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Abstract: Micro turbojets are used for propelling radio-controlled aircraft, aerial targets and personal
air vehicles. When compared to full-scale engines, they are characterized by relatively low efficiency
and durability. In this context, the degraded performance of gas path components could lead to
an unacceptable reduction in the overall engine performance. In this work, a data-driven model
based on a conventional Artificial Neural Network (ANN) and an extreme learning machine (ELM)
was used for estimating the performance degradation of the micro turbojet. The training datasets
containing the performance data of the engine with degraded components were generated using
the validated GSP model and the Monte Carlo approach. In particular, compressor and turbine
performance degradation were simulated for three different flight regimes. It was confirmed that
component degradation had a similar impact in flight than at sea level. Finally, the datasets were
used in the training and testing process of the ELM algorithm with four different input vectors. Two
vectors had an extensive number of virtual sensors, and the other two were reduced to just fuel flow
and Exhaust Gas Temperature. Even with the small number of sensors, the high prediction accuracy
of ELM was maintained for takeoff and cruise but was slightly worse for variable flight conditions.

Keywords: ELM; ANN; compressor; turbine; degradation; microturbine; engine health management

1. Introduction

In operation, engine components face {various physical problems such as blade dam-
age, fouling, erosion, corrosion, excessive tip clearance, combustor damage, worn seals and
many others. The performance of the engine will deteriorate and this performance loss
depends on the type and severity of the deterioration and the components that are affected.
Component degradation means a decrease in its efficiency {and flow rate, which leads to an
increase in fuel consumption and exhaust gas temperature (EGT). Generally, a deteriorated
engine provides less thrust for a certain amount of fuel or needs more fuel to produce the
required thrust. For the user, predicting Remaining Useful Life (RUL) is most important
because it makes it possible to plan maintenance in advance and take informed go/no do
decisions. The main factors that prevent the continued operation of the engine are the loss
of the surge margin of the compressor [1] and the exceeding of the maximum operating
temperature of the turbine i.e. loss of the temperature margin. [2].

{Physics-based models are used to effectively control a complex non-linear system,
such as a gas turbine and monitor its performance [3]. A reliable model is necessary to
simulate engine operation under off-design and degraded conditions and to predict the
loss in performance of engine components. There are many solutions to this problem
for full scale engines [4,5]. An integrated platform for engine performance analysis and
degradation diagnostics was demonstrated in our earlier project [6,7]. Ellis et al. modeled
the deposition of ingested particles on turbine nozzle guide vanes to predict high-pressure
turbine degradation using Monte Carlo simulations and a zero-dimensional turbofan model
[8]. However, component degradation is less studied for microturbines, which are used
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more and more, both in distributed energy systems [9,10] and in Unmanned Aerial Vehicles
(UAV) [11,12].

Microturbines, small turbojets or turboprops are manufactured in a wide range of
classes [13,14]. They are often operated outside regular airports or power stations and are
thus prone to ingesting environmental particles. In such conditions, their compressor and
turbine may rapidly degrade, so it is essential to monitor and predict performance degra-
dation [15,16]. Coupling sensor data with model predictions facilitates engine parameters
monitoring for fault diagnosis and managing component deterioration [17,18].

Performance parameter (PP) is any operating variable of the engine depending on the
physical condition of its components, which affects the engine output (thrust or power) and
fuel consumption [19]. Engine parameters under off-design and degraded conditions could
be estimated or predicted by machine learning techniques. Among various approaches,
Artificial Neural Networks (ANNs) are widely used for diagnostic purposes nowadays due
to their ability to recognize the complex relations between different physical parameters
with high accuracy. This characteristic is used in engine health monitoring systems (EHM)
to predict the values of the non-measurable performance parameters used as health status
of the monitored components or overall engine. The prediction is based on the values of
some other measurable parameters such as shaft speed, fuel flow, torque, temperature
and pressure in various engine stations, acquired by sensors installed throughout the
powertrain.

