

Heterogeneity extends criticality

Fernanda Sánchez-Puig^{1,2}, Octavio Zapata^{1,2,3}, Omar K. Pineda⁴, Gerardo Iñiguez^{5,6,2}, and Carlos Gershenson^{2,7,8,9}

¹Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; ²Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;

³Coordinación de Universidad Abierta, Innovación Educativa y Educación a Distancia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; ⁴Azure Core Security Services, Microsoft, Redmond, WA 98052, USA;

⁵Department of Network and Data Science, Central European University, 1100 Vienna, Austria; ⁶Department of Computer Science, Aalto University School of Science, 00076 Aalto, Finland; ⁷Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; ⁸Lakeside Labs GmbH, Lakeside Park B04, 9020 Klagenfurt am Wörthersee, Austria; ⁹Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

1 Criticality has been proposed as a mechanism for the emergence of complexity, life, and computation, as it exhibits
 2 a balance between order and chaos. In classic models of
 3 complex systems where structure and dynamics are considered homogeneous, criticality is restricted to phase transitions,
 4 leading either to robust (ordered) or fragile (chaotic)
 5 phases for most of the parameter space. Many real-world
 6 complex systems, however, are not homogeneous. Some
 7 elements change in time faster than others, with slower elements
 8 (usually the most relevant) providing robustness, and
 9 faster ones being adaptive. Structural patterns of connectivity
 10 are also typically heterogeneous, characterized by few elements with many interactions and most elements with only
 11 a few. Here we take a few traditionally homogeneous dynamical models and explore their heterogeneous versions, finding
 12 evidence that heterogeneity extends criticality. Thus, parameter fine-tuning is not necessary to reach a phase transition and obtain the benefits of (homogeneous) criticality.
 13 Simply adding heterogeneity can extend criticality, making
 14 the search/evolution of complex systems faster and more
 15 reliable. Our results add theoretical support for the ubiquitous presence of heterogeneity in physical, biological, social, and technological systems, as natural selection can exploit heterogeneity to evolve complexity "for free". In artificial systems and biological design, heterogeneity may also
 16 be used to extend the parameter range that allows for criticality. We also suggest that climate change may be partly
 17 explained as an increase in ecological homogeneity.

complexity | phase transitions | criticality | Ising model | random Boolean networks

1. Introduction

2 Phase transitions have been studied extensively
 3 to describe changes in states of physical matter
 4 (1), and are typically characterized by symmetry
 5 breaking (2). They have also been studied more
 6 generally in dynamical systems, such as vehicu-

lar traffic (3, 4). Near phase transitions, critical dynamics are known to occur (5). These are also associated with scale invariance and complexity (6). There are several examples of criticality in biological systems (7), including neural dynamics (8, 9), genetic regulatory networks (10, 11), and collective motion (12).

7
 8 It is often argued that critical dynamics are
 9
 10
 11
 12
 13
 14

Significance Statement

The dynamics of many complex systems can be classified as ordered, chaotic, or critical. Order offers stability and robustness, while chaos allows for change and adaptability. Criticality, then, is often seen as an intermediate balance between order and chaos, required by living systems at different scales. In classical models, however, criticality is only found near phase transitions, restricting the parameter space (and thus the likelihood) of critical dynamics, as most parameters yield "undesirable" solutions. Here we show that this limitation is due to the homogeneity built-in these models, i.e., all elements sharing parameter values. By exploring heterogeneous versions of archetypal models in physics and computer science, we observe critical dynamics in a broader range of parameters, and thus could be more common than previously thought. We also explore theoretically when heterogeneity or homogeneity should be preferred.

¹Corresponding author email: cg@unam.mx, iniguezg@ceu.edu

15 prevalent or desirable in a broad variety of systems
 16 because they offer a balance between robustness
 17 and adaptability (13–16). If dynamics are too
 18 ordered, then information and functionality can be
 19 preserved, but it is difficult to adapt. The opposite
 20 occurs with chaotic dynamics: change allows for
 21 adaptability, but it also leads to fragility, as small
 22 changes percolate through the system and useful
 23 information tends to be lost. Thus, for phenomena
 24 such as life, computation, and complex systems
 25 in general, critical dynamics should be favored by
 26 evolutionary processes (17–19).

27 There are different ways in which one can measure
 28 criticality, many of which are related to entropies.
 29 For example, Fisher information maximizes at phase
 30 transitions (20, 21). Still, it rapidly decreases and it is difficult to evaluate how far a
 31 system is from criticality. In this work, we use a
 32 measure of complexity (22, 23) based on Shannon
 33 information that also maximizes at phase transitions,
 34 but reduces its value more gradually and is
 35 straightforward to calculate compared to Fisher
 36 information, as the latter requires to measure the
 37 effects of controlled perturbations. There are several
 38 definitions and measures of complexity (24), but, crucially,
 39 the one we use here is highly correlated with criticality.
 40

42 If criticality is found only near a phase transition,
 43 then most of a parameter space would have
 44 “undesirable” solutions. Thus, how can a search
 45 procedure find the right parameters for criticality?
 46 Self-organized criticality (25–28) has been
 47 proposed as an answer. Although interesting and
 48 useful for specific cases, it is not universal and
 49 has hidden variables. In general, one can think
 50 of different mechanisms that will find or adjust
 51 parameters so that criticality is achieved. But,
 52 could criticality be more prevalent than previously
 53 thought?

54 In previous work where we have studied rank
 55 dynamics in a variety of systems (29–32), we ob-
 56 serve that the most relevant elements change more
 57 slowly than less relevant elements. We hypothe-
 58 sized that heterogeneous temporality equips sys-
 59 tems with robustness and adaptability at the same
 60 time. Here we explore the role of heterogeneity in
 61 different dynamical systems. We show that differ-
 62 ent types of heterogeneity extend the parameter
 63 region where critical dynamics are observed. Thus,
 64 we can say that heterogeneity results in “critical-

ity for free”, reducing the problem of fine-tuning
 65 parameters.
 66

2. Results

We first present results of a heterogeneous version
 68 of the Ising model, where elements have different
 69 temperatures. We then explore structural and tem-
 70 poral heterogeneity in random Boolean networks.
 71 Afterwards, we abstract the specific dynamics of a
 72 system and investigate under which conditions het-
 73 erogeneity promotes criticality. Finally, we provide
 74 a general solution, independent of any measure,
 75 using Jensen’s inequality.
 76

A. Value heterogeneity: the Ising model. We can
 77 consider a system of interacting atoms arranged
 78 in a network-like structure (Fig. 1A). The state
 79 of an atom is defined by its dipole nuclear mag-
 80 netic moment: a two-valued spin representing the
 81 orientation of the magnetic field produced by the
 82 atom. Intuitively, neighboring atoms with the
 83 same spin value contribute less to the total energy
 84 of the system than atoms with different spin val-
 85 ues. Systems of this kind evolve preferentially to
 86 states with the lowest possible energy. When the
 87 temperature of the environment is increased, the
 88 system heats, and we can observe a sudden change
 89 in a global property of the system, namely loss
 90 of magnetization. A theoretical model of such a
 91 system of atoms is the Ising model (33, 34).
 92

The Ising model is usually homogeneous: all
 93 cells have the same temperature, and one explores
 94 different properties as the temperature T varies.
 95 This is a good assumption when all atoms can be
 96 considered to behave in a similar way. However,
 97 if we are modeling an Ising-like biological system
 98 (35), then each element might have slightly dif-
 99 ferent properties. In the proposed heterogeneous
 100 case, each cell has a temperature taken from a
 101 Poisson distribution with a mean equal to the tem-
 102 perature of the homogeneous case (see Sec. A for
 103 details).
 104

Following Lopez-Ruiz et al. (36), we have pro-
 105 posed a measure of complexity (22) based on Shan-
 106 non’s information (37),
 107

$$I = -K \sum_{i=1}^b p_i \log p_i, \quad [1] \quad 108$$

where K is a positive constant and b is the length
 109 of the alphabet (for all the cases considered in this
 110

111 paper, $b = 2$). This measure is equivalent to the
 112 Boltzmann-Gibbs entropy. To normalize I to $[0, 1]$,
 113 we use

$$114 \quad K = \frac{1}{\log_2 b}. \quad [2]$$

115 I is maximal when the probabilities are homogeneous,
 116 i.e. there is the same probability of observing
 117 any symbol along a string. I is minimal when
 118 only one symbol is found in a string (so it has a
 119 probability of one, and all the rest have a probability
 120 of zero). Chaotic dynamics are characterized
 121 by a high I , while ordered (static) dynamics are
 122 characterized by a low I . Inspired by Lopez-Ruiz
 123 et al. (36), we define complexity C as the balance
 124 between ordered and chaotic dynamics,

$$125 \quad C = 4 \cdot I \cdot (1 - I), \quad [3]$$

126 where the constant 4 is added to normalize the
 127 measure to $[0, 1]$ (38).

