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Criticality has been proposed as a mechanism for the emer-
gence of complexity, life, and computation, as it exhibits
a balance between order and chaos. In classic models of
complex systems where structure and dynamics are consid-
ered homogeneous, criticality is restricted to phase transi-
tions, leading either to robust (ordered) or fragile (chaotic)
phases for most of the parameter space. Many real-world
complex systems, however, are not homogeneous. Some
elements change in time faster than others, with slower ele-
ments (usually the most relevant) providing robustness, and
faster ones being adaptive. Structural patterns of connectiv-
ity are also typically heterogeneous, characterized by few el-
ements with many interactions and most elements with only
a few. Here we take a few traditionally homogeneous dynam-
ical models and explore their heterogeneous versions, find-
ing evidence that heterogeneity extends criticality. Thus, pa-
rameter fine-tuning is not necessary to reach a phase tran-
sition and obtain the benefits of (homogeneous) criticality.
Simply adding heterogeneity can extend criticality, making
the search/evolution of complex systems faster and more
reliable. Our results add theoretical support for the ubiqui-
tous presence of heterogeneity in physical, biological, so-
cial, and technological systems, as natural selection can ex-
ploit heterogeneity to evolve complexity “for free". In artifi-
cial systems and biological design, heterogeneity may also
be used to extend the parameter range that allows for crit-
icality. We also suggest that climate change may be partly
explained as an increase in ecological homogeneity.

complexity | phase transitions | criticality | Ising model | ran-

dom Boolean networks

1. Introduction

Phase transitions have been studied extensively
to describe changes in states of physical matter
(1), and are typically characterized by symmetry
breaking (2). They have also been studied more
generally in dynamical systems, such as vehicu-

lar traffic (3, 4). Near phase transitions, critical
dynamics are known to occur (5). These are also
associated with scale invariance and complexity
(6). There are several examples of criticality in
biological systems (7), including neural dynamics
(8, 9), genetic regulatory networks (10, 11), and
collective motion (12).

It is often argued that critical dynamics are

Significance Statement

The dynamics of many complex systems can be
classified as ordered, chaotic, or critical. Order of-
fers stability and robustness, while chaos allows
for change and adaptability. Criticality, then, is
often seen as an intermediate balance between
order and chaos, required by living systems at
different scales. In classical models, however,
criticality is only found near phase transitions, re-
stricting the parameter space (and thus the likeli-
hood) of critical dynamics, as most parameters
yield “undesirable” solutions. Here we show that
this limitation is due to the homogeneity built-in
these models, i.e., all elements sharing parame-
ter values. By exploring heterogeneous versions
of archetypal models in physics and computer sci-
ence, we observe critical dynamics in a broader
range of parameters, and thus could be more
common than previously thought. We also ex-
plore theoretically when heterogeneity or homo-
geneity should be preferred.
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prevalent or desirable in a broad variety of systems
because they offer a balance between robustness
and adaptability (13-16). If dynamics are too
ordered, then information and functionality can be
preserved, but it is difficult to adapt. The opposite
occurs with chaotic dynamics: change allows for
adaptability, but it also leads to fragility, as small
changes percolate through the system and useful
information tends to be lost. Thus, for phenomena,
such as life, computation, and complex systems
in general, critical dynamics should be favored by
evolutionary processes (17-19).

There are different ways in which one can mea-
sure criticality, many of which are related to en-
tropies. For example, Fisher information maxi-
mizes at phase transitions (20, 21). Still, it rapidly
decreases and it is difficult to evaluate how far a
system is from criticality. In this work, we use a
measure of complexity (22, 23) based on Shannon
information that also maximizes at phase transi-
tions, but reduces its value more gradually and is
straightforward to calculate compared to Fisher
information, as the latter requires to measure the
effects of controlled perturbations. There are sev-
eral definitions and measures of complexity (24),
but, crucially, the one we use here is highly corre-
lated with criticality.

