

SUMOylation in skeletal development, homeostasis, and disease

Huadie Liu¹, Sonya E. L. Craig¹, Vladimir Molchanov¹, Joe Floramo¹, Yaguang Zhao¹ and Tao Yang^{1,2}

1. Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503
2. Corresponding to: Email: tao.yang@vai.org; Tel: 616-234-5820

ABSTRACT

The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes such as chromosomes organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in the physiological and disease contexts.

KEYWORDS

SUMO; MSC; osteoblast; chondrocyte; osteoclast; signaling pathway; arthritis; osteosarcoma; developmental disorders

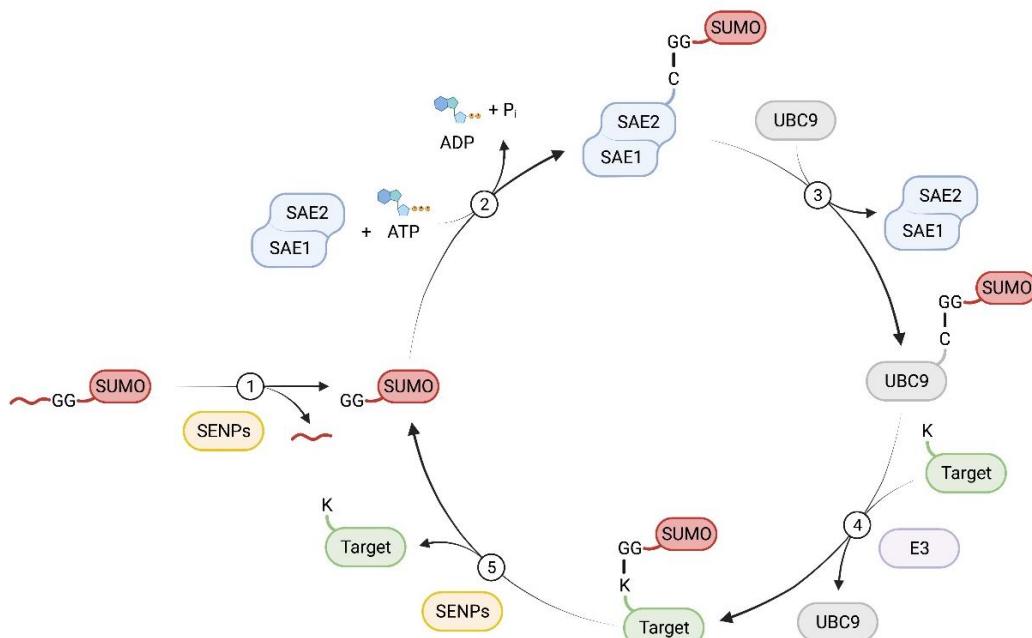
Introduction:

The emergence of skeletal system was a leap forward in evolution, for it created a strong framework for the vertebrate body, protecting vital organs, facilitating movement, establishing a niche for hematopoiesis, and serving as a mineral reservoir.

The skeletal system develops from mesenchymal cells originated from the ectoderm and mesoderm through one of two types of ossifications processes: intramembranous or endochondral ossification. In intramembranous ossification, mesenchymal cells directly differentiate into osteoblasts to generate flat bones of the skull and lateral clavicles¹. Whereas endochondral ossification, which gives rise to the bones at the base of skull and the long bones, starting from mesenchymal condensation followed by primary and secondary ossification². The condensed mesenchymal cells first undergo chondrogenic differentiation to form cartilage templates²⁻⁴; next, chondrocytes in the center of the cartilage templates mature and differentiate into hypertrophic chondrocytes that secrete factors to promote vascular invasion²⁻⁵. This brings in hematopoietic cells from the blood and osteogenic progenitors from the perichondrium²⁻⁵. Next, osteoblasts, derived from either osteogenic progenitors or hypertrophic chondrocytes, produce bone matrix to replace the cartilage templates generated by the apoptotic hypertrophic

chondrocytes²⁻⁷. At the same time, bone-absorbing osteoclasts derived from the hematopoietic lineage remodel the bone and form the bone marrow cavity⁸. Secondary ossification areas form at the center of the cartilage at both ends of long bones in a process similar to primary ossification^{8,9}, dividing cartilage into two parts: the growth plate, which contains growth plate chondrocytes (GPCs); and articular cartilage, which consists of articular cartilage chondrocytes (ACCs). The finely controlled, directional chondrocyte proliferation and differentiation in the growth plate propels the elongation of the bone. The coupling between osteoblast-mediated bone formation and osteoclast-mediated bone resorption continues throughout life to maintain bone tissue homeostasis^{10,11}.

