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Abstract: Lesion studies are crucial in establishing brain-behavior relationships, and accurately seg-

menting the lesion represents the first step in achieving this. Manual lesion segmentation is the gold 

standard for chronic strokes. However, it is labor-intensive, subject to bias, and limits sample size. 

Therefore, our objective is to develop an automatic segmentation algorithm for chronic stroke le-

sions on T1-weighted MR images. Methods: To train our model, we utilized an open-source dataset: 

ATLAS v2.0 (Anatomical Tracings of Lesions After Stroke). We partitioned the dataset of 655 T1 

images with manual segmentation labels into five subsets and performed a 5-fold cross-validation 

to avoid overfitting of the model. We used a deep neural network (DNN) architecture for model 

training. Results: To evaluate the model performance, we used three metrics that pertain to diverse 

aspects of volumetric segmentation including shape, location, and size. The Dice similarity coeffi-

cient (DSC) compares the spatial overlap between manual and machine segmentation. The average 

DSC was 0.65 (0.61- 0.67; 95% bootstrapped CI). Average symmetric surface distance (ASSD) 

measures contour distances between the two segmentations. ASSD between manual and automatic 

segmentation was 12mm. Finally, we compared the total lesion volumes and the Pearson correlation 

coefficient (ρ) between the manual and automatically segmented lesion volumes, which was 0.97(p-

value < 0.001). Conclusions: We present the first automated segmentation model trained on a large 

multicentric dataset. This model will enable automated on-demand processing of MRI scans and 

quantitative chronic stroke lesion assessment.  

Keywords: Stroke; automatic segmentation, stroke, deep neural networks, 3D-UNet, lesion studies, 

vascular neurology, precision medicine 

 

Highlights: 

1. Overall, we found that DNN enabled objective and automated assessment of chronic lesions 

secondary to stroke in vascular neurology at high throughput and could ultimately serve to im-

prove clinical decision-making.  

2. Our model in conjunction with voxel-based lesion-symptom mapping will facilitate the study 

of brain-behavior relationships in chronic stroke 

 

 

1. Introduction 

Over the past century, human lesion studies have provided key insights into the re-

lationship of brain areas to behavior. Lesion studies are highly valuable in cognitive neu-

roscience as lesions such as stroke create a dissociation of function. This dissociation pro-

vides causal evidence of a brain area for the function [1]. 
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In this quest, automatic lesion segmentation has emerged as a crucial tool [2]. Auto-

matic image segmentation refers to the assignment of non-overlapping boundaries in an 

image to regions that are dissimilar in core features such as intensity or texture [3]. There 

are numerous automatic segmentation algorithms for acute stroke, however, in compari-

son, there is a paucity of algorithms for chronic stroke lesions [2].The reasons for this are 

multifold. First, acute stroke requires time-sensitive and precise clinical decision-making. 

Neuroimaging plays a pivotal role in this decision-making, therefore there are concerted 

efforts to develop automatic segmentation models for acute stroke [4–6]. Second, the le-

sions in acute and chronic stroke are assessed with distinct MR imaging sequences, and 

segmentation methods developed for acute stroke imaging are not directly applicable to 

chronic stroke imaging [7]. In acute stroke, diffusion, perfusion, and susceptibility-

weighted images offer the most clinically relevant information [8]. In contrast, in chronic 

stroke, T1-weighted are preferred as they offer high spatial resolution which makes them 

suitable to study the structure-function relationship [7]. Third, imaging in acute stroke is 

mandatory, therefore large neuroimaging datasets exist, which enable automatic model 

training and testing [9]. In comparison, large chronic stroke imaging datasets are rare [10]. 

Due to all these reasons, currently, manual segmentation is the gold standard for 

chronic stroke lesions. However, it is labor-intensive, time-consuming, subject to bias and 

prone to inter-observer variability [9]. All these factors ultimately limit the sample 

size.  To overcome these limitations, chronic stroke automatic segmentation models are 

required. 