If criticality is found only near a phase transi-
tion, then most of a parameter space would have
“undesirable” solutions. Thus, how can a search
procedure find the right parameters for critical-
ity? Self-organized criticality (25-28) has been
proposed as an answer. Although interesting and
useful for specific cases, it is not universal and
has hidden variables. In general, one can think
of different mechanisms that will find or adjust
parameters so that criticality is achieved. But,
could criticality be more prevalent than previously
thought?

In previous work where we have studied rank
dynamics in a variety of systems (29-32), we ob-
serve that the most relevant elements change more
slowly than less relevant elements. We hypothe-
sized that heterogeneous temporality equips sys-
tems with robustness and adaptability at the same
time. Here we explore the role of heterogeneity in
different dynamical systems. We show that differ-
ent types of heterogeneity extend the parameter
region where critical dynamics are observed. Thus,
we can say that heterogeneity results in “critical-

ity for free”, reducing the problem of fine-tuning
parameters.

2. Results

We first present results of a heterogeneous version
of the Ising model, where elements have different
temperatures. We then explore structural and tem-
poral heterogeneity in random Boolean networks.
Afterwards, we abstract the specific dynamics of a
system and investigate under which conditions het-
erogeneity promotes criticality. Finally, we provide
a general solution, independent of any measure,
using Jensen’s inequality.

A. Value heterogeneity: the Ising model. We can
consider a system of interacting atoms arranged
in a network-like structure (Fig. 1A). The state
of an atom is defined by its dipole nuclear mag-
netic moment: a two-valued spin representing the
orientation of the magnetic field produced by the
atom. Intuitively, neighboring atoms with the
same spin value contribute less to the total energy
of the system than atoms with different spin val-
ues. Systems of this kind evolve preferentially to
states with the lowest possible energy. When the
temperature of the environment is increased, the
system heats, and we can observe a sudden change
in a global property of the system, namely loss
of magnetization. A theoretical model of such a
system of atoms is the Ising model (33, 34).

The Ising model is usually homogeneous: all
cells have the same temperature, and one explores
different properties as the temperature T' varies.
This is a good assumption when all atoms can be
considered to behave in a similar way. However,
if we are modeling an Ising-like biological system
(35), then each element might have slightly dif-
ferent properties. In the proposed heterogeneous
case, each cell has a temperature taken from a
Poisson distribution with a mean equal to the tem-
perature of the homogeneous case (see Sec. A for
details).

Following Lopez-Ruiz et al. (36), we have pro-
posed a measure of complexity (22) based on Shan-
non’s information (37),

b
I=-KY pilogp;, 1]

i=i
where K is a positive constant and b is the length
of the alphabet (for all the cases considered in this
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paper, b = 2). This measure is equivalent to the
Boltzmann-Gibbs entropy. To normalize I to [0, 1],

we use
1

- logy b

[2]

I is maximal when the probabilities are homoge-
neous, i.e. there is the same probability of observ-
ing any symbol along a string. I is minimal when
only one symbol is found in a string (so it has a
probability of one, and all the rest have a probabil-
ity of zero). Chaotic dynamics are characterized
by a high I, while ordered (static) dynamics are
characterized by a low I. Inspired by Lopez-Ruiz
et al. (36), we define complexity C' as the balance
between ordered and chaotic dynamics,

C=4-1-1-1), [3]

where the constant 4 is added to normalize the
measure to [0, 1] (38).

Figure 1B shows the correlation of the Ising
model for varying temperature. This is maximal
in the phase transition at T' ~ 2.27, i.e. criticality.
Figure 1C shows that there is a correspondence
between the correlation and the complexity mea-
sure in Eq. 3. Figure 1D shows results of average
complexity C as T increases. Complexity is maxi-
mal near the phase transition for the homogeneous
case. Heterogeneity shifts the expected maximum
complexity (that reflects criticality), but it also
expands it, in the sense that the area under the
curve is broadened. In other words, critical-like
dynamics (one can assume arbitrarily complexity
values greater than 0.8, just for comparison) are
found for a broader range of T values.

