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Abstract: The classification of vessel types in SAR imagery is of crucial importance for maritime 1

applications. However, the ability to use real SAR imagery for deep learning classification is limited, 2

due to the general lack of such data and/or the labor-intensive nature of labeling them. Simulating 3

SAR images can overcome these limitations, allowing the generation of an infinite number of datasets. 4

In this contribution, we present a synthetic SAR imagery dataset with ship wakes, which comprises 5

46080 images for ten different real vessel models. The variety of simulation parameters includes 6

16 ship heading directions, 6 ship velocities, 8 wind directions, 2 wind velocities, and 3 incidence 7

angles. In addition, we extensively investigate classification performance for noise-free, noisy, and 8

denoised ship wake scenes. We utilize the standard AlexNet architecture and employ training 9

from scratch. To achieve the best classification performance, we conduct Bayesian optimization to 10

determine hyperparameters. Results demonstrate that the classification of vessel types based on their 11

SAR signatures is highly efficient, with maximum accuracies of 96.16%, 92.7%, and 93.59%, when 12

training using noise-free, noisy, and denoised datasets respectively. Thus, we conclude that the best 13

strategy in practical applications should be to train convolutional neural networks on denoised SAR 14

datasets. The results show that the versatility of the SAR simulator can open up new horizons in the 15

application of machine learning to a variety of SAR platforms. 16

Keywords: SAR image; ship wake; deep learning; synthetic dataset 17

1. Introduction 18

Synthetic aperture radar SAR technologies have shown remarkable progress in recent 19

years, and the availability of remotely sensed data of the sea surface is continuously 20

growing. Several spaceborne SAR missions (e.g., COSMO-SkyMed, TerraSAR-X, NovaSAR- 21

1, ICEYE) have developed a new generation of satellites exploiting SAR to provide spatial 22

resolutions, which were previously unavailable. The corresponding SAR datasets are 23

especially useful for analyzing ship wakes, not only because of the high level of detail 24

available but also because of the lower satellite orbital altitude (e.g., in comparison to 25

Sentinel-1), which decreases the range-to-velocity (R/V) ratio – one of the key factors in 26

SAR image degradation. 27

In addition, the application of artificial intelligence and machine learning (deep learn- 28

ing in particular) has also reached a significant level of maturity, with many methods 29

having been developed in the field of object detection, segmentation, and classification in 30

remote sensing images [1,2]. The main benefit of using SAR images, compared with other 31

remote sensing methods, is that they yield information for wide areas under challenging 32

weather conditions, day or night. Accurate analytics of SAR imagery is not only important 33

in the recognition of ships themselves, but also in the detection and characterization of 34

their wakes. Although the visibility of ships is primarily enabled by strong radar signal 35

backscattering, they are not always present in SAR images, especially in images with lower 36

SAR resolution (e.g. Sentinel-1). Instead, ship wake is the usual indicator of ship presence, 37
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while the ship position is also often shifted to some extent with respect to wake location as 38

a result of the Doppler effect. 39

Ship wakes provide key information for surveillance of maritime traffic (e.g., illegal 40

commercial activities) and are also useful in classifying the characteristics of the wake 41

generating vessel and hence estimating ship heading and velocity [3,4]. A detailed de- 42

scription of the SAR wake imaging mechanism is presented in [5–7]. In addition, the 43

availability of automatic identification system (AIS) data enables the integration of such 44

information for machine learning development since it can constitute the ground-truth 45

for ship identification. The main issue is the limited availability of large amounts of both 46

types of data, which are the primary inputs required for building reliable training datasets. 47

The use of synthetic SAR imagery can fill this gap, providing a theoretically infinite set of 48

images for multiple sea conditions, ship models, and SAR platforms. It is important to 49

note that in this case, a-priory simulation parameters substitute the need for AIS data. In 50

addition, this simplifies the laborious process of matching SAR images to the AIS data [8]. 51

The earliest applications of deep learning for ship detection [9] and classification 52