In this study, we aim to develop a fully automatic algorithm to segment chronic 

stroke lesions on T1-weighted MR images. To develop our model, we used a deep neural 

network architecture (DNN). Among the machine learning algorithms, DNN is a class 

that has become well-established in computer vision tasks such as automatic segmenta-

tion [11]. Therefore, we applied 3D-UNet as it is suitable for volumetric segmentation of 

medical imaging [12]. 

. 

2. Materials and Methods 

2.1 Dataset 

We employed an open-source dataset: ATLASv2.0 (Anatomical Tracings of Lesions 

After Stroke, version 2). This dataset has 655 T1-weighted MR images in training set as-

sembled from worldwide multicentric cohort sites as a part of the ENIGMA Stroke Recov-

ery Group [10]. Each site obtained ethical approval, and the studies were conducted in 

accordance with Declaration of Helsinki, 1964. In addition, the central image receiving site 

obtained ethical approval for the reception and dissemination of the deidentified MR im-

ages.  

 

2.2 Manual tracing 

Manual tracers followed standard operation protocol to trace lesion labels on the raw 

T1-weighted images. This was done using of software ITK-SNAP (version 3.8.0) [13,14]. 

The lesion masks were assessed by two raters separately and edited based on a standard-

ized protocol. The link to standardized protocol is provided in the supplementary mate-

rials. 

 

2.3 Preprocessing and dataset partitioning 

Automated brain extraction using HD-BET algorithm was performed on all the MR 

images [15]. Preprocessing included intensity normalization, registration to a standard-

ized template (MNI-152), and defacing. The training dataset contained both the prepro-

cessed images without labels and with labels as separate files, to enable training and test-

ing models.  

 

2.4 Lesion characteristics  
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Lesion characteristics are depicted in table 1. 59.9% subjects had single lesion, and 

38.1% had multiple lesions. Of the subjects with multiple lesions, 7.2% had unilateral le-

sions, 18.5% had bilateral lesions, and 12.4% had lesions in either brainstem or cerebellum. 

Lesion location was considered unilateral if the lesions were in present in only the left or 

the right hemisphere. Lesion location in brainstem or cerebellum was indicated as other. 

Additionally, lesions were classified as cortical, subcortical, and other.  

 

 

 

Table 1. Data characteristics for training dataset. 

Subjects (n = 655) Location 

Cortical lesions Left 12%; Right 13.5 % 

Subcortical lesions Left 30.2%, Right 29.4% 

Other lesions 14.8% 

Figure 1 is a visualization of the lesion overlap maps across all subjects (n = 655) in 

the MNI space. 57.1% subjects had at least one left hemisphere lesion, and 58.8% had at 

least one right hemisphere lesion [2]. 

 
Figure 1. Lesion map across all subjects (n= 655) visualized in the standard MNI tem-

plate. Darker colors indicate a higher frequency of lesions at a given voxel. 

 

2.5 Model architecture 

We applied 3D-UNet, a deep neural network (DNN) architecture to segment the volumet-

ric imaging data. Our implementation of the 3D-UNet on the ATLAS v2.0 dataset is simi-

lar to that of Isensee et al. in the nnUnet framework [15]. Previously, we adapted this 

architecture to successfully train an automatic segmentation model on ATLAS v.1.2 data 

set [16]. 

An overview of the 3D-UNet model and its components is shown in Figure 2. The 

3D-UNet architecture consists of a symmetrical encoder and decoder structure. During 

the analysis phase (encoding), convolutions and down sampling operations combine and 

create a bottleneck at the center of the structure. During the synthesis phase (decoding) a 

series of convolutions and up sampling (inverse convolutions) reconstruct the image. The 

addition of skip connections improves training by assisting backward gradient flow [17]. 

