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Weaving technology can convert two-dimensional structures such as ribbons into three-dimensional
structures by specific connections. However, most of the 3D structures fabricated by conventional
weaving methods using straight ribbons have some topological defects. In order to obtain smoother
continuous 3D surface structures, Baek et al.[1] proposed a novel weaving method using naturally
curved (in-plane) ribbons to fabricated three-dimensional curved structures and using this method
to weave new spherical weave structures that are closer to perfect spheres. We believe that this new
spherical weave structure with smooth geometric properties must correspond to new mechanical
properties. To this end, we investigated the buckling characteristics of different types of spherical
weave structures by the combination of test and finite element method. The results of calculations
and experiments show that the failure mode of the spherical weave structure under vertical loading
can be divided into two stages: a flat contact region forms between the spherical weave structure and
the rigid plate and inward dimple of ribbons. The spherical weave structures using naturally curved
(in-plane) ribbon weaving have better buckling stability than those woven with straight ribbons.
The vertical buckling load of spherical weave structures using naturally curved ribbon increases with
the width and thickness of the ribbon. In addition, this paper combines test, theoretical and finite
element analysis to propose the buckling load equation and buckling correction factor equation for

the new spherical weave structure under vertical compression load.

Keywords: Spherical weave structure, In-plane curvatures,Buckling, Test, Buckling load

I. INTRODUCTION

Weaving is a more mature three-dimensional structure
forming technology.
ribbons, rods, etc. into three-dimensional structures by
weaving technology.
technology in the production of three-dimensional struc-
ture using straight ribbons, straight rod members as the
basic components, so there are some serious topological
defects in the three-dimensional woven structure. It has
been realized so far that how to form some curved 3D

People can make two-dimensional

However, the traditional weaving

structures with continuous geometry and small topologi-
cal defects using planar structures such as ribbons or rods
has been a huge challenge. To address this problem, Baek
et al. [1] proposed a 3D surface forming method based on
traditional weaving technology, containing ribbons with
in-plane curvatures to weave, and using rivets to fix be-
tween ribbons. The three-dimensional woven structure
formed by this method has fewer topological defects, s-
moother and more continuous 3D surface structure, and
its Gaussian curvature is closer to a continuum. In addi-
tion, Baek et al. [1] produced spherical weave structures
by arranging the position and number of pentagonal and
hexagonal weave structures in a rational combination,
and compared with the spherical weave structure formed
by the straight ribbon, we found that topological defect-

s of spherical weaves with curved ribbon is within 1%,
and and its geometric configuration is closer to a perfect
spherical shell structure.

It is well known that spherical shell structure is widely
used in architecture, aerospace and other fields because of
its light weight and high strength mechanical properties.
Therefore, it is very important to investigate deformation
behavior of spherical shell structure under various loads.
Updike et al.[2-4] studied the buckling behavior of elas-
tic spherical shell and elastic-plastic spherical shell un-
der quasi-static compression of rigid plate by combining
theoretical analysis with experiment, and the theoretical
analysis model of hemispherical shell under compression
was given and the expressions of displacement and pres-
sure were obtained. Gupta et al.[5-9] investigated the
mechanical properties of metal hemispherical shell struc-
tures with different radius-thickness ratios subjected to
vertical compression. The radius of plastic hinge of metal
hemispherical structure was measured by combining ex-
periment, theory and finite element method. The energy
dissipation of metal hemispherical structure was stud-
ied by using plastic hinge. And a more accurate finite
element model was obtained by using experimental da-
ta and the effect of different process parameters on the
deformation behavior of shell was analyzed. Pauchard
et al.[10] studied the failure modes of elastic thin-shell
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structures in different situations: contact with a rigid
plane and subject to a localized load. The experimental
study shows that the failure mode of the sphere in con-
tact with the rigid plate is the flat contact between the
shell and the rigid plane; and the second by an inversion
of curvature leading to contact with the plane along a
circular ridge. Oliveira et al.[11] investigated the failure
behavior of rotationally symmetric plastic thin shells un-
der large deflection. The failure modes of conical shell
and spherical shell under point load, spherical shell un-
der rigid plate and convex platform load and spherical
cap under external uniform pressure are mainly analyzed,
and a simple closed solution is obtained for these cases.
Amiri et al.[12] studied the semi-spherical elastic-plastic
thin shell under concentrated loads at the pole, discussed
the relationship between the initial ultimate load and the
radius of the bar, and suggested that the ultimate stress-
es and depression sizes corresponding to large sizes of
compression bars are also larger.