B. Temporal and structural heterogeneity: ran-
dom Boolean networks. A gene is a part of the
genomic sequence that encodes how to produce
(synthesize) either a protein or some RNA (gene
products). Gene product synthesis is called gene
expression. Because not all gene products are syn-
thesized at the same time, the regulation of gene
expression is constantly taking place within a cell.
In fact, the expression of each gene is regulated
(among many things) by the expression of other
genes in the genome. This gives rise to an in-
teraction structure known as a genetic regulatory
network. Boolean networks are a theoretical model
of genetic regulatory networks. In random Boolean
networks (RBNs) (15, 39), traditionally there is
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homogeneous topology and updating. In this case,
critical dynamics are found close to a phase transi-
tion between ordered and chaotic phases (40—-42).

Figure 2A shows an example of the topology of
a RBN with seven nodes (N = 7) and two connec-
tions (inputs K) each. Each node has a lookup
table where all possible combinations of their in-
puts are specified (e.g. Figure 2A). Using an en-
semble approach, for each parameter combination,
we randomly generate topologies (structure) and
lookup tables (function), and then evaluate them
in simulations. Depending on different parame-
ters, the dynamics of RBNs can be classified as
ordered, critical (near a phase transition), and
chaotic. Figure 2C shows example of these dynam-
ics for different K values.

One can have heterogeneous topology in differ-
ent ways (43, 44), as genetic regulatory networks
are not homogeneous: few genes affect many genes,
and many genes affect few genes. Here, we use
Poisson and exponential distributions. Strictly
speaking, both are heterogeneous, but exponential
is more heterogeneous than Poisson, which here we
consider as “homogeneous”. The technical reason
for using a Poisson distribution is that it allows
us to explore non-integer average connectivity in
the network.

We can also have heterogeneous updating
schemes (45), as it can be argued that not all
genes in a network “march in step” (46). Classical
RBNs (CRBNs) have synchronous, homogeneous
temporality, while in here we use Deterministic
Generalized Asynchronous RBNs (DGARBNS) for
heterogeneous temporality. In particular, each
node is updated every number of time steps equal
to its out-degree, so the more nodes one node af-
fects, the slower it will be updated (see Sec B for
details).

Fig. 2D compares the average complexity C as
the average connectivity K is increased. Structural
and temporal homogeneity (CRBN-Poisson) has a
classical complexity profile, maximizing near the
phase transition (K = 2 for the thermodynamical
limit, i.e., N — oc0). It can be seen that only struc-
tural heterogeneity (CRBN-Exponential) extends
criticality more than only temporal heterogene-
ity (DGARBN-Poisson), that basically shifts the
curve to the right. Still, having both structural and
temporal heterogeneity (DGARBN-Exponential)
extends criticality even more than having only
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structural heterogeneity.

C. Arbitrary complexity. Abstracting the results
from the previous subsections, and trying not to
depend on any model in particular, we can explore
exhaustively the measure of complexity (Eq. 3)
in homogeneous and heterogeneous settings, to
observe when each case yields a higher average
complexity. So we simply vary the probability p;
of having ones in a binary string directly as shown
in Figure 3A.

In the homogeneous case, we calculate directly
the complexity C' as a function of p; using Eq. 3,
assuming that we are averaging the complexities
of several elements with the same p;. For the het-
erogeneous case, we generate a collection of proba-
bilities with mean p; and standard deviation of 0.2
(truncating to zero negative values and to one val-
ues greater than one), calculate their complexity,
and then average it. Heterogeneity achieves higher
complexities for roughly 0.25 < p; < 0.75. One
might wonder why all heterogenous complexities
avoid extreme values, even when heterogeneous
RBNs can have complexities close to zero and one.
This is because of the standard deviation of the
distributions from which the means are generated.
Smaller standard deviations yield curves closer to
the heterogeneous case.

By assuming that heterogeneity sometimes will
be better than homogeneity and vice versa, we can
further generalize our results to be independent of
any measure or function. If we have homogeneity
of a variable z, all elements will have the same
value for z, and thus the mean |z| will be equal to
any z;. Thus, the average of any function |f(z)|
will be equal to any f(x;). If we have hetero-
geneity, then the mean |x| will be given by some
distribution of different values of x, and similarly
for |f(z)].

