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Weaving technology can convert two-dimensional structures such as ribbons into three-dimensional

structures by specific connections. However, most of the 3D structures fabricated by conventional

weaving methods using straight ribbons have some topological defects. In order to obtain smoother

continuous 3D surface structures, Baek et al.[1] proposed a novel weaving method using naturally

curved (in-plane) ribbons to fabricated three-dimensional curved structures and using this method

to weave new spherical weave structures that are closer to perfect spheres. We believe that this new

spherical weave structure with smooth geometric properties must correspond to new mechanical

properties. To this end, we investigated the buckling characteristics of different types of spherical

weave structures by the combination of test and finite element method. The results of calculations

and experiments show that the failure mode of the spherical weave structure under vertical loading

can be divided into two stages: a flat contact region forms between the spherical weave structure and

the rigid plate and inward dimple of ribbons. The spherical weave structures using naturally curved

(in-plane) ribbon weaving have better buckling stability than those woven with straight ribbons.

The vertical buckling load of spherical weave structures using naturally curved ribbon increases with

the width and thickness of the ribbon. In addition, this paper combines test, theoretical and finite

element analysis to propose the buckling load equation and buckling correction factor equation for

the new spherical weave structure under vertical compression load.
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I. INTRODUCTION

Weaving is a more mature three-dimensional structure

forming technology. People can make two-dimensional

ribbons, rods, etc. into three-dimensional structures by

weaving technology. However, the traditional weaving

technology in the production of three-dimensional struc-

ture using straight ribbons, straight rod members as the

basic components, so there are some serious topological

defects in the three-dimensional woven structure. It has

been realized so far that how to form some curved 3D

structures with continuous geometry and small topologi-

cal defects using planar structures such as ribbons or rods

has been a huge challenge. To address this problem, Baek

et al. [1] proposed a 3D surface forming method based on

traditional weaving technology, containing ribbons with

in-plane curvatures to weave, and using rivets to fix be-

tween ribbons. The three-dimensional woven structure

formed by this method has fewer topological defects, s-

moother and more continuous 3D surface structure, and

its Gaussian curvature is closer to a continuum. In addi-

tion, Baek et al. [1] produced spherical weave structures

by arranging the position and number of pentagonal and

hexagonal weave structures in a rational combination,

and compared with the spherical weave structure formed

by the straight ribbon, we found that topological defect-

s of spherical weaves with curved ribbon is within 1%,

and and its geometric configuration is closer to a perfect

spherical shell structure.

It is well known that spherical shell structure is widely

used in architecture, aerospace and other fields because of

its light weight and high strength mechanical properties.

Therefore, it is very important to investigate deformation

behavior of spherical shell structure under various loads.

Updike et al.[2-4] studied the buckling behavior of elas-

tic spherical shell and elastic-plastic spherical shell un-

der quasi-static compression of rigid plate by combining

theoretical analysis with experiment, and the theoretical

analysis model of hemispherical shell under compression

was given and the expressions of displacement and pres-

sure were obtained. Gupta et al.[5-9] investigated the

mechanical properties of metal hemispherical shell struc-

tures with different radius-thickness ratios subjected to

vertical compression. The radius of plastic hinge of metal

hemispherical structure was measured by combining ex-

periment, theory and finite element method. The energy

dissipation of metal hemispherical structure was stud-

ied by using plastic hinge. And a more accurate finite

element model was obtained by using experimental da-

ta and the effect of different process parameters on the

deformation behavior of shell was analyzed. Pauchard

et al.[10] studied the failure modes of elastic thin-shell
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structures in different situations: contact with a rigid

plane and subject to a localized load. The experimental

study shows that the failure mode of the sphere in con-

tact with the rigid plate is the flat contact between the

shell and the rigid plane; and the second by an inversion

of curvature leading to contact with the plane along a

circular ridge. Oliveira et al.[11] investigated the failure

behavior of rotationally symmetric plastic thin shells un-

der large deflection. The failure modes of conical shell

and spherical shell under point load, spherical shell un-

der rigid plate and convex platform load and spherical

cap under external uniform pressure are mainly analyzed,

and a simple closed solution is obtained for these cases.

Amiri et al.[12] studied the semi-spherical elastic-plastic

thin shell under concentrated loads at the pole, discussed

the relationship between the initial ultimate load and the

radius of the bar, and suggested that the ultimate stress-

es and depression sizes corresponding to large sizes of

compression bars are also larger.