[10] in SAR images were proposed only a few years ago. Thereafter, the main efforts of 53

the community have focused on the acquisition of real SAR datasets of ships and few 54

such datasets have been presented [8,11–19]. However, it is important to note that most 55

of these datasets were created for detection tasks (some include segmentation) and only 56

some of them can be used for ship classification [8,12,13,18]. The first studies focusing on 57

the application of deep learning for the detection of ship wakes in SAR were [20], where 58

detected ship wakes were used for ship velocities estimation, and [6] where a real SAR 59

dataset containing ship wakes was proposed. Recently, the concept of using simulated 60

SAR images of marine vehicles with wake patterns for deep learning applications was also 61

mentioned [21]. 62

The main objective of our paper is to draw the attention of the research community to 63

the benefits of using synthetic SAR datasets for classification and detection tasks. The wake 64

system represents a unique signature for each individual ship. Nevertheless, attempting 65

the acquisition of all possible real SAR image variants for each ship would be a gargantuan 66

task, as many factors must be taken into accounts, such as different ship velocities and 67

different sea states. The use of an available and versatile SAR image simulator [7,22] allows 68

the generation of an unlimited number of different scenarios, overcoming these limitations. 69

Thus, in our work, for the first time, we present and make openly available a synthetic 70

dataset of SAR images containing ship wakes for classification purposes. It includes 46080 71

SAR images for ten different ship models. We also analyze for the first time the best 72

algorithm training strategy, by comparing the alternatives of using noise-free, noisy, and 73

denoised images for the ship identification task. 74

The communication is organized as follows: Section 2 presents the SAR imagery 75

modeling details and structure of the dataset and then describes the parameters of the 76

deep learning network that we employed. In Section 3, the classification results and 77

comparisons between different training strategies are discussed. A conclusion, with future 78

work directions and applications, is outlined in Section 4. 79

2. Materials and Methods 80

A complete description of the SAR imagery simulation methodology with all the 81

relevant mathematical details is available in [7], with the corresponding open-source 82

package (MATLAB) available via the University of Bristol Research Data Repository [22]. 83

2.1. Ship wake modeling in SAR imagery 84

A SAR image of a ship wake consists of two parts: wind- and ship-generated wave 85

components. They form the complete surface elevation model through their superposition 86

as Z = Zsea + Zship. The first part Zsea in turn is modeled based on the linear theory of 87

surface waves and includes a summation of many independent harmonic waves with 88

Rayleigh distributed amplitude A. The amplitude is based on sea wave spectrum S(k) and 89
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directional spreading function D(k, θ). In this work, we used JONSWAP spectrum SJ [23] 90

with fetch size F = 20 km and Longuet-Higgins et al. cosine type spreading function DLH 91

[24] with parameter S = 8. We utilized two wind velocities as Vw1 = 3 m/s and Vw2 = 6 m/s. 92

This choice follows from the fact that the Kelvin wake is best observed in SAR images for a 93

calm sea state (Vw ≤ 3 m/s) and cusp waves can still be observed at relatively high wind 94

velocities (6 - 10 m/s) [25]. We also selected eight different wind directions: Dw1 = 0◦, Dw2 95

= 45◦, Dw3 = 90◦, Dw4 = 135◦, Dw5 = 180◦, Dw6 = 225◦, Dw7 = 270◦, Dw8 = 315◦. 96

The second component of the SAR image, Zship, is modeled as a Kelvin wake and is 97

based on the Michell thin ship theory with its further approximated form of fluid velocity 98

potential described in [4,7]. Based on freely available information at www.marinetraffic.com, 99

we selected ten real ships (cargo, tanker, passenger vessel, high speed craft, fishing ves- 100

sel) and modeled them using the parameters shown in Table 1. Similar to the approach 101

taken for wind velocity, to account for factors influencing wake visualization, we limit 102

the minimum ship velocity to Vs1 = 5 m/s for all ship models. This is because a higher 103

ship velocity produces a better radar scattering as wake signature. In addition, in [26] it 104

was shown that faster ships are more easily detectable in SAR images. In order to provide 105

balanced training samples for each ship, we equally interpolated ship velocities between 106

the minimum velocity Vs1 and maximum velocity Vs6 (unique for each ship) providing six 107

velocities per class (Table 1). This also ensures a greater difference between the velocities 108

for different ships and as a result gives a greater diversity in wake signatures for all data. 109

Table 1. Vessel parameters used for simulating ship wakes.

