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Criticality has been proposed as a mechanism for the emer-
gence of complexity, life, and computation, as it exhibits
a balance between order and chaos. In classic models of
complex systems where structure and dynamics are consid-
ered homogeneous, criticality is restricted to phase transi-
tions, leading either to robust (ordered) or fragile (chaotic)
phases for most of the parameter space. Many real-world
complex systems, however, are not homogeneous. Some
elements change in time faster than others, with slower ele-
ments (usually the most relevant) providing robustness, and
faster ones being adaptive. Structural patterns of connectiv-
ity are also typically heterogeneous, characterized by few el-
ements with many interactions and most elements with only
a few. Here we take a few traditionally homogeneous dynam-
ical models and explore their heterogeneous versions, find-
ing evidence that heterogeneity extends criticality. Thus, pa-
rameter fine-tuning is not necessary to reach a phase tran-
sition and obtain the benefits of (homogeneous) criticality.
Simply adding heterogeneity can extend criticality, making
the search/evolution of complex systems faster and more
reliable. Our results add theoretical support for the ubiqui-
tous presence of heterogeneity in physical, biological, so-
cial, and technological systems, as natural selection can ex-
ploit heterogeneity to evolve complexity “for free". In artifi-
cial systems and biological design, heterogeneity may also
be used to extend the parameter range that allows for crit-
icality. We also suggest that climate change may be partly
explained as an increase in ecological homogeneity.
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1. Introduction1

Phase transitions have been studied extensively2

to describe changes in states of physical matter3

(1), and are typically characterized by symmetry4

breaking (2). They have also been studied more5

generally in dynamical systems, such as vehicu-6

lar traffic (3, 4). Near phase transitions, critical 7

dynamics are known to occur (5). These are also 8

associated with scale invariance and complexity 9

(6). There are several examples of criticality in 10

biological systems (7), including neural dynamics 11

(8, 9), genetic regulatory networks (10, 11), and 12

collective motion (12). 13

It is often argued that critical dynamics are 14
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stricting the parameter space (and thus the likeli-
hood) of critical dynamics, as most parameters
yield “undesirable” solutions. Here we show that
this limitation is due to the homogeneity built-in
these models, i.e., all elements sharing parame-
ter values. By exploring heterogeneous versions
of archetypal models in physics and computer sci-
ence, we observe critical dynamics in a broader
range of parameters, and thus could be more
common than previously thought. We also ex-
plore theoretically when heterogeneity or homo-
geneity should be preferred.

1Corresponding author email: cgg@unam.mx, iniguezg@ceu.edu

PNAS | July 27, 2022 | vol. XXX | no. XX | 1–14

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2022                   doi:10.20944/preprints202208.0058.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202208.0058.v1
http://creativecommons.org/licenses/by/4.0/