The development and homeostasis of the skeletal system requires diverse and responsive signaling and cell-cell communication, which heavily rely on dynamic posttranslational modifications (PTMs) systems. PTMs expand the proteome size tremendously without needing *de novo* protein synthesis, allowing cells to regulate complex cellular processes dynamically and efficiently. PTMs participate in every aspect of cell homeostasis, and their dysregulation often leads to disease¹². PTM pathways are common drug targets for disease treatments, for they are reversible and dependent on enzymatic activity. SUMOylation is a branch of ubiquitination-like (Ubl) PTMs that conjugate SUMO (an ~100 aa protein tag) to target proteins and has a strong connection with stress responses and aging. Below, we summarize the contribution of SUMOylation pathways to skeletal physiology and disease.


A. SUMO and SUMOylation

SUMOylation is a highly dynamic and reversible PTM that attaches SUMO proteins onto target proteins. Five SUMO paralogues (SUMO1, 2, 3, 4, and 5) have been identified in mammals, each exhibiting unique expression patterns and levels of homology¹³⁻¹⁶. SUMO1-3 are ubiquitously expressed in all tissues, whereas SUMO4 is mainly found in kidney, spleen, and lymph nodes, and SUMO5 expression is restricted to several tissues, with exceptionally high expression levels in testes and peripheral blood leukocytes¹⁴⁻¹⁷. In humans, SUMO2 shares 97%, 86%, 50% and 48% amino acid sequence homology with SUMO3, 4, 5 and 1 respectively^{14,15,18}. SUMO5 is 88% identical to SUMO1¹⁴.

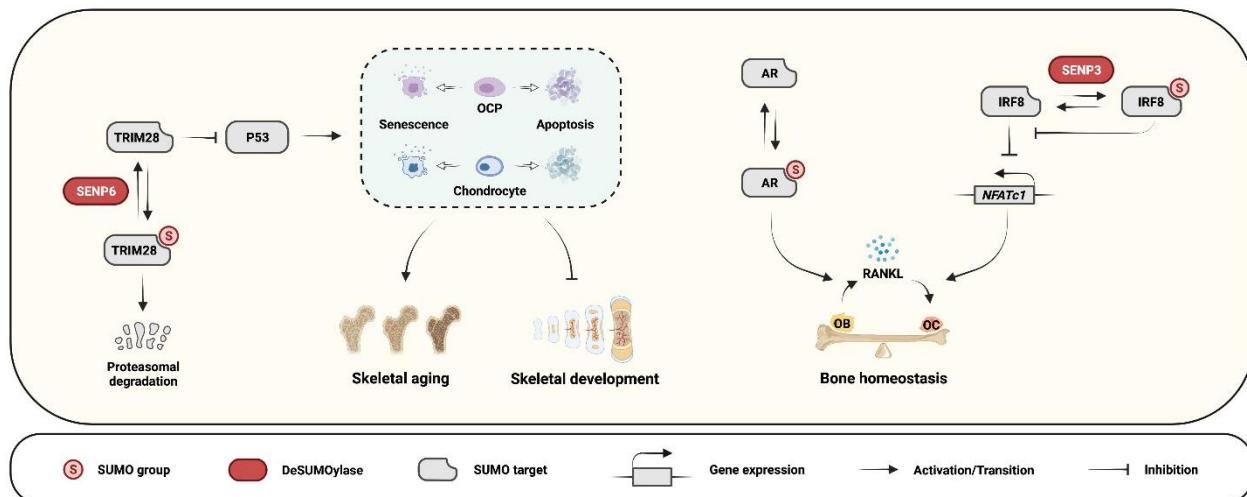
SUMO modifications are attached to a single or multiple lysine residue(s) of target proteins (mono-SUMOylation and multi-SUMOylation, respectively). SUMO2 and 3 contain several lysine residues that are themselves SUMOylated, allowing for polymeric and branched SUMO chain formation (polySUMOylation)^{14,19-21}. Generally, SUMO1 modifications tend to occur

under normal physiological conditions, while SUMO2 and 3 conjugations are more prominent in response to stress²², with some exceptions²³⁻²⁷. SUMO4 and 5 are not well characterized and their functions remain unknown.