Ship type Length, m Beam, m Draft, m Velocity, m/s
Vs1 Vs2 Vs3 Vs4 Vs5 Vs6

Cargo I 195 26 7.1 5 6.2 7.4 8.6 9.8 11
Cargo II 366 51 13.6 5 6.4 7.8 9.2 10.6 12
Tanker I 108 17 5.6 5 6 7 8 9 10
Tanker II 228 32 11 5 5.8 6.6 7.4 8.2 9

Passenger Vessel I 86 18 2.5 5 5.6 6.2 6.8 7.4 8
Passenger Vessel II 186 28 6.5 5 6.6 8.2 9.8 11.4 13
High Speed Craft I 100 17 2.5 5 7.8 10.6 13.4 16.2 19
High Speed Craft II 31 7 3.8 5 8 11 14 17 20

Fishing Vessel I 70 16 8 5 5.8 6.6 7.4 8.2 9
Fishing Vessel II 27 8 5.1 5 5.4 5.8 6.2 6.6 7

One of the most significant parameters influencing the SAR imaging of ship wakes is 110

the ship heading direction relative to the SAR platform flight direction. Indeed, depending 111

on the ship’s heading, waves of the Kelvin system may or may not be observable in the 112

SAR image. Therefore, we used a considerable number of ship heading directions (16 to be 113

precise) to create a greater combination of realistic SAR images of ship wakes content. The 114

ship directions are as follow: Ds1 = 0◦, Ds2 = 22.5◦, Ds3 = 45◦, Ds4 = 67.5◦, Ds5 = 90◦, Ds6 = 115

112.5◦, Ds7 = 135◦, Ds8 = 157.5◦, Ds9 = 180◦, Ds10 = 202.5◦, Ds11 = 225◦, Ds12 = 247.5◦, Ds13 116

= 270◦, Ds14 = 292.5◦, Ds15 = 315◦, Ds16 = 337.5◦. 117

SAR images were simulated corresponding to normalized radar cross-section (NRCS), 118

with tilt and hydrodynamic modulations, and velocity bunching. The size of each scene 119

0.96 × 0.96 km is chosen to include enough details of wakes for all modeled vessels but 120

also because it is a convenient size as input into the deep convolutional neural network 121

(CNN). The simulation parameters are as follows (similar to the TerraSAR-X platform): 122

Frequency f → 9.65 (X-band) [GHz]; 123

Wavelength λ → 0.031 [m]; 124

Incidence angle θr → 20, 32.5, 45 [deg]; 125

Polarization → HH; 126

Platform altitude H → 514 [km]; 127

Platform velocity V → 7600 [m/s]; 128

R/V (θr = 20, 32.5, 45 [deg]) → 72, 80.2, 95.6 [s]; 129
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Azimuth resolution → 3.3 [m]; 130

Range resolution → 3.3 [m]. 131

Finally, all SAR images were scaled within the same intensity range of values by 132

nonlinear normalization [10]: 133

N(I) =
L(I)

maxL(I)
(1)

with 134

L(I) =
{

1 + logI i f I > 1
I i f I ≤ 1

(2)

An integral part of a real SAR image is speckle noise, which can significantly suppress 135

the wake details (Figure 1 (a),(b)). If we consider real SAR images as a basis for forming the 136

training dataset, the question is: Is it beneficial to use (i) noisy images for training and then 137

noisy images for input to the classification or (ii) denoised images for training and again 138

denoised images for classification? Although we do not use real SAR images in this study, 139

this issue is very important, because synthetic data can potentially be used as a training 140

dataset for classification tasks in real SAR images. 141

(a) (b) (c)

Figure 1. Simulated SAR images (θr = 20◦) of ship wake for Passenger Vessel I with Vs = 8 m/s, Ds =
45◦ and Vw = 3 m/s: (a) noise-free I; (b) with noise In; (c) denoised Id.