DRAFT

prevalent or desirable in a broad variety of systems15

because they offer a balance between robustness16

and adaptability (13–16). If dynamics are too17

ordered, then information and functionality can be18

preserved, but it is difficult to adapt. The opposite19

occurs with chaotic dynamics: change allows for20

adaptability, but it also leads to fragility, as small21

changes percolate through the system and useful22

information tends to be lost. Thus, for phenomena23

such as life, computation, and complex systems24

in general, critical dynamics should be favored by25

evolutionary processes (17–19).26

There are different ways in which one can mea-27

sure criticality, many of which are related to en-28

tropies. For example, Fisher information maxi-29

mizes at phase transitions (20, 21). Still, it rapidly30

decreases and it is difficult to evaluate how far a31

system is from criticality. In this work, we use a32

measure of complexity (22, 23) based on Shannon33

information that also maximizes at phase transi-34

tions, but reduces its value more gradually and is35

straightforward to calculate compared to Fisher36

information, as the latter requires to measure the37

effects of controlled perturbations. There are sev-38

eral definitions and measures of complexity (24),39

but, crucially, the one we use here is highly corre-40

lated with criticality.41

If criticality is found only near a phase transi-42

tion, then most of a parameter space would have43

“undesirable” solutions. Thus, how can a search44

procedure find the right parameters for critical-45

ity? Self-organized criticality (25–28) has been46

proposed as an answer. Although interesting and47

useful for specific cases, it is not universal and48

has hidden variables. In general, one can think49

of different mechanisms that will find or adjust50

parameters so that criticality is achieved. But,51

could criticality be more prevalent than previously52

thought?53

In previous work where we have studied rank54

dynamics in a variety of systems (29–32), we ob-55

serve that the most relevant elements change more56

slowly than less relevant elements. We hypothe-57

sized that heterogeneous temporality equips sys-58

tems with robustness and adaptability at the same59

time. Here we explore the role of heterogeneity in60

different dynamical systems. We show that differ-61

ent types of heterogeneity extend the parameter62

region where critical dynamics are observed. Thus,63

we can say that heterogeneity results in “critical-64

ity for free”, reducing the problem of fine-tuning 65

parameters. 66

2. Results 67

We first present results of a heterogeneous version 68

of the Ising model, where elements have different 69

temperatures. We then explore structural and tem- 70

poral heterogeneity in random Boolean networks. 71

Afterwards, we abstract the specific dynamics of a 72

system and investigate under which conditions het- 73

erogeneity promotes criticality. Finally, we provide 74

a general solution, independent of any measure, 75

using Jensen’s inequality. 76

A. Value heterogeneity: the Ising model. We can 77

consider a system of interacting atoms arranged 78

in a network-like structure (Fig. 1A). The state 79

of an atom is defined by its dipole nuclear mag- 80

netic moment: a two-valued spin representing the 81

orientation of the magnetic field produced by the 82

atom. Intuitively, neighboring atoms with the 83

same spin value contribute less to the total energy 84

of the system than atoms with different spin val- 85

ues. Systems of this kind evolve preferentially to 86

states with the lowest possible energy. When the 87

temperature of the environment is increased, the 88

system heats, and we can observe a sudden change 89

in a global property of the system, namely loss 90

of magnetization. A theoretical model of such a 91

system of atoms is the Ising model (33, 34). 92

The Ising model is usually homogeneous: all 93

cells have the same temperature, and one explores 94

different properties as the temperature T varies. 95

This is a good assumption when all atoms can be 96

considered to behave in a similar way. However, 97

if we are modeling an Ising-like biological system 98

(35), then each element might have slightly dif- 99

ferent properties. In the proposed heterogeneous 100

case, each cell has a temperature taken from a 101

Poisson distribution with a mean equal to the tem- 102

perature of the homogeneous case (see Sec. A for 103

details). 104

Following Lopez-Ruiz et al. (36), we have pro- 105

posed a measure of complexity (22) based on Shan- 106

non’s information (37), 107

I = −K
b∑
i=i

pi log pi, [1] 108

where K is a positive constant and b is the length 109

of the alphabet (for all the cases considered in this 110
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paper, b = 2). This measure is equivalent to the111

