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Abstract: Pharmacophores are an established concept for the modelling of ligand-receptor 

interactions based on the abstract representations of stereoelectronic molecular features. They 

became widely popular as filters for the fast virtual screening of large compound libraries. Until 

today a lot of effort has been put into the development of sophisticated algorithms and strategies to 

increase the computational efficiency of the screening process. However, hardly any focus was put 

on the development of automated procedures that optimise pharmacophores towards higher 

discriminatory power, which until today still has to be done manually by a human expert. In the 

age of machine learning, the researcher has become the decision-maker at the top level, outsourcing 

analysis tasks and recurrent work to advanced algorithms and automation workflows. Here we 

propose an algorithm for the automated selection of features driving pharmacophore model quality 

using SAR information extracted from validated QPhAR models. By integrating the developed 

method into an end-to-end workflow, we present a fully automated method that is able to derive 

best-quality pharmacophores from a given input dataset. Finally, we show how the QPhAR-

generated models can be used to guide the researcher with insights regarding (un-)favourable 

interactions for compounds of interest. 

Keywords: pharmacophore; pharmacophore modelling; quantitative pharmacophore; QSAR; 
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1. Introduction 

Pharmacophore modelling was popularised at the turn of the millennium with 

increasing computational power and its general accessibility for researchers in the field of 

medicinal chemistry [1–3]. Since then, it has become an integral part of the methodological 

toolbox for computer-assisted drug discovery and design [4]. In the absence of a crystal 

structure, ligand-based pharmacophore modelling is often used in combination with 

virtual screening of large compound databases in order to identify novel active 

compounds for a particular target of interest [5]. Even though many drug discovery 

success stories can be reported [6–8] where pharmacophore-based virtual screening was 

used as a key technology, the pharmacophore modelling process itself is often tedious, 

highly complex, error-prone, and relies heavily on the expert knowledge of the researcher. 

Various unknowns in pharmacophore modelling even often yield completely different 

results when applying different programs to the same dataset [9,10].  

Before the 2000s, Chen et al. [11] proposed a system that analyses a dataset of a few 

thousand compounds and then generates suggestions for pharmacophore models based 

on the obtained knowledge. The presented method is a first step toward generating a 

system which analyses a set of data too complex for humans to fully grasp and present 

the obtained solutions to the researcher, who merely needs to decide on the best solution. 

We think machine learning has a huge potential in computer-assisted drug discovery to 
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achieve exactly that; analysing complex data to assist the researcher and offer guidance 

with the obtained solutions.  

Furthermore, Chen et al. pose two arguments contrary to popular heuristics applied 

in pharmacophore modelling. First, they state that weak or lesser active compounds 

contain important information for pharmacophore modelling. This argument contrasts 

the often practised method of selecting a highly active subset of compounds for 

pharmacophore modelling [5]. Nowadays, this is often considered by adding exclusion 

volumes to the pharmacophore. The second argument Chen et al. bring forward is that 

selecting an activity cutoff for active and inactive compounds is highly subjective and not 

clearly defined. Indeed, the cutoff may depend on factors such as the available dataset, 

and multiple experts might independently end up with various cutoffs for a certain 

dataset. Considering these arguments, the logical next step is the generation of 

pharmacophores from continuous data without the need for arbitrary choosing activity 

cutoff values.  

In addition to automated pharmacophore modelling, scoring and prioritization of the 

obtained hits are not possible with the qualitative nature of pharmacophores. Consensus 

scoring with multiple models, as, e.g., implemented by the common hits approach [12], is 

an often applied first step to solving this problem. Another solution is ranking the 

obtained hits by an external regression model. Considering that the common hits 

approach is still qualitative in its nature and regression represents a different type of 

model, a combination of these two would be ideal for ranking the obtained hits. 

Eventually, this results in a method that prioritises hits with a previously validated 

pharmacophore model by assigning continuous activity values to the compounds. 

Combined with an automated approach to generate pharmacophore models from a given 

dataset containing only a few compounds, a researcher could quickly generate a 

prioritised list of hits for biological testing in the drug discovery campaign.  