128 Figure 1B shows the correlation of the Ising
 129 model for varying temperature. This is maximal
 130 in the phase transition at $T \approx 2.27$, i.e. criticality.
 131 Figure 1C shows that there is a correspondence
 132 between the correlation and the complexity measure
 133 in Eq. 3. Figure 1D shows results of average
 134 complexity C as T increases. Complexity is maximal
 135 near the phase transition for the homogeneous
 136 case. Heterogeneity shifts the expected maximum
 137 complexity (that reflects criticality), but it also
 138 expands it, in the sense that the area under the
 139 curve is broadened. In other words, critical-like
 140 dynamics (one can assume arbitrarily complexity
 141 values greater than 0.8, just for comparison) are
 142 found for a broader range of T values.

143 **B. Temporal and structural heterogeneity: ran-
 144 dom Boolean networks.** A gene is a part of the
 145 genomic sequence that encodes how to produce
 146 (synthesize) either a protein or some RNA (gene
 147 products). Gene product synthesis is called gene
 148 expression. Because not all gene products are syn-
 149 thetized at the same time, the regulation of gene
 150 expression is constantly taking place within a cell.
 151 In fact, the expression of each gene is regulated
 152 (among many things) by the expression of other
 153 genes in the genome. This gives rise to an in-
 154 teraction structure known as a genetic regulatory
 155 network. Boolean networks are a theoretical model
 156 of genetic regulatory networks. In random Boolean
 157 networks (RBNs) (15, 39), traditionally there is

158 homogeneous topology and updating. In this case,
 159 critical dynamics are found close to a phase transi-
 160 tion between ordered and chaotic phases (40–42).

161 Figure 2A shows an example of the topology of
 162 a RBN with seven nodes ($N = 7$) and two connec-
 163 tions (inputs K) each. Each node has a lookup
 164 table where all possible combinations of their in-
 165 puts are specified (e.g. Figure 2A). Using an en-
 166 semble approach, for each parameter combination,
 167 we randomly generate topologies (structure) and
 168 lookup tables (function), and then evaluate them
 169 in simulations. Depending on different parame-
 170 ters, the dynamics of RBNs can be classified as
 171 ordered, critical (near a phase transition), and
 172 chaotic. Figure 2C shows example of these dynam-
 173 ics for different K values.

174 One can have heterogeneous topology in differ-
 175 ent ways (43, 44), as genetic regulatory networks
 176 are not homogeneous: few genes affect many genes,
 177 and many genes affect few genes. Here, we use
 178 Poisson and exponential distributions. Strictly
 179 speaking, both are heterogeneous, but exponential
 180 is more heterogeneous than Poisson, which here we
 181 consider as “homogeneous”. The technical reason
 182 for using a Poisson distribution is that it allows
 183 us to explore non-integer average connectivity in
 184 the network.

185 We can also have heterogeneous updating
 186 schemes (45), as it can be argued that not all
 187 genes in a network “march in step” (46). Classical
 188 RBNs (CRBNs) have synchronous, homogeneous
 189 temporality, while in here we use Deterministic
 190 Generalized Asynchronous RBNs (DGARBNs) for
 191 heterogeneous temporality. In particular, each
 192 node is updated every number of time steps equal
 193 to its out-degree, so the more nodes one node af-
 194 fects, the slower it will be updated (see Sec B for
 195 details).

196 Fig. 2D compares the average complexity C as
 197 the average connectivity K is increased. Structural
 198 and temporal homogeneity (CRBN-Poisson) has a
 199 classical complexity profile, maximizing near the
 200 phase transition ($K = 2$ for the thermodynamical
 201 limit, i.e., $N \rightarrow \infty$). It can be seen that only struc-
 202 tural heterogeneity (CRBN-Exponential) extends
 203 criticality more than only temporal heterogeneity
 204 (DGARBN-Poisson), that basically shifts the
 205 curve to the right. Still, having both structural and
 206 temporal heterogeneity (DGARBN-Exponential)
 207 extends criticality even more than having only

208 structural heterogeneity.

209 **C. Arbitrary complexity.** Abstracting the results
210 from the previous subsections, and trying not to
211 depend on any model in particular, we can explore
212 exhaustively the measure of complexity (Eq. 3)
213 in homogeneous and heterogeneous settings, to
214 observe when each case yields a higher average
215 complexity. So we simply vary the probability p_1
216 of having ones in a binary string directly as shown
217 in Figure 3A.

218 In the homogeneous case, we calculate directly
219 the complexity C as a function of p_1 using Eq. 3,
220 assuming that we are averaging the complexities
221 of several elements with the same p_1 . For the het-
222 erogeneous case, we generate a collection of proba-
223 bilities with mean p_1 and standard deviation of 0.2
224 (truncating to zero negative values and to one val-
225 ues greater than one), calculate their complexity,
226 and then average it. Heterogeneity achieves higher
227 complexities for roughly $0.25 < p_1 < 0.75$. One
228 might wonder why all heterogeneous complexities
229 avoid extreme values, even when heterogeneous
230 RBNs can have complexities close to zero and one.
231 This is because of the standard deviation of the
232 distributions from which the means are generated.
233 Smaller standard deviations yield curves closer to
234 the heterogeneous case.

235 By assuming that heterogeneity sometimes will
236 be better than homogeneity and vice versa, we can
237 further generalize our results to be independent of
238 any measure or function. If we have homogeneity
239 of a variable x , all elements will have the same
240 value for x , and thus the mean $|x|$ will be equal to
241 any x_i . Thus, the average of any function $|f(x)|$
242 will be equal to any $f(x_i)$. If we have hetero-
243 geneity, then the mean $|x|$ will be given by some
244 distribution of different values of x , and similarly
245 for $|f(x)|$.

246 We can then say that heterogeneity is preferred
247 when the average of the function is greater than
248 the function of the average,

$$249 \quad |f(x)| > f(|x|). \quad [4]$$

250 Jensen's inequality (47) tells us already that
251 heterogeneity will be "better" than homogeneity
252 for concave functions, as illustrated in Figure 3B.
253 If we have a heterogeneous distribution with a
254 mean $|x|$, a concave function will fulfill that the
255 average of the functions $|f(x)|$ (heterogeneity) will

be greater than the function of the averages $f(|x|)$
256 (homogeneity). For more complex functions, their
257 concave parts will benefit from heterogeneity and
258 their convex parts will benefit from homogeneity
259 (as it can be seen for C in Figure 3A).

260 For linear functions, it can be shown that there
261 is no difference between homogeneity and hetero-
262 geneity, as $f(|x|)$ will always be equal to $|f(x)|$
263 (see proof in Section C). Thus, it can be concluded
264 that the difference between homogeneity and het-
265 erogeneity is relevant only for nonlinear functions.

3. Discussion

266 There are several recent examples of heterogeneity
267 offering advantages when compared to homoge-
268 neous systems in the literature. For example, in
269 public transportation systems, theory tells us that
270 passengers are served optimally (wait at stations
271 for a minimum time) if headways are equal, i.e., ho-
272 mogeneous. However, equal headways are unstable
273 (48, 49). Still, adaptive heterogeneous headways
274 can deliver supraoptimal performance through self-
275 organization (50, 51), due to the slower-is-faster ef-
276 fect (52): passengers do wait more time at stations,
277 but once they board a vehicle, on average they
278 will reach faster their destination, as the idling
279 required to maintain equal headways is avoided.

