection"., Remote Sensing, 11(2), 196, 2019.

8. TangT. A, MhamdiL. McLernon D., Zaidi S. A. R., Ghogho M., & El Moussa F., "DeepIDS: deep
learning approach for intrusion detection in software defined networking". Electronics, 9(9),
1533, 2020.

9. Woschank M., Rauch E., & Zsifkovits H., "A review of further directions for artificial intelligence,
machine learning, and deep learning in smart logistics". Sustainability, 12(9), 3760, 2020.

10. YaoY. HuW., Zhang W., WuT,, & Shi Y. Q.," Distinguishing computer-generated graphics from
natural images based on sensor pattern noise and deep learning". Sensors, 18(4), 1296, 2018.

11. Zantalis F., Koulouras G., Karabetsos S., & Kandris D., “A review of machine learning and IoT
in smart transportation”, Future Internet, 11(4), 94, 2019.

12. Liu]., FanL, Jin]., Wang X,, Xing J., & He W., "An Accurate and Efficient Frequency Estimation
Algorithm by Using FFT and DTFT," In 39th Chinese Control Conference (CCC), IEEE, 2020.

13. Akram ], Khan N. A, Ali S,, & Akram, A. "Multi-component instantaneous frequency esti-
mation using signal decomposition and time-frequency filtering," Signal, Image and Video Pro-
cessing 14, 2020.

14. Xu S., & Shimodaira H., "Direct FO Estimation with Neural-Network-Based Regression", In IN-
TERSPEECH (pp. 1995-1999), 2019.

15. Silva Bruno, et al. "Artificial Neural Networks to Solve Doppler Ambiguities in Pulsed Radars."
2018 International Conference on Radar (RADAR). IEEE, 2018.


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022 d0i:10.20944/preprints202208.0068.v1

19 of 20

16. Chen X,, Jiang Q., Su N., Chen B., & Guan J., " LFM Signal Detection and Estimation Based on
Deep Convolutional Neural Network". In 2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC) (pp. 753-758). IEEE, 2019.

17. Liu Xuelian, and Chunyang Wang. "A novel parameter estimation of chirp signal in a-stable
noise," IEICE Electronics Express, 2017.

18. Milczarek, Hubert, et al. "Estimating the Instantaneous Frequency of Linear and

19. Nonlinear Frequency Modulated Radar Signals—A Comparative Study," Sensors 21.8, 2021

20. Almayyali H. R, & Hussain Z. M., " Deep Learning versus Spectral Techniques for Frequency
Estimation of Single Tones: Reduced Complexity for Software-Defined Radio and IoT Sensor
Communications". Sensors, 21(8), 2729, 2021.

21. B.Boashash, P. O'Shea, M. ]. Arnold, "Algorithms for instantaneous frequency estimation: a com-
parative study," Proc. SPIE, 1990.

22. Zhang Juan, Yong Li, and Junping Yin. "Modulation classification method for frequency modu-
lation signals based on the time-frequency distribution and CNN," IET Radar, Sonar & Naviga-
tion 12.2, 2018.

23. B. Boashash, Ed., “Time-Frequency Signal Analysis and Processing: a comprehensive Refer-
ence”, Elsevier, Oxford, UK, 2016.

24. Liu M., Han Y., Chen Y., Song H., Yang Z., & Gong, F., "Modulation Parameter Estimation of
LFM Interference for Direct Sequence Spread Spectrum Communication System in Alpha-Stable
Noise," IEEE Systems Journal, 2020.

25. Zhang G., Wang J., Yang G., Shao Q., & Li, S., "Non-linear processing for correlation detection
in symmetric alpha-stable noise," IEEE Signal Processing Letters, 25(1), 120-124, 2017.

26. Bengio Y.,”Learning deep architectures for AI”. Foundations and trends® in Machine Learning,
2(1), 1-127, 2009.

27. Cristianini N., & Shawe-Taylor, J., “An introduction to support vector machines and other ker-
nel-based learning methods”. Cambridge university press, 2009.

28. Yager R. R., “An extension of the naive Bayesian classifier”. Information Sciences, 176(5), 577-
588, 2006.

29. Guo G, Wang H., Bell D., Bi Y., & Greer K. , “KNN model-based approach in classification”. In
OTM Confederated International Conferences" On the Move to Meaningful Internet Systems"
(pp- 986-996). Springer, Berlin, Heidelberg, 2003.

30. Safavian S. Rasoul, and David Landgrebe. "A survey of decision tree classifier methodology."
IEEE transactions on systems, man, and cybernetics 21.3, 1991.

31. Alpaydin E., “Introduction to machine learning”. MIT press, 2009.

32. Géron A., “Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and
techniques to build intelligent systems. " O'Reilly Media, Inc.", 2017.

33. J. Shlens, “A Tutorial on Principal Component Analysis,” 2014.

34. C. Nwankpa, W. J[jomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of
trends in Practice and Research for Deep Learning,” pp. 1-20, 2018.

35. Phil K., "Matlab deep learning with machine learning, neural networks and artificial intelli-
gence", Apress, New York, 2017.

36. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” pp. 1-15, 2014.

37. LeCunY., Bengio Y., Hinton G., “Deep learning”, Nature 2015, 521, 436.

38. Amato G., Carrara F., Falchi F., Gennaro C., Meghini C., Vairo C., “Deep learning for decentral-
ized parking lot occupancy detection”, Expert Syst, 72, 327-334, 2017.

39. Gad, Ahmed Fawzy, "Practical Computer Vision Applications Using Deep Learning with
CNNs", 2018.

40. Moons B., Bankman D., & Verhelst M., “Embedded Deep Learning: Algorithms, Architectures
and Circuits for Always-on Neural Network Processing”, Springer, 2018.

41. Srivastava N., Hinton G., Krizhevsky A., Sutskever L., & Salakhutdinov R., “Dropout: a simple
way to prevent neural networks from overfitting”, The journal of machine learning research,
15(1), 1929-1958, 2014.

42. Powers D. M., “Evaluation: from precision, recall and F-measure to ROC, informedness, mark-
edness and correlation”, 2011.

43. Amin Vaishali S., Yimin D. Zhang, and Braham Himed. "Improved instantaneous frequency es-
timation of multi-component FM signals.”, IEEE Radar Conference (RadarConf). IEEE, 2019.


https://doi.org/10.20944/preprints202208.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2022

20 of 20

44. Hussain, Z. M., Sadik A. Z., and O'Shea P., Digital Signal Processing, Springer, Berlin, Germany,
2011.

45. Huda Saleem Razzaq, and Zahir M. Hussain. "Instantaneous Frequency Estimation for Fre-
quency-Modulated Signals under Gaussian and Symmetric a-Stable Noise." 2021 31st Interna-
tional Telecommunication Networks and Applications Conference (ITNAC). IEEE, 2021.


https://doi.org/10.20944/preprints202208.0068.v1