In this paper we present a novel method for automated pharmacophore modelling 

given a previously trained and validated QPhAR [13] model. We show that it outperforms 

the commonly applied heuristics for pharmacophore model refinement and can reliably 

generate a set of three-dimensional (3D) pharmacophores that show high discriminatory 

power in the virtual screening process. Combined with the training of a QPhAR model, 

we propose a fully automated workflow for generating a QPhAR model from a set of 

given compounds, deriving a classification-performance optimised pharmacophore (in 

the following referred to as ‘refined’ pharmacophore), using the pharmacophore for the 

virtual screening of molecule databases, and finally ranking the obtained hits by their 

predictions made with the QPhAR model. In addition, we highlight a method to visualise 

the expected changes in the activity of a compound when introducing certain 

pharmacophore features. The expected activity changes are displayed in a grid around 

the investigated compound, guiding the researcher with highlighted regions of 

favourable and unfavourable interactions. The proposed method and workflow aim at the 

analysis of for human researchers usually non-obvious information contained in ligand 

datasets and the presentation of this information in an easy-to-comprehend way. The 

expert user can then engage in decision-making based on the presented results of the 

performed analyses.  

3. Results and discussion 

We conducted a case study on the hERG K+ channel using the dataset from Garg et 

al. [18] and the correspondingly trained QPhAR model. First, we will discuss the process 

of generating a refined pharmacophore and its comparison against established baseline 

methods. Second, on the basis of the hERG example, we describe how the information 

provided by a QPhAR model can be utilized in a fully automated end-to-end 

pharmacophore modelling workflow. Finally, we will close the discussion with a few 

examples of how QPhAR can be used to guide a medicinal chemist to further insights after 

a set of compounds has been selected from an obtained virtual screening hit list.  
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3.1. Generation of a refined pharmacophore for virtual screening 

For each dataset investigated, we have applied the devised algorithm to extract 

refined pharmacophore features from the QPhAR model. The pharmacophore can be 

generated directly from the model without the requirement of additional data. Therefore, 

all molecules contained in the datasets can be used to evaluate the generated 

pharmacophore. Nevertheless, it makes sense to keep the training-test split of each dataset 

for a final validation of the selected models on the test set. Following this strategy, the 

generated pharmacophores were evaluated on the training set, ranked by their Fβ-score 

and FSpecificity-score, and the top 5 models validated on the provided test set. 

In contrast to the generation of refined pharmacophores, the generation of shared 

pharmacophores, the baseline method, requires an input dataset. Shared pharmacophores 

were chosen as the baseline for two reasons. First, shared feature pharmacophore 

generation is often employed as the “first-in-line” method when it comes to ligand-based 

pharmacophore modelling. Second, pharmacophores of highly active compounds are 

assumed to contain many features of relevance for high compound binding affinity. The 

baseline models were generated from the n most active compounds in the training set 

with n serving as a hyperparameter. These pharmacophores were validated on the 

training and test set in the same manner. The results and a comparison against the 

performance of the refined pharmacophores can be found in Table 1.  

Table 1. Test performance of the shared pharmacophore baseline models and refined 

pharmacophores obtained from the corresponding QPhAR models. 

Data source 
FComposite-score QPhAR model performance 

Baseline QPhAR R2 RMSE 

Ece et al. [17] 0.38 0.58 0.88 0.41 

Garg et al. [18] 0.00 0.40 0.67 0.56 

Ma et al. [19] 0.57 0.73 0.58 0.44 

Wang et al. [21] 0.69 0.58 0.56 0.46 

Krovat et al. [20] 0.94 0.56 0.50 0.70 

 

The baseline and QPhAR-based refined pharmacophores were scored and compared 

using the FComposite-score. The typical metrics used in machine learning, such as accuracy, 

precision, sensitivity, etc. are not accurately depicting the situation in virtual screening. 