280 There are other examples where heterogeneity
281 promotes synchronization (see Zhang et al. (53)
282 and references therein). In particular, Zhang et
283 al. (53) showed that random parameter hetero-
284 geneity among oscillators can consistently rescue
285 the system from losing synchrony. In related work,
286 Molnar et al. (54) found that heterogeneous gen-
287 erators improve stability in power grids. Recently,
288 Ratnayake et al. (55) explored complex networks
289 with heterogeneous nodes, observing that these
290 have a greater robustness as compared to networks
291 with homogeneous nodes. In social networks, Zhou
292 and Lu (56) found that heterogeneity of social sta-
293 tuses may drive the network evolution towards self-
294 optimization. Also, structural heterogeneity has
295 been shown to favor the evolution of cooperation
296 (57, 58).

297 These examples suggest that heterogeneous net-
298 works improve information processing. With het-
299 erogeneity, elements can in principle process in-
300 formation differently, potentially increasing the
301 computing power of a heterogeneous system over
302 an homogeneous one with similar characteristics.

305 This is related to Ashby's law of requisite variety (59, 60), which states that an active controller
306 should have at least the same variety (number of states) as the controlled. It is straightforward to
307 see with random Boolean networks that temporal
308 heterogeneity increases the variety of the system:
309 the state space (of size 2^N for homogeneous tempo-
310 rality) can explode once we have to include the
311 precise periods and phases of all nodes (in hetero-
312 geneous temporality), as different combinations of
313 the temporal substates may lead a transition from
314 the same node substate to different node substates.
315 Also in random Boolean networks, higher K im-
316 plies more possible networks. Even if there are
317 evolutionary pressures for efficiency (smaller net-
318 works), if heterogeneity shifts criticality to higher
319 K , then it will be easier for an evolutionary search
320 to find critical dynamics in larger spaces.
321

323 Shannon's information (37), equivalent to
324 Boltzmann-Gibbs entropy, is maximal when the
325 probability of every symbol or state is the same,
326 i.e. homogeneous. Thus, one can measure het-
327 erogeneity as an inverse of entropy (one minus
328 the normalized Shannon's information) (22). It is
329 clear that maximum heterogeneity (as measured
330 here, it would occur when only one symbol or state
331 has a probability of one and all the rest a prob-
332 ability of zero) has its limitations. Thus, we can
333 assume that there will be an "optimal" balance
334 between minimum and maximum heterogeneities.
335 The precise balance will probably depend on the
336 system, its context, and may even change in time.
337 If we want heterogeneity to take the dynamics
338 towards criticality (or somewhere else), then the
339 precise "optimal" heterogeneity will depend on
340 how far we are from criticality (17, 61). In this
341 sense, a potential relationship with no-free-lunch
342 theorems (62, 63) seems an interesting area of
343 further research.

344 When homogeneous systems are analyzed in
345 terms of their symmetries, heterogeneity is a type
346 of symmetry breaking. Still, in converse symmetry
347 breaking (64), only heterogeneity leads to stability,
348 i.e. the system symmetry is broken to preserve
349 the state symmetry. This idea can be used to
350 control the stability of complex systems using het-
351 erogeneity (65). A further avenue of research is
352 the relationship between heterogeneity and Lévy
353 flights (32). Lévy flights are heterogeneous, since
354 they consist of many short jumps and few large

355 ones. They offer a balance between exploration
356 and exploitation, and seem advantageous for for-
357 aging (66), preventing extinctions (67), and search
358 algorithms (68). Another interesting relationship
359 to study is the one between heterogeneity and
360 non-reciprocal systems (69).

361 Network science (70–72) has demonstrated the
362 relevance of structural heterogeneity. This should
363 be complemented with a systematic exploration
364 of temporal (73) and other types of heterogeneity.
365 For example, it would be interesting to study het-
366 erogeneous adaptive (74) and temporal (75, 76)
367 networks, where each node has a different speed
368 for its dynamics. Temporal heterogeneity enables
369 a system to match the requisite variety of their
370 environment at different timescales. If systems
371 can adapt at the scales at which their environ-
372 ments change, then they will better do so if they
373 have a variety of timescales, i.e., heterogeneous
374 temporality. Recently, Sormunen, et al. (77) have
375 shown that adaptive networks have critical mani-
376 folds that can be navigated as parameters change.
377 In other words, criticality is not restricted to a
378 single value, but can be associated to a manifold
379 in a multidimensional system.

380 In ecology, there is a global tendency towards
381 increased homogenization (fewer species of plants
382 and animals), i.e., reduced biodiversity due to
383 agricultural expansion and invasive species (78).
384 Moreover, there is an increase in the intensity of
385 disturbances such as fire (79) that are predicted
386 to lead to critical transitions (80, 81) with global
387 consequences (82). Thus, it might be that increas-
388 ing ecosystem heterogeneity (diversity) might be
389 a way of reducing the effects of climate change, an
390 option which should be explored.

391 Further research is required to better under-
392 stand the role of heterogeneity in the criticality
393 of complex systems. The present work is limited
394 and many open questions remain. We encourage
395 the reader to experiment with a heterogeneous
396 version of their favorite homogeneous complex sys-
397 tem model, be it structural, temporal, or other
398 type of heterogeneity. We could learn more from
399 heterogeneous models of collective motion, opin-
400 ion formation, financial markets, urban growth,
401 supply chains, and more. This could contribute to
402 a broader understanding of heterogeneity and its
403 relationship with criticality.

404 4. Methods

405 A *graph* G consists of a set of *vertices* V and a set
 406 of *edges* E , where an edge is an unordered pair of
 407 distinct vertices of G . We write $u \sim v$ to denote
 408 that $\{u, v\}$ is an edge and in this case we say that
 409 u and v are *adjacent*. If H is a graph with vertex
 410 set $W \subset V$ and edge set $F \subset E$, we say that H is
 411 a *subgraph* of G . A graph is said to be *connected* if
 412 for every pair of distinct vertices u and v , there is
 413 a finite sequence of distinct vertices a_0, a_1, \dots, a_n
 414 such that $a_0 = u$, $a_n = v$, and $a_{i-1} \sim a_i$ for each
 415 $i = 0, 1, \dots, n$. A *connected component* of G is a
 416 connected subgraph of G . A graph is said to be
 417 finite just in case its vertex set is finite. A graph
 418 is called *d-regular* if every vertex is adjacent to
 419 exactly $d \geq 1$ distinct vertices.

420 A *directed graph* D consists of a set V of elements
 421 a, b, c, \dots called the *nodes* of D and a set
 422 A of ordered pairs of nodes $(a, b), (b, c), \dots$ called
 423 the *arcs* of D . We use the symbol ab to represent
 424 the arc (a, b) . If ab is in the arc set A of D ,
 425 then we say that a is an *incoming neighbour* (or
 426 *in-neighbour*) of b , and also that b is a *outgoing*
 427 *neighbour* (or *out-neighbour*) of a . We say that
 428 D is *k-in regular* ($k \geq 1$) if every node has ex-
 429 actly k in-neighbours: for every node a there are
 430 distinct nodes a_1, \dots, a_k , such that $a_j a \in A$ for
 431 $j = 1, \dots, k$. In other words, D is *k-in regular*
 432 just in case the set of in-neighbours of any node
 433 has exactly k elements, all distinct, and possibly
 434 including itself. The *out-degree* of a node a is the
 435 number of nodes b such that the arc ab is in the arc
 436 set of D . Thus the out-degree of a is the number
 437 of out-neighbours of a . Similarly, the *in-degree*
 438 of a node a is the number of nodes c such that
 439 $ca \in A$. Thus the in-degree of a is the number of
 440 in-neighbours of a .

441 **A. The Ising model with individual tempera-
 442 tures.** It is quite common to study the Ising model
 443 on a finite, connected 4-regular graph where the
 444 number of edges is twice the number of vertices.
 445 This graph is usually introduced as a finite lat-
 446 tice of two-dimensional points on the surface of
 447 a three-dimensional torus. An example of such a
 448 graph with 25 vertices and 50 edges is shown in
 449 Figure 1A.