To answer this question and to determine the best strategy for network training we 142

prepared three datasets: (i) noise-free images I, (ii) noisy images In, and (iii) denoised 143

images Id. They are all identical, and only differ in a noise component (absent, present, 144

or filtered). For simplicity and without loss of generality, here we chose to employ a 145

K-distributed intensity speckle model [7]. Finally, because it is time-consuming to apply 146

advanced denoisers (e.g. BM3D or Bayesian filters [27,28]) for large datasets, for illustration 147

purposes, we utilized a simple median filter of size 5 × 5. An example of simulated SAR 148

images is presented in Figure 1. 149

2.2. Dataset structure 150

The schematic illustration of the structure of the dataset is shown in Figure 2. The 151

number of the synthetic SAR images per class is based on a combination of simulated 152

parameters as follows: 6 ship velocities Vs × 16 ship heading directions Ds × 2 wind 153

velocities Vw × 8 wind directions Dw × 1 polarization HH × 3 incidence angles θr . Thus, 154

the overall number of images in the dataset for 10 classes is 46080 (10 ship models, where 2 155

models for each of five categories of ship, Table 1). 156
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Figure 2. The structure of the synthetic SAR dataset for each class (for a single incidence angle θr)
with a cross combination of ship velocities Vs, the ship heading directions Ds, wind velocities Vw,
and wind directions Dw, with an overall of 1536 combinations. The values are given in Table 1 and in
the text.

2.3. CNN architecture 157

For the purposes of evaluating the proposed dataset, we employ one of the most 158

well-known neural network architectures, AlexNet [29]. The network is comprised of 8 159

layers, where the first 5 are convolutional layers and the last 3 are fully connected layers. 160

We slightly modified a couple of parameters in this network, as shown in Figure 3, where 161

we used 1 image channel instead of 3 for the input imagery, and the final layer was updated 162

for 10 output classes instead of 1000. We also further adjusted the size of all images by 163

interpolation to 227 × 227 pixels. 164

Figure 3. The architecture of AlexNet is used for training from scratch. The input SAR image has a
size of 227 × 227 × 1 and a fully connected output layer for 10 classes.

In contrast to the large majority of studies, which use pre-trained AlexNet (transfer 165

learning), we employed the untrained AlexNet architecture (learning from scratch). As the 166

untrained network does not include optimized weights and biases, the hyperparameters 167

must be determined prior to training. Tuning these hyperparameters is a difficult and time- 168

consuming task. The optimal combination of hyperparameters was derived via Bayesian 169

optimization by maximizing the validation accuracy. We specified a range of values for each 170

hyperparameter for all datasets (I, In, Id), and 30 trials per dataset were evaluated. In Table 171

2 the initial range of values and estimated optimal values for each dataset is provided. For 172

all calculations, we used stochastic gradient descent with momentum (SGDM) optimizer, 173

a batch size of 256, a maximum number of epochs of 50, and a frequency of network 174

validation of 108. 175
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Table 2. Estimated hyperparameters via Bayesian optimization.