Scoring pharmacophore models with these metrics would lead to results which might not 

be considered optimal in this context. Often the objective is to get as many true positives 

as possible while reducing the number of false positives. The number of false negatives 

can often be ignored with the reasoning that a missed hit does not consume any resources, 

whereas false positives will. Accuracy and others are not considering these objectives and 

put the same emphasis on both numbers. It should be noted that the ROC-AUC score is 

often used in virtual screening experiments and does reflect the objective much better than 

accuracy and others. However, due to the ROC-AUC score's non-linearity, we think it 

often gives the perception of the results being better than they are. Therefore, we used the 

Fβ-score, FSpecificity-score, and FComposite-score to score the obtained pharmacophore models.  

As can be seen in Table 1, the QPhAR-based refined pharmacophores score better 

than the baseline pharmacophores on the FComposite-score, although a dependency on the 

quality of the QPhAR models can be observed. The lower the performance of the QPhAR 

model, the less reliable it is in generating a refined pharmacophore. This, however, is not 

surprising since the quality of the workflow we describe here depends heavily on the 

trained QPhAR model. Therefore, we advise the user to emphasise training and validating 

the QPhAR models to increase the model's performance and narrow the confidence 

interval. 
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3.2. End-to-end pharmacophore modelling 

Applying the aforementioned algorithm to generate refined pharmacophores from 

QPhAR models, we developed a workflow for fully automated pharmacophore 

modelling, virtual screening and ranking of the obtained hits. The workflow is completely 

ligand-based, therefore, only a small set of compounds of ~15-50 ligands with known 

activity values is required. We will assume IC50 or Ki values here, although theoretically, 

any physicochemical property can be used.  

The first step is to prepare and clean a dataset for the target of interest. Here, we use 

the dataset published by Garg et al. [18] on the widely known hERG K+ channel. The 

dataset is split into a training and test subset (we adopt the splitting ratio provided in their 

publication), and a QPhAR model is generated using the training set molecules. The 

QPhAR model is validated on the before separated test set using cross-validation, leave-

one-out analysis, y-scrambling and a paired t-test (results have been published previously 

[15]). Afterwards, the refined pharmacophore model is generated using the procedure 

outlined in the methods section. The refined pharmacophore is then validated on the 

separated test set before being used to screen a database of virtual molecules. We use a 

filtered version of the Molport database containing ~1.25 million molecules. Since 

pharmacophore-based virtual screening is only a qualitative method, it is not possible to 

directly prioritise some compounds from the hit list over others on the basis of particular 

physicochemical properties of interest (e.g. their IC50 value). Therefore, the next and final 

step is to score and rank the obtained hit list (14871 molecules, ~1% hit-rate) with the 

previously trained QPhAR model. The obtained ranked hit list is provided as SD-file in 

ascending order of relevance (highest activity value first). The data can be found along 

with the remaining data in the author’s GitHub repository 

(https://github.com/StefanKohlbacher/qphar-applications).  

Even though the entire workflow can be automated from start to end, we recommend 

including sanity checks at certain key events, such as validating the trained QPhAR model 

performance and the completed generation of the derived refined pharmacophore. For 

both steps, we suggest to define key metrics and corresponding values that should be 

fulfilled before the workflow proceeds.  

3.3. 3D pharmacophore activity profiling 

Finally, the hit-list obtained from the end-to-end pharmacophore modelling 

workflow will serve as a starting point for medicinal chemists to further optimise 

compounds in the hit-to-lead phase of the drug discovery pipeline. Once a few promising 

compounds have been identified, the main question to be answered is: “What 

modifications should be introduced to the molecule to improve its affinity, solubility, 

bioavailability, etc. Some of these properties will depend more on the target that is being 

investigated than others. For example, affinity should always be considered in the context 

of the structure of the target receptor. We will conclude the end-to-end pharmacophore 

modelling workflow with a ligand-based approach that guides the medicinal chemist in 

this process and provides him with insights and ideas for reasonable structure 

modifications steps.  