450 **A.1. The Ising model.** We start with a finite graph
 451 $G = (V, E)$. We identify the vertex set of G with

452 a system of interacting atoms. Each vertex $u \in V$
 453 is assigned a *spin* σ_u which can take the value $+1$
 454 or -1 . The *energy* of a configuration of spins is

$$455 H(\sigma) = - \sum_{\substack{u, v \in V \\ u \sim v}} \sigma_u \sigma_v.$$

456 The energy increases with the number of pairs
 457 of adjacent vertices having different spins. The
 458 Ising model is a way to assign probabilities to
 459 the system configurations. The probability of a
 460 configuration σ is proportional to $\exp(-\beta H(\sigma))$,
 461 where $\beta \geq 0$ is a variable inversely proportional to
 462 the temperature.

463 More precisely, the *Ising model* with inverse
 464 temperature β is the probability measure μ on the
 465 set of configurations $X = \{+1, -1\}^V$ defined by

$$466 \mu(\sigma) = \frac{1}{Z} \exp(-\beta H(\sigma))$$

467 where $Z = Z(G, \beta)$ is a normalizing constant. This
 468 constant can be computed explicitly as

$$469 Z(G, \beta) = \exp(-\beta|E|) \sum_{F \subset E} (\exp(\beta) - 1)^{|F|} 2^{k\langle F \rangle}$$

470 where $|A|$ denotes the cardinality of a finite set A ,
 471 and $k\langle F \rangle$ the number of connected components of
 472 the (spanning) subgraph $\langle F \rangle = (V, F)$ of G . Then

$$473 \lim_{\beta \rightarrow 0} Z(G, \beta) = C$$

474 where $C = \sum_{F \subset E} 2^{k\langle F \rangle}$ and so, for any configura-
 475 tion σ , we have that

$$476 \lim_{\beta \rightarrow 0} \mu(\sigma) = \frac{1}{C}.$$

477 As the temperature increases (and hence $\beta \rightarrow 0$), μ
 478 converges to the uniform measure over the space of
 479 configurations. When the temperature decreases,
 480 $\beta > 0$ increases, and μ assigns greater probability
 481 to configurations that have a large number of pairs
 482 of adjacent vertices with the same spin.

483 **A.2. Simulation.** Most simulations of the Ising
 484 model use either the Glauber dynamics or the
 485 Metropolis algorithm for constructing a Markov
 486 chain with stationary measure μ . Here we only
 487 describe the Metropolis chain for the Ising model.

488 Given two configurations $\sigma, \sigma' \in X$, let $P(\sigma, \sigma')$
 489 denote the probability that the Metropolis chain

490 for the Ising model moves from σ to σ' . For every
 491 $a \in V$, we write σ^a to denote the configuration
 492 obtained from σ by flipping the sign of the value
 493 that σ assigns to a and leaving all the other spins
 494 the same. In other words, $\sigma^a \in X$ is the unique
 495 configuration which agrees everywhere with σ ex-
 496 cept for the spin assigned to vertex a : for every
 497 $u \in V$, $\sigma_u^a = \sigma_u$ if $u \neq a$ and $\sigma_u^a = -\sigma_u$ if $u = a$.
 498 We let the transition probabilities to be positive
 499 $P(\sigma, \sigma') > 0$ just in case $\sigma' = \sigma$ or $\sigma' = \sigma^a$ for
 500 some $a \in V$. In the latter case, the Metropolis
 501 chain moves from σ to σ^a with probability

$$502 P(\sigma, \sigma^a) = \frac{1}{|V|} \left(1 \wedge \frac{\mu(\sigma^a)}{\mu(\sigma)} \right)$$

503 where $x \wedge y$ denotes the minimum of the quantities
 504 x and y . The probability that the chain stays at
 505 the same configuration σ is then

$$506 P(\sigma, \sigma) = 1 - \sum_{a \in V} P(\sigma, \sigma^a).$$

507 A key property about these transition prob-
 508 abilities is that they only depend on the ratios
 509 $\mu(\sigma^a)/\mu(\sigma)$. Therefore, to simulate the Metropolis
 510 chain it is not necessary to compute the normalizing
 511 constant Z of the Ising measure μ .

512 To summarize, we have constructed a transition
 513 matrix P that defines a reversible Markov chain
 514 with stationary measure μ .

515 **Proposition 1.** *The Metropolis chain for the
 516 Ising model has stationary measure μ .*

517 *Proof.* It is sufficient to prove that the probability
 518 measure μ and the transition matrix P satisfy the
 519 detailed balance equations

$$520 \mu(\sigma)P(\sigma, \sigma') = \mu(\sigma')P(\sigma', \sigma) \quad [5]$$

521 for all $\sigma \neq \sigma'$. To show this, it suffices to verify
 522 that the equation Eq. (5) holds when $\sigma' = \sigma^a$
 523 for some $a \in V$. After cancellation of $1/|V|$ and
 524 distributing $\mu(\sigma)$ and $\mu(\sigma^a)$ accordingly, it suffices
 525 to check

$$526 \mu(\sigma) \wedge \mu(\sigma) \frac{\mu(\sigma^a)}{\mu(\sigma)} = \mu(\sigma^a) \wedge \mu(\sigma^a) \frac{\mu(\sigma)}{\mu(\sigma^a)}$$

527 or equivalently

$$528 \mu(\sigma) \wedge \mu(\sigma^a) = \mu(\sigma^a) \wedge \mu(\sigma)$$

529 which is obvious. \square

A.3. Individual temperatures. In the previous section, we described how to construct a transition matrix P that defines a reversible Markov chain with stationary measure μ . Starting at a configuration σ , the probability that the chain moves to a new configuration σ^a for any $a \in V$, is given by

$$\begin{aligned} P(\sigma, \sigma^a) &= \frac{1}{|V|} \left(1 \wedge \frac{\mu(\sigma^a)}{\mu(\sigma)} \right) \\ &= \frac{1}{|V|} \left(1 \wedge \frac{\exp(-\beta H(\sigma^a))}{\exp(-\beta H(\sigma))} \right) \\ &= \frac{1}{|V|} (1 \wedge \exp(-\beta \Delta H_a(\sigma))) \end{aligned}$$

where

$$\begin{aligned} \Delta H_a(\sigma) &= H(\sigma^a) - H(\sigma) \\ &= - \sum_{\substack{u, v \in V \\ u \sim v}} \sigma_u^a \sigma_v^a + \sum_{\substack{u, v \in V \\ u \sim v}} \sigma_u \sigma_v \\ &= - \sum_{\substack{u, v \in V \\ u \sim v}} (\sigma_u^a \sigma_v^a - \sigma_u \sigma_v) \\ &= 2\sigma_a \sum_{\substack{u \in V \\ u \sim a}} \sigma_u. \end{aligned}$$

530 Thus, the transition probability from σ to σ^a of
 531 the Metropolis chain P for the Ising model with
 532 parameter $\beta \geq 0$ is determined by the quantity

$$\exp(-\beta \Delta H_a(\sigma)).$$

534 We now turn to study a situation where each
 535 vertex a has its own parameter β_a . In other word,
 536 we shall describe a Markov chain P_{ind} that moves
 537 from σ to σ^a with probability depending on

$$\exp(-\beta_a \Delta H_a(\sigma)),$$

538 where $\beta_a \geq 0$ is a individual (possibly distinct)
 539 parameter for each $a \in V$. More precisely, the
 540 probability that the new chain moves from σ to
 541 σ^a is defined as

$$542 P_{\text{ind}}(\sigma, \sigma^a) = \frac{1}{|V|} (1 \wedge \exp(-\beta_a \Delta H_a(\sigma))).$$

543 The probability that the chain stays at the same
 544 configuration is

$$545 P_{\text{ind}}(\sigma, \sigma) = 1 - \sum_{a \in V} P_{\text{ind}}(\sigma, \sigma^a).$$

547 Hence, all the configurations σ' that differ from
 548 σ in at least two vertices are not reachable from
 549 σ . That is to say, $P_{\text{ind}}(\sigma, \sigma') = 0$ if and only if
 550 $\sigma' \neq \sigma^a$ for any $a \in V$.

551 **Definition 1** (Ising measure with individual tem-
 552 peratures). Let $G = (V, E)$ be a finite, connected
 553 graph and $(\beta_u : u \in V)$ a collection of non-negative
 554 real numbers. The probability measure μ_{ind} on
 555 $X = \{+1, -1\}^V$ is defined by

$$556 \mu_{\text{ind}}(\sigma) = \frac{1}{Z_{\text{ind}}} \exp \left(\sum_{\substack{u, v \in V \\ u \sim v}} \beta_u \sigma_u \sigma_v \right)$$

557 where $Z_{\text{ind}} = \sum_{\sigma \in X} \mu_{\text{ind}}(\sigma)$ is a normalizing con-
 558 stant.