A skip connection allows access to low- and mid-level visual representations of the input 

to the decoder component, which is similar to the bypass connections in the primate visual 

system [18]. 
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Figure 2. Schematic representation of 3D-UNet architecture 

2.6 Model training  

We optimized the hyperparameters for the training using a grid search and cross-valida-

tion on a validation set. Model performance on the validation set determined the hyper-

parameters. The model was trained for 1000 epochs (where an epoch is defined as 250 

batches). Adaptive learning rates were used during the training. For the first 500 epochs, 

a cosine-annealing learning rate schedule of 1e-2 to 1e-4 was used; for epochs 500–1000, a 

cosine-annealing learning rate schedule of 1e−5 to 1e−9 was utilized. A weight decay (3e-

5) method was used for regularization. To augment the 3D data, scaling, rotation, gamma 

adjustments, mirror transformations, and additive brightness were randomly performed 

at probabilities of 0.2, 0.2, 0.3, 0.5, and 0.15, respectively.  

 

2.7 Model performance evaluation 

We assessed model performance both qualitatively and quantitively. For quantitative 

evaluation, we employed a multitude of evaluation metrics. To compare the spatial over-

lap of the manual and automatic segmentation labels, we utilized Sørenson-Dice similar-

ity coefficient (DSC) [19]. It is calculated as: 

 

𝐷𝑆𝐶 =
2|𝑅 ∩ 𝑀|

|𝑅| + |𝑀|
∗ 100 

 

 

where 𝑅 is the ground truth reference brain mask (manual segmentation), and 𝑀 is 

the predicted mask (automatic segmentation). The output values for DSC range between 

0 (no overlap), and 1(perfect agreement). We complemented DSC with average symmetric 

surface distance (ASSD). ASSD is the average of all distances between the predicted mask 

and the ground truth boundary [20]. In addition, we compared lesion volumes across 

cross-validation folds. 

 

2.8 Statistical analysis 

Bootstrap resampling (n = 1000) was used to estimate 95% confidence intervals for 

the evaluation metrics (DSC and ASSD). We report descriptive statistics (median, 95% CI) 

for DSC and ASSD across all cross-validation folds. A two-tailed Wilcoxon matched-pairs 

signed-rank test was done to test the statistical significance of the differences between the 

manual and automatic segmentation volumes. For quantification of the relationship be-

tween manual and automatic segmentation volumes, Pearson correlation coefficient was 

utilized. We employed a randomization test to estimate the p-value of the correlation co-

efficient (n = 1000). 
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3. Results 

We evaluated the performance of our model by comparing manual and automatic 

segmentation masks across 5-fold cross-validation. 

 

 

3.1 Qualitative performance 

Visual evaluation of performance was done across multiple lesion locations and 

sizes. To illustrate model’s optimal performance on both large and small lesions, refer to 

figure 3. 

Figure 3. Axial sections showing examples of manual and automatic segmentation. Top 

row depicts the segmentation performance for a Middle Cerebral Artery (MCA) stroke 

and the bottom panel demonstrates performance for a lacunar stroke. 

 

Figures 4, 5 and 6 illustrate the model’s performance across the full extent of the lesion 

volume on the coronal, axial, and sagittal sections respectively.  

 

Figure 4. Coronal sections showing automatic segmentation of left MCA stroke as 

mapped on MNI152 template. The brain slices are sampled at the intervals of 8 mm. 
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Figure 5: Sagittal sections showing automatic segmentation of left MCA stroke. 

 

 

 

         
Figure 6: Axial sections showing automatic segmentation of left MCA stroke. 

 

 

 

 

3.2 Quantitative performance 

Quantitative performance was evaluated by using DSC, ASSD and total volume com-

parisons. These discrepancy metrics assess the similarity and dissimilarity of 
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automatically segmented lesions as compared to the ground truth, that is the manually 

segmented label [21]. A summary of descriptive statistics for DSC and ASSD is presented 

in Table 2. 

 

Table 2: Segmentation performance of the trained model across cross-validated folds. 