Boltzmann-Gibbs entropy. To normalize I to [0, 1],112

we use113

K = 1
log2 b

. [2]114

I is maximal when the probabilities are homoge-115

neous, i.e. there is the same probability of observ-116

ing any symbol along a string. I is minimal when117

only one symbol is found in a string (so it has a118

probability of one, and all the rest have a probabil-119

ity of zero). Chaotic dynamics are characterized120

by a high I, while ordered (static) dynamics are121

characterized by a low I. Inspired by Lopez-Ruiz122

et al. (36), we define complexity C as the balance123

between ordered and chaotic dynamics,124

C = 4 · I · (1− I), [3]125

where the constant 4 is added to normalize the126

measure to [0, 1] (38).127

Figure 1B shows the correlation of the Ising128

model for varying temperature. This is maximal129

in the phase transition at T ≈ 2.27, i.e. criticality.130

Figure 1C shows that there is a correspondence131

between the correlation and the complexity mea-132

sure in Eq. 3. Figure 1D shows results of average133

complexity C as T increases. Complexity is maxi-134

mal near the phase transition for the homogeneous135

case. Heterogeneity shifts the expected maximum136

complexity (that reflects criticality), but it also137

expands it, in the sense that the area under the138

curve is broadened. In other words, critical-like139

dynamics (one can assume arbitrarily complexity140

values greater than 0.8, just for comparison) are141

found for a broader range of T values.142

B. Temporal and structural heterogeneity: ran-143

dom Boolean networks. A gene is a part of the144

genomic sequence that encodes how to produce145

(synthesize) either a protein or some RNA (gene146

products). Gene product synthesis is called gene147

expression. Because not all gene products are syn-148

thesized at the same time, the regulation of gene149

expression is constantly taking place within a cell.150

In fact, the expression of each gene is regulated151

(among many things) by the expression of other152

genes in the genome. This gives rise to an in-153

teraction structure known as a genetic regulatory154

network. Boolean networks are a theoretical model155

of genetic regulatory networks. In random Boolean156

networks (RBNs) (15, 39), traditionally there is157

homogeneous topology and updating. In this case, 158

critical dynamics are found close to a phase transi- 159

tion between ordered and chaotic phases (40–42). 160

Figure 2A shows an example of the topology of 161

a RBN with seven nodes (N = 7) and two connec- 162

tions (inputs K) each. Each node has a lookup 163

table where all possible combinations of their in- 164

puts are specified (e.g. Figure 2A). Using an en- 165

semble approach, for each parameter combination, 166

we randomly generate topologies (structure) and 167

lookup tables (function), and then evaluate them 168

in simulations. Depending on different parame- 169

ters, the dynamics of RBNs can be classified as 170

ordered, critical (near a phase transition), and 171

chaotic. Figure 2C shows example of these dynam- 172

ics for different K values. 173

One can have heterogeneous topology in differ- 174

ent ways (43, 44), as genetic regulatory networks 175

are not homogeneous: few genes affect many genes, 176

and many genes affect few genes. Here, we use 177

Poisson and exponential distributions. Strictly 178

speaking, both are heterogeneous, but exponential 179

is more heterogeneous than Poisson, which here we 180

consider as “homogeneous”. The technical reason 181

for using a Poisson distribution is that it allows 182

us to explore non-integer average connectivity in 183

the network. 184

We can also have heterogeneous updating 185

schemes (45), as it can be argued that not all 186

genes in a network “march in step” (46). Classical 187

RBNs (CRBNs) have synchronous, homogeneous 188

temporality, while in here we use Deterministic 189

Generalized Asynchronous RBNs (DGARBNs) for 190

heterogeneous temporality. In particular, each 191

node is updated every number of time steps equal 192

to its out-degree, so the more nodes one node af- 193

fects, the slower it will be updated (see Sec B for 194

details). 195

Fig. 2D compares the average complexity C as 196

the average connectivityK is increased. Structural 197

and temporal homogeneity (CRBN-Poisson) has a 198

classical complexity profile, maximizing near the 199

phase transition (K = 2 for the thermodynamical 200

limit, i.e., N →∞). It can be seen that only struc- 201

tural heterogeneity (CRBN-Exponential) extends 202

criticality more than only temporal heterogene- 203

ity (DGARBN-Poisson), that basically shifts the 204

curve to the right. Still, having both structural and 205

temporal heterogeneity (DGARBN-Exponential) 206

extends criticality even more than having only 207
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structural heterogeneity.208