All the above studies are for the buckling analysis of

continuous spherical shell structures under vertical com-

pression loads. Nevertheless, the mechanical properties

of the spherical weave structure proposed in the litera-

ture[1] under vertical compression loads have not been

studied. In this paper, we combine 3D printing, exper-

iments, and the finite element method (FEM) to ana-

lyze the buckling behavior of different types spherical

weave structures under vertical compression loads. Com-

pared with other spherical weave structures, the spherical

weave with ribbons with in-plane curvatures(new spher-

ical weave structure) not only has a smoother and more

continuous geometric configuration, but a higher verti-

cal axial buckling load and initial stiffness, and the new

spherical weave structure is more stable. The rest of the

paper is organized as follows.

Firstly, the spherical weave structures fabricated by d-

ifferent types of ribbons are analyzed and studied, and

it was found that the new spherical weave structure has

higher vertical buckling load and initial stiffness, and its

structural stability is better. We then study the effect of

different ribbon thicknesses and ribbon widths on the ver-

tical buckling load of the new spherical weave structure.

Finally, the buckling load expression of the new spheri-

cal weave structure under vertical load is proposed, and

the finite element analysis is used to obtain the buck-

ling correction coefficient formula related to the ribbon

thickness.

II. BUCKLING ANALYSIS OF DIFFERENT

SPHERICAL WEAVE STRUCTURES

A. Fabrication of different types of spherical weave

structures

We experimentally study the buckling behavior of

spherical weave structures under vertical compression

load. It can be seen[1] that the spherical weave structure

consist of 12 pentagonal and 20 hexagonal unit cells, and

the total number of ribbons is 10, each ribbon is even-

ly divided into 18 segments by rivet hole. According to

literature[1], we designed the two spherical weaves: one

with straight ribbons, and the other with curved ribbons.

The total number of segments of the straight ribbon is

18, and the segment length l◦i = 20mm; For curved rib-

bons, the number of segments is 18 and segment curva-

ture k∗i = 0.014mm−1, the segment length l∗i = 20mm.

Through the analysis of the above two spherical weave

structures, it is found that overall Gaussian curvature

of the spherical weave structure K > 0, which requires

that the Gaussian curvature of the pentagon structure

of spherical surface is greater than zero, and that of the

hexagon structure is greater than or equal to zero. The

formula[1] for calculating the Gaussian curvature of a wo-

ven structure is shown below:

Kn =


π

3
(6 − n), With straight ribbons;

π

3
[6 − n(1 + κ∗)], With curved ribbons.

(1)

Where κ∗ = 3
4π (−κ1 + 2κ2 − κ3), κi = k∗i l

∗
i , k

∗
i is the

segment in-plane curvature of curved ribbon, l∗i is arc

length of curved ribbon. κi is the dimensionless cur-

vature of each segment of the curved ribbons. Then

the conditions for forming a spherical weave structure

are: K5 > 0,K6 ≥ 0. For the spherical weave struc-

ture with straight ribbons, the Gaussian curvatures of

pentagon and hexagon are: K5 = π
3 ,K6 = 0, meet

the requirements. For the spherical weave structure

with curved ribbons, dimensionless curvature of each

segment:(κ1, κ2, κ3) = (0, 0.28, 0) for the pentagons and

(κ1, κ2, κ3) = (0.28, 0, 0) for the hexagons. And then

K5 = 0.35,K6 = 0.42, all meet the above requirements.

According to the above study, in this paper, we propose

a spherical weave structure made of waved ribbons by

based on the design method of straight ribbons. Assume

that κ∗ = 0, then κ2 = κ1+κ3

2 . So we take the length

and in-plane curvature of segment of waved ribbon is

lwi = 20mm and kwi = 0.033mm−1 respectively, so that

κ1 = κ2 = κ3 = 0.66. Since κ∗ = 0, we can conclude

that K5 = π
3 ,K6 = 0, satisfying the above requirement.

The parameters of straight ribbon, ribbon with in-plane
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curvature, and waved ribbon are shown in Fig. 2.

FIG. 1: Different types of ribbons. (a) Straight ribbon, where

l◦i is the length of the i-th segment; (b) Ribbon with in-plane

curvature, where l∗i is the arc length of the i-th segment, k∗i is

in-plane curvature of i-th segment; (c) Waved ribbon; where

lwi is the arc length of the i-th segment of waved ribbon, kwi
is in-plane curvature of i-th segment of waved ribbon.