559 **Remark 1.** We can think of μ_{ind} as an *heteroge-*
 560 *nous Ising model* as opposed to the homogeneous
 561 version μ defined in Section A.1 by

$$562 \mu(\sigma) = \frac{1}{Z} \exp \left(\beta \sum_{\substack{u, v \in V \\ u \sim v}} \sigma_u \sigma_v \right).$$

563 **Remark 2.** It is cleat that the probability mea-
 564 sure μ is a stationary measure of the Markov chain
 565 defined by the transition matrix P_{ind} just in case
 566 we have $\beta_a = \beta$ for all $a \in V$. In other words,
 567 $\mu_{\text{ind}} = \mu$ if and only if the individual parame-
 568 ters β_a in the definition of P_{ind} are all equal to
 569 the single parameter β of the homogeneous Ising
 570 model.

571 **Proposition 2.** *The probability measure μ_{ind} is*
 572 *the stationary measure of the Markov chain defined*
 573 *by the transition matrix P_{ind} .*

574 *Proof.* In order to satisfy the detailed balanced
 575 equations

$$576 \mu_{\text{ind}}(\sigma) P_{\text{ind}}(\sigma, \sigma^a) = \mu_{\text{ind}}(\sigma^a) P_{\text{ind}}(\sigma^a, \sigma)$$

we must have

$$\begin{aligned} \mu_{\text{ind}}(\sigma) (1 \wedge \exp(-\beta_a \Delta H_a(\sigma))) \\ = \mu_{\text{ind}}(\sigma^a) (1 \wedge \exp(\beta_a \Delta H_a(\sigma))) \end{aligned}$$

577 for all σ and σ^a , because

$$578 \Delta H_a(\sigma^a) = H(\sigma) - H(\sigma^a) = -\Delta H_a(\sigma).$$

Now, if $\Delta H_a(\sigma) \geq 0$ then $\beta_a \Delta H_a(\sigma) \geq 0$, and
 579 hence $\exp(\beta_a \Delta H_a(\sigma)) \geq 1$, so
 580

$$\mu_{\text{ind}}(\sigma) \exp(-\beta_a \Delta H_a(\sigma)) = \mu_{\text{ind}}(\sigma^a). \quad 581$$

Otherwise, if $\Delta H_a(\sigma) < 0$ then $-\beta_a \Delta H_a(\sigma) \geq 0$,
 582 and so $\exp(-\beta_a \Delta H_a(\sigma)) \geq 1$, hence
 583

$$\mu_{\text{ind}}(\sigma) = \mu_{\text{ind}}(\sigma^a) \exp(\beta_a \Delta H_a(\sigma)). \quad 584$$

In both cases, we arrive at the conclusion that in
 585 order for μ_{ind} to be the stationary measure of the
 586 chain defined by P_{ind} , we must have
 587

$$\frac{\mu_{\text{ind}}(\sigma)}{\mu_{\text{ind}}(\sigma^a)} = \exp(\beta_a \Delta H_a(\sigma)) \quad 588$$

for every $\sigma \in X$ and $a \in V$. 589

Now we proceed to prove that equation Eq. (6)
 590 holds. After cancellation of $1/Z_{\text{ind}}$ and using prop-
 591 erties of the exponential function, it suffices to
 592 check
 593

$$\sum_{\substack{u, v \in V \\ u \sim v}} \beta_u \sigma_u \sigma_v - \sum_{\substack{u, v \in V \\ u \sim v}} \beta_u \sigma_u^a \sigma_v^a = \beta_a \Delta H_a(\sigma) \quad 594$$

By inspection,

$$\begin{aligned} \sum_{\substack{u, v \in V \\ u \sim v}} \beta_u \sigma_u \sigma_v - \sum_{\substack{u, v \in V \\ u \sim v}} \beta_u \sigma_u^a \sigma_v^a \\ = \sum_{\substack{u, v \in V \\ u \sim v}} (\beta_u \sigma_u \sigma_v - \beta_u \sigma_u^a \sigma_v^a) \\ = 2\beta_a \sigma_a \sum_{\substack{v \in V \\ a \sim v}} \sigma_v \\ = \beta_a \Delta H_a(\sigma). \end{aligned}$$

Therefore, the probability measure μ_{ind} and the
 595 transition matrix P_{ind} satisfy the detailed balance
 596 equations and the result follows. □
 597

B. Random Boolean networks.

B.1. Homogeneous random Boolean networks. Let
 599 $D = (V, A)$ be a directed graph. We identify
 600 the nodes of D with the genes in a gene regulatory
 601 network. Suppose D is a k -in regular directed
 602 graph. Figure 2A is an example of a 2-in regular
 603 digraph with 7 nodes, i.e. $N = 7, K = 2$.
 604

605 A family $(f_a)_{a \in V}$ of functions $f_a: \{0, 1\}^k \rightarrow$
 606 $\{0, 1\}$ is called a *Boolean network on D* . Figure 2B
 607 is an example of a Boolean network on a graph with

608 7 nodes, and with the parameter of “connectivity”
 609 k equal to 2. A Boolean network is called *random*
 610 if the assignment $a \mapsto f_a$ is made at random by
 611 sampling independently and uniformly from the set
 612 of all the 2^{2^k} Boolean functions with k inputs. A
 613 function $\sigma: V \rightarrow \{0, 1\}$, $a \mapsto \sigma_a$, is called a *state*
 614 of the *random Boolean network* on D . The value
 615 σ_a is called the *state* of a . The *updating function*
 616 $F(\sigma)$ of a state σ is the function $F(\sigma): V \rightarrow$
 617 $\{0, 1\}$, $a \mapsto \sigma'_a$, defined as

$$618 \quad \sigma'_a = f_a(\sigma_{a_1}, \dots, \sigma_{a_k}).$$

619 For every σ , we have a sequence of states
 620 $\sigma, \sigma', \sigma'', \dots$ such that each state is the updat-
 621 ing function of the previous state in the sequence:
 622 $\sigma' = F(\sigma)$, $\sigma'' = F(\sigma')$, and so on. The sequence
 623 of states $\sigma_a, \sigma'_a, \sigma''_a, \dots$ is called the *time series* of
 624 a .

625 **B.2. Heterogeneous random Boolean networks.** The
 626 description given in B.1 corresponds to the case
 627 where the structure and the updating scheme of
 628 the random Boolean network are homogeneous.
 629 Here we describe the two versions of heteroge-
 630 neous random Boolean networks that were used in
 631 the simulations. The first of these heterogeneous
 632 descriptions is structural, while the second gives
 633 rise to some sort of asynchronous dynamics.

634 The definition of Boolean network above makes
 635 the assumption that every node in the directed
 636 graph has the same in-degree. Now we consider
 637 Boolean networks over arbitrary (not necessarily k -
 638 in regular, directed) graphs. A *generalized Boolean*
 639 *network* on a directed graph D consists of a family
 640 $(f_a)_{a \in V}$ of functions $f_a: \{0, 1\}^{k_a^-} \rightarrow \{0, 1\}$ with
 641 $k_a^- \geq 1$ the in-degree a . Thus a *heterogeneous*
 642 *random Boolean network* is a generalized Boolean
 643 network chosen uniformly at random.

644 For talking about temporal heterogeneity we
 645 need to introduce asynchronous updating schemes
 646 (45). The *heterogeneous updating function* of a
 647 state σ of a random heterogeneous Boolean
 648 network on D is the function $\tilde{F}(\sigma): V \times \mathbb{N} \rightarrow \{0, 1\}$,
 649 defined by

$$650 \quad (a, t) \mapsto \begin{cases} \sigma'_a & \text{if } t \text{ is a multiple of } k_a^+ \\ \sigma_a & \text{otherwise} \end{cases}$$

651 where t is called the discrete *time-step*, and k_a^+
 652 is the out-degree of a : there are nodes $a_1, \dots, a_{k_a^+}$
 653 all distinct, such that $aa_j \in E$ for $j = 1, \dots, k_a^+$.