All the above studies are for the buckling analysis of
continuous spherical shell structures under vertical com-
pression loads. Nevertheless, the mechanical properties
of the spherical weave structure proposed in the litera-
ture[1] under vertical compression loads have not been
studied. In this paper, we combine 3D printing, exper-
iments, and the finite element method (FEM) to ana-
lyze the buckling behavior of different types spherical
weave structures under vertical compression loads. Com-
pared with other spherical weave structures, the spherical
weave with ribbons with in-plane curvatures(new spher-
ical weave structure) not only has a smoother and more
continuous geometric configuration, but a higher verti-
cal axial buckling load and initial stiffness, and the new
spherical weave structure is more stable. The rest of the
paper is organized as follows.

Firstly, the spherical weave structures fabricated by d-
ifferent types of ribbons are analyzed and studied, and
it was found that the new spherical weave structure has
higher vertical buckling load and initial stiffness, and its
structural stability is better. We then study the effect of
different ribbon thicknesses and ribbon widths on the ver-
tical buckling load of the new spherical weave structure.
Finally, the buckling load expression of the new spheri-
cal weave structure under vertical load is proposed, and
the finite element analysis is used to obtain the buck-
ling correction coefficient formula related to the ribbon
thickness.

d0i:10.20944/preprints202208.0063.v1

II. BUCKLING ANALYSIS OF DIFFERENT
SPHERICAL WEAVE STRUCTURES

A. Fabrication of different types of spherical weave
structures

We experimentally study the buckling behavior of
spherical weave structures under vertical compression
load. It can be seen[1] that the spherical weave structure
consist of 12 pentagonal and 20 hexagonal unit cells, and
the total number of ribbons is 10, each ribbon is even-
ly divided into 18 segments by rivet hole. According to
literature[1], we designed the two spherical weaves: one
with straight ribbons, and the other with curved ribbons.
The total number of segments of the straight ribbon is
18, and the segment length I? = 20mm; For curved rib-
bons, the number of segments is 18 and segment curva-
ture kf = 0.014mm™", the segment length I} = 20mm.
Through the analysis of the above two spherical weave
structures, it is found that overall Gaussian curvature
of the spherical weave structure K > 0, which requires
that the Gaussian curvature of the pentagon structure
of spherical surface is greater than zero, and that of the
hexagon structure is greater than or equal to zero. The
formula[1] for calculating the Gaussian curvature of a wo-
ven structure is shown below:

%(6 —n), With straight ribbons;
K =
" 5[6 —n(l1+«*)], With curved ribbons.

Where k* = %(—m + 2K9 — K3), ki = kXY, kI is the
segment in-plane curvature of curved ribbon, [} is arc
length of curved ribbon. &; is the dimensionless cur-
vature of each segment of the curved ribbons. Then
the conditions for forming a spherical weave structure
are: K5 > 0,Kg > 0. For the spherical weave struc-
ture with straight ribbons, the Gaussian curvatures of
pentagon and hexagon are: K; = %,K¢ = 0, meet
the requirements. For the spherical weave structure
with curved ribbons, dimensionless curvature of each
segment:(k1, ko, k3) = (0,0.28,0) for the pentagons and
(K1, k2, k3) = (0.28,0,0) for the hexagons. And then
K5 = 0.35, Kg = 0.42, all meet the above requirements.
According to the above study, in this paper, we propose
a spherical weave structure made of waved ribbons by
based on the design method of straight ribbons. Assume
that k* = 0, then ko = % So we take the length
and in-plane curvature of segment of waved ribbon is
[¥ = 20mm and k¥ = 0.033mm ™! respectively, so that
K1 = kg = k3 = 0.66. Since k* = 0, we can conclude
that K5 = %, K¢ = 0, satisfying the above requirement.
The parameters of straight ribbon, ribbon with in-plane
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curvature, and waved ribbon are shown in Fig. 2

FIG. 1: Different types of ribbons. (a) Straight ribbon, where
I5 is the length of the i-th segment; (b) Ribbon with in-plane
curvature, where [ is the arc length of the i-th segment, k] is
in-plane curvature of i-th segment; (¢) Waved ribbon; where
i is the arc length of the i-th segment of waved ribbon, k;’
is in-plane curvature of i-th segment of waved ribbon.

To accurately obtain these three kinds of spherical
weave structures, we use 3D printing to obtain a sin-
gle ribbon connected by rivets, using a ZRapid Tech
SLAS80 3D printer and plastic rivet model is R2024,
R2056, R2064. The ribbon material has a elastic mod-
ulus of 2000M pa, a density of 1.12g/cm?, and Poisson’s
ratio of 0.3. The specific ribbon and plastic rivet details
are shown in Figure 2.