C. Arbitrary complexity. Abstracting the results209

from the previous subsections, and trying not to210

depend on any model in particular, we can explore211

exhaustively the measure of complexity (Eq. 3)212

in homogeneous and heterogeneous settings, to213

observe when each case yields a higher average214

complexity. So we simply vary the probability p1215

of having ones in a binary string directly as shown216

in Figure 3A.217

In the homogeneous case, we calculate directly218

the complexity C as a function of p1 using Eq. 3,219

assuming that we are averaging the complexities220

of several elements with the same p1. For the het-221

erogeneous case, we generate a collection of proba-222

bilities with mean p1 and standard deviation of 0.2223

(truncating to zero negative values and to one val-224

ues greater than one), calculate their complexity,225

and then average it. Heterogeneity achieves higher226

complexities for roughly 0.25 < p1 < 0.75. One227

might wonder why all heterogenous complexities228

avoid extreme values, even when heterogeneous229

RBNs can have complexities close to zero and one.230

This is because of the standard deviation of the231

distributions from which the means are generated.232

Smaller standard deviations yield curves closer to233

the heterogeneous case.234

By assuming that heterogeneity sometimes will235

be better than homogeneity and vice versa, we can236

further generalize our results to be independent of237

any measure or function. If we have homogeneity238

of a variable x, all elements will have the same239

value for x, and thus the mean |x| will be equal to240

any xi. Thus, the average of any function |f(x)|241

will be equal to any f(xi). If we have hetero-242

geneity, then the mean |x| will be given by some243

distribution of different values of x, and similarly244

for |f(x)|.245

We can then say that heterogeneity is preferred246

when the average of the function is greater than247

the function of the average,248

|f(x)| > f(|x|). [4]249

Jensen’s inequality (47) tells us already that250

heterogeneity will be “better” than homogeneity251

for concave functions, as illustrated in Figure 3B.252

If we have a heterogeneous distribution with a253

mean |x|, a concave function will fulfill that the254

average of the functions |f(x)| (heterogeneity) will255

be greater than the function of the averages f(|x|) 256

(homogeneity). For more complex functions, their 257

concave parts will benefit from heterogeneity and 258

their convex parts will benefit from homogeneity 259

(as it can be seen for C in Figure 3A). 260

For linear functions, it can be shown that there 261

is no difference between homogeneity and hetero- 262

geneity, as f(|x|) will always be equal to |f(x)| 263

(see proof in Section C). Thus, it can be concluded 264

that the difference between homogeneity and het- 265

erogeneity is relevant only for nonlinear functions. 266

3. Discussion 267

There are several recent examples of heterogeneity 268

offering advantages when compared to homoge- 269

neous systems in the literature. For example, in 270

public transportation systems, theory tells us that 271

passengers are served optimally (wait at stations 272

for a minimum time) if headways are equal, i.e., ho- 273

mogeneous. However, equal headways are unstable 274

(48, 49). Still, adaptive heterogeneous headways 275

can deliver supraoptimal performance through self- 276

organization (50, 51), due to the slower-is-faster ef- 277

fect (52): passengers do wait more time at stations, 278

but once they board a vehicle, on average they 279

will reach faster their destination, as the idling 280

required to maintain equal headways is avoided. 281

There are other examples where heterogeneity 282

promotes synchronization (see Zhang et al. (53) 283

and references therein). In particular, Zhang et 284

al. (53) showed that random parameter hetero- 285

geneity among oscillators can consistently rescue 286

the system from losing synchrony. In related work, 287

Molnar et al. (54) found that heterogeneous gen- 288

erators improve stability in power grids. Recently, 289

Ratnayake et al. (55) explored complex networks 290

with heterogeneous nodes, observing that these 291

have a greater robustness as compared to networks 292

with homogeneous nodes. In social networks, Zhou 293

and Lu (56) found that heterogeneity of social sta- 294

tus may drive the network evolution towards self- 295

optimization. Also, structural heterogeneity has 296

been shown to favor the evolution of cooperation 297

(57, 58). 298

These examples suggest that heterogenous net- 299

works improve information processing. With het- 300

erogeneity, elements can in principle process in- 301

formation differently, potentially increasing the 302

computing power of a heterogeneous system over 303

an homogeneous one with similar characteristics. 304
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This is related to Ashby’s law of requisite vari-305