To accurately obtain these three kinds of spherical

weave structures, we use 3D printing to obtain a sin-

gle ribbon connected by rivets, using a ZRapid Tech

SLA880 3D printer and plastic rivet model is R2024,

R2056, R2064. The ribbon material has a elastic mod-

ulus of 2000Mpa, a density of 1.12g/cm3, and Poisson’s

ratio of 0.3. The specific ribbon and plastic rivet details

are shown in Figure 2.

FIG. 2: Different types of spherical weave structures. (a)

Spherical weaves with straight ribbons; (b) Spherical weaves

with curved ribbons; (c) Spherical weaves with waved ribbons.

By making and observing the spherical weave struc-

ture, it is found that the individual ribbons are con-

nected at the beginning and end to form closed circles

when woven into the spherical structure, and the center

of each ring coincides with the center of the spherical

weave structure. Therefore,the total length L of the rib-

bon is equal to the circumference of the spherical large

circle (the center of the circle coincides with the center of

the sphere) in the spherical weave structure. In order to

obtain the radius of the spherical weave structure, firstly,

we derived the equation for the total length of a single

ribbon for different types of spherical weave structures

respectively. For the spherical weave structure made of

straight ribbons, the length of single ribbon is:

L◦ =
n◦∑
i=1

l◦i , (2)

Where n◦ = 18, l◦i is the length of the i-th segment in

the straight ribbons. For the spherical weave structure

with curved ribbons, the length of single ribbon is:

L∗ =
n∗1∑
i=1

2

k∗i
sin

l∗i k
∗
i

2
+

n∗2∑
i=1

cos
l∗i k

∗
i

2
l∗i . (3)

Where n∗1 is the number of curved segments in a individ-

ual ribbon, n∗2 is the number of non-curved segments in

a individual ribbon, and n∗1 + n∗2 = 18. For the spher-

ical weave structure with waved ribbons, the length of

single ribbon is:

Lw =
nw∑
i=1

2

kwi
sin

lwi k
w
i

2
. (4)

Where nw = 18. Then the radii of the different types of
spherical weave structures are:

R =


1
2π

∑n◦

i=1 l
◦
i , With straight ribbons;

1
2π

(
∑n∗1

i=1
2
k∗i

sin
l∗i k

∗
i

2
+

∑n∗2

i=1 cos
l∗i k

∗
i

2
l∗i ), With curved ribbons;

1
2π

∑nw

i=1
2
kwi

sin
lwi k

w
i

2
, With waved ribbons.

(5)

Where n◦ = 18, nw = 18, n∗1 +n∗2 = 18, l◦i , k
∗
i , l

∗
i , k

w
i , l

w
i

etc. as shown in Figure 1. By the formula(5), the

radii of the spherical weave structure fabricated by s-

traight, curved waved ribbon are calculated as follows :

57.3mm, 56.85mm and 56.2mm, respectively. The ac-

tual measured radii of the spherical weave structure are:

57mm,57.17mm,57.48mm. And there is little difference

between theory and practice.

B. Experimental Analysis of Different Spherical

Weave Structures

In this test, quasi-static vertical compression tests were

conducted on a spherical structure woven by straight rib-

bons (conventional spherical weave structure), a spheri-

cal structure woven by ribbons with curved ribbon (new

spherical weave structure) and a spherical structure wo-

ven by waved ribbons (waved spherical weave structure).

The test setup is shown in Figure 3.
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FIG. 3: Testing platform

Displacement control was used in the whole loading

process of this test. Before the beginning of the test, the

upper pressure head was adjusted to contact the speci-

men. To ensure the specimen could withstand a quasi-

static axial pressure load, the downward pressure velocity

of the upper pressure head was 2mm/min. The load-

displacement curves of different spherical weave struc-

tures are shown in Fig.4(a), from which it can be seen

that the curves of the three spherical weave structures

show a trend of increasing and then decreasing. Different

degrees of buckling appear in spherical weave structures.