Different types of ANN-based techniques are used for fault detection in aircraft engine
purposes [4,20,21]. Recently, many efforts were dedicated to the Extreme Learning Machine
(ELM) [22,23], which turns out to be more efficient than the classical feed-forward neural
network but is still less widespread. Zhao et al. confirmed better performance provided by
Soft Extreme Learning Machine (SELM) and Improved SELM (ISELM) [24]. To improve
numerical stability, a regularization term is often used in ELM diagnostic systems [25–27].
Liu et al. introduced the optimized ELM based on restricted Boltzmann machine [28] to
predict the EGT trend in Auxiliary Power Unit (APU) with the improved stability of ELM
solutions when some input parameters are correlated. Bai et al. applied a long-short term
memory (LSTM) network for fault detection of three-shaft marine gas turbine [29]. Online
sequential extreme learning machines (OS-ELM) are used for data-driven engine modeling
[30–32]. These studies underlined the suitability of Artificial Intelligence tools to predict
engine performance with high accuracy but still few works deal with the implementation
of such models for micro and small gas-turbine engines.

Traditional engine models base on the thermodynamic description of the gas turbine,
so they are called white-box or physics-based. Such a model of a micro turbojet [33] was
recently developed and fine-tuned in GSP (Gas turbine Simulation Program) [34,35], and
validated with experimental flight data. This model was reused here for generating training
data for an artificial neural network, for a planned engine health management system.

In this work, steady-state simulations were performed using the model in the presence
of different degradation severity conditions for the turbine and compressor components.
The datasets were obtained using a Monte Carlo approach to generate the different op-
erating conditions {for engine performance simulation. Then the data predicted by the
aeroengine model were used as input of the ELM neural network to predict the degradation
level of the compressor and turbine in several engine operating conditions, on the ground
and in flight.

2. Materials and Methods
2.1. Micro Turbojet

The engine studied in this work is JetCat P140 Rxi-B (Table 1), propelling a prototype
aerial target. This engine is also used in radio-controlled (RC) models and some Personal
Aircraft Vehicles (PAV). It is a micro turbojet, controlled by the Electronic Control Unit
(ECU), with a radial compressor, axial turbine, electrical starter and fuel pump [36]. The
main shaft is supported on two high-speed ceramic ball bearings, lubricated with a blend of
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fuel and oil in an open system. They have a short life, so the recommended service interval
of the engine is only 25-50 flight hours.

Table 1. Jetcat P140 Rxi-B engine specifications [36]

Parameter Specification

Overall Pressure Ratio 3.4
Air flow rate 0.35 kg/s
Maximum EGT 749 C
Mass Flow 0.34 kg/s
Maximum Thrust 142 N
Design Speed 125 kRPM
Fuel consumption 7.33 g/s

The propelled aerial target is used for training air defense. This twin-engine aircraft
imitates enemy fighters by offering similar flight parameters, radar cross-section and
thermal signature [37]. {The drone is a prototype, recently introduced into service, so the
number of used engines and the availability of fleet-wise data is limited. This aircraft takes
off from a catapult and lands on a parachute, so its engines are less exposed to gas-path
contamination than those of RC aircraft which often operate from unmaintained runways.
However, in high maneuver missions, rotor-stator contacts are possible which can lead to
increased tip clearance and reduced efficiency.

The engine model was developed in GSP, which is an object-oriented 0D simulation
environment where the mean flow properties are calculated only at the inlet and the
output of the components while the field inside them is not parsed. GSP deployed and
incorporated a set of nonlinear differential equations describing the thermodynamic cycle
and rotor dynamics.

The adopted structure of the engine model (Figure 1) follows the standard turbo-
jet template. To precisely model the engine behavior, we set the design parameters of
components, such as the maximum speed, pressure ratio, mass flow rate, fuel flow rate,
efficiencies, and so forth. The model was used to simulate the design point, steady states at
various engine speeds and transient operation, at sea level and in flight conditions [33]. The
engine model was validated with data gathered from bench tests and the flight missions of
the twin-engine aerial target. {Residual errors after GSP model tuning with real flight data
were below 3%.

The degradation was simulated by changing the corresponding health parameters of
the components, given by the efficiency and the flow coefficient for the compressor and the
turbine. { These parameters were chosen because they are affected by component faults
such as fouling and erosion. The corresponding degradation coefficients were declared in
GSP in per cents and served as the correction factors for component maps.

{The actual component degradation rate depends on aircraft missions and the envi-
ronment in which it is operated. In civil aircraft degradation is kept low (1–3%) to avoid
increased fuel consumption but it can grow to a higher number in the case of volcano ash
encounter. In military helicopters operated in desert environment, increased component
degradation as high as 10% and short wing life are common. However, there is no reliable
degradation data for micro turbojets. They are known for generally low efficiency and
high manufacturing tolerance. In terms of component degradation, they are similar to
small helicopter engines. In such high speed systems, most of physical faults have a higher
impact than in a full-scale turbojet.

