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Abstract: A refractive lens is one of the simplest, cost-effective and easily available imaging ele-
ments. With a spatially incoherent illumination, a refractive lens can faithfully map every object 
point to an image point in the sensor plane, when the object and image distances satisfy the imaging 
conditions. However, static imaging is limited to the depth of focus, beyond which the point-to-
point mapping can be only obtained by changing either the location of the lens or the imaging sen-
sor. In this study, the depth of focus of a refractive lens in static mode has been expanded using a 
recently developed computational reconstruction method, Lucy-Richardson-Rosen algorithm 
(LRRA). The technique consists of three steps. In this first step, the point spread functions (PSFs) 
were recorded along different depths and stored in the computer as PSF library. In the next step, 
the object intensity distribution was recorded. The LRRA was then applied to deconvolve the object 
information from the recorded intensity distributions in the final step. The results of LRRA were 
compared against two well-known reconstruction methods namely Lucy-Richardson algorithm and 
non-linear reconstruction.          

Keywords: imaging; incoherent optics; Lucy-Richardson-Rosen algorithm; deblurring; refractive 
lens; computational imaging; holography; 3D imaging; deconvolution.  
 

1. Introduction 
Imaging objects using spatially incoherent light sources have many advantages such 

as higher imaging resolution and lower imaging noises such as edge ringing or speckle 
noises in comparison to coherent sources [1]. Furthermore, the use of spatially incoherent 
light sources is economical and eye safe. So, the development of incoherent imaging tech-
nologies is essential to utilize their advantages for imaging applications and as a matter 
of fact, in many cases such as astronomical imaging and fluorescence microscopy, they 
are irreplaceable [2]. While realizing a 2D incoherent imaging system is easy with a single 
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refractive lens, extending the imaging dimensionality to 3D is a challenging task without 
introducing dynamic changes to the system. Three-dimensional imaging using spatially 
incoherent sources followed two directions of development. The first direction is based 
on the principles of holography involving two beam interferences, phase-shifting, gener-
ation of a complex hologram and image reconstruction by numerical back propagation [3-
6]. This direction required extremely complicated optical architectures with numerous op-
tical components due to the constraints of low coherence lengths. Some notable architec-
tures developed in this direction are the rotational shearing interferometer [7], conoscopic 
holography [8], Fresnel incoherent correlation holography (FINCH) [9,10], Fourier inco-
herent single channel holography [11] and coded aperture correlation holography [12]. 
FINCH, which is considered as one of the simplest incoherent digital holography archi-
tectures requires an active device such as a spatial light modulator and multiple optical 
and opto-mechanical components.  

An alternative research direction of 3D imaging using incoherent light was based on 
deconvolution, utilizing the linearity conditions of incoherent imaging. This approach, 
unlike the holography method, does not require two beam interferences, vibration isola-
tion and many optical components. The first report of deconvolution-based imaging was 
reported by Dicke and Ables [13, 14]. In these studies, a random pinhole array was used 
as the only optical element between the object and the sensor. The scattered intensity dis-
tribution for an object was recorded, which was deconvolved into the object information 
using the pre-recorded point spread function (PSF). In comparison to the holography-
based 3D imaging approaches, the deconvolution-based approach is faster, simpler, eco-
nomical and compact. 

The above research directions are not free of challenges and involved many decades 
of evolution until the ideas met the technology and vice versa [1,4,15,16]. The incoherent 
holography methods waited for the development of active optical devices such as SLM 
and the idea of FINCH. The deconvolution-based methods waited for the development of 
high-performance computational algorithms and the idea to image in 3D. The deconvolu-
tion based 2D imaging was reported in 1968, while the first 3D spatial imaging was re-
ported in 2017 [17]. Most of the deconvolution -based 3D [18-20], 4D [21] and 5D [22,23] 
imaging techniques were reported in the last five years. In of all the above studies, a dif-
fuser type optical modulator was used between the object and the sensor. Consequently, 
the signal to noise ratio (SNR) was low in all the above studies. The choice of the optical 
modulator originated from the requirements of the computational reconstruction algo-
rithm. As most, if not all computational algorithms are correlation based, the autocorrela-
tion function is required to be as sharp as possible to sample the object function [24,25]. 
The scattered intensity distributions in the far-field generate a sharp autocorrelation func-
tion as the average speckle size is equal to the diffraction limited spot size allowing dif-
fraction limited imaging. 