As explained in detail in the methods section, the QPhAR model may be used to 

generate 3D-activity grids around a molecule or pharmacophore. Grids can be generated 

for each feature type present in the QPhAR model and will be split into positive and 

negative contributions. The positive grids can be interpreted as points in space, where a 

pharmacophore feature of this type would be beneficial for a higher activity of the given 

molecule towards the target receptor. Such kind of information is invaluable for any 

medicinal chemist working on the structural optimisation of lead compounds. It provides 

the location as well as the type of interaction that potentially improves the sought-after 

property of an investigated molecule. Negative grid regions, on the other hand, can be 

interpreted as portions of space where features of a particular type are unfavourable. Any 

feature of the analysed type in this region is expected to reduce the molecule's activity 
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towards the target and should be avoided, if possible. Unless the model is generated for 

an anti-target, such as hERG. In such cases, the negative grids might provide the medicinal 

chemist with ideas on optimising a molecule’s structure in a way that helps to avoid 

binding to the anti-target. 

To elaborate on that, we analysed the activity grids of selected known hERG blockers 

to explore the potential of this method. The blockers were obtained from Perry et al. [26], 

whereas two of these are discussed in further detail here. Molecules, pharmacophores, as 

well as generated activity grids, are provided in the data in the author’s GitHub repository 

(https://github.com/StefanKohlbacher/qphar-applications).   

 

Figure 1. Activity grids for the known hERG blocker Ibutilide. 

Figure 1 shows the generated activity grids for Ibutilide, a known hERG blocker. For 

each of the 6 pharmacophore feature types (Aromatic - AR, Hydrophobic - H, H-Bond 

acceptor - HBA, H-Bond donor - HBD, Positive ionizable - PI, Negative ionizable - NI), a 

positive and a negative grid was generated. Only the grids relevant to Ibutilide are 

shown.  

The hERG channel has a well-studied ligand SAR with known distinct binding 

features that are relevant for high activity. These are two aromatic features, although one 

is sufficient for strong binders, and a basic nitrogen, forming a y-shaped binding motive 

[27]. As a rule of thumb, the more hydrophobic a compound is and the lower its pKa, the 

more likely it will bind to the hERG channel. Figure 1A and 1B show the grids for aromatic 

features. Both grids provide information on how the activity of Ibutilide towards hERG is 

expected to change when introducing a feature (functional group) within the outlined 

locations. Improvements in activity can be expected when an aromatic feature is 

introduced at the aliphatic chain neighbouring the basic nitrogen. The positive field shows 

a clear distinction to locations near the nitrogen, where an aromatic feature would be 

unfavourable, as seen in the negative aromatic field, which colocates the basic nitrogen. 

Introducing an aromatic feature in the aliphatic chain would nicely match the known SAR 

of the y-shaped binding motive. Furthermore, C and D show the activity fields for 

additional hydrophobic features introduced to Ibutilide. Here, introducing a hydrophobic 

feature near the phenyl ring (C) would yield positive results, as expected by the fact that 

hydrophobicity generally increases the affinity to hERG. On the other hand, the negative 

field in D indicates that introducing a hydrophobic feature near or instead of the basic 

nitrogen would lead to a decrease in expected activity. Again, this agrees with the known 

SAR, highlighting the central nitrogen's basicity as a crucial binding motive. Similarly, 

introducing a negative ionisable feature, such as a carboxylic acid, to any location in the 
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molecule increases the pKa, which is known to be unfavourable. This fact can be observed 

in E. Finally, there is the negative field of H-bond acceptor features shown in F, which 

indicates negative expected changes when introduced at or near the basic nitrogen atom. 

The conclusions obtained from this field are not as clear as those from the other fields. On 

the one hand, introducing H-bond features, replacing some of the hydrophobic 

interactions, would decrease the logP, which is roughly equivalent to an increase in pKa 

and, therefore, unfavourable for binding. On the other hand, H-bond acceptors would be 

able to interact with external hydrogens in a similar fashion as the positive ionisable group 

from the basic nitrogen. The strength of this interaction and, therefore, the activity 

depends heavily on the functional group introduced. Therefore, it is not immediately clear 

that introducing an HBA feature would result in a negative expected change of activity.  