The assumed degradation levels of components were defined in the GSP Monte Carlo
input controller. GSP implements a random generator with inverse normal distribution to
calculate input parameters for the simulation based on the given mean value and standard
deviation [35]. {Their values were selected to cover the possible variation of efficiency and
flow. With the mean value equal -6% and standard deviation of 2%, the generated points
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well covered the three-sigma range, from -12% to 0%. A multi-component degradation was
simulated here, because four degradation factors (two for the compressor and two for the
turbine) where randomized at the same time. For this input data, GSP produced engine
model outputs for defined degradation levels, appropriate for training neural networks.
The expected variability of the chosen performance parameters needed a huge amount
of simulated data to completely cover this multidimensional space by the AI regression
model. It was practically impossible to obtain similar datasets from real flights.

Figure 1. Turbojet model in GSP.

2.2. Prediction of Component Degradation

In this study, component deterioration is considered for the single-stage radial com-
pressor and axial turbine. Their deterioration is quantified by the difference between
the actual component condition parameters and their baseline. From a thermodynamic
perspective, the condition of gas path components is described by isentropic efficiency η
and mass flow W. Even if the degradation of the microturbine causes significant variation
in component flow and efficiency, these parameters cannot be directly measured and so
used to identify the engine health condition. However, some parameters measured by the
sensors installed in the engine, such as temperature, pressure, rotational speed etc., will be
affected by component degradation and can be used for predicting the engine health status.
{Thus, these engine operating parameters are processed by ML models to solve the inverse
problem of calculating the efficiency and mass flow of degraded components. .

Figure 2 describes the methodology adopted in this work. The degradation prediction
procedure includes the following steps :

1. The rig and flight data acquired from a real micro turbojet were used to validate the
GSP model [33]. The validated model was subsequently used to simulate selected
operating conditions in order to obtain the values of the virtual engine sensors,
necessary to train and test the predictive techniques. The simulated parameters are
listed in Table 2.

2. Three simulated flight regimes: 1) Takeoff, 2) Cruise and 3) Air mission were defined
by different Mach (M) and altitude (Zp) values (Table 3). Additionally, M and Zp
were randomly distributed in flight regime 3. For each operating regime, the data
generated by GSP embrace 500 operating points, {400 for training and {100 for testing.
{Training and testing data were randomly selected from the same dataset.

3. Both clean and degraded conditions of the compressor and the turbine were simulated.
Two degraded performance parameters i.e. efficiency and mass flow were {altered
for two components: the compressor and turbine. Each of the four performance
parameters was assigned random values to simulate the different levels of degradation
severity using the GSP Monte Carlo input controller by selecting the mean value (-{6%)
and standard deviation (2%). {In further analysis, the absolute values of efficiency
and corrected flow were used instead of degradation factors in per cents to avoid
ambiguity.

4. From the virtual sensors, four input vectors for training AI models were selected,
as reported in Table 4. Input vector 1 consists of nine virtual sensors used for flight
regimes 1 and 2 excluding speed and ambient conditions which are constant. Input
vector 2, used for flight regime 3, has a complete set of twelve parameters. Input
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vector 3, used for flight regimes 1 and 2, has only two parameters that correspond to
the real sensors installed on the microturbine: W f and EGT. Input vector 4 used for
flight regime 3 includes M, TT1, PT1, W f and EGT.

5. The datasets generated by the GSP were used for training and testing ANN and ELM
models to validate their accuracy in predicting the efficiency η and mass flow W { of
both components. There were thus four outputs in each network and the prediction
models were able to find which component is degraded and to what extent. On this
basis, the operator can classify engine health to certain damage class.

6. The comparison between ANN and ELM was performed {on the same datasets, with
input vectors 1 and 2. After that, the reduced input vectors 3 and 4 were used to verify
the ELM prediction accuracy for all the degraded flight regimes.