Parameter Range of values Optimal value
I In Id

Initial learning rate [1e-5, 0.5] 2.1245e-03 2. 5684e-03 1.0122e-3
Momentum [0.1, 0.98] 0.89919 0.93352 0.97300

L2 regularization [1e-10,1e-2] 5.4902e-04 7.8834e-05 2.0062e-10

Additionally, to prevent overfitting, data augmentation was performed as follows: 176

a random translation within the range [-4, 4] pixels on the X and Y axes, and random 177

rotation within a range of [-5, 5] degrees. Three trained networks are presented in this 178

study corresponding to a noise-free dataset I (I-Net), a noisy dataset In (In-Net), and a 179

denoised dataset Id (Id-Net). 180

3. Results and Discussions 181

The proposed dataset was analyzed in two respects: (i) the performance in classifying 182

ship types based on their SAR image signatures, and (ii) for determining the best classifica- 183

tion strategy in terms of using either noise-free, noisy or denoised training datasets. 184

All datasets were randomly partitioned into a training set (60%), validation set (20%), 185

and test set (20%). It is important to note here that in order to cross-validate different 186

datasets, all images within the training, validation, and test sets were the same for all 187

datasets (I, In, Id). For example, this allows the use of the network trained on the noise-free 188

dataset I (I-Net), and then, by substitution of the noise-free test set with the appropriate 189

test sets from noisy In and denoised Id datasets, the evaluation the network performance in 190

terms of classification accuracy. Let’s start with the overall comparison of trained networks 191

and their performance per class. Figure 4 illustrates confusion matrix graphs calculated 192

for all trained networks applied on relevant pairs (I-Net: I, Id-Net: Id, In-Net: In) for the 193

test sets. The accuracy is logical and follows the intuition that “less noise leads to better 194

performance” (I-Net - 96.16%, Id-Net - 93.59%, In-Net - 92.7%). 195

(a) (b) (c)

Figure 4. Confusion matrices for classification performance on test sets by trained CNNs for paired
‘network-dataset’: (a) I-Net: I, (b) Id-Net: Id, (c) In-Net: In. Diagonal cells correspond to correctly
classified observations.

In Table 3 the summary of classification accuracy results for different trained networks 196

is presented. Evaluations were only carried out for combinations potentially applicable to 197

real SAR images. This is due to the fact that real radar images always include speckle noise, 198

and for example, the use of networks trained on noisy In and denoised Id datasets (In-Net 199

and Id-Net) for ship identification in the noise-free dataset I is irrelevant. In this sense, the 200
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estimation of the accuracy of the network I-Net on the dataset I also seems redundant, 201

but we presented it for an overall comparison of the triad I-Net, In-Net, and Id-Net. In 202

summary, the following strategies were investigated: 1. Noise-free-trained network I-Net 203

evaluated with noise-free, noisy, and denoised datasets; 2. In-Net and Id-Net networks 204

applied to the noisy and denoised datasets. 205

Table 3. Accuracy of the trained CNNs for different datasets including training and test sets.

Network Training set Test set
I In Id I In Id

I-Net 98.68 77.35 74.21 96.16 75.90 73.18
In-Net − 97.82 72.24 − 92.70 69.93
Id-Net − 50.21 99.16 − 48.79 93.59

Interestingly the maximum accuracy was achieved for Id-Net with the Id dataset but 206

only for the training set case (99.16%). The minimum accuracy of 48.79% occurred when 207

Id-Net was used on the In dataset (test set) which confirms the significant influence of noise 208

on the classification process. However, the better accuracy is related to I-Net when it was 209

cross-utilized on In and Id (75.9% and 73.18%) in comparison to scenarios where In-Net was 210

used with Id (69.93%) and again Id-Net with In (48.79%). Furthermore, in view of judging 211

potential applicability to the case of real SAR images, the best accuracy was achieved for 212

the network Id-Net with the Id dataset (93.59%). However, in practice, this could also be 213

dependent on the denoising method, while here a simple median filtering was employed, 214

as previously mentioned (Section 2.1). From this perspective, training straightaway based 215

on a noisy dataset can be considered as an alternative approach, since the accuracy for 216

the network In-Net with the In dataset also achieved a good value of 92.7%. Hence, one 217

can conclude that the two strategies that can be applied when using our synthetic SAR 218

dataset of ship wakes are to train on either (i) the denoised Id dataset, or (ii) the noisy In 219

dataset. The latter has the advantage of reducing additional image processing time – by 220

excluding denoising. This is possible due to the generation of a large number of synthetic 221

radar images using multiple simulation scenarios. 222

For visualization purposes, Figure 5 also shows 25 randomly selected test images 223

(In-Net: In) with predicted classes and predicted probabilities of these classes. It is readily 224

noticeable that images with less distinguishable ship wake details are less accurately 225

classified. 226
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Figure 5. Randomly selected test images (In-Net: In) with predicted classes and their predicted
probabilities.