Comparing the three different types of spherical weave

structures it can be seen that the buckling load of the

traditional spherical weave structure is 86% of the new

spherical weave structure, and 83% of the waved spher-

ical weave structure; And the buckling load of the new

spherical weave structure is not much different from that

of the waved spherical weave structure. It is shown that

the spherical woven structure with ribbon with curved

curvatures has a higher buckling load capacity and its

initial stiffness is greater than with straight ribbons and

waved ribbons. This is because the spherical weave struc-

ture fabricated by naturally curved ribbons has hexago-

nal Gaussian curvature K6 = 0.42, the spherical Gaus-

sian curvature is more continuous and the structure has

a relatively continuous geometric configuration, and the

spherical weave structure has good stiffness and stability.

According to the deformation diagrams of different wo-

ven structures in Fig. 4(b2-d2), it can be seen that the

failure mode of the spherical weave structure under ver-

tical loading can be divided into two stages: a flat con-

tact region forms between the spherical woven structure

and the plate, and inward dimple of ribbons. When the

spherical weave structure changes from flat contact to in-

ward dimple, the vertical load-displacement curve of the

spherical weave structure jumps suddenly, that is, the

buckling of the spherical weave structure occurs. In the

early stage of loading, flat contact occurs at both the

upper and lower poles of the spherical weave structure

in contact with the rigid plate; With the increase of the

load, the single ribbon of conventional spherical weave

structure has a depression at the flat contact part of the

north and south poles of the sphere and the rigid plate,

and with the increase of vertical displacement, the num-

ber of depressed ribbons of the spherical weave struc-

ture has increased, and the structure undergoes more

serious buckling damage. Compared with the spherical

weave structure fabricated by straight ribbon, ribbons

with spherical weave structure fabricated using in-plane

curvatures ribbons (new spherical weave structures and

waved spherical weave structures) are only depressed at

one of the north and south poles of the sphere, and as

the displacement load increases, the depression deforma-

tion continues to increase, and the opposite pole remains

flattened. It is indicated that the in-plane curvature of

ribbon change the symmetric buckling failure mode of the

spherical weave structure, which makes the buckling fail-

ure of the structure concentrate on one part of the north

and south poles of the spherical structure, and improves

the stability of the spherical weave structure.

FIG. 4: Test curves and failure modes of different spherical

weave structures.
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III. THE BUCKLING ANALYSIS OF NEW

SPHERICAL WEAVE STRUCTURES

Through the above analysis, it is found that the spheri-

cal structure with ribbon with curved curvatures not only

has more continuous geometry, but also has good stiffness

and stability. To investigate the effect of the width and

thickness of ribbons on the new spherical weave struc-

tures, we conducted experimental studies on the buckling

behavior of spherical weave structures fabricated by nat-

urally curved ribbons. In this paper, six new spherical

weave structures with different ribbon thicknesses and

ribbon widths are designed and investigated by experi-

mental method. The downward pressure velocity of the

upper pressure head was 2mm/min and the maximum

vertical displacement is 40mm. The specific parameters

of the new spherical weave structure are shown in Table

1.

A. Effect of different thickness of ribbons on new

spherical weave structures

To study the influence of the thickness of ribbons in

the new spherical weave structures on its buckling me-

chanical properties, three new spherical weave structures

were designed according to different ribbon thicknesses

(h = 0.8, 1, 1.2). The fabrication process of the specimen

ribbon was the same as described above. A diagram of

the failure model and the axial load-displacement curve

obtained from the test is shown in Fig. 5.

It can be seen from the figure that the new spheri-

cal weave structure undergoes two large decreases in the

vertical load carrying capacity of the structure when sub-

jected to large vertical displacements, which indicates

that the new spherical weave structure buckling twice

under vertical loads. Comparing the buckling load val-

ues of the three specimens when two buckling occurs, it

can be seen that with the increase of ribbon thickness,

the vertical load carrying capacity of the new spherical

weave structure gradually increases, and the initial stiff-

ness of the structure also gradually increases with the

increase of ribbon thickness.