FIG. 2: Different types of spherical weave structures. (a)
Spherical weaves with straight ribbons; (b) Spherical weaves
with curved ribbons; (c) Spherical weaves with waved ribbons.

By making and observing the spherical weave struc-
ture, it is found that the individual ribbons are con-
nected at the beginning and end to form closed circles
when woven into the spherical structure, and the center
of each ring coincides with the center of the spherical
weave structure. Therefore,the total length L of the rib-
bon is equal to the circumference of the spherical large
circle (the center of the circle coincides with the center of
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the sphere) in the spherical weave structure. In order to
obtain the radius of the spherical weave structure, firstly,
we derived the equation for the total length of a single
ribbon for different types of spherical weave structures
respectively. For the spherical weave structure made of
straight ribbons, the length of single ribbon is:

L® = ilé’ ) (2)
i=1

Where n° = 18, [7 is the length of the i-th segment in
the straight ribbons. For the spherical weave structure
with curved ribbons, the length of single ribbon is:

R
L* = 4 ?sm 5 —l—Zcos %l:‘ (3)
=1 i=1
Where n*! is the number of curved segments in a individ-

ual ribbon, n*? is the number of non-curved segments in
a individual ribbon, and n*! 4+ n*2 = 18. For the spher-
ical weave structure with waved ribbons, the length of
single ribbon is:

2 v
Lw—zkw 1n’2z. (4)

Where n = 18. Then the radii of the different types of
spherical weave structures are:
i =1 lzo7

1 *1 ¥

R=14 3L 1k*sm 5 = +Zz 1COS l - *)
1 v 2 lk
br zlk“’Slnlzl’

(5)
Where n° = 18, n% = 18, n*! +n*? = 18, I, k7, I7 , kP, I
etc. as shown in Figure 1. By the formula(5), the
radii of the spherical weave structure fabricated by s-
traight, curved waved ribbon are calculated as follows :
57.3mm, 56.85mm and 56.2mm, respectively. The ac-
tual measured radii of the spherical weave structure are:
57Tmm,57.17mm,57.48mm. And there is little difference

between theory and practice.

B. Experimental Analysis of Different Spherical
Weave Structures

In this test, quasi-static vertical compression tests were
conducted on a spherical structure woven by straight rib-
bons (conventional spherical weave structure), a spheri-
cal structure woven by ribbons with curved ribbon (new
spherical weave structure) and a spherical structure wo-
ven by waved ribbons (waved spherical weave structure).
The test setup is shown in Figure 3.

With straight ribbons;
With curved ribbons;

With waved ribbons.
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FIG. 3: Testing platform

Displacement control was used in the whole loading
process of this test. Before the beginning of the test, the
upper pressure head was adjusted to contact the speci-
men. To ensure the specimen could withstand a quasi-
static axial pressure load, the downward pressure velocity
of the upper pressure head was 2mm/min. The load-
displacement curves of different spherical weave struc-
tures are shown in Fig.4(a), from which it can be seen
that the curves of the three spherical weave structures
show a trend of increasing and then decreasing. Different
degrees of buckling appear in spherical weave structures.
Comparing the three different types of spherical weave
structures it can be seen that the buckling load of the
traditional spherical weave structure is 86% of the new
spherical weave structure, and 83% of the waved spher-
ical weave structure; And the buckling load of the new
spherical weave structure is not much different from that
of the waved spherical weave structure. It is shown that
the spherical woven structure with ribbon with curved
curvatures has a higher buckling load capacity and its
initial stiffness is greater than with straight ribbons and
waved ribbons. This is because the spherical weave struc-
ture fabricated by naturally curved ribbons has hexago-
nal Gaussian curvature Kg = 0.42, the spherical Gaus-
sian curvature is more continuous and the structure has
a relatively continuous geometric configuration, and the
spherical weave structure has good stiffness and stability.