We can then say that heterogeneity is preferred
when the average of the function is greater than
the function of the average,

[f (@) > f(l2))- [4]

Jensen’s inequality (47) tells us already that
heterogeneity will be “better” than homogeneity
for concave functions, as illustrated in Figure 3B.
If we have a heterogeneous distribution with a
mean |z|, a concave function will fulfill that the
average of the functions | f(x)| (heterogeneity) will

be greater than the function of the averages f(|z|)
(homogeneity). For more complex functions, their
concave parts will benefit from heterogeneity and
their convex parts will benefit from homogeneity
(as it can be seen for C in Figure 3A).

For linear functions, it can be shown that there
is no difference between homogeneity and hetero-
geneity, as f(|z|) will always be equal to |f(z)]
(see proof in Section C). Thus, it can be concluded
that the difference between homogeneity and het-
erogeneity is relevant only for nonlinear functions.

3. Discussion

There are several recent examples of heterogeneity
offering advantages when compared to homoge-
neous systems in the literature. For example, in
public transportation systems, theory tells us that
passengers are served optimally (wait at stations
for a minimum time) if headways are equal, i.e., ho-
mogeneous. However, equal headways are unstable
(48, 49). Still, adaptive heterogeneous headways
can deliver supraoptimal performance through self-
organization (50, 51), due to the slower-is-faster ef-
fect (52): passengers do wait more time at stations,
but once they board a vehicle, on average they
will reach faster their destination, as the idling
required to maintain equal headways is avoided.

There are other examples where heterogeneity
promotes synchronization (see Zhang et al. (53)
and references therein). In particular, Zhang et
al. (53) showed that random parameter hetero-
geneity among oscillators can consistently rescue
the system from losing synchrony. In related work,
Molnar et al. (54) found that heterogeneous gen-
erators improve stability in power grids. Recently,
Ratnayake et al. (55) explored complex networks
with heterogeneous nodes, observing that these
have a greater robustness as compared to networks
with homogeneous nodes. In social networks, Zhou
and Lu (56) found that heterogeneity of social sta-
tus may drive the network evolution towards self-
optimization. Also, structural heterogeneity has
been shown to favor the evolution of cooperation
(57, 58).

These examples suggest that heterogenous net-
works improve information processing. With het-
erogeneity, elements can in principle process in-
formation differently, potentially increasing the
computing power of a heterogeneous system over
an homogeneous one with similar characteristics.

etal.
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This is related to Ashby’s law of requisite vari-
ety (59, 60), which states that an active controller
should have at least the same variety (number of
states) as the controlled. It is straightforward to
see with random Boolean networks that temporal
heterogeneity increases the variety of the system:
the state space (of size 2N for homogeneous tem-
porality) can explode once we have to include the
precise periods and phases of all nodes (in hetero-
geneous temporality), as different combinations of
the temporal substates may lead a transition from
the same node substate to different node substates.
Also in random Boolean networks, higher K im-
plies more possible networks. Even if there are
evolutionary pressures for efficiency (smaller net-
works), if heterogeneity shifts criticality to higher
K, then it will be easier for an evolutionary search
to find critical dynamics in larger spaces.

Shannon’s information (37), equivalent to
Boltzmann-Gibbs entropy, is maximal when the
probability of every symbol or state is the same,
i.e. homogeneous. Thus, one can measure het-
erogeneity as an inverse of entropy (one minus
the normalized Shannon’s information) (22). It is
clear that maximum heterogeneity (as measured
here, it would occur when only one symbol or state
has a probability of one and all the rest a prob-
ability of zero) has its limitations. Thus, we can
assume that there will be an “optimal” balance
between minimum and maximum heterogeneities.
The precise balance will probably depend on the
system, its context, and may even change in time.
If we want heterogeneity to take the dynamics
towards criticality (or somewhere else), then the
precise “optimal” heterogeneity will depend on
how far we are from criticality (17, 61). In this
sense, a potential relationship with no-free-lunch
theorems (62, 63) seems an interesting area of
further research.