4. Conclusions 227

Synthetic aperture radar has been used for over fifty years to image waves on the 228

ocean’s surface. The many theoretical developments achieved in the hydrological modeling 229

of the sea surface and the effects on SAR image formation now allow the generation of very 230

realistic synthetic SAR datasets. This can enable the use of machine learning in the classi- 231

fication of vessels. In this study, we have introduced and analyzed the first such dataset 232

to help overcome the well-known limitation of the lack of a sufficient number of labeled 233

real SAR images with ship wakes for deep learning classification. The conceptualization of 234

this work has consisted of two aspects: (i) classification of ship types on the basis of their 235

wake signatures in synthetic SAR images, and (ii) analysis of the classification strategies in 236

terms of using noise-free, noisy and denoised datasets. In contrast to the usual practice of 237

using pre-trained networks, we have employed the untrained CNN AlexNet architecture 238

and performed training from scratch. It is demonstrated that even with a small number 239

of epochs (50), the networks were trained with a high level of accuracy for training sets 240
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98.68%, 97.82%, and 99.16%, and for test sets 96.16%, 92.7%, and 93.59% (noise-free, noisy 241

and denoised datasets respectively). 242

One should keep in mind that the ship velocity affects the amplitude of the wakes 243

and consequently their visualization in the radar image. The same applies to wind velocity, 244

but the general principle is that a bigger amplitude for wakes and smaller for ambient 245

sea waves is better for wake visualization. This creates uncertainties in the choice of 246

ship velocity for simulation, as for the same velocity and constant amplitude of ambient 247

sea waves, one ship’s wake will not be visible while another will. This means that the 248

training dataset may contain images where only the sea waves are represented, which may 249

have an impact on classification accuracy. However, that also applies to the concept of a 250

’boundary condition’ [7], where due to similar size (wavelength) and amplitude of the sea 251

and ship waves, wake signatures can disappear or be less noticeable in the SAR image. This 252

question should therefore be explored further, bearing in mind that with the increase in the 253

number of ship models, the problem becomes more complicated. Another major issue that 254

should be studied is the impact, that similar wake signatures, corresponding however to 255

different vessels, has on classification accuracy. Finally, and perhaps most importantly, the 256

application to classifying ships in real data should be investigated, either by direct use of 257

the presented trained networks or after some form of transfer learning. 258

To summarize, we highlight that there are a number of advantages to using synthetic 259

SAR datasets for classifying vessels. Since simulations allow for the generation of the 260

necessary amount of data, it solves the imbalanced data problems often experienced 261

with real data when they have a skewed class distribution. Automation also means that 262

synthetic data generation is much faster than the usual manual processing of real SAR 263

images. Furthermore, the use of known parameters for simulations can replace AIS data, 264

which also considerably simplifies the typical, laborious process of integrating AIS data 265

with SAR images. Ultimately, the versatility of our SAR simulator allows the building of 266

datasets corresponding to different SAR platforms. 267
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7. Rizaev, I.G.; Karakuş, O.; Hogan, S.J.; Achim, A. Modeling and SAR Imaging of the Sea Surface: a Review of the State-of-the-Art 290

with Simulations. ISPRS Journal of Photogrammetry and Remote Sensing 2022, 187, 120–140. 291

8. Hou, X.; Ao, W.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 292

for ship detection and recognition. Science China Information Sciences 2020, 63, 1–19. 293