SUMOylation involves a series of enzymatic reactions with E1, E2, and E3 ligases²⁸ (Figure 1). First, the SUMO precursor protein is cleaved by the Sentrin-specific proteases (SENPs), a family of SUMO-specific C-terminal hydrolases, to expose its C-terminal di-glycine (GG) motif. This mature SUMO is then activated by the E1 complex, which consists of SUMO activating enzyme subunit 1 (SAE1) and SAE2 (UBA1), by forming a thioester bond at the cysteine of SAE2 via an ATP-dependent reaction²⁹. Next, the activated SUMO group is transferred to the sole SUMO E2 enzyme, UBC9 (SUMO ubiquitin-conjugating enzyme 9). Finally, UBC9, with or without the help of SUMO E3 ligases, conjugates the SUMO group to the epsilon-NH₂ of a lysine in the target protein. SUMOylation substrate specificity is determined by UBC9 or SUMO E3 ligases. UBC9 recognizes consensus motifs, typically ψ KxE (ψ represents a hydrophobic amino acid; K, lysine; x, any amino acid; and E, glutamic acid)^{28,30}. SUMO E3 ligases facilitate the transfer of the SUMO molecule from UBC9 to the substrate proteins.^{28,29,31}. Unlike the ubiquitylation system, where hundreds of distinct E3 ligases have been identified, there are only a few known SUMO E3 ligases, including members of the protein inhibitor of STAT (PIAS) family³²⁻³⁵. The SUMO E3 ligase activity of PIAS proteins reflects only one aspect of their function³⁶.

Fig. 1 The enzymatic process of protein sumoylation and desumoylation.

In addition to proteolyzing the SUMO precursor, SENPs can also remove SUMO proteins from their targets, a process known as deSUMOylation³¹. Seven SENP proteins have been identified in humans (SENP1-3, SENP5-7, and SENP8¹⁹). SENP1, 2, 3, and 5 catalyze both SUMO maturation and deconjugation, whereas SENP6 and 7 do not catalyze SUMO maturation, but instead have poly-SUMO chain-editing function^{28,37,38}. Besides the SENP family, three additional SUMO proteases have been identified in humans: desumoylating isopeptidase 1 and 2 (DeSI1 and DeSI2)³⁹, and ubiquitin-specific protease-like 1 (USPL1)⁴⁰. These desumoylases share little sequence homology with the SENP proteases, and their functions are less well characterized⁴¹.


The effects of SUMO modifications on their target proteins are diverse and are mainly classified into three categories¹³ : first, the attachment of the SUMO group can mask binding sites of the target protein, thus impairing its interaction with other molecules^{13,42}; second, SUMOylation can introduce novel binding sites within the target protein, thus conferring novel molecular interactions^{13,42}; finally, SUMO can change the structure of the target protein, thereby affecting its function^{13,42}. The SUMOylation/deSUMOylation equilibrium regulates many cellular processes, including DNA damage response, mitochondrial dynamics, cell growth, proliferation, senescence, and apoptosis. Disruption of this SUMOylation/ deSUMOylation balance is associated with many diseases, including cancer, neurodegenerative diseases, heart disease, and skeletal diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA)^{29,43-45}.

B. SUMOylation in Skeletal Cell Differentiation, Homeostasis, and Disease

Osteoblasts, chondrocytes, and osteoclasts are the major cell types of the skeletal system and cooperate seamlessly to regulate bone development and homeostasis⁴⁶⁻⁴⁸.

B.1 SUMOylation in osteogenesis, osteoblast homeostasis, and bone mass regulation

SUMOylation regulates key signaling pathways, transcription factors, hormones, and epigenetic regulators of osteogenesis and osteoblasts; the requirement for this PTM is demonstrated by the dysregulation of bone development and homeostasis when SUMOylation is disrupted (selected examples are illustrated in **Figure 2**).

Fig. 2 Exemplary sumoylation pathways in skeletal physiology.

Signaling pathways. We reported that postnatal and ubiquitous loss of SENP6 leads to kyphosis, a sign of premature skeletal aging⁴⁹. Furthermore, mice with OCP-specific *Senp6* knockout have small skeletons and decreased trabecular bone mass and cortical thickness, as well as delayed secondary ossification center formation⁴⁹. OCP-derived cell lineages undergo severe apoptosis and cellular senescence. Mechanistically, *Senp6* loss results in excessive SUMOylation of the multifaceted protein TRIM28, which is involved in chromatin silencing, transcriptional repression, and p53 inhibition. SUMOylation destabilizes TRIM28 and weakens TRIM28-mediated p53 repression, leading to OCP/chondrocyte apoptosis and senescence⁴⁹.