When homogeneous systems are analyzed in
terms of their symmetries, heterogeneity is a type
of symmetry breaking. Still, in converse symmetry
breaking (64), only heterogeneity leads to stability,
i.e. the system symmetry is broken to preserve
the state symmetry. This idea can be used to
control the stability of complex systems using het-
erogeneity (65). A further avenue of research is
the relationship between heterogeneity and Lévy
flights (32). Lévy flights are heterogeneous, since
they consist of many short jumps and few large

etal.

ones. They offer a balance between exploration
and exploitation, and seem advantageous for for-
aging (66), preventing extinctions (67), and search
algorithms (68). Another interesting relationship
to study is the one between heterogeneity and
non-reciprocal systems (69).

Network science (70-72) has demonstrated the
relevance of structural heterogeneity. This should
be complemented with a systematic exploration
of temporal (73) and other types of heterogeneity.
For example, it would be interesting to study het-
erogeneous adaptive (74) and temporal (75, 76)
networks, where each node has a different speed
for its dynamics. Temporal heterogeneity enables
a system to match the requisite variety of their
environment at different timescales. If systems
can adapt at the scales at which their environ-
ments change, then they will better do so if they
have a variety of timescales, i.e., heterogeneous
temporality. Recently, Sormunen, et al. (77) have
shown that adaptive networks have critical mani-
folds that can be navigated as parameters change.
In other words, criticality is not restricted to a
single value, but can be associated to a manifold
in a multidimensional system.

In ecology, there is a global tendency towards
increased homogenization (fewer species of plants
and animals), i.e., reduced biodiversity due to
agricultural expansion and invasive species (78).
Moreover, there is an increase in the intensity of
disturbances such as fire (79) that are predicted
to lead to critical transitions (80, 81) with global
consequences (82). Thus, it might be that increas-
ing ecosystem heterogeneity (diversity) might be
a way of reducing the effects of climate change, an
option which should be explored.

Further research is required to better under-
stand the role of heterogeneity in the criticality
of complex systems. The present work is limited
and many open questions remain. We encourage
the reader to experiment with a heterogeneous
version of their favorite homogeneous complex sys-
tem model, be it structural, temporal, or other
type of heterogeneity. We could learn more from
heterogeneous models of collective motion, opin-
ion formation, financial markets, urban growth,
supply chains, and more. This could contribute to
a broader understanding of heterogeneity and its
relationship with criticality.
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4. Methods

A graph G consists of a set of vertices V and a set
of edges E, where an edge is an unordered pair of
distinct vertices of G. We write u ~ v to denote
that {u,v} is an edge and in this case we say that
u and v are adjacent. If H is a graph with vertex
set W C V and edge set F' C E, we say that H is
a subgraph of G. A graph is said to be connected if
for every pair of distinct vertices u and v, there is
a finite sequence of distinct vertices ag,aq ..., ay,
such that ag = u, a,, = v, and a;_1 ~ a; for each
i=20,1,...,n. A connected component of G is a
connected subgraph of G. A graph is said to be
finite just in case its vertex set is finite. A graph
is called d-regular if every vertex is adjacent to
exactly d > 1 distinct vertices.

A directed graph D consists of a set V' of ele-
ments a,b,c,... called the nodes of D and a set
A of ordered pairs of nodes (a,b), (b,c),... called
the arcs of D. We use the symbol ab to repre-
sent the arc (a,b). If ab is in the arc set A of D,
then we say that a is an incoming neighbour (or
in-neighbour) of b, and also that b is a outgoing
neighbour (or out-neighbour) of a. We say that
D is k-in regular (k > 1) if every node has ex-
actly k in-neighbours: for every node a there are
distinct nodes ay,...,ax, such that aja € A for
j =1,...,k. In other words, D is k-in regular
just in case the set of in-neighbours of any node
has exactly k elements, all distinct, and possibly
including itself. The out-degree of a node a is the
number of nodes b such that the arc ab is in the arc
set of D. Thus the out-degree of a is the number
of out-neighbours of a. Similarly, the in-degree
of a node a is the number of nodes ¢ such that
ca € A. Thus the in-degree of a is the number of
in-neighbours of a.