C. Linear functions. Here we observe that for lin-
 654 ear functions, there is no difference between ho-
 655 mogeneity and heterogeneity. Indeed a function
 656 $f: \mathbb{R}^d \rightarrow \mathbb{R}$ with $d \geq 1$, is called *linear* if for all
 657 $x, y \in \mathbb{R}^d$ and all $a, b \in \mathbb{R}$, we have
 658

$$659 \quad f(ax + by) = af(x) + bf(y).$$

660 For $x_1, \dots, x_n \in \mathbb{R}^d$, $n \geq 1$, it can be shown, by
 661 induction on the number of points n , that

$$662 \quad f\left(\frac{1}{n} \sum_{i=1}^n x_i\right) = \frac{1}{n} \sum_{i=1}^n f(x_i).$$

663 Thus, in the context of linear functions, average
 664 value (heterogeneity) is the same as value of the
 665 average (homogeneity).

Acknowledgments. We appreciate useful comments
 666 from Hyobin Kim, Pablo A. Marquet, and Adil-
 667 son Motter. O. Z. acknowledges support from
 668 CONACyT-SNI (Grant No. 620178). G.I. ac-
 669 knowledges support from AFOSR (Grant No.
 670 FA8655-20-1-7020), project EU H2020 Humane AI-
 671 net (Grant No. 952026), and CHIST-ERA project
 672 SAI (Grant No. FWF I 5205-N). C.G. acknowl-
 673 edges support from UNAM-PAPIIT (IN107919,
 674 IV100120, IN105122) and from the PASPA pro-
 675 gram from UNAM-DGAPA.
 676

Author contributions. All authors conceived and
 677 designed the study. F.S.P., O.Z., and O.K.P. per-
 678 formed numerical simulations and derived mathe-
 679 matical results. All authors wrote the paper.
 680

Competing interest statement. All authors declare
 681 no competing interest.
 682

1. HE Stanley, *Introduction to phase transitions and critical phenomena*. (Oxford University Press, Oxford, UK), (1987).
2. PW Anderson, More is different. *Science* **177**, 393–396 (1972).
3. D Chowdhury, L Santen, A Schadschneider, Statistical physics of vehicular traffic and some related systems. *Phys. Reports* **329**, 199 – 329 (2000).
4. D Helbing, Traffic and related self-driven many-particle systems. *Rev. modern physics* **73**, 1067 (2001).
5. T Mora, W Bialek, Are biological systems poised at criticality? *J. Stat. Phys.* **144**, 268–302 (2011).
6. K Christensen, NR Moloney, *Complexity and criticality*. (World Scientific, Singapore), (2005).
7. MA Muñoz, Colloquium: Criticality and dynamical scaling in living systems. *Rev. Mod. Phys.* **90**, 031001 (2018).
8. JM Beggs, The criticality hypothesis: how local cortical networks might optimize information processing. *Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci.* **366**, 329–343 (2008).
9. DR Chialvo, Emergent complex neural dynamics. *Nat. Phys.* **6**, 744–750 (2010).
10. I Shmulevich, SA Kauffman, M Aldana, Eukaryotic cells are dynamically ordered or critical but not chaotic. *Proc. Natl. Acad. Sci.* **102**, 13439–13444 (2005).
11. E Balleza, et al., Critical dynamics in genetic regulatory networks: Examples from four kingdoms. *PLoS ONE* **3**, e2456 (2008).