As diffusers are lossy and affect the SNR, it is necessary to find optical fields that can 
concentrate light in a small area on the sensor. A recent review from our research group 
identified a computational processing pair – non-linear reconstruction (NLR) and raising 
the image to the power of p enabled the use of many deterministic fields for deconvolu-
tion-based 2D imaging applications [26]. However, the imaging results varied with the 
type of optical field and all of them were generated by highly diffractive masks. The above 
study leads to an important question. Is it possible to use a refractive lens for deconvolu-
tion-based 3D imaging? Lucy-Richardson (LRA) is one of the widely used deconvolution 
algorithm for deblurring images formed by lens due to depth or motion blur [27, 28]. 
However, the deconvolution range is limited and so the algorithm cannot be applied to 
cases with large aberrations. Recently, a deconvolution algorithm, Lucy-Richardson-
Rosen algorithm (LRRA) was developed by integrating LRA with NLR and applied to 
infrared microspectroscopy studies [29]. The performance of the algorithm was signifi-
cantly better than LRA and NLR. In this study, we have applied LRRA to imaging using 
a refractive lens to computationally extend the depth of focus of imaging. 
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The manuscript consists of five sections. The methodology is discussed in the next 
section. In the third section, the simulation studies are presented. The experimental stud-
ies are presented in the fourth section. In the final section, conclusion and future perspec-
tives of the study are discussed.         

2. Materials and Methods 
The optical configuration of the imaging system is shown in Figure 1. A quasi-mon-

ochromatic light source – no spatial coherence and high temporal coherence is considered 
for illumination. A point object at 𝑟𝑟𝑜𝑜 = (𝑥𝑥𝑜𝑜,𝑦𝑦𝑜𝑜) with an amplitude of �𝐼𝐼𝑜𝑜 is located at a 
distance of zs from a refractive lens with a complex amplitude of exp[−𝑗𝑗𝑗𝑗𝑅𝑅2/(𝜆𝜆𝜆𝜆)], where 
f is the focal length of the lens given as 1

𝑓𝑓
= 1

𝑢𝑢
+ 1

𝑧𝑧ℎ
, u is the ideal object distance, zh is the 

distance between the refractive lens and the sensor and ideal image distance, λ is the wave-
length and R is the radial coordinate given as 𝑅𝑅 = �𝑥𝑥2 + 𝑦𝑦2. The complex amplitude of 
light reaching the refractive lens is given as 𝜓𝜓1 = 𝐶𝐶1�𝐼𝐼𝑜𝑜𝑄𝑄 �

1
𝑧𝑧𝑠𝑠
� 𝐿𝐿 �𝑟𝑟𝑜𝑜

𝑧𝑧𝑠𝑠
�, where 𝑄𝑄(1/𝑧𝑧𝑠𝑠) =

exp[𝑗𝑗𝑗𝑗𝑅𝑅2/(𝜆𝜆𝑧𝑧𝑠𝑠)] and 𝐿𝐿(𝑜𝑜/𝑧𝑧𝑠𝑠) = exp[𝑗𝑗2𝑗𝑗(𝑜𝑜𝑥𝑥𝑥𝑥 + 𝑜𝑜𝑦𝑦𝑦𝑦)/(𝜆𝜆𝑧𝑧𝑠𝑠)] are the quadratic and linear 
phases and C1 is a complex constant. The complex amplitude after the optical modulator 
is given as 𝜓𝜓2 = 𝐶𝐶1�𝐼𝐼𝑜𝑜𝑄𝑄 �

1
𝑧𝑧1
� 𝐿𝐿 �𝑟𝑟𝑜𝑜

𝑧𝑧𝑠𝑠
�, where 𝑧𝑧1 = 𝑧𝑧𝑠𝑠𝑓𝑓

𝑓𝑓−𝑧𝑧𝑠𝑠
. The intensity distribution obtained 

in the sensor plane located at a distance of zh is the PSF given as 

                    𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐶𝐶2�𝐼𝐼𝑜𝑜𝐿𝐿 �
𝑟𝑟𝑜𝑜
𝑧𝑧𝑠𝑠
� 𝑄𝑄 � 1