A. The Ising model with individual tempera-
tures. It is quite common to study the Ising model
on a finite, connected 4-regular graph where the
number of edges is twice the number of vertices.
This graph is usually introduced as a finite lat-
tice of two-dimensional points on the surface of
a three-dimensional torus. An example of such a
graph with 25 vertices and 50 edges is shown in
Figure 1A.

A.1. The Ising model. We start with a finite graph
G = (V, E). We identify the vertex set of G with

doi:10.20944/,

a system of interacting atoms. Each vertex u € V
is assigned a spin o, which can take the value 41
or —1. The energy of a configuration of spins is

— E OyOy-

u,veV

u~v

H(o) =

The energy increases with the number of pairs
of adjacent vertices having different spins. The
Ising model is a way to assign probabilities to
the system configurations. The probability of a
configuration o is proportional to exp(—8H (o)),
where 8 > 0 is a variable inversely proportional to
the temperature.

More precisely, the Ising model with inverse
temperature [ is the probability measure p on the
set of configurations X = {+1,—1}" defined by

wo) = — exp(~BH (o))

where Z = Z(G, () is a normalizing constant. This
constant can be computed explicitly as

Z(G,B) = exp(=BIE|) Y (exp(8) — 1)/FI2+

FCE

where |A| denotes the cardinality of a finite set A,
and k(F) the number of connected components of
the (spanning) subgraph (F) = (V, F) of G. Then

lm Z(G.f) = C

where C' =3, 28(F) and so, for any configura-
tion o, we have that

o) = o
As the temperature increases (and hence 8 — 0), p
converges to the uniform measure over the space of
configurations. When the temperature decreases,
B > 0 increases, and u assigns greater probability
to configurations that have a large number of pairs
of adjacent vertices with the same spin.

A.2. Simulation. Most simulations of the Ising
model use either the Glauber dynamics or the
Metropolis algorithm for constructing a Markov
chain with stationary measure p. Here we only
describe the Metropolis chain for the Ising model.

Given two configurations ¢,¢’ € X, let P(o,0’)
denote the probability that the Metropolis chain

etal.
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for the Ising model moves from o to o’. For every
a € V, we write 0% to denote the configuration
obtained from o by flipping the sign of the value
that o assigns to a and leaving all the other spins
the same. In other words, ¢® € X is the unique
configuration which agrees everywhere with o ex-
cept for the spin assigned to vertex a: for every
weV,ol =0, ifus#aand o) = -0, if u=a.
We let the transition probabilities to be positive
P(o,0’) > 0 just in case 0/ = o or ¢/ = o® for
some a € V. In the latter case, the Metropolis
chain moves from o to o with probability

@)

where x Ay denotes the minimum of the quantities
z and y. The probability that the chain stays at
the same configuration ¢ is then

P(o,0) = 1— ZP(U,U“).

acV

P(o,0%) = |—‘1/| (1 A

A key property about these transition prob-
abilities is that they only depend on the ratios
w(c®) /(o). Therefore, to simulate the Metropolis
chain it is not necessary to compute the normaliz-
ing constant Z of the Ising measure u.

To summarize, we have constructed a transition
matrix P that defines a reversible Markov chain
with stationary measure p.

Proposition 1. The Metropolis chain for the
Ising model has stationary measure [i.

Proof. Tt is sufficient to prove that the probability
measure p and the transition matrix P satisfy the
detailed balance equations

(o) P(o,0') = p(o")P(o’, o) [5]

for all o # ¢’. To show this, it suffices to verify
that the equation Eq. (5) holds when o = ¢
for some a € V. After cancellation of 1/|V| and
distributing p(o) and p(o®) accordingly, it suffices
to check

B(o®) A p(o?) 2

wo) A o) (o)

or equivalently

ulo) A p(e) = (@) A plo)

which is obvious. O

etal.

A.3. Individual temperatures.In the previous sec-
tion, we described how to construct a transition
matrix P that defines a reversible Markov chain
with stationary measure u. Starting at a configu-
ration o, the probability that the chain moves to
a new configuration ¢ for any a € V, is given by

Po.0") = 1 (1 A /L((o;)))

= ﬁ(l A exp(—=BAH.(0)))

1

where
AH,(o) = H(c")— H(o)

a __a
= — g 0,0, + E OuOy

u,veV u,veV

u~v u~v

= Z (0h0y — 0uoy)

u,veV

u~v

20, Z Ou-

ueV

u~a

Thus, the transition probability from o to ¢® of
the Metropolis chain P for the Ising model with
parameter 8 > 0 is determined by the quantity

exp(—8AH,(0)).