 

Figure 2. Activity grids for the known hERG blocker E-4031. 

A similar analysis can be made for the molecule E-4031 shown in Figure 2 which is 

also a known hERG blocker. For subparts B-F, the conclusions drawn are the same as those 

discussed above for Ibutilide, which shows a clear agreement of its 3D activity profile with 

the known SAR of hERG as reported in the literature [27]. Additionally, Figure 2A shows 

an activity field for expected negative interactions with H-bond donors colocated with the 

basic nitrogen atom of E-4031. It follows that replacing the basic nitrogen would be 

detrimental to activity since the opposing interaction partner is expected to donate a 

hydrogen atom to the nitrogen, forming an ionic interaction. Opposing such an interaction 

with another H-bond donor on the side of E-4031 would lead to a loss of this ionic 

interaction, clearly unfavourable for high-affinity binding to hERG.  

Overall, Figure 1 and Figure 2 nicely show that an analysis of selected ligands with 

the QPhAR model derived grids can provide valuable insights for a medicinal chemist 

and provide him with ideas and even clear directions for optimising the hit or lead 

molecules.  

4. Materials and Methods 

The algorithm and workflows described in the following were implemented, unless 

stated otherwise, in Python 3 using functionality provided by the Chemical Data 

Processing Toolkit [14]. 

4.1. Datasets and training of QPhAR models 

The selection of datasets for quantitative studies is not straightforward and often 

underestimated. Here we chose datasets that already have been used in previous 
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validation studies [15] of the QPhAR algorithm. Nevertheless, the datasets were required 

to fulfill the following criteria:  

 

 A separate training and test set has been defined previously. 

 The training set contains between 15 and 30 molecules. 

 Activity values for each compound in the dataset were measured in Ki or IC50 values. 

 To avoid modelling experimental noise, the associated activity values range at least 

three orders of magnitude. 

 Finally, the activity values have to be somewhat homogeneously distributed over the 

dataset and not clustered. This requirement has been validated visually.  

 

After filtering, five datasets remained, which were used to evaluate the developed 

workflows and methods. The datasets are provided for download on the author’s Github 

repository (https://github.com/StefanKohlbacher/qphar-applications). 3D conformations 

were calculated for each dataset using LigandScout’s iConfGen [16]. Default settings were 

used with a maximum of 25 output conformations for each molecule. Training and test 

data were split as described in the publications associated with the datasets [17–21]. Each 

compound in each dataset was categorised into active and inactive. As a default, the 

compounds were ranked by their activity, with the compounds in the top 20th percentile 

being labelled as active, and the remaining compounds as inactive. 

4.2. Screening baselines 

Shared-pharmacophore models were generated and used as baselines in this study. 

They were generated from a subset of active compounds for each dataset based on typical 

assumptions made in pharmacophore modelling [5,22]. Whether a compound is 

considered active or inactive strongly depends on the context of the investigated target 

and often requires in-depth knowledge about its peculiarities. Usually, values in the range 

of 1 µM are considered a reasonable threshold for the separation into actives and inactives. 

The analysed datasets contained compounds ranging from a few nM to a few hundred 

µM. Therefore, and due to the relatively homogeneous distribution of activity values in 

the datasets, the cutoff for active compounds was set at the 20th percentile of the dataset. 

Any compound with activity values below this threshold was considered active, all other 

compounds inactive. This subset was subsequently used to generate a shared-

pharmacophore with LigandScout’s [16] command-line tool Espresso. 

4.3. Hyperparameter optimisation 

Hyper-parameters were optimised both for the generation of the refined 

pharmacophore and the shared-pharmacophore baseline (number of most active 

compounds to use for generation of the shared-pharmacophore). The following 

parameters were optimised for the refined pharmacophore:  

 

 weight features by importance: True, False 

 set exclusion volumes: True, False 

 calculate feature contribution from ML (alternatively from QPhAR model): True, 

False 

 number of resulting features: [4, 8] 

 

4.4. Refined pharmacophore generation algorithms 

In the following, the algorithm to generate a refined pharmacophore from a trained 

QPhAR model will be explained in detail. The algorithm is based on the assumption that 

the QPhAR model was trained using a random forest (RF) regressor. Random forest was 

chosen since it has been shown to be the most promising method to train a QPhAR model 
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[15]. However, similar conclusions can be derived from other machine learning models 

such as linear regression models.  

