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Abstract: Pharmacophores are an established concept for the modelling of ligand-receptor
interactions based on the abstract representations of stereoelectronic molecular features. They
became widely popular as filters for the fast virtual screening of large compound libraries. Until
today a lot of effort has been put into the development of sophisticated algorithms and strategies to
increase the computational efficiency of the screening process. However, hardly any focus was put
on the development of automated procedures that optimise pharmacophores towards higher
discriminatory power, which until today still has to be done manually by a human expert. In the
age of machine learning, the researcher has become the decision-maker at the top level, outsourcing
analysis tasks and recurrent work to advanced algorithms and automation workflows. Here we
propose an algorithm for the automated selection of features driving pharmacophore model quality
using SAR information extracted from validated QPhAR models. By integrating the developed
method into an end-to-end workflow, we present a fully automated method that is able to derive
best-quality pharmacophores from a given input dataset. Finally, we show how the QPhAR-
generated models can be used to guide the researcher with insights regarding (un-)favourable
interactions for compounds of interest.
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1. Introduction

Pharmacophore modelling was popularised at the turn of the millennium with
increasing computational power and its general accessibility for researchers in the field of
medicinal chemistry [1-3]. Since then, it has become an integral part of the methodological
toolbox for computer-assisted drug discovery and design [4]. In the absence of a crystal
structure, ligand-based pharmacophore modelling is often used in combination with
virtual screening of large compound databases in order to identify novel active
compounds for a particular target of interest [5]. Even though many drug discovery
success stories can be reported [6-8] where pharmacophore-based virtual screening was
used as a key technology, the pharmacophore modelling process itself is often tedious,
highly complex, error-prone, and relies heavily on the expert knowledge of the researcher.
Various unknowns in pharmacophore modelling even often yield completely different
results when applying different programs to the same dataset [9,10].

Before the 2000s, Chen et al. [11] proposed a system that analyses a dataset of a few
thousand compounds and then generates suggestions for pharmacophore models based
on the obtained knowledge. The presented method is a first step toward generating a
system which analyses a set of data too complex for humans to fully grasp and present
the obtained solutions to the researcher, who merely needs to decide on the best solution.
We think machine learning has a huge potential in computer-assisted drug discovery to
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achieve exactly that; analysing complex data to assist the researcher and offer guidance
with the obtained solutions.

Furthermore, Chen et al. pose two arguments contrary to popular heuristics applied
in pharmacophore modelling. First, they state that weak or lesser active compounds
contain important information for pharmacophore modelling. This argument contrasts
the often practised method of selecting a highly active subset of compounds for
pharmacophore modelling [5]. Nowadays, this is often considered by adding exclusion
volumes to the pharmacophore. The second argument Chen et al. bring forward is that
selecting an activity cutoff for active and inactive compounds is highly subjective and not
clearly defined. Indeed, the cutoff may depend on factors such as the available dataset,
and multiple experts might independently end up with various cutoffs for a certain
dataset. Considering these arguments, the logical next step is the generation of
pharmacophores from continuous data without the need for arbitrary choosing activity
cutoff values.

In addition to automated pharmacophore modelling, scoring and prioritization of the
obtained hits are not possible with the qualitative nature of pharmacophores. Consensus
scoring with multiple models, as, e.g., implemented by the common hits approach [12], is
an often applied first step to solving this problem. Another solution is ranking the
obtained hits by an external regression model. Considering that the common hits
approach is still qualitative in its nature and regression represents a different type of
model, a combination of these two would be ideal for ranking the obtained hits.
Eventually, this results in a method that prioritises hits with a previously validated
pharmacophore model by assigning continuous activity values to the compounds.
Combined with an automated approach to generate pharmacophore models from a given
dataset containing only a few compounds, a researcher could quickly generate a
prioritised list of hits for biological testing in the drug discovery campaign.