(a)

(b) (c)

Figure 2. Methodology for component degradation prediction: hl(a) general data flow, (b) clean and
degraded engine simulation, (c) training and testing ANN/ELM models for several scenarios
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Table 2. Virtual sensors: simulated engine parameters

Symbol Parameter

TT1 ambient total temperature
PT1 ambient total pressure
M Mach number
W f fuel flow
PToutC compressor outlet total pressure
TToutC compressor outlet temperature
PTinT turbine inlet total pressure
TTinT turbine inlet temperature
PToutT turbine outlet total pressure
TToutT turbine outlet temperature
PTN nozzle outlet total pressure
TTN nozzle outlet total temperature
EGT exhaust gas temperature

Table 3. Ambient conditions and nondegraded component performance in simulated flight regimes

Flight regime Altitude Air Speed
Compressor

efficiency
Compressor
mass flow

Turbine
efficiency

Turbine
mass flow

Zp [m] M ηc Wc [kg/s] ηt Wt [kg/s]

1 Takeoff 0 0 0.740 0.350 0.750 0.359
2 Cruise 3000 0.3 0.738 0.277 0.748 0.284
3 Air mission 3000± 700 0.2± 0.05 0.735-0.740 0.209-0.350 0.747-0.750 0.212-0.359

Degradation (mean ± std deviation) -{6±2 % -{6±2 % -{6±2 % -{6±2 %

Table 4. Input vectors for ML models

Input Vector Parameters Flight ML model
Vector length regime

1 9 W f , PToutC, TToutC, PTinT , TTinT , PToutT , TToutT , PTN , TTN 1,2 ANN/ELM
2 12 M, TT1,PT1,W f , PToutC, TToutC, PTinT , TTinT , PToutT , TToutT , PTN , TTN 3 ANN/ELM
3 2 W f , EGT 1,2 ELM
4 5 M, TT1, PT1, W f , EGT 3 ELM

2.3. Machine Learning Techniques

Due to their performance and versatility, machine learning methods are more and
more widespread, for different purposes. In our earlier project, Nonlinear AutoRegressive
with eXogenous inputs (NARX) neural networks (adequate for time-series data) were
used to predict the Exhaust Gas Temperature (EGT) with a one-step-ahead approach [38].
Results show a percentage error which almost always remains below 10% in absolute value.
The EGT values were obtained by adopting another artificial intelligence technique, i.e.
multigene genetic programming. NARX was also used to estimate specific fuel consump-
tion during transient regimes [39]. More in detail, the developed system was composed
of two different ANNs, the first one used to predict some engine parameters based on
flight data and the second to predict the specific fuel consumption based on the parameters
predicted from the first ANN and flight data. Results show good performance both in
healthy and degraded conditions.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2022                   doi:10.20944/preprints202208.0054.v2

https://doi.org/10.20944/preprints202208.0054.v2


7 of 21

We also applied separately ANN and Support Vector (SVM)-based tools to the case
of a single-spool turbojet for analyzing compressor and turbine degradation [6]. The
results show very good performance, in particular ANN gives better results in performance
prediction, while SVM leads in engine health status prediction. Recently, we applied Feed-
Forward Neural Networks (FFNNs) and Kernel Principal Component Analysis (KPCA) to
estimate degraded performance of PW200 turboshaft [40].

Here, we focus on modeling JetCat turbojet performance and predicting its component
degradation with AI-based regression algorithms, such as ANN and ELM. Unlike some
other methods, only the current level of degradation is predicted, without taking into
account past or future trends. This approach is well suited for micro turbojets, which have
a short wing life and thus produce too little data to analyze their wear in a wider time
perspective.

2.3.1. ANN-based regression

ANNs are machine learning-based tools that implement a virtual version of the human
nervous system and of its capacity to learn from experience. A typical ANN is formed by
neurons, in turn arranged in layers. Information fed in an ANN pass through the input
layer, one or more hidden layers, to the output layer. Each neuron in a layer has its own
weight and is linked with the neurons of the adjacent layers by means of connections. Input,
hidden and output layers are formed by the so-called input, hidden and output neurons
respectively. The number of input and output nodes are equal to the number of features
given in input and to the number of variables to be predicted respectively. The number of
hidden layers and neurons is chosen arbitrarily and it directly affect the ANN performance.
Figure 3 reports a typical architecture of an ANN type used in this work.

Figure 3. Structure of ANN with one hidden layer.