According to the deformation diagrams of different wo-
ven structures in Fig. 4(b2-d2), it can be seen that the
failure mode of the spherical weave structure under ver-
tical loading can be divided into two stages: a flat con-
tact region forms between the spherical woven structure
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and the plate, and inward dimple of ribbons. When the
spherical weave structure changes from flat contact to in-
ward dimple, the vertical load-displacement curve of the
spherical weave structure jumps suddenly, that is, the
buckling of the spherical weave structure occurs. In the
early stage of loading, flat contact occurs at both the
upper and lower poles of the spherical weave structure
in contact with the rigid plate; With the increase of the
load, the single ribbon of conventional spherical weave
structure has a depression at the flat contact part of the
north and south poles of the sphere and the rigid plate,
and with the increase of vertical displacement, the num-
ber of depressed ribbons of the spherical weave struc-
ture has increased, and the structure undergoes more
serious buckling damage. Compared with the spherical
weave structure fabricated by straight ribbon, ribbons
with spherical weave structure fabricated using in-plane
curvatures ribbons (new spherical weave structures and
waved spherical weave structures) are only depressed at
one of the north and south poles of the sphere, and as
the displacement load increases, the depression deforma-
tion continues to increase, and the opposite pole remains
flattened. It is indicated that the in-plane curvature of
ribbon change the symmetric buckling failure mode of the
spherical weave structure, which makes the buckling fail-
ure of the structure concentrate on one part of the north
and south poles of the spherical structure, and improves
the stability of the spherical weave structure.

109.14N
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FIG. 4: Test curves and failure modes of different spherical
weave structures.
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III. THE BUCKLING ANALYSIS OF NEW
SPHERICAL WEAVE STRUCTURES

Through the above analysis, it is found that the spheri-
cal structure with ribbon with curved curvatures not only
has more continuous geometry, but also has good stiffness
and stability. To investigate the effect of the width and
thickness of ribbons on the new spherical weave struc-
tures, we conducted experimental studies on the buckling
behavior of spherical weave structures fabricated by nat-
urally curved ribbons. In this paper, six new spherical
weave structures with different ribbon thicknesses and
ribbon widths are designed and investigated by experi-
mental method. The downward pressure velocity of the
upper pressure head was 2mm/min and the maximum
vertical displacement is 40mm. The specific parameters
of the new spherical weave structure are shown in Table
1.

A. Effect of different thickness of ribbons on new
spherical weave structures

To study the influence of the thickness of ribbons in
the new spherical weave structures on its buckling me-
chanical properties, three new spherical weave structures
were designed according to different ribbon thicknesses
(h =0.8,1,1.2). The fabrication process of the specimen
ribbon was the same as described above. A diagram of
the failure model and the axial load-displacement curve
obtained from the test is shown in Fig. 5.

It can be seen from the figure that the new spheri-
cal weave structure undergoes two large decreases in the
vertical load carrying capacity of the structure when sub-
jected to large vertical displacements, which indicates
that the new spherical weave structure buckling twice
under vertical loads. Comparing the buckling load val-
ues of the three specimens when two buckling occurs, it
can be seen that with the increase of ribbon thickness,
the vertical load carrying capacity of the new spherical
weave structure gradually increases, and the initial stiff-
ness of the structure also gradually increases with the
increase of ribbon thickness.

Fig. 5(c-e) is the failure mode diagram of new spher-
ical weave structures with different thickness of curved
At the early stage of loading, the north and
south poles of the new spherical weave structure ap-
peared local flattening, with the increase of displacement
load, the ribbons at the south pole of the new spherical
weave structure flattened slightly, while the north pole
remained flattened. As the displacement load continues
to increase, the number of ribbons with concave deforma-

ribbons.
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FIG. 5: Test curves and failure modes of new spherical weave
structures with different thickness of curved ribbons. (a)
Load-displacement curves of new spherical weave structures
with different ribbon thicknesses; (b) Scatter plot of the load
value Fyas1 versus ribbon thickness h at the time of first
buckling of the structure; (¢) The failure modes of Specimen-
2; (d) The failure modes of Specimen-1;(e) The failure modes
of Specimen-3.

tion at the north pole of the sphere increases, the degree
of concavity in the sphere becomes serious, the vertical
load carrying capacity of the structure decreases signifi-
cantly, and the first buckling of the structure occurs. In
the middle of loading, the inward dimple of the south pole
of the sphere remains unchanged, and the new spherical
woven structure has an overall outward rise, the vertical
bearing capacity of the structure increases. And then, the
single ribbons at the flat contact region of Sphere north
pole has inward dimple. At the late stage of loading, a
large degree of concavity occurs at the north pole of the
new spherical weave structure, at which time a sudden
drop in the structural load carrying capacity occurs and
the structure undergoes a second buckling. In particular,
after the first buckling of Specimen-3, the fracture failure
of the ribbon occurred pinned connections in the inward
dimple region of the lower part of the structure, and the
vertical bearing capacity decreased precipitously. Con-
tinuing loading, the inward dimple of ribbons occurs at
the north pole of the sphere structure, and the structure
undergoes buckling damage. It can be seen that although
increasing the ribbon thickness can increase the verti-
cal buckling bearing capacity and initial stiffness of the
new spherical weave structure, and improve the stability
of the spherical weave structure. The toughness of the
spherical weave structure fabricated by thicker ribbons is
reduced, and the fracture failure of the ribbon will occur
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TABLE I: The parameter of Spherical weaves with curved ribbons