We now turn to study a situation where each
vertex a has its own parameter ,. In other word,
we shall describe a Markov chain P,q that moves
from ¢ to 0® with probability depending on

exp(—B,AHy (o)),

where 3, > 0 is a individual (possibly distinct)
parameter for each a € V. More precisely, the
probability that the new chain moves from o to
o is defined as

i (1 A exp(_ﬂaAHa(o))) .

—Pind(07 Ua) = |V|

The probability that the chain stays at the same
configuration is

Pind(o-7 U) = 1- Z Rnd(aa O.Cl).
acV
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Hence, all the configurations o’ that differ from
o in at least two vertices are not reachable from
o. That is to say, Pna(c,0’) = 0 if and only if
o' # 0% forany a € V.

Definition 1 (Ising measure with individual tem-
peratures). Let G = (V, E) be a finite, connected
graph and (8, : u € V) a collection of non-negative
real numbers. The probability measure ping on
X = {+1, -1}V is defined by

1
ex
Zind P

where Zina = Y ¢ x #ind(0) is a normalizing con-
stant.

Mind(o) =

u,veV

u~v

Remark 1. We can think of pi,q as an heteroge-
nous Ising model as opposed to the homogeneous
version p defined in Section A.1 by

Remark 2. It is cleat that the probability mea-
sure p is a stationary measure of the Markov chain
defined by the transition matrix Pi,q just in case
we have B, = (8 for all a € V. In other words,
ting = p if and only if the individual parame-
ters B, in the definition of P;,q are all equal to
the single parameter 3 of the homogeneous Ising
model.

Proposition 2. The probability measure ping s
the stationary measure of the Markov chain defined
by the transition matrix Ppq.

Proof. In order to satisfy the detailed balanced
equations

Hind (U)]Dind (O’, O'a) = Nind(ga)Rnd (0a7 U)
we must have

,uind(a) (1 A exp(_ﬁaAHa(U)))
= pina(0”) (1 A exp(BaAHq(0)))

for all o and %, because

Now, if AH,(c) > 0 then 8,AH,(c) > 0, and
hence exp(B,AH,(0)) > 1, so

Nind(o—) exp(fﬁaAHa(o—)) = uind(o—a)

Otherwise, if AH,(0) < 0 then —,AH,(0) > 0,
and so exp(—f,AH,(c)) > 1, hence

Pind(0) = ftina(0”) exp(B.AH(0)).

In both cases, we arrive at the conclusion that in
order for ping to be the stationary measure of the
chain defined by P,,q, we must have

HMind (J)

pne 5 = ep(BAHL) 6

for every 0 € X and a € V.

Now we proceed to prove that equation Eq. (6)
holds. After cancellation of 1/Z;,q and using prop-
erties of the exponential function, it suffices to
check

Z ﬁuguav_ Z ﬁuo-za-g = ﬁaAHa(O')
u,veV u,veV

u~v u~v

By inspection,

Z ﬁuauav - Z ﬂuCTZUg

u,veV u,veV
u~v U~

= Z (ﬂuaugv - @ﬂzag)

u,veV
= 2ﬁa0a § Oy

u~v
veV
an~v

= B,AH,(0).

Therefore, the probability measure pj,q and the
transition matrix P4 satisfy the detailed balance
equations and the result follows. O

B. Random Boolean networks.

B.1. Homogeneous random Boolean networks. Let
D = (V,A) be a directed graph. We identify
the nodes of D with the genes in a gene regulatory
network. Suppose D is a k-in regular directed
graph. Figure 2A is an example of a 2-in regular
digraph with 7 nodes, i.e. N =7, K = 2.