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 July 2022                   doi:10.20944/preprints202207.0450.v1

https://doi.org/10.20944/preprints202207.0450.v1


10 of 10

9. Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual region-based convolutional neural network with multilayer fusion for SAR ship 294

detection. Remote Sensing 2017, 9, 860. 295

10. Bentes, C.; Velotto, D.; Tings, B. Ship classification in TerraSAR-X images with convolutional neural networks. IEEE Journal of 296

Oceanic Engineering 2017, 43, 258–266. 297

11. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. 2017 SAR in Big Data Era: Models, 298

Methods and Applications (BIGSARDATA). IEEE, 2017, pp. 1–6. 299

12. Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z.; Yu, W. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation. 300

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2017, 11, 195–208. 301

13. Li, B.; Liu, B.; Huang, L.; Guo, W.; Zhang, Z.; Yu, W. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship 302

targets in Sentinel-1 imagery. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). IEEE, 2017, pp. 1–5. 303

14. Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR dataset of ship detection for deep learning under complex backgrounds. 304

remote sensing 2019, 11, 765. 305

15. Xian, S.; Zhirui, W.; Yuanrui, S.; Wenhui, D.; Yue, Z.; Kun, F. AIR-SARShip-1.0: High-resolution SAR ship detection dataset. J. 306

Radars 2019, 8, 852–862. 307

16. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance 308

segmentation. Ieee Access 2020, 8, 120234–120254. 309

17. Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1. 0: A deep learning dataset 310

dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sensing 2020, 12, 2997. 311

18. Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. Sar ship detection dataset (ssdd): 312

Official release and comprehensive data analysis. Remote Sensing 2021, 13, 3690. 313

19. Lei, S.; Lu, D.; Qiu, X.; Ding, C. SRSDD-v1. 0: A High-Resolution SAR Rotation Ship Detection Dataset. Remote Sensing 2021, 314

13, 5104. 315

20. Kang, K.m.; Kim, D.j. Ship velocity estimation from ship wakes detected using convolutional neural networks. IEEE Journal of 316

Selected Topics in Applied Earth Observations and Remote Sensing 2019, 12, 4379–4388. 317

21. Jones, B.; Ahmadibeni, A.; Shirkhodaie, A. Simulated SAR imagery generation of marine vehicles and associated wakes using 318

electromagnetic modeling and simulation techniques. Applications of Machine Learning 2021. SPIE, 2021, Vol. 11843, pp. 37–49. 319

22. Rizaev, I.; Achim, A. AssenSAR Image Simulator. https://doi.org/10.5523/bris.el0p94vgxjhi2224bx78actb4 2021. 320

23. Hasselmann, K.; Barnett, T.; Bouws, E.; Carlson, H.; Cartwright, D.; Enke, K.; Ewing, J.; Gienapp, H.; Hasselmann, D.; Kruseman, 321

P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 322

8-12 1973. 323

24. Holthuijsen, L.H. Waves in oceanic and coastal waters; Cambridge university press, 2010. 324

25. Panico, A.; Graziano, M.D.; Renga, A. SAR-based vessel velocity estimation from partially imaged Kelvin pattern. IEEE Geoscience 325

and Remote Sensing Letters 2017, 14, 2067–2071. 326

26. Tings, B.; Pleskachevsky, A.; Velotto, D.; Jacobsen, S. Extension of ship wake detectability model for non-linear influences of 327

parameters using satellite based x-band synthetic aperture radar. Remote Sensing 2019, 11, 563. 328

27. Achim, A.; Tsakalides, P.; Bezerianos, A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. 329

IEEE Trans. Geosci. and Remote Sensing 2003, 41, 1773–1784. 330

28. Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geoscience 331

and remote sensing magazine 2013, 1, 6–35. 332

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Advances in neural 333

information processing systems 2012, 25. 334

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 July 2022                   doi:10.20944/preprints202207.0450.v1

https://doi.org/10.20944/preprints202207.0450.v1