Fig. 5(c-e) is the failure mode diagram of new spher-

ical weave structures with different thickness of curved

ribbons. At the early stage of loading, the north and

south poles of the new spherical weave structure ap-

peared local flattening, with the increase of displacement

load, the ribbons at the south pole of the new spherical

weave structure flattened slightly, while the north pole

remained flattened. As the displacement load continues

to increase, the number of ribbons with concave deforma-

FIG. 5: Test curves and failure modes of new spherical weave

structures with different thickness of curved ribbons. (a)

Load-displacement curves of new spherical weave structures

with different ribbon thicknesses; (b) Scatter plot of the load

value FMax1 versus ribbon thickness h at the time of first

buckling of the structure; (c) The failure modes of Specimen-

2; (d) The failure modes of Specimen-1;(e) The failure modes

of Specimen-3.

tion at the north pole of the sphere increases, the degree

of concavity in the sphere becomes serious, the vertical

load carrying capacity of the structure decreases signifi-

cantly, and the first buckling of the structure occurs. In

the middle of loading, the inward dimple of the south pole

of the sphere remains unchanged, and the new spherical

woven structure has an overall outward rise, the vertical

bearing capacity of the structure increases. And then, the

single ribbons at the flat contact region of Sphere north

pole has inward dimple. At the late stage of loading, a

large degree of concavity occurs at the north pole of the

new spherical weave structure, at which time a sudden

drop in the structural load carrying capacity occurs and

the structure undergoes a second buckling. In particular,

after the first buckling of Specimen-3, the fracture failure

of the ribbon occurred pinned connections in the inward

dimple region of the lower part of the structure, and the

vertical bearing capacity decreased precipitously. Con-

tinuing loading, the inward dimple of ribbons occurs at

the north pole of the sphere structure, and the structure

undergoes buckling damage. It can be seen that although

increasing the ribbon thickness can increase the verti-

cal buckling bearing capacity and initial stiffness of the

new spherical weave structure, and improve the stability

of the spherical weave structure. The toughness of the

spherical weave structure fabricated by thicker ribbons is

reduced, and the fracture failure of the ribbon will occur
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TABLE I: The parameter of Spherical weaves with curved ribbons

Geometric parameter Radius Length Curvature Thickness Width

Unit R(mm) l∗i (mm) k∗i (mm−1) h(mm) b(mm)

Specimen-1 42.82 15 0.0167 1 5

Specimen-2 42.24 15 0.0167 0.8 5

Specimen-3 42.33 15 0.0167 1.2 5

Specimen-4 42.11 15 0.0167 1 6

Specimen-5 42.38 15 0.0167 1 7

Specimen-6 42.43 15 0.0167 1 8

at the same time as the buckling failure. Fracture failure

of new spherical woven ribbons is shown in Figure 6.

FIG. 6: Fracture failure modes of Specimen-3

B. Effect of different width of ribbons on new

spherical weave structures

To explore the influence of different width of ribbons

on the compression load of a spherical weave structure

composed of naturally curved ribbons, spherical weave

structures of ribbons width b = 5, 6, 7, 8 were experimen-

tally studied. The other geometric properties of ribbon

are shown in Table. 1. The test device of the specimen

is shown in Fig. 3. The test loading was controlled by

displacement, and the loading rate was 2mm/min, and

the maximum vertical displacement is 40mm. The load-

displacement curve and failure modes obtained from the

test is shown in Figure 7

It can be seen from Fig. 7 that when the width of

ribbons is 8mm, the new spherical weave structures has

a high initial stiffness and vertical compression buck-

ling load, and its maximum compression buckling load

is about twice that of the spherical weave structure with

b = 5mm ribbons. With the increase of ribbon width,

the buckling load and initial stiffness of the spherical

weave structure increase gradually. Analysis of the dam-

age mode diagrams of the four specimens shows that

Specimen-1, Specimen-4, Specimen-5, and Specimen-6

all show damage phenomena such as local flattening of

FIG. 7: Test curves and failure modes of new spherical weave

structures with different width of curved ribbons.(a) Load-

displacement curves of new spherical weave structures with

different ribbon widthes;(b) Scatter plot of the load value

FMax1 versus ribbon thickness h at the time of first buck-

ling of the structure;(c) The failure modes of Specimen-1;(d)

The failure modes of Specimen-4;(e) The failure modes of

Specimen-5;(f)The failure modes of Specimen-6.

the north and south poles of the spherical structure, in-

ternal concave deformation of the ribbon at the sphere

flattening, and structural buckling. And all new spheri-

cal weave structures appear twice buckling, the structure

did not occur fracture failure.