𝑧𝑧1
�⨂𝑄𝑄 � 1

𝑧𝑧ℎ
��
2
,                   (1) 

where ‘⊗’ is a 2D convolutional operator. When zs = u, the imaging condition is satisfied, 
z1 becomes zh and a point image is obtained on the sensor. The lateral resolution in the 
object plane is given as 1.22λzs/D, where D is the diameter of the lens. The axial resolution 
of the system is given as 8𝜆𝜆(𝑧𝑧𝑠𝑠/𝐷𝐷)2 and the magnification of the system is given as M = 
zh/zs. By the linearity condition of incoherent imaging, the intensity distribution obtained 
for an object with a function O is given as  

                            𝐼𝐼𝑂𝑂 = |𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃⨂𝑂𝑂|.                             (2) 
 

 
Figure 1. Concept figure of imaging using a refractive lens and computational reconstruction. 
 

In the direct imaging mode, IO is obtained by sampling of O by IPSF and therefore 
when the imaging condition is satisfied, the object information gets sampled by the lateral 
resolution of the system. When the imaging condition is not satisfied, the IPSF is blurred 
and so is the object information. In indirect imaging mode, the task is to extract O from IO 
and IPSF. A direct method to extract O is to cross-correlate IO and IPSF as 𝐼𝐼𝑅𝑅 = 𝐼𝐼𝑂𝑂 ∗ 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  
which is given as 𝐼𝐼𝑅𝑅 = 𝐼𝐼PSF⨂𝑂𝑂 ∗ 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 . Rearranging the terms, we obtain 𝐼𝐼𝑅𝑅 = 𝑂𝑂⨂𝐼𝐼PSF ∗
𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 . So, the reconstructed information is the object information sampled by the autocor-
relation function of IPSF. The width of the autocorrelation function cannot be smaller than 
the diffraction limited spot size under normal conditions. When the imaging condition is 
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satisfied or when a diffuser is used, the autocorrelation function is sharp. When the imag-
ing condition is not satisfied, then the autocorrelation function is blurred making the cor-
relation-based reconstruction not effective. The advanced version of correlation given as 
a non-linear reconstruction is effective in reducing the background noise arising due to 
the positive nature of the IPSFs during correlation but is affected by the nature of the inten-
sity distribution [24, 26]. The non-linear reconstruction is given as  

       𝐼𝐼𝑅𝑅 = ℱ−1 ��𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃�
𝛼𝛼exp[𝑗𝑗 ∙ arg(𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃)]�𝐼𝐼𝑂𝑂�

𝛽𝛽exp[−𝑗𝑗 ∙ arg(𝐼𝐼𝑂𝑂)]�,              (3) 
where α and β were varied until a minimum background noise is obtained. While this is 
one of the robust correlation-based reconstruction methods, LRA uses a different ap-
proach involving the calculation of the maximum likelihood solution once again from IPSF 
and IO. The (n+1)th reconstructed image in LRA is given as  𝐼𝐼𝑅𝑅𝑛𝑛+1 = 𝐼𝐼𝑅𝑅𝑛𝑛 �

𝐼𝐼𝑂𝑂
𝐼𝐼𝑅𝑅
𝑛𝑛⊗𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃

⨂𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃′�, 

where 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃′ refers to the complex conjugate of 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  and the loop is iterated until the max-
imum likelihood reconstruction is obtained. The initial guess of the LRA is often the rec-
orded image itself and the final solution is a maximum-likelihood solution. As seen in the 
above equation, there is a forward convolution 𝐼𝐼𝑅𝑅𝑛𝑛 ⊗ 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 and the ratio between this and 
𝐼𝐼𝑂𝑂 is correlated with 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  which is replaced by the NLR which yields a better estimation 
with reduced background noise and rapid convergence. In this study, the performances 
of LRA, NLR and LRRA are compared. The schematic of the Lucy-Richardson-Rosen al-
gorithm is shown in Figure 2.  
 