Each neuron located in hidden and output layers work by performing a weighted sum
of the information received from the previous neurons and adding a bias. This process is
described by the following equation:

z =
n

∑
i=1

Wi Ii + b (1)

where z represents the calculation result, Wi is the weight of the link between the neuron
in question and the i-th neuron from which it receives information, Ii is the information
received by the i-th neuron, n is the number of previous neurons that send information to
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the neuron in question and b is the bias. The neuron output is finally subject to an activation
function, in order to normalize it. Weights and biases are computed in the training phase.
During the training process, the ANN is informed with a series of example cases, including
both the input features and the corresponding variables to be predicted. This serves to
lead the ANN to calculate the proper weights and biases in order to obtain a small error
between predictions and target values.

2.3.2. ELM-based Regression

Extreme Learning Machine (ELM), introduced by Huang [22], is one of the most
modern AI-based machine learning approaches. It has the single-layer feed-ahead neural
network (SLFN) architecture in which the weights of hidden layers are randomly set while
the output ones are analytically determined via linear algebra operations. ELM was firstly
implemented for the single hidden layer feed-forward neural networks and then was
extended to the generalized SLFNs wherein the hidden layer no longer has to be neuron
alike.

Unlike the traditional FFNN models, the hidden layer does not need to be tuned in
ELM. The output characteristic of ELM for generalized SLFNs (for one output node case as
an example) is

fL(x) =
L

∑
i=1

βihi(x) = h(x)β (2)

in which x is the input vector, β = [β1, ..., βL]
T is the vector of the output weights in the

hidden layer of L nodes, and h(x) = [h1(x), ..., hL(x)] is the hidden layer output mapping .
h(x) virtually maps the records from the d-dimensional center area to the L-dimensional
hidden-layer characteristic area H, and thus, h(x) is certainly a characteristic mapping.

According to Bartlett‘s theory, the smaller the norms of weights are, the higher general-
ization performance feedforward neural networks tend to have. We assume that this could
be true for the generalized SLFNs in which the hidden layer is not neuron-like. Unlike
conventional learning algorithms, ELM tends to attain not only the smallest training error
but also the smallest norm of output weights. We minimize ||Hβ− T ||2 and ||β|| where T
is the target output and H is the hidden-layer output matrix:

H =

 h(x1)
...

h(xN)

 =

 h1(x1) ... hL(x1)
...

...
...

h1(xN) ... hL(xN)

 (3)

The minimum norm least-square technique, as opposed to the traditional iterative opti-
mization, is used in the implementation of ELM. The output weights can be obtained by
the following formula:

β = H†T (4)

in which H† is the Moore–Penrose generalized inverse of a matrix H. Various techniques
may be used to calculate the Moore–Penrose generalized inverse of a matrix such as
orthogonal projection, orthogonalization, iterative approach, or singular value decom-
position (SVD). The orthogonal projection may be utilized if HT H is nonsingular and
H† = (HT H)−1HT , or HHT is nonsingular and H† = HT(HHT)−1.

In this work, the implemented ELM model consists of three layers: the input layer
(input vector 1/2/3), the hidden layers (neurons) and the output layer (ηC and dWC, or ηT
and dWT , Figure 4).

The ELM network was implemented in three steps:

1. Randomly initialize the weights and thresholds of the ELM network and set the
activation function.

2. Calculate the hidden layer output matrix H and its generalized inverse H†.
3. Calculate the output vector.
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Figure 4. Structure of the ELM network.

3. Results and Discussion
3.1. Engine performance simulations

The aeroengine performance under different degradation conditions was simulated in
GSP. Figure 5 shows the impact of compressor or turbine efficiency on the thrust (F) and
the Thrust Specific Fuel Consumption (TSFC) both at sea level (Flight regime 1) and cruise
(Flight regime 2) for different degradation levels. Only for this figure, separate datasets
for each component with the same distribution were generated to analyze the impact of
single-component efficiency. In subfigures a, c and e compressor is degraded and turbine is
clean and vice versa in b, d and e. The performance trend is the same for both components.
An increase in efficiency leads to a rise in F and a decrease in TSFC. The variation of the
microturbine performance due to the degradation of the components is similar at M=0.3
and at sea level. Turbine efficiency has a slightly higher impact on TSFC than compressor
efficiency.
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Figure 5. Thrust and TSFC vs compressor or turbine efficiency ηc at sea level (flight regime 1) and
cruise conditions (flight regime 2) for different degradation levels.