In this paper we present a novel method for automated pharmacophore modelling
given a previously trained and validated QPhAR [13] model. We show that it outperforms
the commonly applied heuristics for pharmacophore model refinement and can reliably
generate a set of three-dimensional (3D) pharmacophores that show high discriminatory
power in the virtual screening process. Combined with the training of a QPhAR model,
we propose a fully automated workflow for generating a QPhAR model from a set of
given compounds, deriving a classification-performance optimised pharmacophore (in
the following referred to as ‘refined” pharmacophore), using the pharmacophore for the
virtual screening of molecule databases, and finally ranking the obtained hits by their
predictions made with the QPhAR model. In addition, we highlight a method to visualise
the expected changes in the activity of a compound when introducing certain
pharmacophore features. The expected activity changes are displayed in a grid around
the investigated compound, guiding the researcher with highlighted regions of
favourable and unfavourable interactions. The proposed method and workflow aim at the
analysis of for human researchers usually non-obvious information contained in ligand
datasets and the presentation of this information in an easy-to-comprehend way. The
expert user can then engage in decision-making based on the presented results of the
performed analyses.

3. Results and discussion

We conducted a case study on the hERG K+ channel using the dataset from Garg et
al. [18] and the correspondingly trained QPhAR model. First, we will discuss the process
of generating a refined pharmacophore and its comparison against established baseline
methods. Second, on the basis of the hERG example, we describe how the information
provided by a QPhAR model can be utilized in a fully automated end-to-end
pharmacophore modelling workflow. Finally, we will close the discussion with a few
examples of how QPhAR can be used to guide a medicinal chemist to further insights after
a set of compounds has been selected from an obtained virtual screening hit list.
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3.1. Generation of a refined pharmacophore for virtual screening

For each dataset investigated, we have applied the devised algorithm to extract
refined pharmacophore features from the QPhAR model. The pharmacophore can be
generated directly from the model without the requirement of additional data. Therefore,
all molecules contained in the datasets can be used to evaluate the generated
pharmacophore. Nevertheless, it makes sense to keep the training-test split of each dataset
for a final validation of the selected models on the test set. Following this strategy, the
generated pharmacophores were evaluated on the training set, ranked by their Fg-score
and Fspedificity-score, and the top 5 models validated on the provided test set.

In contrast to the generation of refined pharmacophores, the generation of shared
pharmacophores, the baseline method, requires an input dataset. Shared pharmacophores
were chosen as the baseline for two reasons. First, shared feature pharmacophore
generation is often employed as the “first-in-line” method when it comes to ligand-based
pharmacophore modelling. Second, pharmacophores of highly active compounds are
assumed to contain many features of relevance for high compound binding affinity. The
baseline models were generated from the #n most active compounds in the training set
with 7n serving as a hyperparameter. These pharmacophores were validated on the
training and test set in the same manner. The results and a comparison against the
performance of the refined pharmacophores can be found in Table 1.

Table 1. Test performance of the shared pharmacophore baseline models and refined
pharmacophores obtained from the corresponding QPhAR models.

Data source Fcomposite-score QPhAR model performance
Baseline QPhAR R2 RMSE
Ece et al. [17] 0.38 0.58 0.88 0.41
Garg et al. [18] 0.00 0.40 0.67 0.56
Ma et al. [19] 0.57 0.73 0.58 0.44
Wang et al. [21] 0.69 0.58 0.56 0.46
Krovat et al. [20] 0.94 0.56 0.50 0.70

The baseline and QPhAR-based refined pharmacophores were scored and compared
using the Fcomposite-score. The typical metrics used in machine learning, such as accuracy,
precision, sensitivity, etc. are not accurately depicting the situation in virtual screening.
Scoring pharmacophore models with these metrics would lead to results which might not
be considered optimal in this context. Often the objective is to get as many true positives
as possible while reducing the number of false positives. The number of false negatives
can often be ignored with the reasoning that a missed hit does not consume any resources,
whereas false positives will. Accuracy and others are not considering these objectives and
put the same emphasis on both numbers. It should be noted that the ROC-AUC score is
often used in virtual screening experiments and does reflect the objective much better than
accuracy and others. However, due to the ROC-AUC score's non-linearity, we think it
often gives the perception of the results being better than they are. Therefore, we used the
Fp-score, Fspedificity-score, and Fcomposite-score to score the obtained pharmacophore models.