 
 

Figure 2. Schematic of LRRA. ML – maximum likelihood; OTF – optical transfer function; n – number of iterations; ⊗ - 
2D convolutional operator.  

3. Simulation studies  
A simulation study was carried out in MATLAB using Fresnel diffraction formula-

tion. A mesh grid was created with a pixel size ∆ = 10 μm, λ = 650 nm and 500 × 500 pixels 
matrix. The values of zh and f were selected as 0.8 m and 0.4 m respectively and zs was 
varied from 0.4 m to 1.2 m in steps of 0.1 m. The recorded PSFs for zs = 0.4 to 1.2 m in steps 
of 0.1 m is shown in Figure 3. A test object ‘CIPHR’ was used and the object intensity 
distributions were calculated by a convolution between the test object and the PSF. The 
images of the test object for different cases of axial aberrations are shown in Figure 3. The 
reconstruction results using LRA, NLR and LRRA are shown in Figure 3. It can be seen 
that the performance of LRRA is significantly better than LRA and better than NLR. The 
LRA and NLR had consistent reconstruction conditions such as 20 iterations and α = 0 and 
β = 0.6. In the case of LRRA, the conditions were changed for every case. The values of (α, 
β, n) for zs = 0.4 to 1.2 are (0,0.5,5), (0,0.5,5), (0,0.5,5), (0,0.5,5), (0,0.5,1), (0,0.5,8), (0,0.5,8), 
(0,0.5,8) and (0, 0.6, 5) respectively. In the case of NLR, the reconstruction improves when 
the PSF pattern is larger as expected due to improvement in sharpness of autocorrelation 
function with larger patterns. A 3D simulation was carried out by accumulating the 2D 
intensity distributions into a cube data. The images of the PSF, object variation from 0.6 to 
1 m and the cross-sectional images of reconstructions of NLR, LRA and LRRA are shown 
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in Figure 5(a)-5(e) respectively. Comparing, 5(c)-5(e), it is seen that NLR and LRRA per-
formed better than LRA, while LRRA exhibited the best performance.   

 

 
Figure 3 Simulation results of PSF, object intensity and reconstruction results using NLR, LRA and LRRA. 
 

  
Figure 4 (a) Image of 3D PSF (zs = 0.6 to 1 m), X-Y cross sectional images obtained from cube data of (b) imaging using 
a lens, reconstruction using (c) NLR, (d) LRA and (e) LRRA.   

4. Experiments 
The experimental setup used in this study is shown in Figure 5. This setup consists 

of a spatially incoherent light source - a high-power LED (Thorlabs, 170 mW, λ = 650 nm 
and Δλ = 20 nm). An iris and a refractive lens (L1) of the focal length of 50 mm were used 
to focus the light from the LED to critically illuminate the object. A pinhole with a diame-
ter of 50 μm was used for recording the PSF library. A refractive lens (L2) with a focal 
length of f = 35 mm is placed at 2f position between the test object and the image sensor 
(Quantum QHM495LM 6 Light Webcam) with 480 × 640 pixels and pixel size of ~1.5 μm. 
The lateral and axial resolutions of the system are 2.2 μm and 40 μm respectively. A neu-
tral-density filter (ND 1.5) was placed between the image sensor and the L2 to reduce the 
light intensity. In the first step, the PSF library was recorded by shifting the location of the 
pinhole along the +z and -z directions in steps of 0.25 mm. Then, the pinhole was replaced 
by the test object, and the corresponding images were recorded in identical planes to that 
of the PSF. The PSF library and the object intensity distributions were then fed into the 
reconstruction algorithm and the images were deconvolved. The experimental set up is 
highly economical and can be constructed with as low as < 20 €. Three test objects were 
considered for imaging experiments. The first test object is a double slit like object with a 
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size 1.5 × 0.28 mm (L × B). The images of the PSFs recorded at zs = 7 cm, 7.1 cm and 7. 2 cm, 
the corresponding direct imaging (DI) results of object and reconstruction results using 
LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.6, β = 0.9) with n = 2, 12 and 12 for the 
above three cases are shown in Figure 6. The second test object is a cross like object with 
a size 3.06 × 3.4 mm (L × B).The images of the PSFs recorded at zs = 7 cm, 7.2 cm and 7. 4 
cm, the corresponding direct imaging (DI) results of object and reconstruction results us-
ing LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.8, β = 0.9, n = 10), (α = 0.8, β = 1, n 
= 10) and (α = 0.8, β = 0.9, n = 15) for the above three cases are shown in Figure 7. The third 
test object consist of two circular objects each with a radius of 360 μm. The images of the 
PSFs recorded at zs = 7 cm, 7.2 cm and 7. 4 cm, the corresponding direct imaging (DI) 
results of object and reconstruction results using LRA (n = 20), NLR (α = 0.2, β = 0.7) and 
LRRA (α = 0.6, β = 0.9, n = 12), (α = 0.8, β = 1, n = 15) and (α = 0.8, β = 1, n = 15) for the above 
three cases are shown in Figure 8.  