Figure 6 shows the distribution of altitude operating conditions, Mach number and
component degradation factors in flight regime 3, generated by the GSP Monte-Carlo
component for training neural networks. The operating points are independent and stored
in a random order, so they do not form a trend or time series. Figure 7 illustrates engine
performance calculated by GSP for these random points. The values are scattered due to
component degradation and variable flight conditions in flight regime 3.
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Figure 6. Flight regime 3: histograms of ambient temperature and pressure, airspeed and degradation
factors, generated by the Monte-Carlo method.
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Figure 7. Specific thrust vs fuel flow for three flight regimes and varying degradation in both
components.

3.2. ANN and ELM predictions with Input vectors 1 and 2

In this section, the predicted performance parameters of the two components is com-
pared with the target virtual sensors data. The relative error is shown to evaluate the
prediction accuracy.
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Firstly, the condition at sea level was investigated for both compressor and turbine
degradation (Flight regime 1). Figures 8 and 9 show the results of ANN and ELM predic-
tions for test data in the case of compressor and turbine degradation respectively. Target
and predicted results are compared in subplot a and c while the percentage prediction
errors are presented in b and d. The curves for target and predicted data overlay almost
exactly. The error is very low (below 0.1%), so the target, which is plotted first, is usually
covered completely by ELM and ANN data series.

Figures 10 and 11 show the results of ANN and ELM predictions in flight regime
2 (M=0.3, Zp=3000 m), that is the cruise operating condition for the compressor and the
turbine. Good prediction performances are still evident because both ANN and ELM show
low percentage errors.

0 20 40 60 80 100
Points

0.65

0.7

0.75

2
c

Target
ELM
ANN

0 20 40 60 80 100
Points

-0.02

-0.01

0

0.01

0.02

%
 e

rr
or

 2
c

ELM
ANN

(a) (b)

0 20 40 60 80 100
Points

0.28

0.3

0.32

0.34

W
c [

kg
/s

]

Target
ELM
ANN

0 20 40 60 80 100
Points

-0.04

-0.02

0

0.02

0.04
%

 e
rr

or
 W

c
ELM
ANN

(c) (d)

Figure 8. Compressor degradation in Flight regime 1 with Input vector 1: comparison between the
target and prediction of the component performance parameters
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Figure 9. Turbine degradation in Flight regime 1 with Input vector 1: comparison between the target
and prediction of the component performance parameters
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Figure 10. Compressor degradation in Flight regime 2 with Input vector 1: comparison between the
target and prediction of the component performance parameters
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Figure 11. Turbine degradation in Flight regime 2 with Input vector 1: comparison between the target
and prediction of the component performance parameters

Finally, the last scenario analyzed with an extensive input vector (Input vector 2) was
the dataset with various Mach and altitude (flight regime 3). Figures 12 and 13 show the
results of ANN and ELM predictions. The are still remarkable, despite variable flight
conditions.
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Figure 12. Compressor degradation in Flight regime 3 with Input vector 2: comparison between the
target and prediction of the component performance parameters
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Figure 13. Turbine degradation in Flight regime 3 with Input vector 2: comparison between the target
and prediction of the component performance parameters

3.3. ELM prediction with a reduced number of virtual sensors (Input vectors 3 and 4)

It is well known that feature selection i.e. choosing input parameters has a significant
impact on the prediction accuracy of neural networks [40,41]. In this section, the prediction
results obtained by ELM with a reduced dataset are reported. The chosen input variables
correspond to the sensors that are installed on the real micro turbojet, i.e. exhaust gas
temperature (EGT) and fuel flow rate. Fortunately, the performance deterioration of the
aircraft engine mainly affects these two parameters, so they are strongly related to the
efficiencies and flow capacities of the compressor and turbine.

Figures 14 and 15 show the error in the prediction of the components’ performances
under different flight regimes. Reducing the number of input variables decreases the
accuracy of ELM with respect to the case with many sensors. The error in the prediction of
the mass flow for fixed Mach number (Flight regime 1 and 2) is negligible. The prediction
is slightly worse for the flight regime 3 with some peaks of error around 6% in the case of
mass flow. These peaks are due to the unbalanced distribution of samples in the training
set, given by the Monte Carlo, which can hinder the performance of ELM severely.

In ideal training sets, samples of different ranges of the target generally obey uniform
distribution, but in Monte Carlo as well as in real flight data, the number of samples of
some classes of target parameters may be several times higher than that of other classes.
Consequently, ELM cannot effectively learn from minority classes and the trained network
often predicts majority class samples more accurately than minorities. This is more critical
than reducing the number of input variables.
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Figure 14. ELM error of compressor degradation prediction with input vector 3 or 4.
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Figure 15. ELM error of turbine degradation prediction with input vector 3 or 4.