704 12. T Vicsek, A Zafeiris, Collective motion. *Phys. Reports* **517**, 71–140 (2012).
 705 13. J Monod, *Le hasard et la nécessité. Essai sur la philosophie naturelle de la*
 706 *biologie moderne.* (Éditions du Seuil, Paris, France), (1970).
 707 14. CG Langton, Computation at the edge of chaos: Phase transitions and emergent
 708 computation. *Phys. D* **42**, 12–37 (1990).
 709 15. SA Kauffman, *The Origins of Order.* (Oxford University Press, Oxford, UK),
 710 (1993).
 711 16. J Hidalgo, J Grilli, S Suweis, A Maritan, MA Muñoz, Cooperation, competition
 712 and the emergence of criticality in communities of adaptive systems. *J. Stat.*
 713 *Mech. Theory Exp.* **2016**, 033203 (2016).
 714 17. C Gershenson, Guiding the self-organization of random Boolean networks. *Theory Biosci.* **131**, 181–191 (2012).
 715 18. C Torres-Sosa, S Huang, M Aldana, Criticality is an emergent property of genetic
 716 networks that exhibit evolvability. *PLoS Comput. Biol.* **8**, e1002669 (2012).
 717 19. A Roli, M Villani, A Filisetti, R Serra, Dynamical criticality: Overview and open
 718 questions. *J. Syst. Sci. Complex* **31**, 647–663 (2018).
 719 20. X Wang, J Lizier, M Prokopenko, Fisher information at the edge of chaos in ran-
 720 dom Boolean networks. *Artif. Life* **17**, 315–329 (2011) Special Issue on Complex
 721 Networks.
 722 21. M Prokopenko, JT Lizier, O Obst, XR Wang, Relating Fisher information to order
 723 parameters. *Phys. Rev. E* **84**, 041116 (2011).
 724 22. N Fernández, C Maldonado, C Gershenson, Information measures of com-
 725 plexity, emergence, self-organization, homeostasis, and autopoiesis in *Guided*
 726 *Self-Organization: Inception, Emergence, Complexity and Computation*, ed. M
 727 Prokopenko. (Springer, Berlin Heidelberg) Vol. 9, pp. 19–51 (2014).
 728 23. G Santamaría-Bonfil, N Fernández, C Gershenson, Measuring the complexity of
 729 continuous distributions. *Entropy* **18**, 72 (2016).
 730 24. S Lloyd, Measures of complexity: a non-exhaustive list. Department of Mechanical
 731 Engineering, Massachusetts Institute of Technology (2001).
 732 25. P Bak, C Tang, K Wiesenfeld, Self-organized criticality: An explanation of the 1/f
 733 noise. *Phys. Rev. Lett.* **59**, 381–384 (1987).
 734 26. C Adami, Self-organized criticality in living systems. *Phys. Lett. A* **203**, 29–32
 735 (1995).
 736 27. J Hesse, T Gross, Self-organized criticality as a fundamental property of neural
 737 systems. *Front. systems neuroscience* **8**, 166 (2014).
 738 28. B Vidiella, et al., Engineering self-organized criticality in living cells. *bioRxiv*
 739 **2020.11.16.385385** (2020).
 740 29. G Cocho, J Flores, C Gershenson, C Pineda, S Sánchez, Rank diversity of lan-
 741 guages: Generic behavior in computational linguistics. *PLoS ONE* **10**, e0121898
 742 (2015).
 743 30. JA Morales, et al., Generic temporal features of performance rankings in sports
 744 and games. *EPJ Data Sci.* **5**, 33 (2016).
 745 31. JA Morales, et al., Rank dynamics of word usage at multiple scales. *Front. Phys.*
 746 **6**, 45 (2018).
 747 32. G Iñiguez, C Pineda, C Gershenson, AL Barabási, Dynamics of ranking. *Nat.*
 748 *Commun.* **13**, 1646 (2022).
 749 33. E Ising, Beitrag zur theorie des ferromagnetismus. *Zeitschrift für Physik* **31**,
 750 253–258 (1925).
 751 34. RJ Glauber, Time-dependent statistics of the Ising model. *J. Math. Phys.* **4**,
 752 294–307 (1963).
 753 35. JJ Hopfield, Neural networks and physical systems with emergent collective com-
 754 putational abilities. *Proc. Natl. Acad. Sci.* **79**, 2554–2558 (1982).
 755 36. R Lopez-Ruiz, HL Mancini, X Calbet, A statistical measure of complexity. *Phys.*
 756 *Lett. A* **209**, 321–326 (1995).
 757 37. CE Shannon, A mathematical theory of communication. *Bell Syst. Tech. J.* **27**,
 758 379–423 and 623–656 (1948).
 759 38. G Santamaría-Bonfil, C Gershenson, N Fernández, A package for measuring
 760 emergence, self-organization, and complexity based on Shannon entropy. *Front.*
 761 *Robotics AI* **4**, 10 (2017).
 762 39. SA Kauffman, Metabolic stability and epigenesis in randomly constructed ge-
 763 netic nets. *J. Theor. Biol.* **22**, 437–467 (1969).
 764 40. B Derrida, Y Pomeau, Random networks of automata: A simple annealed ap-
 765 proximation. *Eur. Lett.* **1**, 45–49 (1986).
 766 41. B Luque, RV Solé, Phase transitions in random networks: Simple analytic deter-
 767 mination of critical points. *Phys. Rev. E* **55**, 257–260 (1997).
 768 42. XR Wang, J Lizier, M Prokopenko, A Fisher information study of phase transi-
 769 tions in random Boolean networks in *Artificial Life XII Proceedings of the Twelfth*
 770 *International Conference on the Synthesis and Simulation of Living Systems*,
 771 eds. H Fellermann, et al. (MIT Press, Odense, Denmark), pp. 305–312 (2010).
 772 43. C Oosawa, MA Savageau, Effects of alternative connectivity on behavior of ran-
 773 domly constructed Boolean networks. *Phys. D* **170**, 143–161 (2002).
 774 44. M Aldana, Boolean dynamics of networks with scale-free topology. *Phys. D* **185**,
 775 45–66 (2003).
 776 45. C Gershenson, Classification of random Boolean networks in *Artificial Life VIII*:
 777 *Proceedings of the Eight International Conference on Artificial Life*, eds. RK Stan-
 778 dish, MA Bedau, HA Abbass. (MIT Press, Cambridge, MA, USA), pp. 1–8 (2002).
 779 46. I Harvey, T Bossomaier, Time out of joint: Attractors in asynchronous random
 780 Boolean networks in *Proceedings of the Fourth European Conference on Artificial*
 781 *Life (ECAL97)*, eds. P Husbands, I Harvey. (MIT Press), pp. 67–75 (1997).
 782 47. EJ McShane, Jensen's inequality. *Bull. Am. Math. Soc.* **43**, 521–527 (1937).
 783 48. C Gershenson, LA Pineda, Why does public transport not arrive on time? The
 784 pervasiveness of equal headway instability. *PLoS ONE* **4**, e7292 (2009).
 785 49. T Chen, WL Quek, NN Chung, VL Saw, LY Chew, Analysis and simulation of
 786 intervention strategies against bus bunching by means of an empirical agent-
 787 based model. *Complexity* **2021**, 2606191 (2021).
 788 50. C Gershenson, Self-organization leads to supraoptimal performance in public
 789 transportation systems. *PLoS ONE* **6**, e21469 (2011).
 790 51. G Carreón, C Gershenson, LA Pineda, Improving public transportation systems
 791 with self-organization: A headway-based model and regulation of passenger
 792 alighting and boarding. *PLOS ONE* **12**, 1–20 (2017).
 793 52. C Gershenson, D Helbing, When slower is faster. *Complexity* **21**, 9–15 (2015).
 794 53. Y Zhang, JL Ocampo-Espindola, IZ Kiss, AE Motter, Random heterogeneity out-
 795 performs design in network synchronization. *Proc. Natl. Acad. Sci.* **118** (2021).
 796 54. F Molnar, T Nishikawa, AE Motter, Asymmetry underlies stability in power grids.
 797 *Nat. Commun.* **12**, 1457 (2021).
 798 55. P Ratnayake, S Weragoda, J Wansapura, D Kashurirathna, M Piraveenan,
 799 Quantifying the robustness of complex networks with heterogeneous nodes.
 800 *Mathematics* **9** (2021).
 801 56. B Zhou, X Lu, P Holme, Universal evolution patterns of degree assortativity in
 802 social networks. *Soc. Networks* **63**, 47–55 (2020).
 803 57. FC Santos, JM Pacheco, T Lenaerts, Evolutionary dynamics of social dilemmas
 804 in structured heterogeneous populations. *Proc. Natl. Acad. Sci. USA* **103**, 3490–
 805 3494 (2006).
 806 58. FC Santos, MD Santos, JM Pacheco, Social diversity promotes the emergence
 807 of cooperation in public goods games. *Nature* **454**, 213–216 (2008).
 808 59. WR Ashby, *An Introduction to Cybernetics.* (Chapman & Hall, London), (1956).
 809 60. C Gershenson, Requisite variety, autopoiesis, and self-organization. *Kybernetes*
 810 **44**, 866–873 (2015).
 811 61. OK Pineda, H Kim, C Gershenson, A novel antifragility measure based on satis-
 812 faction and its application to random and biological Boolean networks. *Complexity*
 813 **2019**, 10 (2019).
 814 62. DH Wolpert, WG Macready, No free lunch theorems for search, (Santa Fe Insti-
 815 tute), Technical Report SFI-WP-95-02-010 (1995).
 816 63. DH Wolpert, WG Macready, No Free Lunch Theorems for Optimization. *IEEE*
 817 *Transactions on Evol. Comput.* **1**, 67–82 (1997).
 818 64. T Nishikawa, AE Motter, Symmetric states requiring system asymmetry. *Phys.*
 819 *Rev. Lett.* **117**, 114101 (2016).
 820 65. ZG Nicolaou, DJ Case, EBvd Wee, MM Driscoll, AE Motter, Heterogeneity-
 821 stabilized homogeneous states in driven media. *Nat. Commun.* **12**, 4486 (2021).
 822 66. G Ramos-Fernández, et al., Lévy walk patterns in the foraging movements of
 823 spider monkeys (*Atelus geoffroyi*). *Behav. Ecol. Sociobiol.* **55**, 223–230 (2004).
 824 67. T Dannemann, D Boyer, O Miramontes, Lévy flight movements prevent extinc-
 825 tions and maximize population abundances in fragile lotka-volterra systems.
 826 *Proc. Natl. Acad. Sci.* **115**, 3794–3799 (2018).
 827 68. YI Martínez-Arévalo, K Rodríguez-Vazquez, C Gershenson, Temporal
 828 heterogeneity improves speed and convergence in genetic algorithms.
 829 *arXiv:2203.13194* (2020).
 830 69. M Fruchart, R Hanai, PB Littlewood, V Vitelli, Non-reciprocal phase transitions.
 831 *Nature* **592**, 363–369 (2021).
 832 70. R Albert, AL Barabási, Statistical mechanics of complex networks. *Rev. Mod.*
 833 *Phys.* **74**, 47–97 (2002).
 834 71. MEJ Newman, The structure and function of complex networks. *SIAM Rev.* **45**,
 835 167–256 (2003).
 836 72. AL Barabási, *Network Science.* (Cambridge University Press, Cambridge, UK),
 837 (2016).
 838 73. AL Barabási, The origin of bursts and heavy tails in human dynamics. *Nature*
 839 **435**, 207–211 (2005).
 840 74. T Gross, H Sayama, eds., *Adaptive networks: Theory, Models and Applications*,
 841 Understanding Complex Systems. (Springer, Berlin Heidelberg), (2009).
 842 75. P Holme, J Saramäki, Temporal networks. *Phys. Reports* **519**, 97 – 125 (2012).
 843 76. P Holme, Modern temporal network theory: a colloquium. *Eur. Phys. J. B* **88**,
 844 1–30 (2015).
 845 77. S Sornette, T Gross, J Saramäki, Critical drift in a neuro-inspired adaptive
 846 network. *arXiv:2206.10315v1* (2022).
 847 78. MH Ruckelshaus, et al., The ipbes global assessment: Pathways to action.
 848 *Trends Ecol. & Evol.* **35**, 407–414 (2020).
 849 79. DMJS Bowman, et al., Vegetation fires in the anthropocene. *Nat. Rev. Earth &*
 850 *Environ.* **1**, 500–515 (2020).
 851 80. SR Abades, A Gaxiola, PA Marquet, Fire, percolation thresholds and the sa-
 852 vanna forest transition: a neutral model approach. *J. Ecol.* **102**, 1386–1393
 853

854 (2014).
855 81. M Scheffer, *Critical transitions in nature and society*. (Princeton University Press)
856 Vol. 16, (2020).
857 82. AD Barnosky, et al., Approaching a state shift in earth's biosphere. *Nature* **486**,
858 52–58 (2012).