 
Figure 5. Photograph of the experimental setup: (1) LED source, (2) Iris, (3) LED power source, (4) Lens L1 (f = 50 mm), 
(5) Test object, (6) Lens L2 (f = 35 mm), (7) ND filter (ND 1.5), (8) Image sensor and (9) XY stage movement controller. 
 

 
Figure 6. Images of the PSF, DI of the test object – 1, reconstruction results using LRA, NLR and LRRA.  
 

 
Figure 7. Images of the PSF, DI of the test object – 2, reconstruction results using LRA, NLR and LRRA  
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Figure 8. Images of the PSF, DI of the test object – 3, reconstruction results using LRA, NLR and LRRA. 

The structural similarity index (SSIM) of the reconstructed images was calculated with 
respect to the reference image recorded without aberration for direct imaging, LRA, NLR, 
and LRRA. The maps of the SSIM for the above cases are shown in Fig. 9. It should be 
noted that the presence of stray light in the recorded images could significantly affect the 
SSIM index. This could be attributed to the slight variations observed in Fig. 9. The SSIM 
values are plotted as shown in Fig. 10. It can be seen that LRRA performed better than 
both LRA and NLR techniques. 

 
Figure 9. SSIM maps for the test objects with respect to the direct imaging and the reconstruction results using LRA, 
NLR and LRRA. 

 
Figure 10. SSIM values of the test objects with respect to the direct imaging and the reconstruction results. 

5. Conclusions 
A refractive lens is one of the simplest optical elements that can be used for 2D imaging with 

spatially incoherent light. However, the depth of focus of imaging is limited to ~λ/NA2 beyond 
which the object information becomes blurred. There are many computational techniques that can 
be used to deblur the object information but are often limited to a smaller range of axial aberrations 
[30-32]. In this study, a recently developed computational technique called the LRRA has been 
implemented for deep deconvolution of images formed by a refractive lens and compared against 
NLR and LRA. The performance of LRRA seems significantly better than LRA and better than 
NLR in both simulation as well as experimental studies. Since the simulation and experimental 
studies confirm the possibility of a higher range of deconvolution, we believe that this study will 
benefit 3D imaging using spatially incoherent light. In this study, a nearly 3D imaging has been 
demonstrated.   

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2022                   doi:10.20944/preprints202208.0010.v1

https://doi.org/10.20944/preprints202208.0010.v1


 8 of 9 
 

 

Author Contributions: Conceptualization, V. A.; methodology, experiments, P. A. .;P and A. S. J. F. 
R.; V. A.; software, V. A; P.A.P.; validation, P. A. P.; A. S. J. F. R.; T. K.; and V. A.; formal analysis, T. 
K.; S. H. N.; D. S.; P. A. P.; F. G. A.; S. G.; S-M. V.; A. B.; A. N. K. R.; T. K.; investigation, V. A.; S. J.; 
A. T.; K. K.; S. P. R.; R. G.; resources, V. A.; A. T.; K. K.; S. J.; S. P.; R. G.; data curation, P. A. P.; A. S. 
J. F. R.; V. A.; writing—original draft preparation, P. A. P.; A. S. J. F. R.; V. A.; writing—review and 
editing, All the authors.; visualization, A. S. J. F. R.; P. A. P.; V. A.; supervision, V. A.; S. J.; R. G.; A. 
T.; S. P.; K. K.; project administration, V. A.; S. J.; A. T.; K. K.; S. P.; R. G.; funding acquisition, V. A., 
S. J.; A. T.; S. P.; K. K.; R. G.; All authors have read and agreed to the published version of the man-
uscript. 