ety (59, 60), which states that an active controller306

should have at least the same variety (number of307

states) as the controlled. It is straightforward to308

see with random Boolean networks that temporal309

heterogeneity increases the variety of the system:310

the state space (of size 2N for homogeneous tem-311

porality) can explode once we have to include the312

precise periods and phases of all nodes (in hetero-313

geneous temporality), as different combinations of314

the temporal substates may lead a transition from315

the same node substate to different node substates.316

Also in random Boolean networks, higher K im-317

plies more possible networks. Even if there are318

evolutionary pressures for efficiency (smaller net-319

works), if heterogeneity shifts criticality to higher320

K, then it will be easier for an evolutionary search321

to find critical dynamics in larger spaces.322

Shannon’s information (37), equivalent to323

Boltzmann-Gibbs entropy, is maximal when the324

probability of every symbol or state is the same,325

i.e. homogeneous. Thus, one can measure het-326

erogeneity as an inverse of entropy (one minus327

the normalized Shannon’s information) (22). It is328

clear that maximum heterogeneity (as measured329

here, it would occur when only one symbol or state330

has a probability of one and all the rest a prob-331

ability of zero) has its limitations. Thus, we can332

assume that there will be an “optimal” balance333

between minimum and maximum heterogeneities.334

The precise balance will probably depend on the335

system, its context, and may even change in time.336

If we want heterogeneity to take the dynamics337

towards criticality (or somewhere else), then the338

precise “optimal” heterogeneity will depend on339

how far we are from criticality (17, 61). In this340

sense, a potential relationship with no-free-lunch341

theorems (62, 63) seems an interesting area of342

further research.343

When homogeneous systems are analyzed in344

terms of their symmetries, heterogeneity is a type345

of symmetry breaking. Still, in converse symmetry346

breaking (64), only heterogeneity leads to stability,347

i.e. the system symmetry is broken to preserve348

the state symmetry. This idea can be used to349

control the stability of complex systems using het-350

erogeneity (65). A further avenue of research is351

the relationship between heterogeneity and Lévy352

flights (32). Lévy flights are heterogeneous, since353

they consist of many short jumps and few large354

ones. They offer a balance between exploration 355

and exploitation, and seem advantageous for for- 356

aging (66), preventing extinctions (67), and search 357

algorithms (68). Another interesting relationship 358

to study is the one between heterogeneity and 359

non-reciprocal systems (69). 360

Network science (70–72) has demonstrated the 361

relevance of structural heterogeneity. This should 362

be complemented with a systematic exploration 363

of temporal (73) and other types of heterogeneity. 364

For example, it would be interesting to study het- 365

erogeneous adaptive (74) and temporal (75, 76) 366

networks, where each node has a different speed 367

for its dynamics. Temporal heterogeneity enables 368

a system to match the requisite variety of their 369

environment at different timescales. If systems 370

can adapt at the scales at which their environ- 371

ments change, then they will better do so if they 372

have a variety of timescales, i.e., heterogeneous 373

temporality. Recently, Sormunen, et al. (77) have 374

shown that adaptive networks have critical mani- 375

folds that can be navigated as parameters change. 376

In other words, criticality is not restricted to a 377

single value, but can be associated to a manifold 378

in a multidimensional system. 379

In ecology, there is a global tendency towards 380

increased homogenization (fewer species of plants 381

and animals), i.e., reduced biodiversity due to 382

agricultural expansion and invasive species (78). 383

Moreover, there is an increase in the intensity of 384

disturbances such as fire (79) that are predicted 385

to lead to critical transitions (80, 81) with global 386

consequences (82). Thus, it might be that increas- 387

ing ecosystem heterogeneity (diversity) might be 388

a way of reducing the effects of climate change, an 389

option which should be explored. 390

Further research is required to better under- 391

stand the role of heterogeneity in the criticality 392

of complex systems. The present work is limited 393

and many open questions remain. We encourage 394

the reader to experiment with a heterogeneous 395

version of their favorite homogeneous complex sys- 396

tem model, be it structural, temporal, or other 397

type of heterogeneity. We could learn more from 398

heterogeneous models of collective motion, opin- 399

ion formation, financial markets, urban growth, 400

supply chains, and more. This could contribute to 401

a broader understanding of heterogeneity and its 402

relationship with criticality. 403
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4. Methods404