The generation of a refined pharmacophore in the QPhAR context consists of four 

main steps:  

 

 Determination of feature importance 

 Determination of feature contribution 

 Processing negatively contributing features 

 Selection of features for optimal pharmacophore 

 

4.5. Determination of feature importance 

Feature importance is derived from the underlying machine learning model of 

QPhAR via extraction from the random forest model generated by scikit-learn’s [23] RF 

implementation. The feature importance is calculated during the training of the machine 

learning model and gives insight into the amount of information provided by this feature. 

The higher the feature's importance, the more information it contains, and the more 

relevant it is for activity prediction. An analogous concept would be the set of coefficients 

in a linear regression model.  

4.6. Determination of feature contribution 

In contrast to the feature importance, which is easily obtained, the information on 

whether a feature contributes positively or negatively to predicted values is not 

immediately accessible in RF-based models. Within the context of a trained QPhAR 

model, this information can be obtained directly from the QPhAR pharmacophore 

without additional information from the machine learning model.  

 

 Feature contribution information derived from the QPhAR pharmacophore model: 

As explained in the QPhAR publication [13], the QPhAR algorithm associates each 

newly generated pharmacophore feature with a list of activities. These activities will 

not only be used to determine the relevance of the feature - whether it is actual 

information or just adds noise to the model - but also to determine the contribution 

of a pharmacophore feature to the models’ predictions. The mean activity based on 

the list of associated features is calculated for each feature, resulting in one feature-

activity for each pharmacophore feature. Finally, the feature-activities are compared 

against each other and scaled by their variance. Features with a positive sign of its 

scaled activity are considered to contribute positively to the prediction of the QPhAR 

model. Features with a negative sign contribute negatively to the prediction. 

 Feature contribution information derived from the RF model: To extract feature 

contributions from a RF model in a deterministic way, two assumptions are made. 

First, the data provided to the machine learning model in the QPhAR algorithm 

represents the pairwise distances between features of the QPhAR model and the 

pharmacophore to predict. Second, applying the splitting criterion of each node in a 

tree of the random forest model will yield the left-child node for input values below 

or equal to the splitting threshold and the right-child node for input values above the 

splitting threshold. Both these assumptions are ensured by the implementation of the 

QPhAR algorithm as well as scikit-learn’s RF implementation.  

Following this logic, a simple algorithm can be devised to determine whether a 

feature contributes positively or negatively to the prediction of a sample. For each 

node in each tree, the node's value is obtained and compared against its neighbouring 

node. Suppose the left child node has the higher predicted activity. In that case, we 

can assume this feature contributes positively to activity since the left child node 

represents a smaller distance of pairwise pharmacophore features. At the same time, 

the right child node yields the lower activity prediction, which is associated with a 
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larger distance of pharmacophore feature pairs.  

On the other hand, if the left child node yields the lower predicted activity, which is 

associated with a smaller feature pair distance, then the feature can be considered to 

contribute negatively to activity.  

During this process, the feature-id of each node is obtained, which corresponds to 

the pharmacophore feature it represents. The value of the feature with the 

corresponding feature-id is aggregated as the mean value of all nodes that either 

obtain their value from this feature-id or have a child node that obtains the prediction 

processing this feature-id. Once all trees and nodes are processed, a value 

representing the activity is obtained for each pharmacophore feature. These values 

are scaled as above by their variance. Once again, features with a positive sign are 

considered to contribute positively to the activity, whereas features with a negative 

sign are considered to contribute negatively to the activity.  

4.7. Processing negatively contributing features 

Based on the analysis of feature contribution in the previous step, a post-processing 

step for negatively contributing features is carried out. The algorithm includes the option 

to either ignore these features entirely, in which case they are removed from the refined 

output pharmacophore, or convert them to exclusion volume spheres.  