Through the above analysis, it can be concluded that

the width of ribbons with in-plane curvatures has a great

influence on the buckling bearing capacity of the new

spherical weave structures, and increasing the ribbon

width can increase the vertical buckling bearing capacity

and initial stiffness of the new spherical weave structure,

and the structure has better stability.
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IV. BUCKLING LOAD OF A NEW SPHERICAL

WEAVE STRUCTURE

A. Buckling formula of the new spherical weave

structure

From the above test, it can be seen that the new spher-

ical weave structure has better stability. In this section,

based on the above tests, combined with the buckling

analysis and dimensional analysis of the ribbon, the buck-

ling formula of the new spherical weave structure is given

as follows :

Fcr = n
πE

1 − ν2
bh3

R2
. (6)

Where n is the number of ribbons, E is the elastic mod-

ulus, ν is the Poisson’s ratio, b, h is the width and thick-

ness of the ribbons respectively, R is the radius of the

spherical weave structure. In order to construct the re-

lationship between the length and in-plane curvature of

a single ribbons segment and the buckling load of the

spherical weave structure, combined with equation (3),

the buckling equation of the new spherical weave struc-

ture can be written as:

Fcr = n
4π3E

1 − ν2
bh3

(
∑n∗1

i=1
2
k∗i

sin
l∗i k

∗
i

2 +
∑n∗2

i=1 cos
l∗i k

∗
i

2 l∗i )
2
.

(7)

Where n∗1 is the number of curved segments in a individ-

ual ribbon, n∗2 is the number of non-curved segments in a

individual ribbon, l∗i is the arc length of the i-th segmen-

t, k∗i is in-plane curvature of i-th segment; We calculat-

ed the vertical buckling load (first buckling) of specimen

Specimen-1∼Specimen-6 respectively, and compared the

obtained buckling load values of the new spherical weave

structure with the test values to verify the accuracy of

Equation (7), and the buckling loads of the specific new

spherical weave structure are shown in Table 2.

As can be seen from Table 2, there is little differ-

ence between the experimental and theoretical values of

Specimen-1 vertical buckling load, equation (7) can bet-

ter predict the buckling load of the new spherical wo-

ven structure under vertical load when the ribbon width

b = 5mm, ribbon thickness h = 1mm, and sphere ra-

dius R = 42.82mm. When the width and thickness of

the ribbon are changed, the errors between the experi-

mental and theoretical values of the new spherical weave

structure are 0.86 ∼ 0.93, 0.79 ∼ 1.01 respectively. To

address this, we propose a buckling correction factor α

to correct the theoretical equation of the spherical weave

structure, it can be seen from Table 2 that the buckling

correction factor is closely related to the thickness and

width of a single ribbon. Then the buckling load equa-

tion for a spherical woven structure subjected to vertical

loads is:

Fcr ∼ α
nπE

1 − ν2
bh3

R2
, (8)

B. Analysis of Buckling Correction Coefficient

From the above analysis, it can be seen that both rib-

bon thickness and ribbon width have an effect on the

buckling correction factor α of the new spherical weave

structure. In contrast, changing the ribbon thickness has

a greater effect on the buckling coefficient of the spherical

weave structure and there is no pattern. Therefore, we

mainly study the influence of different ribbon thickness

on the buckling correction coefficient. In this section, the

finite element program ABAQUS was used to establish

an accurate finite element model of the spherical weave

structure in combination with the above tests, to anal-

ysis the buckling mechanical properties of new spherical

weave structures with different ribbon thicknesses under

vertical load. The buckling load values of the new spher-

ical weave structure at different ribbon thicknesses are

obtained to determine its buckling correction factor α.

1. Verification of finite element model

Since the ribbons in the spherical weave are connected

at the end to form a closed circle, the force-displacement

driven modeling method is no longer applicable. In or-

der to obtain the finite element model of the new spher-

ical weave structure accurately and conveniently, the 3D

scanner AXE-B17 is used to scan the spherical weave

structure in Fig. 2(b), and the scanned model is inverse

processed to obtain the finite element model of the spher-

ical weave structure that can be used for calculation. To

fully restore the test, we establish a rigid plate in the

finite element simulation to simulate the upper pressure

head and bottom support of the universal testing ma-

chine, respectively. And the upper rigid plate applies

vertical displacement; constrains all degrees of freedom

of the bottom rigid plate used to simulate the fixed con-

straints of the bottom support. To simulate the con-

nection of rivets, the overlapping part of two ribbons

is coupled to a reference point. Simulation of weaving

structure forming using quasi-static in dynamic implicit

analysis step. The displacement load is applied, and the

loading rate is controlled at 2mm/min. To speed up the

calculation and eliminate the self-locking of mesh shear-

ing, the shell element S4R is used, and the mesh size of
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TABLE II: Buckling load of a new spherical weave structure