As can be seen in Table 1, the QPhAR-based refined pharmacophores score better
than the baseline pharmacophores on the Fcomposite-score, although a dependency on the
quality of the QPhAR models can be observed. The lower the performance of the QPhAR
model, the less reliable it is in generating a refined pharmacophore. This, however, is not
surprising since the quality of the workflow we describe here depends heavily on the
trained QPhAR model. Therefore, we advise the user to emphasise training and validating
the QPhAR models to increase the model's performance and narrow the confidence
interval.
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3.2. End-to-end pharmacophore modelling

Applying the aforementioned algorithm to generate refined pharmacophores from
QPhAR models, we developed a workflow for fully automated pharmacophore
modelling, virtual screening and ranking of the obtained hits. The workflow is completely
ligand-based, therefore, only a small set of compounds of ~15-50 ligands with known
activity values is required. We will assume IC50 or Ki values here, although theoretically,
any physicochemical property can be used.

The first step is to prepare and clean a dataset for the target of interest. Here, we use
the dataset published by Garg et al. [18] on the widely known hERG K+ channel. The
dataset is split into a training and test subset (we adopt the splitting ratio provided in their
publication), and a QPhAR model is generated using the training set molecules. The
QPhAR model is validated on the before separated test set using cross-validation, leave-
one-out analysis, y-scrambling and a paired t-test (results have been published previously
[15]). Afterwards, the refined pharmacophore model is generated using the procedure
outlined in the methods section. The refined pharmacophore is then validated on the
separated test set before being used to screen a database of virtual molecules. We use a
filtered version of the Molport database containing ~1.25 million molecules. Since
pharmacophore-based virtual screening is only a qualitative method, it is not possible to
directly prioritise some compounds from the hit list over others on the basis of particular
physicochemical properties of interest (e.g. their IC50 value). Therefore, the next and final
step is to score and rank the obtained hit list (14871 molecules, ~1% hit-rate) with the
previously trained QPhAR model. The obtained ranked hit list is provided as SD-file in
ascending order of relevance (highest activity value first). The data can be found along
with the remaining data in  the author’s GitHub repository
(https://github.com/StefanKohlbacher/qphar-applications).

Even though the entire workflow can be automated from start to end, we recommend
including sanity checks at certain key events, such as validating the trained QPhAR model
performance and the completed generation of the derived refined pharmacophore. For
both steps, we suggest to define key metrics and corresponding values that should be
fulfilled before the workflow proceeds.

3.3. 3D pharmacophore activity profiling

Finally, the hit-list obtained from the end-to-end pharmacophore modelling
workflow will serve as a starting point for medicinal chemists to further optimise
compounds in the hit-to-lead phase of the drug discovery pipeline. Once a few promising
compounds have been identified, the main question to be answered is: “What
modifications should be introduced to the molecule to improve its affinity, solubility,
bioavailability, etc. Some of these properties will depend more on the target that is being
investigated than others. For example, affinity should always be considered in the context
of the structure of the target receptor. We will conclude the end-to-end pharmacophore
modelling workflow with a ligand-based approach that guides the medicinal chemist in
this process and provides him with insights and ideas for reasonable structure
modifications steps.