DRAFT

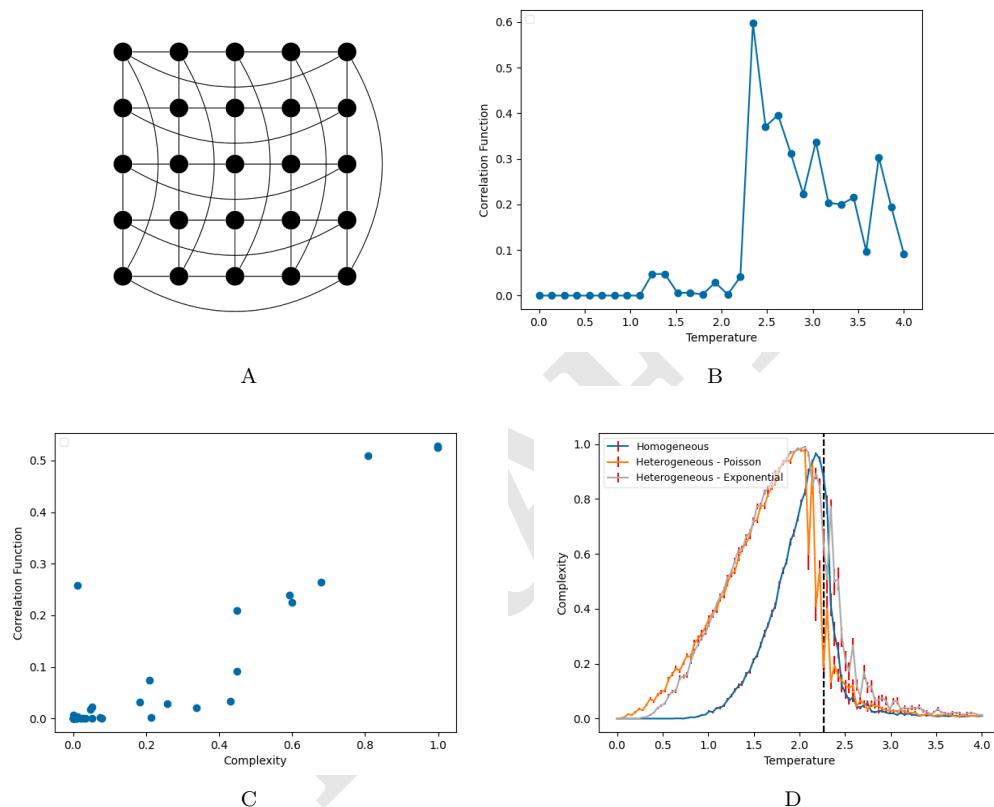


Fig. 1. (A) Two-dimensional Ising model displayed on a square lattice. The graph may be wrapped into a torus, highlighting periodic boundary conditions. (B) The correlation function is relatively lower at low and high temperatures than at the critical temperature where the correlation function is maximum. (C) Correlation as a function of complexity in two-dimensional Ising model illustrates that complexity is a good proxy for criticality. (D) Average complexity with error bars of the Ising model for different temperatures, considering homogeneous (blue), heterogeneous with Poisson distributed (orange), and heterogeneous with exponentially distributed (gray) temperatures. The black dotted vertical line represents the theoretical phase transition at $T \approx 2.27$ (in practice smaller due to finite size effects).

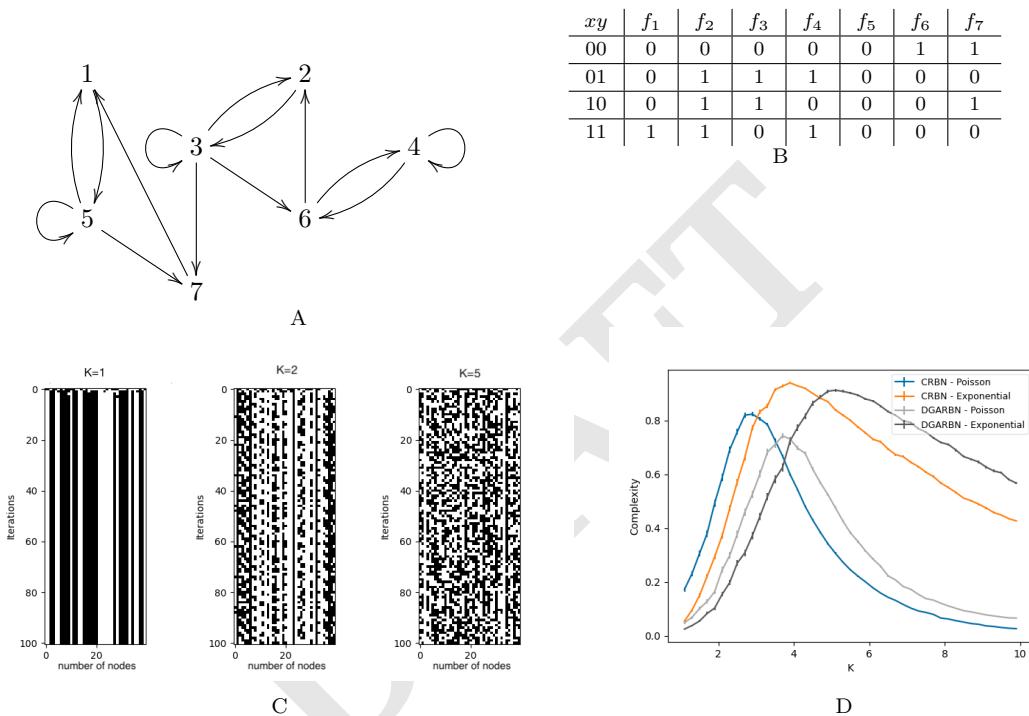
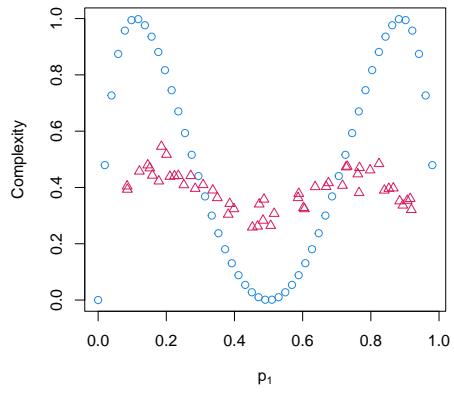
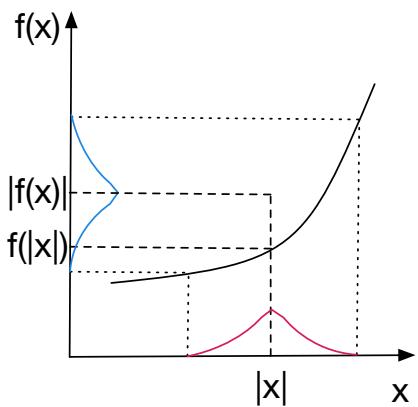


Fig. 2. (A) Example of a k -in regular directed graph with set of nodes $V = \{1, 2, \dots, 7\}$ ($N = 7$) and $K = 2$. (B) Truth table of the functions comprising a Boolean network with 7 nodes and $K = 2$. (C) Example of three regimes of CRBN and their measures of complexity using 40 nodes ($N = 40$) with 100 steps each. (time flows downwards) For $K = 1$, $C = 0.0558$. For $K = 2$, $C = 0.9951$. For $K = 5$, $C = 0.4714$. (D) Average complexity of RBNs as the average connectivity K is increased. Combinations of “homogeneous” structure (Poisson), heterogeneous structure (Exponential), homogeneous temporality (CRBN), and heterogeneous temporality (DGARBN). $\Delta K = 0.2$, $N=100$, with 1000 iterations for each K .



A



B

Fig. 3. A. Average complexity C for collections of strings with average probability of ones p_1 , in homogeneous (blue circles) and heterogeneous (red triangles) cases. The latter yields higher average complexity in the central region, where the homogeneous complexity is low. B. Illustration of Jensen's inequality. The function of the averages $f(|x|)$ of a variable with a distribution with average $|x|$ is lower than the average of the functions $|f(x)|$ for concave functions. The opposite is the case for convex functions.