A graph G consists of a set of vertices V and a set405

of edges E, where an edge is an unordered pair of406

distinct vertices of G. We write u ∼ v to denote407

that {u, v} is an edge and in this case we say that408

u and v are adjacent. If H is a graph with vertex409

set W ⊂ V and edge set F ⊂ E, we say that H is410

a subgraph of G. A graph is said to be connected if411

for every pair of distinct vertices u and v, there is412

a finite sequence of distinct vertices a0, a1 . . . , an413

such that a0 = u, an = v, and ai−1 ∼ ai for each414

i = 0, 1, . . . , n. A connected component of G is a415

connected subgraph of G. A graph is said to be416

finite just in case its vertex set is finite. A graph417

is called d-regular if every vertex is adjacent to418

exactly d ≥ 1 distinct vertices.419

A directed graph D consists of a set V of ele-420

ments a, b, c, . . . called the nodes of D and a set421

A of ordered pairs of nodes (a, b), (b, c), . . . called422

the arcs of D. We use the symbol ab to repre-423

sent the arc (a, b). If ab is in the arc set A of D,424

then we say that a is an incoming neighbour (or425

in-neighbour) of b, and also that b is a outgoing426

neighbour (or out-neighbour) of a. We say that427

D is k-in regular (k ≥ 1) if every node has ex-428

actly k in-neighbours: for every node a there are429

distinct nodes a1, . . . , ak, such that aja ∈ A for430

j = 1, . . . , k. In other words, D is k-in regular431

just in case the set of in-neighbours of any node432

has exactly k elements, all distinct, and possibly433

including itself. The out-degree of a node a is the434

number of nodes b such that the arc ab is in the arc435

set of D. Thus the out-degree of a is the number436

of out-neighbours of a. Similarly, the in-degree437

of a node a is the number of nodes c such that438

ca ∈ A. Thus the in-degree of a is the number of439

in-neighbours of a.440

A. The Ising model with individual tempera-441

tures. It is quite common to study the Ising model442

on a finite, connected 4-regular graph where the443

number of edges is twice the number of vertices.444

This graph is usually introduced as a finite lat-445

tice of two-dimensional points on the surface of446

a three-dimensional torus. An example of such a447

graph with 25 vertices and 50 edges is shown in448

Figure 1A.449

A.1. The Ising model. We start with a finite graph450

G = (V,E). We identify the vertex set of G with451

a system of interacting atoms. Each vertex u ∈ V 452

is assigned a spin σu which can take the value +1 453

or −1. The energy of a configuration of spins is 454

H(σ) = −
∑
u,v∈V
u∼v

σuσv. 455

The energy increases with the number of pairs 456

of adjacent vertices having different spins. The 457

Ising model is a way to assign probabilities to 458

the system configurations. The probability of a 459

configuration σ is proportional to exp(−βH(σ)), 460

where β ≥ 0 is a variable inversely proportional to 461

the temperature. 462

More precisely, the Ising model with inverse 463

temperature β is the probability measure µ on the 464

set of configurations X = {+1,−1}V defined by 465

µ(σ) = 1
Z

exp(−βH(σ)) 466

where Z = Z(G, β) is a normalizing constant. This 467

constant can be computed explicitly as 468

Z(G, β) = exp(−β|E|)
∑
F⊂E

(exp(β)− 1)|F |2k〈F 〉 469

where |A| denotes the cardinality of a finite set A, 470

and k〈F 〉 the number of connected components of 471

the (spanning) subgraph 〈F 〉 = (V, F ) of G. Then 472

lim
β→0

Z(G, β) = C 473

where C =
∑
F⊂E 2k〈F 〉 and so, for any configura- 474

tion σ, we have that 475

lim
β→0

µ(σ) = 1
C
. 476

As the temperature increases (and hence β → 0), µ 477

converges to the uniform measure over the space of 478

configurations. When the temperature decreases, 479

β > 0 increases, and µ assigns greater probability 480

to configurations that have a large number of pairs 481

of adjacent vertices with the same spin. 482

A.2. Simulation. Most simulations of the Ising 483

model use either the Glauber dynamics or the 484

Metropolis algorithm for constructing a Markov 485

chain with stationary measure µ. Here we only 486

describe the Metropolis chain for the Ising model. 487

Given two configurations σ, σ′ ∈ X, let P (σ, σ′) 488

denote the probability that the Metropolis chain 489
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for the Ising model moves from σ to σ′. For every490

a ∈ V , we write σa to denote the configuration491

obtained from σ by flipping the sign of the value492

that σ assigns to a and leaving all the other spins493

the same. In other words, σa ∈ X is the unique494

configuration which agrees everywhere with σ ex-495

cept for the spin assigned to vertex a: for every496

u ∈ V , σau = σu if u 6= a and σau = −σu if u = a.497

We let the transition probabilities to be positive498

P (σ, σ′) > 0 just in case σ′ = σ or σ′ = σa for499

some a ∈ V . In the latter case, the Metropolis500

chain moves from σ to σa with probability501

P (σ, σa) = 1
|V |

(
1 ∧ µ(σa)

µ(σ)

)
502

where x∧y denotes the minimum of the quantities503

x and y. The probability that the chain stays at504

the same configuration σ is then505

P (σ, σ) = 1−
∑
a∈V

P (σ, σa).506

A key property about these transition prob-507

abilities is that they only depend on the ratios508

µ(σa)/µ(σ). Therefore, to simulate the Metropolis509

chain it is not necessary to compute the normaliz-510

ing constant Z of the Ising measure µ.511

To summarize, we have constructed a transition512

matrix P that defines a reversible Markov chain513

with stationary measure µ.514

Proposition 1. The Metropolis chain for the515

Ising model has stationary measure µ.516

Proof. It is sufficient to prove that the probability517

measure µ and the transition matrix P satisfy the518

detailed balance equations519

µ(σ)P (σ, σ′) = µ(σ′)P (σ′, σ) [5]520

for all σ 6= σ′. To show this, it suffices to verify521

that the equation Eq. (5) holds when σ′ = σa522

for some a ∈ V . After cancellation of 1/|V | and523

distributing µ(σ) and µ(σa) accordingly, it suffices524

to check525

µ(σ) ∧ µ(σ)µ(σa)
µ(σ) = µ(σa) ∧ µ(σa) µ(σ)

µ(σa)526

or equivalently527

µ(σ) ∧ µ(σa) = µ(σa) ∧ µ(σ)528

which is obvious.529

A.3. Individual temperatures. In the previous sec-
tion, we described how to construct a transition
matrix P that defines a reversible Markov chain
with stationary measure µ. Starting at a configu-
ration σ, the probability that the chain moves to
a new configuration σa for any a ∈ V , is given by

P (σ, σa) = 1
|V |

(
1 ∧ µ(σa)

µ(σ)

)
= 1
|V |

(
1 ∧ exp(−βH(σa))

exp(−βH(σ))

)
= 1
|V |

(1 ∧ exp(−β∆Ha(σ)))

where

∆Ha(σ) = H(σa)−H(σ)

= −
∑
u,v∈V
u∼v

σauσ
a
v +

∑
u,v∈V
u∼v

σuσv

= −
∑
u,v∈V
u∼v

(σauσav − σuσv)

= 2σa
∑
u∈V
u∼a

σu.