As explained in detail in the methods section, the QPhAR model may be used to
generate 3D-activity grids around a molecule or pharmacophore. Grids can be generated
for each feature type present in the QPhAR model and will be split into positive and
negative contributions. The positive grids can be interpreted as points in space, where a
pharmacophore feature of this type would be beneficial for a higher activity of the given
molecule towards the target receptor. Such kind of information is invaluable for any
medicinal chemist working on the structural optimisation of lead compounds. It provides
the location as well as the type of interaction that potentially improves the sought-after
property of an investigated molecule. Negative grid regions, on the other hand, can be
interpreted as portions of space where features of a particular type are unfavourable. Any
feature of the analysed type in this region is expected to reduce the molecule's activity
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towards the target and should be avoided, if possible. Unless the model is generated for
an anti-target, such as hERG. In such cases, the negative grids might provide the medicinal
chemist with ideas on optimising a molecule’s structure in a way that helps to avoid
binding to the anti-target.

To elaborate on that, we analysed the activity grids of selected known hERG blockers
to explore the potential of this method. The blockers were obtained from Perry et al. [26],
whereas two of these are discussed in further detail here. Molecules, pharmacophores, as
well as generated activity grids, are provided in the data in the author’s GitHub repository
(https://github.com/StefanKohlbacher/qphar-applications).

Activity grids: Ibutilide
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Figure 1. Activity grids for the known hERG blocker Ibutilide.

Figure 1 shows the generated activity grids for Ibutilide, a known hERG blocker. For
each of the 6 pharmacophore feature types (Aromatic - AR, Hydrophobic - H, H-Bond
acceptor - HBA, H-Bond donor - HBD, Positive ionizable - PI, Negative ionizable - NI), a
positive and a negative grid was generated. Only the grids relevant to Ibutilide are
shown.

The hERG channel has a well-studied ligand SAR with known distinct binding
features that are relevant for high activity. These are two aromatic features, although one
is sufficient for strong binders, and a basic nitrogen, forming a y-shaped binding motive
[27]. As a rule of thumb, the more hydrophobic a compound is and the lower its pKa, the
more likely it will bind to the hERG channel. Figure 1A and 1B show the grids for aromatic
features. Both grids provide information on how the activity of Ibutilide towards hERG is
expected to change when introducing a feature (functional group) within the outlined
locations. Improvements in activity can be expected when an aromatic feature is
introduced at the aliphatic chain neighbouring the basic nitrogen. The positive field shows
a clear distinction to locations near the nitrogen, where an aromatic feature would be
unfavourable, as seen in the negative aromatic field, which colocates the basic nitrogen.
Introducing an aromatic feature in the aliphatic chain would nicely match the known SAR
of the y-shaped binding motive. Furthermore, C and D show the activity fields for
additional hydrophobic features introduced to Ibutilide. Here, introducing a hydrophobic
feature near the phenyl ring (C) would yield positive results, as expected by the fact that
hydrophobicity generally increases the affinity to hRERG. On the other hand, the negative
field in D indicates that introducing a hydrophobic feature near or instead of the basic
nitrogen would lead to a decrease in expected activity. Again, this agrees with the known
SAR, highlighting the central nitrogen's basicity as a crucial binding motive. Similarly,
introducing a negative ionisable feature, such as a carboxylic acid, to any location in the
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Activity grids: E-4031
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molecule increases the pKa, which is known to be unfavourable. This fact can be observed
in E. Finally, there is the negative field of H-bond acceptor features shown in F, which
indicates negative expected changes when introduced at or near the basic nitrogen atom.
The conclusions obtained from this field are not as clear as those from the other fields. On
the one hand, introducing H-bond features, replacing some of the hydrophobic
interactions, would decrease the logP, which is roughly equivalent to an increase in pKa
and, therefore, unfavourable for binding. On the other hand, H-bond acceptors would be
able to interact with external hydrogens in a similar fashion as the positive ionisable group
from the basic nitrogen. The strength of this interaction and, therefore, the activity
depends heavily on the functional group introduced. Therefore, it is not immediately clear
that introducing an HBA feature would result in a negative expected change of activity.

A: HBD negative grid B: HBA negative grid

oK m)‘

C: H positive grid

- .
N,
W

E: NI negative grid

mc——:

Figure 2. Activity grids for the known hERG blocker E-4031.