A family (f,)aev of functions f,: {0,1}* —
{0, 1} is called a Boolean network on D. Figure 2B
is an example of a Boolean network on a graph with

etal.
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7

7 nodes, and with the parameter of “connectivity
k equal to 2. A Boolean network is called random
if the assignment a — f, is made at random by
sampling independently and uniformly from the set
of all the 22" Boolean functions with k& inputs. A
function o: V. — {0,1}, a — o4, is called a state
of the random Boolean network on D. The value
0, is called the state of a. The updating function
F(o) of a state o is the function F(o): V —
{0,1}, a > o/, defined as

0l = fulCayy-- 1 0a,)-

For every o, we have a sequence of states
o,0',0"”,... such that each state is the updat-
ing function of the previous state in the sequence:
o' = F(o), ¢’ = F(0’), and so on. The sequence
of states o4, 00,00, ... is called the time series of
a.

B.2. Heterogeneous random Boolean networks. The
description given in B.1 corresponds to the case
where the structure and the updating scheme of
the random Boolean network are homogeneous.
Here we describe the two versions of heteroge-
neous random Boolean networks that were used in
the simulations. The first of these heterogeneous
descriptions is structural, while the second gives
rise to some sort of asynchronous dynamics.

The definition of Boolean network above makes
the assumption that every node in the directed
graph has the same in-degree. Now we consider
Boolean networks over arbitrary (not necessarily k-
in regular, directed) graphs. A generalized Boolean
network on a directed graph D consists of a family
(fa)aev of functions f,: {0,1}*« — {0,1} with
k,; > 1 the in-degree a. Thus a heterogeneous
random Boolean network is a generalized Boolean
network chosen uniformly at random.

For talking about temporal heterogeneity we
need to introduce asynchronous updating schemes
(45). The heterogeneous updating function of a
state o of a random heterogeneous Boolean net-
work on D is the function F(o): V x N — {0,1},
defined by

(a,t) {"fl

o, otherwise

if ¢ is a multiple of k"

where ¢ is called the discrete time-step, and kJ is
the out-degree of a: there are nodes aq,..., Qpt
all distinct, such that aa; € E for j =1,... k] .

etal.

C. Linear functions. Here we observe that for lin-
ear functions, there is no difference between ho-
mogeneity and heterogeneity. Indeed a function
f:R* — R with d > 1, is called linear if for all
x,y € R and all a,b € R, we have

flaz +by) = af(z) + bf(y).

For z1,...,z, € R? n > 1, it can be shown, by
induction on the number of points n, that

H(13m) -1
i=1 i=1

Thus, in the context of linear functions, average
value (heterogeneity) is the same as value of the
average (homogeneity).
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Fig. 1. (A) Two-dimensional Ising model displayed on a square lattice. The graph may be wrapped into a torus, highlighting periodic boundary conditions.
(B) The correlation function is relatively lower at low and high temperatures than at the critical temperature where the correlation function is maximum.
(C) Correlation as a function of complexity in two-dimensional Ising model illustrates that complexity is a good proxy for criticality. (D) Average complexity
with error bars of the Ising model for different temperatures, considering homogeneous (blue), heterogeneous with Poisson distributed (orange), and
heterogeneous with exponentially distributed (gray) temperatures. The black dotted vertical line represents the theoretical phase transition at 7' =~ 2.27
(in practice smaller due to finite size effects).
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Fig. 2. (A) Example of a k-in regular directed graph with set of nodes V. = {1,2,...,7} (N = 7) and K = 2. (B) Truth table of the functions

comprising a Boolean network with 7 nodes and K = 2. (C) Example of three regimes of CRBN and their measures of complexity using 40 nodes
(N = 40) with 100 steps each. (time flows downwards) For K = 1, C = 0.0558. For K = 2, C = 0.9951. For K = 5, C = 0.4714. (D)
Average complexity of RBNs as the average connectivity K is increased. Combinations of “homogeneous” structure (Poisson), heterogeneous structure
(Exponential), homogeneous temporality (CRBN), and heterogeneous temporality (DGARBN). A K = 0.2, N=100, with 1000 iterations for each K.
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of Jensen’s inequality. The function of the averages f(|z|) of a variable
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