In our earlier publications [6,40], we introduced a component degradation class rang-
ing from 1 to 7, which combines reduced efficiency and mass flow in a single number. In
this way, the predicted performance parameters will be used to classify the health status of
the components and to make informed go/no-go decisions.

3.4. Overall accuracy metrics

The goodness of fit was evaluated in several ways to compare the results obtained
from the sensitivity analysis and as a measure of the network’s prediction quality. In
particular, the following metrics were used:

• Normalized root mean squared error (NRMSE)
• Coefficient of determination (CoD)
• Maximum relative absolute error (MaxRAE)

The NMSE is used to measure the average squared difference between the estimated
values and the actual:

NMSE =
1
s

s

∑
i=1

Ei
2 (5)

where
Ei =

ŷi − yi
std(y)

(6)

where ŷi represents the prediction of a parameter, yi – its actual value, s is the number of
observations and std(y) – the standard deviation of the actual values. Normalizing the
mean squared error facilitates the comparison between datasets or models with different
scales. Normalization was done by the variance of ŷi.

Coefficient of Determination (CoD) is a measure of the goodness of fit of a model and
can reach one for the perfect fit:

CoD = 1− ∑s
i=1 (yi − ŷi)

2

∑s
i=1 (yi − ỹi)

2 (7)
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Relative Absolute Error (RAE) can range from zero to one. The maximum RAE should
be close to zero for a good model:

MaxRAE =
s

max
i=1

|ŷi − yi|
yi

(8)

Table 5 shows that the implemented prediction methods give good results in all of the
degradation scenarios, as confirmed by high CoD values. At each set of conditions, the
prediction of the degradation level in the compressor and turbine has similar accuracy.

Table 5 confirms that the use of extensive input variables leads to high prediction
accuracy with slightly worse performance in the case of off design conditions (flight regime
3). However, the use of few sensors in this flight regime reduces prediction performance
significantly, with MaxRAE reaching 0.089 for turbine efficiency (Table 6).

Table 5. Metrics for Input Vectors 1 and 2 ELM and ANN

ANN ELM
NMSE CoD MaxRAE NMSE CoD MaxRAE

Degradation of Compressor – Flight Regime 1

ηc Train 2.20E-06 0.999998 1.30E-04 1.13E-08 0.99999999 3.88E-06
Wc Train 8.29E-06 0.999992 3.21E-04 1.68E-06 0.99999832 1.05E-04
ηc Test 4.71E-06 0.999995 1.62E-04 1.91E-08 0.99999998 1.70E-07
Wc Test 9.33E-06 0.999991 3.28E-04 2.15E-06 0.99999783 8.29E-05

Degradation of Compressor – Flight Regime 2

ηc Train 1.41E-05 0.999986 4.52E-04 6.44E-03 0.99264601 3.86E-03
Wc Train 4.39E-05 0.999956 8.18E-04 1.72E-03 0.99832588 5.33E-04
ηc Test 1.92E+00 0.911250 9.45E-02 6.07E-03 0.99291352 3.41E-03
Wc Test 1.77E+00 0.901034 1.03E-01 3.97E-03 0.99614528 4.91E-04

Degradation of Compressor – Flight Regime 3

ηc Train 7.80E-05 0.999922 7.64E-04 2.65E-05 0.99997340 4.78E-06
Wc Train 1.17E-05 0.999988 9.39E-04 2.85E-06 0.99999714 6.13E-04
ηc Test 9.35E-05 0.999906 6.76E-04 2.70E-05 0.99997265 -6.78E-06
Wc Test 1.27E-05 0.999987 2.20E-03 5.85E-06 0.99999409 3.13E-04

Degradation of Turbine – Flight Regime 1

ηt Train 6.02E-06 0.999994 2.47E-04 2.36E-07 0.9999998 8.32E-05
Wt Train 5.46E-05 0.999945 1.10E-03 3.90E-05 0.9999609 7.57E-04
ηt Test 8.10E-06 0.999992 2.02E-04 2.69E-07 0.9999997 2.70E-05
Wt Test 7.47E-05 0.999924 7.45E-04 8.93E-05 0.9999096 9.10E-04