A similar analysis can be made for the molecule E-4031 shown in Figure 2 which is
also a known hERG blocker. For subparts B-F, the conclusions drawn are the same as those
discussed above for Ibutilide, which shows a clear agreement of its 3D activity profile with
the known SAR of hERG as reported in the literature [27]. Additionally, Figure 2A shows
an activity field for expected negative interactions with H-bond donors colocated with the
basic nitrogen atom of E-4031. It follows that replacing the basic nitrogen would be
detrimental to activity since the opposing interaction partner is expected to donate a
hydrogen atom to the nitrogen, forming an ionic interaction. Opposing such an interaction
with another H-bond donor on the side of E-4031 would lead to a loss of this ionic
interaction, clearly unfavourable for high-affinity binding to hERG.

Overall, Figure 1 and Figure 2 nicely show that an analysis of selected ligands with
the QPhAR model derived grids can provide valuable insights for a medicinal chemist
and provide him with ideas and even clear directions for optimising the hit or lead
molecules.

4. Materials and Methods

The algorithm and workflows described in the following were implemented, unless
stated otherwise, in Python 3 using functionality provided by the Chemical Data
Processing Toolkit [14].

4.1. Datasets and training of QPhAR models

The selection of datasets for quantitative studies is not straightforward and often
underestimated. Here we chose datasets that already have been used in previous
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validation studies [15] of the QPhAR algorithm. Nevertheless, the datasets were required
to fulfill the following criteria:

e A separate training and test set has been defined previously.

e  The training set contains between 15 and 30 molecules.

e Activity values for each compound in the dataset were measured in Ki or IC50 values.

e To avoid modelling experimental noise, the associated activity values range at least
three orders of magnitude.

e  Finally, the activity values have to be somewhat homogeneously distributed over the
dataset and not clustered. This requirement has been validated visually.

After filtering, five datasets remained, which were used to evaluate the developed
workflows and methods. The datasets are provided for download on the author’s Github
repository (https://github.com/StefanKohlbacher/qphar-applications). 3D conformations
were calculated for each dataset using LigandScout’s iConfGen [16]. Default settings were
used with a maximum of 25 output conformations for each molecule. Training and test
data were split as described in the publications associated with the datasets [17-21]. Each
compound in each dataset was categorised into active and inactive. As a default, the
compounds were ranked by their activity, with the compounds in the top 20th percentile
being labelled as active, and the remaining compounds as inactive.

4.2. Screening baselines

Shared-pharmacophore models were generated and used as baselines in this study.
They were generated from a subset of active compounds for each dataset based on typical
assumptions made in pharmacophore modelling [5,22]. Whether a compound is
considered active or inactive strongly depends on the context of the investigated target
and often requires in-depth knowledge about its peculiarities. Usually, values in the range
of 1 uM are considered a reasonable threshold for the separation into actives and inactives.
The analysed datasets contained compounds ranging from a few nM to a few hundred
HUM. Therefore, and due to the relatively homogeneous distribution of activity values in
the datasets, the cutoff for active compounds was set at the 20th percentile of the dataset.
Any compound with activity values below this threshold was considered active, all other
compounds inactive. This subset was subsequently used to generate a shared-
pharmacophore with LigandScout’s [16] command-line tool Espresso.

4.3. Hyperparameter optimisation

Hyper-parameters were optimised both for the generation of the refined
pharmacophore and the shared-pharmacophore baseline (number of most active
compounds to use for generation of the shared-pharmacophore). The following
parameters were optimised for the refined pharmacophore:

e  weight features by importance: True, False

e  set exclusion volumes: True, False

e calculate feature contribution from ML (alternatively from QPhAR model): True,
False

e number of resulting features: [4, 8]

4.4. Refined pharmacophore generation algorithms

In the following, the algorithm to generate a refined pharmacophore from a trained
QPhAR model will be explained in detail. The algorithm is based on the assumption that
the QPhAR model was trained using a random forest (RF) regressor. Random forest was
chosen since it has been shown to be the most promising method to train a QPhAR model
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[15]. However, similar conclusions can be derived from other machine learning models
such as linear regression models.