Thus, the transition probability from σ to σa of 530

the Metropolis chain P for the Ising model with 531

parameter β ≥ 0 is determined by the quantity 532

exp(−β∆Ha(σ)). 533

We now turn to study a situation where each 534

vertex a has its own parameter βa. In other word, 535

we shall describe a Markov chain Pind that moves 536

from σ to σa with probability depending on 537

exp(−βa∆Ha(σ)), 538

where βa ≥ 0 is a individual (possibly distinct) 539

parameter for each a ∈ V . More precisely, the 540

probability that the new chain moves from σ to 541

σa is defined as 542

Pind(σ, σa) = 1
|V |

(1 ∧ exp(−βa∆Ha(σ))) . 543

The probability that the chain stays at the same 544

configuration is 545

Pind(σ, σ) = 1−
∑
a∈V

Pind(σ, σa). 546
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Hence, all the configurations σ′ that differ from547

σ in at least two vertices are not reachable from548

σ. That is to say, Pind(σ, σ′) = 0 if and only if549

σ′ 6= σa for any a ∈ V .550

Definition 1 (Ising measure with individual tem-551

peratures). Let G = (V,E) be a finite, connected552

graph and (βu : u ∈ V ) a collection of non-negative553

real numbers. The probability measure µind on554

X = {+1,−1}V is defined by555

µind(σ) = 1
Zind

exp
( ∑
u,v∈V
u∼v

βuσuσv

)
556

where Zind =
∑
σ∈X µind(σ) is a normalizing con-557

stant.558

Remark 1. We can think of µind as an heteroge-559

nous Ising model as opposed to the homogeneous560

version µ defined in Section A.1 by561

µ(σ) = 1
Z

exp
(
β
∑
u,v∈V
u∼v

σuσv

)
.562

Remark 2. It is cleat that the probability mea-563

sure µ is a stationary measure of the Markov chain564

defined by the transition matrix Pind just in case565

we have βa = β for all a ∈ V . In other words,566

µind = µ if and only if the individual parame-567

ters βa in the definition of Pind are all equal to568

the single parameter β of the homogeneous Ising569

model.570

Proposition 2. The probability measure µind is571

the stationary measure of the Markov chain defined572

by the transition matrix Pind.573

Proof. In order to satisfy the detailed balanced574

equations575

µind(σ)Pind(σ, σa) = µind(σa)Pind(σa, σ)576

we must have

µind(σ) (1 ∧ exp(−βa∆Ha(σ)))
= µind(σa) (1 ∧ exp(βa∆Ha(σ)))

for all σ and σa, because577

∆Ha(σa) = H(σ)−H(σa) = −∆Ha(σ).578

Now, if ∆Ha(σ) ≥ 0 then βa∆Ha(σ) ≥ 0, and 579

hence exp(βa∆Ha(σ)) ≥ 1, so 580

µind(σ) exp(−βa∆Ha(σ)) = µind(σa). 581

Otherwise, if ∆Ha(σ) < 0 then −βa∆Ha(σ) ≥ 0, 582

and so exp(−βa∆Ha(σ)) ≥ 1, hence 583

µind(σ) = µind(σa) exp(βa∆Ha(σ)). 584

In both cases, we arrive at the conclusion that in 585

order for µind to be the stationary measure of the 586

chain defined by Pind, we must have 587

µind(σ)
µind(σa) = exp(βa∆Ha(σ)) [6] 588

for every σ ∈ X and a ∈ V . 589

Now we proceed to prove that equation Eq. (6) 590

holds. After cancellation of 1/Zind and using prop- 591

erties of the exponential function, it suffices to 592

check 593∑
u,v∈V
u∼v

βuσuσv −
∑
u,v∈V
u∼v

βuσ
a
uσ

a
v = βa∆Ha(σ) 594

By inspection,∑
u,v∈V

u∼v

βuσuσv −
∑

u,v∈V
u∼v

βuσ
a
uσ

a
v

=
∑
u,v∈V
u∼v

(βuσuσv − βuσauσav )

= 2βaσa
∑
v∈V
a∼v

σv

= βa∆Ha(σ).

Therefore, the probability measure µind and the 595

transition matrix Pind satisfy the detailed balance 596

equations and the result follows. 597

B. Random Boolean networks. 598

B.1. Homogeneous random Boolean networks. Let 599

D = (V,A) be a directed graph. We identify 600

the nodes of D with the genes in a gene regulatory 601

network. Suppose D is a k-in regular directed 602

graph. Figure 2A is an example of a 2-in regular 603

digraph with 7 nodes, i.e. N = 7,K = 2. 604

A family (fa)a∈V of functions fa : {0, 1}k −→ 605

{0, 1} is called a Boolean network on D. Figure 2B 606

is an example of a Boolean network on a graph with 607
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7 nodes, and with the parameter of “connectivity”608