Degradation of Turbine – Flight Regime 2

ηt Train 3.05E-05 0.999969 6.64E-04 7.12E-02 0.9151199 1.08E-02
Wt Train 2.78E-04 0.999721 1.36E-03 5.53E-03 0.9945780 4.43E-03
ηt Test 1.84E+00 0.923113 8.12E-02 6.62E-02 0.9222553 1.14E-02
Wt Test 1.76E+00 0.942045 9.89E-02 1.07E-02 0.9893549 3.75E-03

Degradation of turbine – Flight Regime 3

ηt Train 1.57E-04 0.999843 1.39E-03 4.88E-05 0.9999509 4.01E-04
Wt Train 8.42E-05 0.999916 3.05E-03 6.44E-05 0.9999354 1.42E-03
ηt Test 2.10E-04 0.999787 8.40E-04 1.22E-04 0.9998769 8.81E-04
Wt Test 1.26E-04 0.999873 1.91E-03 1.33E-04 0.9998660 1.51E-03
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Table 6. ELM - metrics for reduced Input Vectors 3 and 4

Compressor Turbine
NMSE CoD MaxRAE NMSE CoD MaxRAE

Flight Regime 1

η Train 0.5179 0.84124 0.0649 0.4583 0.8596 0.0642
W Train 2.2E-05 0.99998 0.0001 0.0001 0.9999 0.0008
η Test 0.6972 0.81431 0.0631 0.4569 0.8471 0.0416
W Test 2.5E-05 0.99998 0.0001 0.0001 0.9999 0.0006

Flight Regime 2

η Train 0.9838 0.81124 0.0652 0.8632 0.8376 0.0623
W Train 0.0027 0.99741 0.0025 0.0036 0.9965 0.0025
η Test 0.9074 0.80324 0.0733 0.9924 0.8271 0.0449
W Test 0.0043 0.99600 0.0018 0.0060 0.9944 0.0022

Flight Regime 3

η Train 1.5017 0.80201 0.0964 1.3536 0.8040 0.0739
W Train 0.0556 0.94047 0.0487 0.0535 0.9428 0.0477
η Test 1.3805 0.79924 0.0770 2.0305 0.7893 0.0883
W Test 0.0640 0.92574 0.0466 0.0618 0.9285 0.0459

The analysis dealt with simulated data, so under- or overfitting related to noise was
not the case here. With the real data, to avoid these problems, preprocessing the data and
implementing a more advanced version of ELM with regularization may be necessary. ELM
is potentially more prone to overfitting but we got very similar errors in cross-validation
when we used different sections of the dataset for training and testing. Also, our experiment
with the complete and reduced input vector was designed to check if ELM has enough data
to learn component degradation to avoid underfitting.

Finally, Table 7 reports the comparison of the training time for ANN and ELM for the
three flight regimes and Input Vectors 1 and 2, which is remarkably lower for ELM.

Table 7. Mean training time (in arbitrary CPU units)

Flight regime ANN ELM

1 3.9 1.65
2 4.7 1.20
3 2.79 0.43

4. Conclusions

In this paper, ANN and ELM methods were applied to predict the efficiency and mass
flow of the compressor and turbine, which are the main components of a micro turbojet.
A digital twin of the real engine, already validated with experimental data from a test
bench and real flights, gathered in the absence of degradation, was used. The validated
model was subsequently extended to predict degraded engine performance. It was used
to generate a dataset containing engine operating parameters for different degradation
severity conditions with a Monte-Carlo technique. A significant rise in the TSFC was
observed when the components’ efficiency decreased. It was also found that component
degradation in the micro turbojet has a similar impact in a high-altitude flight and at sea
level.

The generated dataset was used to train the developed neural network with the ELM
approach. Different lengths of the input vector were analyzed: an extensive one with a
dozen of sensors and a reduced one with input variables corresponding to the real sensors
installed on the engine. Furthermore, three different flight regimes were tested.

The use of ELM to estimate component degradation is an original contribution of this
work. The analysis underlined that in presence of many input variables, ELM has good
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prediction accuracy, comparable with ANN, but with a shorter CPU time. However, the
reduced number of sensors gives satisfactory predictions for the healthy conditions but
slightly worst accuracy for the degraded cases. Mean errors are generally acceptable but
they reached 6% in some conditions in the case of off-design flight conditions, with variable
Mach and altitude.

Future work will base on the real flight data collected from several operated engines.
Besides formal arrangements, this may require preprocessing the data and implementing a
more advanced version of ELM with regularization.
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