The generation of a refined pharmacophore in the QPhAR context consists of four
main steps:

e  Determination of feature importance

e  Determination of feature contribution

e  Processing negatively contributing features

e  Selection of features for optimal pharmacophore

4.5. Determination of feature importance

Feature importance is derived from the underlying machine learning model of
QPhAR via extraction from the random forest model generated by scikit-learn’s [23] RF
implementation. The feature importance is calculated during the training of the machine
learning model and gives insight into the amount of information provided by this feature.
The higher the feature's importance, the more information it contains, and the more
relevant it is for activity prediction. An analogous concept would be the set of coefficients
in a linear regression model.

4.6. Determination of feature contribution

In contrast to the feature importance, which is easily obtained, the information on
whether a feature contributes positively or negatively to predicted values is not
immediately accessible in RF-based models. Within the context of a trained QPhAR
model, this information can be obtained directly from the QPhAR pharmacophore
without additional information from the machine learning model.

e  Feature contribution information derived from the QPhAR pharmacophore model:
As explained in the QPhAR publication [13], the QPhAR algorithm associates each
newly generated pharmacophore feature with a list of activities. These activities will
not only be used to determine the relevance of the feature - whether it is actual
information or just adds noise to the model - but also to determine the contribution
of a pharmacophore feature to the models’ predictions. The mean activity based on
the list of associated features is calculated for each feature, resulting in one feature-
activity for each pharmacophore feature. Finally, the feature-activities are compared
against each other and scaled by their variance. Features with a positive sign of its
scaled activity are considered to contribute positively to the prediction of the QPhAR
model. Features with a negative sign contribute negatively to the prediction.

e Feature contribution information derived from the RF model: To extract feature
contributions from a RF model in a deterministic way, two assumptions are made.
First, the data provided to the machine learning model in the QPhAR algorithm
represents the pairwise distances between features of the QPhAR model and the
pharmacophore to predict. Second, applying the splitting criterion of each node in a
tree of the random forest model will yield the left-child node for input values below
or equal to the splitting threshold and the right-child node for input values above the
splitting threshold. Both these assumptions are ensured by the implementation of the
QPhAR algorithm as well as scikit-learn’s RF implementation.

Following this logic, a simple algorithm can be devised to determine whether a
feature contributes positively or negatively to the prediction of a sample. For each
node in each tree, the node's value is obtained and compared against its neighbouring
node. Suppose the left child node has the higher predicted activity. In that case, we
can assume this feature contributes positively to activity since the left child node
represents a smaller distance of pairwise pharmacophore features. At the same time,
the right child node yields the lower activity prediction, which is associated with a
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larger distance of pharmacophore feature pairs.

On the other hand, if the left child node yields the lower predicted activity, which is
associated with a smaller feature pair distance, then the feature can be considered to
contribute negatively to activity.

During this process, the feature-id of each node is obtained, which corresponds to
the pharmacophore feature it represents. The value of the feature with the
corresponding feature-id is aggregated as the mean value of all nodes that either
obtain their value from this feature-id or have a child node that obtains the prediction
processing this feature-id. Once all trees and nodes are processed, a value
representing the activity is obtained for each pharmacophore feature. These values
are scaled as above by their variance. Once again, features with a positive sign are
considered to contribute positively to the activity, whereas features with a negative
sign are considered to contribute negatively to the activity.

4.7. Processing negatively contributing features

Based on the analysis of feature contribution in the previous step, a post-processing
step for negatively contributing features is carried out. The algorithm includes the option
to either ignore these features entirely, in which case they are removed from the refined
output pharmacophore, or convert them to exclusion volume spheres.