Geometric parameter Radius Length Curvature Thickness Width

Unit R(mm) 7 (mm) Ef(mm™h) h(mm) b(mm)
Specimen-1 42.82 15 0.0167 1 5
Specimen-2 42.24 15 0.0167 0.8 5
Specimen-3 42.33 15 0.0167 1.2 5
Specimen-4 42.11 15 0.0167 1 6
Specimen-5 42.38 15 0.0167 1 7
Specimen-6 42.43 15 0.0167 1 8

)

at the same time as the buckling failure. Fracture failure
of new spherical woven ribbons is shown in Figure 6.

FIG. 6: Fracture failure modes of Specimen-3

B. Effect of different width of ribbons on new
spherical weave structures

To explore the influence of different width of ribbons
on the compression load of a spherical weave structure
composed of naturally curved ribbons, spherical weave
structures of ribbons width b = 5,6, 7,8 were experimen-
tally studied. The other geometric properties of ribbon
are shown in Table. 1. The test device of the specimen
is shown in Fig. 3. The test loading was controlled by
displacement, and the loading rate was 2mm/min, and
the maximum vertical displacement is 40mm. The load-
displacement curve and failure modes obtained from the
test is shown in Figure 7

It can be seen from Fig. 7 that when the width of
ribbons is 8mm, the new spherical weave structures has
a high initial stiffness and vertical compression buck-
ling load, and its maximum compression buckling load
is about twice that of the spherical weave structure with
b = 5mm ribbons. With the increase of ribbon width,
the buckling load and initial stiffness of the spherical
weave structure increase gradually. Analysis of the dam-
age mode diagrams of the four specimens shows that
Specimen-1, Specimen-4, Specimen-5, and Specimen-6
all show damage phenomena such as local flattening of

FIG. 7: Test curves and failure modes of new spherical weave
structures with different width of curved ribbons.(a) Load-
displacement curves of new spherical weave structures with
different ribbon widthes;(b) Scatter plot of the load value
Frraz1 versus ribbon thickness h at the time of first buck-
ling of the structure;(c) The failure modes of Specimen-1;(d)
The failure modes of Specimen-4;(e) The failure modes of
Specimen-5;(f) The failure modes of Specimen-6.

the north and south poles of the spherical structure, in-
ternal concave deformation of the ribbon at the sphere
flattening, and structural buckling. And all new spheri-
cal weave structures appear twice buckling, the structure
did not occur fracture failure.

Through the above analysis, it can be concluded that
the width of ribbons with in-plane curvatures has a great
influence on the buckling bearing capacity of the new
spherical weave structures, and increasing the ribbon
width can increase the vertical buckling bearing capacity
and initial stiffness of the new spherical weave structure,
and the structure has better stability.
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IV. BUCKLING LOAD OF A NEW SPHERICAL
WEAVE STRUCTURE

A. Buckling formula of the new spherical weave
structure

From the above test, it can be seen that the new spher-
ical weave structure has better stability. In this section,
based on the above tests, combined with the buckling
analysis and dimensional analysis of the ribbon, the buck-
ling formula of the new spherical weave structure is given
as follows :

rE bh?
MR ©)

FCT'

Where n is the number of ribbons, E is the elastic mod-
ulus, v is the Poisson’s ratio, b, h is the width and thick-
ness of the ribbons respectively, R is the radius of the
spherical weave structure. In order to construct the re-
lationship between the length and in-plane curvature of
a single ribbons segment and the buckling load of the
spherical weave structure, combined with equation (3),
the buckling equation of the new spherical weave struc-
ture can be written as:

4T3 E bh?
1—v? (Z?:*ll % sin Z:Qkf + Z?:i cos l?;f l;*)z.
(7)
Where n*! is the number of curved segments in a individ-
ual ribbon, n*2 is the number of non-curved segments in a
individual ribbon, [} is the arc length of the i-th segmen-
t, k7 is in-plane curvature of i-th segment; We calculat-
ed the vertical buckling load (first buckling) of specimen
Specimen-1~Specimen-6 respectively, and compared the
obtained buckling load values of the new spherical weave
structure with the test values to verify the accuracy of
Equation (7), and the buckling loads of the specific new
spherical weave structure are shown in Table 2.