Name R(mm) b(mm) h(mm) FMax1(N) Fcr(N) FMax1/Fcr
Specimen-1 42.82 5 1 190.84 188.46 1.01

Specimen-2 42.24 5 0.8 81.66 99.07 0.82

Specimen-3 42.33 5 1.2 263.60 332.93 0.79

Specimen-4 42.11 6 1 200.70 233.62 0.86

Specimen-5 42.38 7 1 240.69 269.10 0.89

Specimen-6 42.43 8 1 286.80 306.82 0.93

woven structure is 1mm. The finite element model uses

a material with a modulus of elasticity of 2000Mpa, a

density of 1.12g/cm3 and a Poisson’s ratio of 0.3. The

finite element model and mesh distribution are shown in

Fig. 8.

FIG. 8: Finite element model and mesh distribution. The

mesh size of rigid plate is 7.5mm. The mesh size of woven

structure is 1mm.

The above method is used to model the new spheri-

cal weave structure by ABAQUS, and the finite element

simulation of the new spherical weave structure with d-

ifferent ribbon thicknesses is carried out. To confirm the

above modeling method and the finite element model, the

new spherical woven structure with thickness h = 1mm,

width b = 5mm and radius R = 57.17mm is used for

simulation, whose results are compared with the test re-

sults, as shown in Fig. 9. From Fig. 9(a), we can see that

FIG. 9: Verification of finite element model of new spherical

weave structure. (a) Comparison of load-displacement curves;

(b) Comparison of failure modes.

the initial stiffness of the finite element simulation result-

s is in good agreement with the test, but the maximum

buckling load from the simulation is slightly higher than

that of the test. Because the coupling approach is used in

the finite element simulation to simulate the plastic rivet,

but in practice there is a certain gap between the rivet

and the rivet hole, which is weaker than the constraint

strength of the coupling effect in the finite element. In

addition, there are some inevitable errors and initial de-

fects in the test, leads to a slightly higher compression

load in the finite element simulation than the test val-

ue. In addition, there is a displacement plateau in the

test curve, which is due to the fact that realistic spheri-

cal weave structures are connected by plastic rivets, and

there are certain gaps between ribbons and ribbons and

rivets and ribbons. Under vertical load, the outermost

rivet end of the structure contacts with the punch head

and has a certain angle. With the increase of vertical dis-

placement, the rivet slides with the upper pressure head,

and the position of the rigid plate is vertical, and the

gap between the ribbons increases; Further loading, the

gap between plastic rivet and ribbon, ribbon and ribbon

is compacted, which leads to a displacement platform in

the load-displacement curve. Since the plastic rivet was

not modeled in the simulation, the above displacement

plateau did not appear in the finite element simulation.

From the failure mode diagram of the test, it can be

seen that the finite element can simulate the flat con-

tact region forms between the spherical weave structure

and the plate, and inward dimple of ribbons of the new

spherical weave structure in the test, and the overall fail-

ure mode of the structure is similar to that of the test,

both with multiple ribbons of internal concave buckling

at the north pole of the sphere. Compared with the test,

it is found that this method can more accurately simu-

late the vertical compressed mechanical properties of new

spherical weave structure in practice.

2. Finite element parameter analysis

In order to investigate the effect of ribbon thickness

on the buckling correction coefficient of the new spheri-

cal weave structure and to ensure that the new spherical

weave structure is a thin-shell sphere structure. In this

paper, finite element simulations are performed for a new

spherical weave structure with ribbon thicknesses rang-

ing from 0.01mm ∼ 2.5mm. The other parameters of the
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finite element model are consistent with the above. The

finite element curves and failure modes of the new spheri-

cal weave structures with different ribbon thicknesses are

shown in Fig. 10.

FIG. 10: Finite element curves and failure modes of

new spherical weave structures with different thickness of

curved ribbons.(a) Load-displacement curves of new spher-

ical weave structures with different ribbon thickness of

0.01mm sim2.5mm.(b-c)The failure modes for the finite ele-

ment model of new spherical weave structure.