4.8. Selection of features for the refined output pharmacophore

Finally, the output pharmacophore is created from this list of features with their
associated activity values. The features are sorted by their activity contribution values in
descending order, resulting in the feature with the most positive contribution in the first
place. If feature importances have been obtained from a random forest model in the next-
to-last step, the features can optionally be weighted by their feature importance. The first
x features are then added to the output pharmacophore, whereas x is a value specified by
the user beforehand and the value of the feature is not negative. x is recommended to be
a value within the interval [4, 8]. If exclusion volume spheres have been generated in the
previous step, these are also added to the refined output pharmacophore based on the
sorted list of features.

4.9. 3D activity profiling

The activity profile of a sample, pharmacophore or molecule, in 3D space can be
generated with the help of a previously trained QPhAR model. The model should be
validated sufficiently before its use and have a narrow confidence interval for high
confidence in the model’s predictions. The sample of interest is then aligned to the QPhAR
model, and the baseline prediction is obtained. A grid is generated with a predetermined
interval and some margin extending the sample’s size. For each pharmacophore feature
type, a probe is placed and moved along the grid. At each point, the current
pharmacophore is predicted by the QPhAR model, and the prediction is associated with
the location in the grid. Once all grid points are processed, the differences between the
predicted grid point values and the previously obtained baseline prediction are
calculated. Optionally, the obtained grid of differences can be normalised for better
analysis.

The grids were saved in the *kont format and then loaded into LigandScout
alongside the molecules and pharmacophores for analysis. The terms "activity grids’ and
‘activity fields” will be used interchangeably in the remainder of this section.

4.10. Metrics

The Fl-score, or F-score, is a well-known and often applied metric in machine
learning [24] and is defined as the harmonic mean of precision and sensitivity. However,
due to the nature of virtual screening, the following scores, derived from the F1-score, will
be more suitable for characterising the results of this study.
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Fg-score

The Fg-score [25] is directly derived from the Fl-score and weights precision and
sensitivity by the factor g. It is calculated by

_ (1+B?)*precisionsrecall

Fg

: )

B2xprecision+recall

The B-value was set to 0.5 for all evaluations in this study.

FSpecificity-SCOI'e

Analogous to the Fg-score we define the Fspediticity-score to focus more on the ratio
between false positive and false negative hits during virtual screening.

precisionsspecificity

Specificity =™ - ocision+specificity’ )

F Composite-SCOT'E
We define the Fcomposite-score, which is calculated as the mean of the Fg-score
and Fspedificity-score, as a metric to model the objective of virtual screening.

FComposite = (FB + FSpeCifiCty)/Zl 3)

5. Conclusions

Nowadays, pharmacophore-based methods can be considered as indispensable and
are an integral part of nearly every modern computer-aided drug design project. A
combination of pharmacophore modelling and pharmacophore-based virtual screening is
often applied as one of the first filtering techniques to obtain a list of promising compound
candidates for biological testing in the hit finding phase. Despite its popularity,
pharmacophore modelling is still a task which heavily relies on the expert knowledge of
the researcher. In this study, we presented a method for the generation of pharmacophore
models with high discriminatory power from a QPhAR model in a deterministic manner
following clear generation guidelines. We showed that the pharmacophores derived by
our algorithm are superior to a baseline of ligand-based pharmacophore models
generated under the assumption that only active molecules are required to produce good
query pharmacophores for virtual screening. Furthermore, we incorporated the presented
method into a workflow for end-to-end pharmacophore modelling. This workflow
facilitates a fully automated process to train a QPhAR model, generate a query
pharmacophore from this QPhAR model, screen a database, and finally rank the obtained
hits by relevance using the initial QPhAR model. In a case study using known hERG K+
channel blockers, we have shown that the generated activity fields agree well with the
known SAR and can, therefore, provide meaningful insights for medicinal chemists in the
hit or lead-optimization phase.
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