As can be seen from Table 2, there is little differ-
ence between the experimental and theoretical values of
Specimen-1 vertical buckling load, equation (7) can bet-
ter predict the buckling load of the new spherical wo-
ven structure under vertical load when the ribbon width
b = 5mm, ribbon thickness h = 1mm, and sphere ra-
dius R = 42.82mm. When the width and thickness of
the ribbon are changed, the errors between the experi-
mental and theoretical values of the new spherical weave
structure are 0.86 ~ 0.93, 0.79 ~ 1.01 respectively. To
address this, we propose a buckling correction factor «
to correct the theoretical equation of the spherical weave
structure, it can be seen from Table 2 that the buckling
correction factor is closely related to the thickness and

F.,=n
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width of a single ribbon. Then the buckling load equa-
tion for a spherical woven structure subjected to vertical
loads is:

nrE bh3

Fop ~ amﬁ7 (8)

B. Analysis of Buckling Correction Coefficient

From the above analysis, it can be seen that both rib-
bon thickness and ribbon width have an effect on the
buckling correction factor « of the new spherical weave
structure. In contrast, changing the ribbon thickness has
a greater effect on the buckling coefficient of the spherical
weave structure and there is no pattern. Therefore, we
mainly study the influence of different ribbon thickness
on the buckling correction coefficient. In this section, the
finite element program ABAQUS was used to establish
an accurate finite element model of the spherical weave
structure in combination with the above tests, to anal-
ysis the buckling mechanical properties of new spherical
weave structures with different ribbon thicknesses under
vertical load. The buckling load values of the new spher-
ical weave structure at different ribbon thicknesses are
obtained to determine its buckling correction factor a.

1. Verification of finite element model

Since the ribbons in the spherical weave are connected
at the end to form a closed circle, the force-displacement
driven modeling method is no longer applicable. In or-
der to obtain the finite element model of the new spher-
ical weave structure accurately and conveniently, the 3D
scanner AXE-B17 is used to scan the spherical weave
structure in Fig. 2(b), and the scanned model is inverse
processed to obtain the finite element model of the spher-
ical weave structure that can be used for calculation. To
fully restore the test, we establish a rigid plate in the
finite element simulation to simulate the upper pressure
head and bottom support of the universal testing ma-
And the upper rigid plate applies
vertical displacement; constrains all degrees of freedom

chine, respectively.

of the bottom rigid plate used to simulate the fixed con-
straints of the bottom support. To simulate the con-
nection of rivets, the overlapping part of two ribbons
is coupled to a reference point. Simulation of weaving
structure forming using quasi-static in dynamic implicit
analysis step. The displacement load is applied, and the
loading rate is controlled at 2mm/min. To speed up the
calculation and eliminate the self-locking of mesh shear-

ing, the shell element S4R is used, and the mesh size of
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TABLE II: Buckling load of a new spherical weave structure

Name R(mm) b(mm) h(mm) Frraz1(N) Fe.(N) Frraz1/Fer
Specimen-1 42.82 5 1 190.84 188.46 1.01
Specimen-2 42.24 5 0.8 81.66 99.07 0.82
Specimen-3 42.33 5 1.2 263.60 332.93 0.79
Specimen-4 42.11 6 1 200.70 233.62 0.86
Specimen-5 42.38 7 1 240.69 269.10 0.89
Specimen-6 42.43 8 1 286.80 306.82 0.93

woven structure is Imm. The finite element model uses
a material with a modulus of elasticity of 2000Mpa, a
density of 1.12g/em? and a Poisson’s ratio of 0.3. The
finite element model and mesh distribution are shown in
Fig. 8.

() (b)

FIG. 8: Finite element model and mesh distribution. The
mesh size of rigid plate is 7.5mm. The mesh size of woven
structure is 1mm.

The above method is used to model the new spheri-
cal weave structure by ABAQUS, and the finite element
simulation of the new spherical weave structure with d-
ifferent ribbon thicknesses is carried out. To confirm the
above modeling method and the finite element model, the
new spherical woven structure with thickness h = 1mm,
width b = 5mm and radius R = 57.17mm is used for
simulation, whose results are compared with the test re-
sults, as shown in Fig. 9. From Fig. 9(a), we can see that

@

100

Displacement(mm)

FIG. 9: Verification of finite element model of new spherical
weave structure. (a) Comparison of load-displacement curves;
(b) Comparison of failure modes.