Performance Metric Mean (bootstrap 95% CI) 

Sørensen–Dice coefficient 0.65 (0.61 – 0.67), median: 0.73 

Average symmetric surface distance (ASSD) 

on MNI152 template (in mm) 
12.04 (8.44 – 19.53), median: 2.23 

 

To demonstrate accurate volume prediction, a scatter plot with histogram of differ-

ences was constructed which showed no significant difference (p-value = 0.84) between 

the manual and automatic segmentation volumes. The Pearson correlation coefficient (ρ) 

between the two volumes was 0.97(p-value < 0.001, randomization test (n = 1000)). The 

results establish the state-of-the-art performance of 3D-UNet both qualitatively (Figures 

3-6) and quantitatively (Table 2 and Figure 7). In addition, Figure 7 also shows the stability 

of segmentation across lesions of varying sizes. 

                             
Figure 7. A scatter plot with a histogram of differences shows no significant differ-

ence (Wilcoxon rank-sum test, p-value = 0.84) between the manual and automatic lesion 

volumes across cross-validation folds. Segmented lesion volumes (x 105 mm3). 

 

4. Discussion 

Understanding the brain structure-function relationship remains the fundamental 

challenge for both clinical and basic neurosciences. Brain lesions such as stroke offer a 

unique insight into brain function [1]. Although stroke lesions tend to be focal in nature, 

they usually follow vascular territories, and involve concomitant brain areas [22]. Further-

more, the immense variations in stroke lesions, and the subsequent functional recovery 

adds to the challenge of delineating the structure-function relationship [10]. Therefore, to 

study this relationship, one needs large neuroimaging dataset [23] in combination with 

the ability to accurately localization lesions. 

In this study, we developed an automatic segmentation model using state-of-the-art 

deep learning techniques and a novel combination of regularization methods.  

4.1 Regularization methods to overcome overfitting 

The ultimate test of a prediction model is its generalizability to novel datasets [24]. It is 

therefore essential to avoid overfitting the model on the data it is trained on. Overfitting 

refers to the model's high performance on the data it is trained on, and a discordant per-

formance on novel data [11]. It is hypothesized that overfitting occurs when the model 

learns irrelevant aspects of data [11].To address this issue, we used  two regularization 
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measures. The first measure was k-fold cross-validation. In k-fold cross-validation the 

data is randomly partitioned into k number of subsets, then the model is trained on k-1 

subsets (termed as training sets); and tested on the left-out subset (termed as testing set). 

Another regularization method we utilized is data augmentation [26]. Like k-fold cross 

validation, this method does not require a novel dataset to test, rather it capitalizes on the 

available data. In this method, synthetic distortions such as geometric transformation, ro-

tation, cropping, luminance variation, and magnification are introduced to the images 

[26]. The goal is to augment the available dataset with the generation of synthetic images 

[26].  

4.2 A combination approach for quantitative analysis 

Individual metrices are sensitive to specific aspects of segmentation performance, hence, 

they are sensitive to different kinds of errors. Therefore, if used singly they risk ranking 

an algorithm high that only performs well on a particular aspect. As no single metric is 

considered gold standard, a combination approach is recommended. The various kinds 

of errors that can occur in segmentation tasks include errors in lesion shape, location, and 

size [20]. Therefore, we utilized a metric targeting each of these errors, and reported these 

under the section quantitative assessment of model performance.  

As the name suggests overlap metrics are best at capturing the degree of overlapping 

voxels in the 2 segmentations, however they are not as sensitive in detecting discrepancies 

in the overall spatial distribution of the segmentation [20]. The overlap metric that we 

used is the Sørenson-Dice similarity coefficient (DSC). This index was originally described 

by Dice for ecological studies[19], but it has been commonly used in medical image seg-

mentation [27]. 