Funding: D. S.; S. H. N.; T. K.; S. J. are grateful for the financial support via ARC Linkage 
LP190100505 project. P. A. P.; V. A.; A. S. J. F. R.; S- M. V. acknowledges the European Union’s 
Horizon 2020 research and innovation programme grant agreement No. 857627 (CIPHR). T. K., K. 
K., and A. T. acknowledge support from European Regional Development Fund project “Emerging 
orders in quantum and nanomaterials” (TK134). A. N. K. R. acknowledges the support from the 
State Education Development Agency (SEDA), Republic of Latvia (Project Number: 
1.1.1.2/VIAA/3/19/436) and European Regional Development Fund (1.1.1.5/19/A/003). 

Data Availability Statement: The experimental data corresponding to this study are given within 
the manuscript. Theoretical simulation data are openly available in zenodo.org. DOI: 10.5281/ze-
nodo.6928454. 

Acknowledgments: P. A. P.; S-M. V.; A. S. J. F. R.; V. A thank Tiia Lillemaa for the administrative 
support.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 
 

1. Rosen, J.; Vijayakumar, A.; Kumar, M.; Rai, M. R.; Kelner, R.; Kashter, Y.; Bulbul, A.; and Mukherjee, S. Recent advances in 
self-interference incoherent digital holography. Adv. Opt. Photon. 2019, 11, 1-66. 

2. Lichtman, J.W.; and Conchello, J.A. Fluorescence microscopy. Nat. methods 2005, 2, 910-919. 
3. Kim, M.K. Adaptive optics by incoherent digital holography. Opt. Lett. 2012, 37, 2694-2696. 
4. Liu, J.P.; Tahara, T.; Hayasaki, Y.; and Poon, T.-C. Incoherent digital holography: a review. Appl. Sci. 2018, 8, 143. 
5. Poon, T.-C. Optical scanning holography-a review of recent progress. J. Opt. Soc. Korea 2009, 13, 406-415. 
6. Rosen, J.; Alford, S.; Anand, V.; Art, J.; Bouchal, P.; Bouchal, Z.; Erdenebat, M.U.; Huang, L.; Ishii, A.; Juodkazis, S.; et al. 

Roadmap on recent progress in FINCH technology. J. Imaging 2021, 7, 197. 
7. Murty, M. V. R. K.; and Hagerott, E. C. Rotational shearing interferometry. Appl. Opt. 1966, 5, 615. 
8. Sirat, G.; and Psaltis, D. Conoscopic holography. Opt. Lett. 1985, 10, 4. 
9. Rosen, J.; and Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912-914. 
10. Kim, M. K. Incoherent digital holographic adaptive optics. Appl. Opt. 2013, 52, A117. 
11. Kelner, R.; Rosen, J.; and Brooker, G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with 

reduced optical path difference. Opt. Express 2013, 21, 20131-20144. 
12. Vijayakumar, A.; Kashter, Y.; Kelner, R.; and Rosen, J. Coded aperture correlation holography–a new type of incoherent 

digital holograms. Opt. Express 2016, 24, 12430-12441. 
13. Ables, J.G. Fourier transform photography: a new method for X-ray astronomy. Publ. Astron. Soc. Aust. 1968, 1, 172-173. 
14. Dicke, R.H. Scatter-hole cameras for x-rays and gamma rays. Astrophys. J. 1968, 153, L101. 
15. Cieślak, M.J.; Gamage, K.A.; and Glover, R. Coded-aperture imaging systems: Past, present and future development–A 

review. Radiat. Meas. 2016, 92, 59-71. 
16. Anand, V.; Rosen, J.; and Juodkazis, S. Review of engineering techniques in chaotic coded aperture imagers. Light: Advanced 