the initial stiffness of the finite element simulation result-
s is in good agreement with the test, but the maximum
buckling load from the simulation is slightly higher than
that of the test. Because the coupling approach is used in
the finite element simulation to simulate the plastic rivet,
but in practice there is a certain gap between the rivet

and the rivet hole, which is weaker than the constraint
strength of the coupling effect in the finite element. In
addition, there are some inevitable errors and initial de-
fects in the test, leads to a slightly higher compression
load in the finite element simulation than the test val-
ue. In addition, there is a displacement plateau in the
test curve, which is due to the fact that realistic spheri-
cal weave structures are connected by plastic rivets, and
there are certain gaps between ribbons and ribbons and
rivets and ribbons. Under vertical load, the outermost
rivet end of the structure contacts with the punch head
and has a certain angle. With the increase of vertical dis-
placement, the rivet slides with the upper pressure head,
and the position of the rigid plate is vertical, and the
gap between the ribbons increases; Further loading, the
gap between plastic rivet and ribbon, ribbon and ribbon
is compacted, which leads to a displacement platform in
the load-displacement curve. Since the plastic rivet was
not modeled in the simulation, the above displacement
plateau did not appear in the finite element simulation.

From the failure mode diagram of the test, it can be
seen that the finite element can simulate the flat con-
tact region forms between the spherical weave structure
and the plate, and inward dimple of ribbons of the new
spherical weave structure in the test, and the overall fail-
ure mode of the structure is similar to that of the test,
both with multiple ribbons of internal concave buckling
at the north pole of the sphere. Compared with the test,
it is found that this method can more accurately simu-
late the vertical compressed mechanical properties of new
spherical weave structure in practice.

2. Finite element parameter analysis

In order to investigate the effect of ribbon thickness
on the buckling correction coefficient of the new spheri-
cal weave structure and to ensure that the new spherical
weave structure is a thin-shell sphere structure. In this
paper, finite element simulations are performed for a new
spherical weave structure with ribbon thicknesses rang-
ing from 0.01mm ~ 2.5mm. The other parameters of the
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finite element model are consistent with the above. The
finite element curves and failure modes of the new spheri-
cal weave structures with different ribbon thicknesses are
shown in Fig. 10.

@ o

FIG. 10: Finite element curves and failure modes of
new spherical weave structures with different thickness of
curved ribbons.(a) Load-displacement curves of new spher-
ical weave structures with different ribbon thickness of
0.01mm sim2.5mm.(b-c)The failure modes for the finite ele-
ment model of new spherical weave structure.

From Fig. 10(a), we can see that changing the thick-
ness of the curved ribbon, the vertical load carrying ca-
pacity of the new spherical weave structure for the first
buckling changes significantly. With the increase of rib-
bon thickness, the buckling load of the new spherical
weave structure increases. The models in the finite el-
ements all showed two damage patterns of flat contact
region forms between the spherical woven structure and
the plate, and inward dimple. The final failure mode
of the structure is the concave buckling at the north or
south pole of the sphere. The detailed failure modes are
shown in Figure 10 (b-c).

In order to facilitate the observation of the relation-
ship between the buckling correction coefficient o and
the ribbon thickness, this paper dimensionlessizes the rib-
bon thickness and investigates the relationship between
the dimensionless parameter h/R and the buckling cor-
rection coefficient «, where a« = Frgp/Fer. From Fig.
11(a), when the range of the dimensionless parameter
h/R is 0.005 ~ 0.02, the calculated value of the theoret-
ical formula of the new spherical weave structure is too
large, and the buckling load of the actual structure is low-
er than the theoretical calculation, then equation (7) is
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not applicable to estimate the buckling load value of the
new spherical weave structure under the vertical load. In
order to solve this problem, this paper uses a Hook func-
tion to fit a — % to obtain a lower bound formula for the
buckling coefficient of the new spherical weave structure.

FIG. 11: Buckling loads and buckling correction factorsa
for spherically woven structures with different ribbon widths.
Where o = Frem/Fer, Freu is buckling load (first buckling)
for the new spherical weave structure using FEM.

From Fig. 11(b), it can be seen that the lower bound
fitting equation for the buckling correction factor is:

a= 20(%) + (83.42(%)0'003) — 84. (9)

Then the buckling load equation for the new spherical
weave structure subjected to vertical load is:
4T3 E bh?
T2 (T 2 g R s g TR 2
(Ximy 77 sin =5t + 3070 cos “5l)

1 (10)
To validate formula (10), we calculate the buckling load
of Specimen-2 and Specimen-3, and compare the ob-
tained buckling load value with the experimental data.
The specific results are shown in Table 3.