4.8. Selection of features for the refined output pharmacophore 

Finally, the output pharmacophore is created from this list of features with their 

associated activity values. The features are sorted by their activity contribution values in 

descending order, resulting in the feature with the most positive contribution in the first 

place. If feature importances have been obtained from a random forest model in the next-

to-last step, the features can optionally be weighted by their feature importance. The first 

x features are then added to the output pharmacophore, whereas x is a value specified by 

the user beforehand and the value of the feature is not negative. x is recommended to be 

a value within the interval [4, 8]. If exclusion volume spheres have been generated in the 

previous step, these are also added to the refined output pharmacophore based on the 

sorted list of features.  

4.9. 3D activity profiling 

The activity profile of a sample, pharmacophore or molecule, in 3D space can be 

generated with the help of a previously trained QPhAR model. The model should be 

validated sufficiently before its use and have a narrow confidence interval for high 

confidence in the model’s predictions. The sample of interest is then aligned to the QPhAR 

model, and the baseline prediction is obtained. A grid is generated with a predetermined 

interval and some margin extending the sample’s size. For each pharmacophore feature 

type, a probe is placed and moved along the grid. At each point, the current 

pharmacophore is predicted by the QPhAR model, and the prediction is associated with 

the location in the grid. Once all grid points are processed, the differences between the 

predicted grid point values and the previously obtained baseline prediction are 

calculated. Optionally, the obtained grid of differences can be normalised for better 

analysis.  

The grids were saved in the *.kont format and then loaded into LigandScout 

alongside the molecules and pharmacophores for analysis. The terms ’activity grids’ and 

‘activity fields’ will be used interchangeably in the remainder of this section.  

4.10. Metrics 

The F1-score, or F-score, is a well-known and often applied metric in machine 

learning [24] and is defined as the harmonic mean of precision and sensitivity. However, 

due to the nature of virtual screening, the following scores, derived from the F1-score, will 

be more suitable for characterising the results of this study.  
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Fβ-score 

The Fβ-score [25] is directly derived from the F1-score and weights precision and 

sensitivity by the factor β. It is calculated by 

�� =
������∗���������∗������

��∗����������������
, (1)

 

The β-value was set to 0.5 for all evaluations in this study. 

 

FSpecificity-score 

Analogous to the Fβ-score we define the FSpecificity-score to focus more on the ratio 

between false positive and false negative hits during virtual screening. 

������������ =
���������∗�����������

���������������������
, (2)

 

 

FComposite-score 

We define the FComposite-score, which is calculated as the mean of the Fβ-score 

and FSpecificity-score, as a metric to model the objective of virtual screening. 

���������� = ��� + ������������ 2⁄ , (3)

5. Conclusions 

Nowadays, pharmacophore-based methods can be considered as indispensable and 

are an integral part of nearly every modern computer-aided drug design project. A 

combination of pharmacophore modelling and pharmacophore-based virtual screening is 

often applied as one of the first filtering techniques to obtain a list of promising compound 

candidates for biological testing in the hit finding phase. Despite its popularity, 

pharmacophore modelling is still a task which heavily relies on the expert knowledge of 

the researcher. In this study, we presented a method for the generation of pharmacophore 

models with high discriminatory power from a QPhAR model in a deterministic manner 

following clear generation guidelines. We showed that the pharmacophores derived by 

our algorithm are superior to a baseline of ligand-based pharmacophore models 

generated under the assumption that only active molecules are required to produce good 

query pharmacophores for virtual screening. Furthermore, we incorporated the presented 

method into a workflow for end-to-end pharmacophore modelling. This workflow 

facilitates a fully automated process to train a QPhAR model, generate a query 

pharmacophore from this QPhAR model, screen a database, and finally rank the obtained 

hits by relevance using the initial QPhAR model. In a case study using known hERG K+ 

channel blockers, we have shown that the generated activity fields agree well with the 

known SAR and can, therefore, provide meaningful insights for medicinal chemists in the 

hit or lead-optimization phase.  
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