k equal to 2. A Boolean network is called random609

if the assignment a 7→ fa is made at random by610

sampling independently and uniformly from the set611

of all the 22k Boolean functions with k inputs. A612

function σ : V −→ {0, 1}, a 7→ σa, is called a state613

of the random Boolean network on D. The value614

σa is called the state of a. The updating function615

F (σ) of a state σ is the function F (σ) : V −→616

{0, 1}, a 7→ σ′a, defined as617

σ′a = fa(σa1 , . . . , σak
).618

For every σ, we have a sequence of states619

σ, σ′, σ′′, . . . such that each state is the updat-620

ing function of the previous state in the sequence:621

σ′ = F (σ), σ′′ = F (σ′), and so on. The sequence622

of states σa, σ′a, σ′′a , . . . is called the time series of623

a.624

B.2. Heterogeneous random Boolean networks. The625

description given in B.1 corresponds to the case626

where the structure and the updating scheme of627

the random Boolean network are homogeneous.628

Here we describe the two versions of heteroge-629

neous random Boolean networks that were used in630

the simulations. The first of these heterogeneous631

descriptions is structural, while the second gives632

rise to some sort of asynchronous dynamics.633

The definition of Boolean network above makes634

the assumption that every node in the directed635

graph has the same in-degree. Now we consider636

Boolean networks over arbitrary (not necessarily k-637

in regular, directed) graphs. A generalized Boolean638

network on a directed graph D consists of a family639

(fa)a∈V of functions fa : {0, 1}k−
a −→ {0, 1} with640

k−a ≥ 1 the in-degree a. Thus a heterogeneous641

random Boolean network is a generalized Boolean642

network chosen uniformly at random.643

For talking about temporal heterogeneity we644

need to introduce asynchronous updating schemes645

(45). The heterogeneous updating function of a646

state σ of a random heterogeneous Boolean net-647

work on D is the function F̃ (σ) : V ×N −→ {0, 1},648

defined by649

(a, t) 7→
{
σ′a if t is a multiple of k+

a

σa otherwise
650

where t is called the discrete time-step, and k+
a is651

the out-degree of a: there are nodes a1, . . . , ak+
a

652

all distinct, such that aaj ∈ E for j = 1, . . . , k+
a .653

C. Linear functions. Here we observe that for lin- 654

ear functions, there is no difference between ho- 655

mogeneity and heterogeneity. Indeed a function 656

f : Rd −→ R with d ≥ 1, is called linear if for all 657

x, y ∈ Rd and all a, b ∈ R, we have 658

f(ax+ by) = af(x) + bf(y). 659

For x1, . . . , xn ∈ Rd, n ≥ 1, it can be shown, by 660

induction on the number of points n, that 661

f

(
1
n

n∑
i=1

xi

)
= 1
n

n∑
i=1

f(xi). 662

Thus, in the context of linear functions, average 663

value (heterogeneity) is the same as value of the 664

average (homogeneity). 665
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Fig. 1. (A) Two-dimensional Ising model displayed on a square lattice. The graph may be wrapped into a torus, highlighting periodic boundary conditions.
(B) The correlation function is relatively lower at low and high temperatures than at the critical temperature where the correlation function is maximum.
(C) Correlation as a function of complexity in two-dimensional Ising model illustrates that complexity is a good proxy for criticality. (D) Average complexity
with error bars of the Ising model for different temperatures, considering homogeneous (blue), heterogeneous with Poisson distributed (orange), and
heterogeneous with exponentially distributed (gray) temperatures. The black dotted vertical line represents the theoretical phase transition at T ≈ 2.27
(in practice smaller due to finite size effects).
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Fig. 2. (A) Example of a k-in regular directed graph with set of nodes V = {1, 2, . . . , 7} (N = 7) and K = 2. (B) Truth table of the functions
comprising a Boolean network with 7 nodes and K = 2. (C) Example of three regimes of CRBN and their measures of complexity using 40 nodes
(N = 40) with 100 steps each. (time flows downwards) For K = 1, C = 0.0558. For K = 2, C = 0.9951. For K = 5, C = 0.4714. (D)
Average complexity of RBNs as the average connectivityK is increased. Combinations of “homogeneous” structure (Poisson), heterogeneous structure
(Exponential), homogeneous temporality (CRBN), and heterogeneous temporality (DGARBN). ∆K = 0.2, N=100, with 1000 iterations for each K.
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Fig. 3. A. Average complexity C for collections of strings with average
probability of ones p1, in homogeneous (blue circles) and heterogeneous
(red triangles) cases. The latter yields higher average complexity in the
central region, where the homogeneous complexity is low. B. Illustration
of Jensen’s inequality. The function of the averages f(|x|) of a variable
with a distribution with average |x| is lower than the average of the func-
tions |f(x)| for concave functions. The opposite is the case for convex
functions.
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