Manufacturing 2022, 3, 24. 
17. Vijayakumar, A.; and Rosen, J. Interferenceless coded aperture correlation holography–a new technique for recording in-

coherent digital holograms without two-wave interference. Opt. Express 2017, 25, 13883-13896. 
18. Singh, A.K.; Pedrini, G.; Takeda, M.; and Osten, W. Scatter-plate microscope for lensless microscopy with diffraction limited 

resolution. Sci. Rep. 2017, 7, 10687. 
19. Antipa, N.; Kuo, G.; Heckel, R.; Mildenhall, B.; Bostan, E.; Ng, R.; Waller, L. DiffuserCam: Lensless single-exposure 3D 

imaging. Optica 2018, 5, 1–9. 
20. Sahoo, S. K.; Tang, D.; and Dang, C. Single-shot multispectral imaging with a monochromatic camera. Optica 2017, 4, 1209-

1213. 
21. Vijayakumar, A.; and Rosen, J. Spectrum and space resolved 4D imaging by coded aperture correlation holography 

(COACH) with diffractive objective lens. Opt. Lett. 2017, 42, 947. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2022                   doi:10.20944/preprints202208.0010.v1

http://1.1.1.5/19/A/003
https://doi.org/10.20944/preprints202208.0010.v1


 9 of 9 
 

 

22. Anand, V.; Ng, S.H.; Maksimovic, J.; Linklater, D.; Katkus, T.; Ivanova, E.P.; and Juodkazis, S. Single shot multispectral 
multidimensional imaging using chaotic waves. Sci. Rep. 2020, 10, 1-13. 

23. Anand, V.; Ng, S.H.; Katkus, T.; and Juodkazis, S. Spatio-spectral-temporal imaging of fast transient phenomena using a 
random array of pinholes. Adv. Photonics Res. 2021, 2, 2000032. 

24. Rai, M.R.; Vijayakumar, A.; and Rosen, J. Non-linear adaptive three-dimensional imaging with interferenceless coded ap-
erture correlation holography (I-COACH). Opt. Express. 2018, 26, 18143-18154. 

25. Horner, J. L.; and Gianino, P. D. Phase-only matched filtering. Appl. Opt. 1984, 23, 812. 
26. Smith, D.; Gopinath, S.; Arockiaraj, F.G.; Reddy, A.N.K.; Balasubramani, V.; Kumar, R.; Dubey, N.; Ng, S.H.; Katkus, T.; 

Selva, S.J.; Renganathan, D.; Kamalam, M.B.R.; John Francis Rajeswary, A.S.; Navaneethakrishnan, S.; Inbanathan, S.R.; 
Valdma, S.-M.; Praveen, P.A.; Amudhavel, J.; Kumar, M.; Ganeev, R.A.; Magistretti, P.J.; Depeursinge, C.; Juodkazis, S.; 
Rosen, J.; Anand, V. Nonlinear Reconstruction of Images from Patterns Generated by Deterministic or Random Optical 
Masks—Concepts and Review of Research. J. Imaging 2022, 8, 174. 

27. Richardson, W. H. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am. 1972, 62, 55. 
28. Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 1974, 79, 745. 
29. Anand, V.; Han, M.; Maksimovic, J.; Ng, S. H.; Katkus, T.; Klein, A. R.; Bambery, K. R.; Tobin, M. J.; Vongsvivut, J.; Juod-

kazis, S. Single-shot mid-infrared incoherent holography using Lucy Richardson Rosen algorithm. Opto-Electron. Sci. 2022, 
1, 210006. 

30. Beck, A.; and Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring 
problems. IEEE Trans. Image Process. 2009, 18, 2419.  

31. Biemond, J.; Lagendijk, R.L.; and Merserau, R.M. Iterative methods for image deblurring. Proc. IEEE 1990, 78, 856. 
32. Wang R.; Tao D. Recent progress in image deblurring. arXiv preprint arXiv:1409.6838. 2014 Sep 24. 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2022                   doi:10.20944/preprints202208.0010.v1

https://doi.org/10.20944/preprints202208.0010.v1