To capture location-based errors, boundary-based-distance method is utilized. These 

methods assess dissimilarity of the automatic segmentation with ground truth based on 

the contour distances of the 2 lesion masks. The boundary-based-distance metric we used 

is the average symmetric surface distance (ASSD). ASSD focuses on location errors, but it 

is not as sensitive in identifying errors in the absolute size [20]. To capture errors in size, 

we compared the 2 segmentation volumes. Total volume comparison is best for compar-

ing the total sizes, but it does not consider the shape and location of the 2 lesion masks. 

Therefore, by employing a combination approach we ensured a rigorous and comprehen-

sive performance evaluation.  

4.3 Limitations 

With any machine learning algorithm, one of the limitations is that it can learn biases from 

the training dataset. Our algorithm was optimized to be sensitive to manual segmentation 

labels, therefore it was prone to learn any biases associated with the manual segmentation 

process [28]. Although the dataset was derived from multiple sites, yet the manual seg-

mentation was done by a common group of tracers, which can introduce subjectivity and 

confounds [29].To overcome this, the model will need to be tested on independent da-

tasets. This, however, represents another challenge as there are limited publicly available 

datasets for chronic stroke with manual segmentation labels [9]. Moreover, since the test-

ing is done on a subset of data, it provides evidence for adequate internal validity, how-

ever, provides little information regarding external validity. As this issue is common for 

automatic segmentation of chronic lesions, the authors of ATLASv2.0 have created a sub-

set of test data (n =300), which has only preprocessed images available to request. The 

research groups who develop models are encouraged to request access to this dataset, run 

the model and submit the automatic labels. In this manner, an objective and unbiased test 

of generalization can be done [29].  

4.4 Future directions 

Automatic segmentation models have the potential to serve as an aid in clinical decision-

making pertaining to neurorehabilitation [30]. This is a prospective area of personalized 

medicine wherein more accurate predictions regarding patient’s recovery and relevant 

rehabilitation programs for individual patients will be made [30]. Furthermore, as strokes 

tend to reoccur in the same patient, even in cases of acute stroke, the chronic lesion seg-

mentation models can aid in foreseeing the prognosis. Chronic stroke segmentation can 
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predict the pre-stroke modified rankin score (pre-mRS) [30], which is an independent pre-

dictor of poststroke prognosis [31]. This highlights the role of chronic stroke segmentation 

models in both acute and chronic stroke settings. 

From the research standpoint, the combination of this technique with voxel-based 

lesion-symptom mapping (VLSM) will enable the establishment of new relationships be-

tween brain structure and function. VLSM is a lesion-defined method in which the pa-

tients are grouped on the basis of similar lesions and then comparison regarding behav-

ioral deficit is made on voxel-by-voxel basis[32,33]. In terms of cognitive function locali-

zation, VLSM studies in stroke patients have presented localization data pertaining to def-

icits in cognition[34], language[35], memory[36], and executive functions.[37] 

Lastly, we shared our code, detailed model architecture, and trained models in the 

supplementary materials. Data sharing is of special value when it comes to neuroimaging 

segmentation modeling [38]. In addition to potential future use by other authors, sharing 

this data enables independent verification, and reproduction of the results, thereby add-

ing to the credibility of our scientific enquiry and method [39].  

 

5. Conclusions 

For the first time, we report an automated lesion segmentation model on the ATLAS 

v2.0 dataset. This model facilitates a high-throughput, objective, and automated assess-

ment of chronic stroke lesions. We utilized a novel combination of regularization methods 

to avoid overfitting. To verify the robustness of our model we utilized a combination of 

quantitative metrices. This model, in combination with the latest image analysis tech-

niques such as voxel-based lesion-symptom mapping will enable the study of structure-

function relationships. Ultimately, this work will facilitate large scale neuroimaging anal-

yses for stroke rehabilitation research. 

 

Supplementary Materials: Standard operating protocols for manual lesion segmentation by AT-

LASv.2.0 authors can be found here: https://github.com/npnl/ATLAS/ [2]. The complete code, de-

tailed model architecture, and pre-trained models can be found at the following link: 

https://github.com/SatwantKumar/3D-unet. 
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