From Fig. 10(a), we can see that changing the thick-

ness of the curved ribbon, the vertical load carrying ca-

pacity of the new spherical weave structure for the first

buckling changes significantly. With the increase of rib-

bon thickness, the buckling load of the new spherical

weave structure increases. The models in the finite el-

ements all showed two damage patterns of flat contact

region forms between the spherical woven structure and

the plate, and inward dimple. The final failure mode

of the structure is the concave buckling at the north or

south pole of the sphere. The detailed failure modes are

shown in Figure 10 (b-c).

In order to facilitate the observation of the relation-

ship between the buckling correction coefficient α and

the ribbon thickness, this paper dimensionlessizes the rib-

bon thickness and investigates the relationship between

the dimensionless parameter h/R and the buckling cor-

rection coefficient α, where α = FFEM/Fcr. From Fig.

11(a), when the range of the dimensionless parameter

h/R is 0.005 ∼ 0.02, the calculated value of the theoret-

ical formula of the new spherical weave structure is too

large, and the buckling load of the actual structure is low-

er than the theoretical calculation, then equation (7) is

not applicable to estimate the buckling load value of the

new spherical weave structure under the vertical load. In

order to solve this problem, this paper uses a Hook func-

tion to fit α− h
R to obtain a lower bound formula for the

buckling coefficient of the new spherical weave structure.

FIG. 11: Buckling loads and buckling correction factorsα

for spherically woven structures with different ribbon widths.

Where α = FFEM/Fcr, FFEM is buckling load (first buckling)

for the new spherical weave structure using FEM.

From Fig. 11(b), it can be seen that the lower bound

fitting equation for the buckling correction factor is:

α = 20(
h

R
) + (83.42(

R

h
)0.003) − 84. (9)

Then the buckling load equation for the new spherical

weave structure subjected to vertical load is:

Fcr ∼ αn
4π3E

1 − ν2
bh3

(
∑n∗1

i=1
2
k∗i

sin
l∗i k

∗
i

2 +
∑n∗2

i=1 cos
l∗i k

∗
i

2 l∗i )
2
.

(10)

To validate formula (10), we calculate the buckling load

of Specimen-2 and Specimen-3, and compare the ob-

tained buckling load value with the experimental data.

The specific results are shown in Table 3.

From Table 3, we can see that the buckling load of

the new spherical weave structure calculated by formula

(10) is not much different from the experimental buck-

ling load. The error of the results of the two models is

1.03 and 0.90, respectively. This shows that using the

buckling correction factor α to correct Formula (6) can

better reflect the buckling load of the new spherical weave

structure under vertical load.

V. CONCLUSION

We studied the buckling behavior of different spherical

weave structure under vertical loads by combining exper-

imental and finite element methods. It was demonstrat-

ed that, the deformation of the spherical weave struc-

ture under the vertical compressive load can be divided

into 2 stages: a flat contact region forms between the

spherical weave structure and the rigid plate and inward

dimple. Conventional spherical weave structures are sub-

jected to vertical loads, with simultaneous buckling of
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TABLE III: Comparisons of test results with those from Eqs. (10)

Name R(mm) h(mm) b(mm) h/R FMax1(N) Fcr(N) error

Specimen-2 42.24 0.8 5 0.0189 81.66 78.97 1.03

Specimen-3 42.33 1.2 5 0.0283 263.6 294.14 0.90

the north and south poles of the sphere at the contact

locations with the rigid plate. However, the new woven

structure first buckles on the south or north pole side of

the sphere, and the corresponding buckling occurs on the

other side of the sphere with the increase of load. Com-

pared with the traditional spherical weave structure and

waved spherical weave structure, the new woven spher-

ical structure with naturally curved (in-plane) ribbons

has higher initial stiffness and a larger buckling load. In

addition, we investigated the effect of different thickness

h and width b of ribbons on the buckling behavior of

the new woven spherical structure. Experimental studies

show that increasing the thickness and width of the rib-

bon can increase the vertical buckling bearing capacity

and initial stiffness of the new woven spherical structure,

and improve the stability of the spherical weave struc-

ture. But excessively thick ribbons can lead to fracture

failure of ribbon of the new woven spherical structure.

Finally, the buckling load equation and buckling correc-

tion coefficient of the new spherical weave structure un-

der vertical load are proposed in this paper by combining

buckling analysis and dimensional analysis of the ribbon

structure, and the buckling correction coefficient equa-

tion related to the ribbon thickness is obtained by finite

element calculation.
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