Importantly, SUMOylation regulates TGF- β /BMP signaling, a fundamental and diverse signaling network that controls embryonic skeletal development and postnatal bone homeostasis⁵⁰⁻⁵³. TGF- β /BMP superfamily ligands interact with their heteromeric receptor complexes and transmit extracellular signals to the nucleus via SMAD proteins⁵⁰⁻⁵³. In the human Saos-2 osteosarcoma cell line, SMAD4 interacts with and is SUMOylated by UBC9. Knockdown of *Ubc9* decreases the levels of SMAD4 protein and phosphorylated SMAD1, prevents the nuclear accumulation of SMAD1 and 4, and decreases the expression of osteogenic transcription factors downstream of BMP (*Runx2*, *Dlx5*, *Msx2*, and *Osx*)⁵⁴. Conflicting data in C2C12 mouse myoblasts and ST2 mouse bone-marrow derived stromal cells (BMSCs), has demonstrated that *Ubc9* knockdown can elevate BMP signaling and enhance osteogenic differentiation⁵⁵. Mutation of the SMAD4 SUMOylation site (K158R) increases SMAD4 transcriptional activity⁵⁵. One explanation for the contradictory findings is that the

osteosarcoma cells are a transformed cancer cell line that likely has distinct signaling machinery from the BMSC and C2C12 myoblasts.

Transcription factors. Essential transcription factors for osteoblast differentiation, including the RUNX family members RUNX1, 2, 3 and Osterix⁵⁶⁻⁶¹, are also regulated by SUMOylation⁶²⁻⁶⁴. The SUMO E3 ligase PIAS1 promotes SUMOylation at K144 of RUNX1, K181 of RUNX2, and K148 of RUNX3⁶². Increased RUNX2 SUMOylation leads to RUNX2 degradation, and PIAS1-mediated SUMOylation inhibits RUNX3 transcriptional activity⁶². Osterix is SUMOylated by SUMO1 in C2C12 cells⁶⁴. Knockdown of the SUMO E3 ligase, PIASx β , in MC3T3-E1 mouse osteoblastic cells inhibits osteogenic differentiation and matrix mineralization⁶⁵. PIASx β expression, but not expression of a PIASx β -SUMOylation-defective mutant, enhances the transcriptional activity of Osterix, suggesting that Osterix SUMOylation increases its activity⁶⁵.

Our own studies have shown that inhibition of SUMOylation can yield profound effects on BMSC fate determination between osteogenesis and adipogenesis. We reported that *ginkgolic acid*, a SUMOylation inhibitor that binds to E1 ligase to prevent the formation of the SAE1-SUMO intermediate, inhibits the expression of RUNX2 and Osterix while promoting the expression of the adipogenic transcription factors PPAR γ and CE/BP α ⁶⁶. Consistent with our findings, PPAR- γ SUMOylation inhibits PPAR- γ transcriptional activity in BMSCs. When stimulated with GDF11 (a TGF β family member), PPAR- γ SUMOylation attenuates adipogenesis in favor of osteogenesis⁶⁷.

Hormones. Hormones and their receptors, especially the Androgen receptor (AR), are important regulators of skeletal development. AR knockout dramatically reduces trabecular and cortical bone mass⁶⁸. SUMOylation of ARs is necessary for bone mass maintenance, as mutations (K381R and K500R) within the AR SUMOylation site result in significantly decreased trabecular bone and cortical bone mass⁶⁹. Of note, while loss of AR SUMOylation decreases osteoblast numbers, the number of osteoclasts is unaffected⁶⁹.

Epigenetic regulators. SUMOylation is also implicated in the epigenetic regulation of osteogenesis. In human dental follicle stem cells, SENP3 binds to and deSUMOylates RBBP5, an important component of several histone methyltransferase complexes⁷⁰⁻⁷². This facilitates the formation of active MLL1/MLL2 histone methyltransferase complexes that methylate H3K4 residues on the promoters of *DLX3* (an osteogenic transcription factor) and a subset of other HOX genes, thus enhancing osteogenic differentiation⁷³.

B.2. SUMOylation in chondrogenesis, chondrocyte homeostasis, and osteoarthritis

Chondrocytes of healthy cartilage are formed by the differentiation of skeletal progenitor/stem cells (SSCs) into GPCs through an intermediate and bipotent osteochondroprogenitor, or into ACCs via a multipotent joint progenitor^{4,74,75}. GPCs proliferate and produce the extracellular matrix template for subsequent ossification, thus allowing for fast elongation of bone elements^{4,74,75}. In contrast, ACCs are mostly quiescent, but secrete and maintain extracellular matrix to sustain the cartilage integrity in response to outside stimuli and tissue damage and to provide a smooth and lubricated surface for articulation^{76,77}.