From Table 3, we can see that the buckling load of
the new spherical weave structure calculated by formula
(10) is not much different from the experimental buck-
ling load. The error of the results of the two models is
1.03 and 0.90, respectively. This shows that using the
buckling correction factor « to correct Formula (6) can
better reflect the buckling load of the new spherical weave
structure under vertical load.

Fc’r‘N

V. CONCLUSION

We studied the buckling behavior of different spherical
weave structure under vertical loads by combining exper-
imental and finite element methods. It was demonstrat-
ed that, the deformation of the spherical weave struc-
ture under the vertical compressive load can be divided
into 2 stages: a flat contact region forms between the
spherical weave structure and the rigid plate and inward
dimple. Conventional spherical weave structures are sub-
jected to vertical loads, with simultaneous buckling of
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TABLE III: Comparisons of test results with those from Egs. (10)

Name R(mm) h(mm) b(mm) h/R Frrazi(N) F.-(N) error
Specimen-2 42.24 0.8 5 0.0189 81.66 78.97 1.03
Specimen-3 42.33 1.2 5 0.0283 263.6 294.14 0.90

the north and south poles of the sphere at the contact
locations with the rigid plate. However, the new woven
structure first buckles on the south or north pole side of
the sphere, and the corresponding buckling occurs on the
other side of the sphere with the increase of load. Com-
pared with the traditional spherical weave structure and
waved spherical weave structure, the new woven spher-
ical structure with naturally curved (in-plane) ribbons
has higher initial stiffness and a larger buckling load. In
addition, we investigated the effect of different thickness
h and width b of ribbons on the buckling behavior of
the new woven spherical structure. Experimental studies
show that increasing the thickness and width of the rib-

bon can increase the vertical buckling bearing capacity
and initial stiffness of the new woven spherical structure,
and improve the stability of the spherical weave struc-
ture. But excessively thick ribbons can lead to fracture
failure of ribbon of the new woven spherical structure.
Finally, the buckling load equation and buckling correc-
tion coefficient of the new spherical weave structure un-
der vertical load are proposed in this paper by combining
buckling analysis and dimensional analysis of the ribbon
structure, and the buckling correction coefficient equa-
tion related to the ribbon thickness is obtained by finite
element calculation.

[1] Baek C, Martin A G, Poincloux S, et al. Smooth triaxial
weaving with naturally curved ribbons. Physical Review
Letters, 2021, 127(10): 104301.

[2] Updike, Dean Pierson, and Arturs Kalnins. Axisymmet-
ric behavior of an elastic spherical shell compressed be-
tween rigid plates. 1970, 635-640.

[3] Updike, Dean Pierson, and Arturs Kalnins. Axisymmet-
ric postbuckling and nonsymmetric buckling of a spheri-
cal shell compressed between rigid plates. 1972: 172-178.

[4] Updike, Dean Pierson. On the large deformation of a

rigid-plastic spherical shell compressed by a rigid plate.

1972: 949-955.

Gupta N K, Sheriff N M, Velmurugan R. Experimental

and theoretical studies on buckling of thin spherical shell-

[5

s under axial loads. International journal of mechanical

sciences, 2008, 50(3): 422-432.

Gupta N K, Prasad G L E, Gupta S K. Axial compression

of metallic spherical shells between rigid plates. Thin-

walled structures, 1999, 34(1): 21-41.

[7] Gupta N K. Experimental and numerical studies of dy-
namic axial compression of thin walled spherical shells[J].

6

International journal of impact engineering, 2004, 30(8-
9): 1225-1240.
[8] Gupta N K, Sheriff N M, Velmurugan R. Experimental
and numerical investigations into collapse behaviour of
thin spherical shells under drop hammer impact. Inter-
national journal of solids and structures, 2007, 44(10):
3136-3155.
Gupta P K, Gupta N K. A study of axial compression of
metallic hemispherical domes. Journal of materials pro-
cessing technology, 2009, 209(4): 2175-2179.
[10] Pauchard L, Rica S. Contact and compression of elastic

[9

spherical shells: the physics of a ping-pongball. Philo-
sophical Magazine B, 1998, 78(2): 225-233.

[11] De Oliveira J G, Wierzbicki T. Crushing analysis of ro-
tationally symmetric plastic shells. The Journal of Strain
Analysis for Engineering Design, 1982, 17.4: 229-236.

[12] Amiri S N, Rasheed H A. Plastic buckling of moderately
thick hemispherical shells subjected to concentrated load
on top[J]. International Journal of Engineering Science,
2012, 50(1): 151-165.


https://doi.org/10.20944/preprints202208.0063.v1