SUMOylation regulates the function of chondrogenic transcription factors. SOX9, the master regulator of chondrogenesis and cartilage development⁷⁸⁻⁸⁰, is a SUMO target protein. SUMOylation of SOX9 has been detected in COS-7, chick neural crest cell, U2OS osteosarcoma cells and 293T cells, however, the consequences of SOX9 SUMOylation varies in these contexts⁸¹⁻⁸⁴. A link between chondrogenesis and SOX9 SUMOylation was observed in a mouse model with OCP-specific deletion of *Shp2*⁸⁵, a protein-tyrosine phosphatase required for activating the Ras/ERK pathway^{86,87}. The knock-out OCPs have increased chondrogenesis but decreased ossification⁸⁵. Total Sox9 protein, phosphorylated SOX9, and SUMOylated SOX9 were all upregulated in SHP2-deficient chondrocytes, in addition to the SOX9 target genes *Acan* and *Col2a1*⁸⁵. This supports the notion that SUMOylation regulates chondrogenesis through SOX9.

SOX6 and NKX3.2 are two other chondrogenic transcription factors regulated by SUMOylation^{88,89}. SOX6 is a downstream target of SOX9. In 293T cells, SUMOylation represses SOX6 transcriptional activity⁸⁸. When SUMOylation is reduced, via mutations of two SOX6 SUMOylation sites, *UBC9* knockdown or loss of function mutations, or *SENP2* overexpression, SOX6 transcriptional activity increases⁸⁸. NKX3.2 regulates chondrocyte viability and differentiation, while preventing chondrocyte hypertrophy⁸⁹. In the ATDC5 chondrogenic cell line, HDAC9-dependent deacetylation of NKX3.2 triggers its SUMOylation⁸⁹. This leads to SUMO-targeted NKX3.2 ubiquitylation and degradation, causing hypertrophy and apoptosis of ATDC5 cells⁸⁹.

SUMOylation also likely regulates the maintenance of heterochromatin structure in articular cartilage. For instance, DGCR8 – which maintains heterochromatin through interactions with TRIM28 and HP1y – is stabilized to prevent its degradation via the ubiquitin-proteasome

pathway by SUMO1 modification at the K707 residue^{90,91}. We know that DGCR8 is important for chondrocyte differentiation, maintenance, and cartilage regeneration^{92,93}; future studies are needed to confirm a direct role for DGCR8 SUMOylation in chondrocyte homeostasis. Another heterochromatin regulator, CLOCK, the core component of the mammalian circadian machinery, prevents stem cell aging and promotes chondrogenesis by stabilizing heterochromatin via TRIM28^{94,95}. CLOCK transcriptional activity is increased by SUMOylation at residues K67 and K851^{94,95}. Again, future experiments assessing whether CLOCK SUMOylation is required for chondrocyte differentiation and homeostasis are needed. *In vivo* studies where SUMO specific regulatory proteins are knocked out specifically in chondrocytes or chondrocyte progenitors will clarify the role of SUMOylation in the development of chondrocytes and homeostasis of articular chondrocytes.

Osteoarthritis (OA) is characterized by progressive loss of cartilage, the formation of bone spurs, and chronic synovial inflammation⁹⁶. OA severely impairs joint function and often causes joint pain⁹⁶. The onset and progression of OA are highly associated with various risk factors, including gender, genetic predisposition, obesity, joint malalignment, sports injury, and aging⁹⁶. Several lines of evidence suggest that enhanced SUMOylation promotes OA pathogenesis. A large genome-wide association analysis in Europe identified the rs9350591 C/T single nucleotide polymorphism (SNP) located upstream of the *SENP6* locus as one of the most strongly OA-associated SNPs⁹⁷. *SENP6* expression is significantly decreased in OA cartilage even in the absence of rs9350591, suggesting that a deficiency in *SENP6* desumoylase activity may be a widespread phenomenon in OA⁹⁸. Moreover, IL-1 β treatment of human articular chondrocytes induces the SUMO1 modification of S100A4 (a member of the Ca²⁺-binding S100 proteins that modulates p53 transcriptional activity), resulting in S100A4 nuclear translocation and activation of MMP13 (a major OA-promoting protease that degrades cartilage) expression by binding to the *MMP13* promoter region⁹⁹.

In contrast, several studies suggest that SUMOylation decreases OA marker expression. A high-throughput screen of primary human ACCs identified *SENP3* as a pro-OA gene¹⁰⁰. *SENP3* overexpression up-regulated several OA markers, including *MMP13*, *COX2* (cyclooxygenase-2), *iNOS* (inducible nitric oxide synthase), and *AGG1* (aggrecanase-1)¹⁰⁰. Also, SUMO1 modification of interferon regulatory factor 1 (IRF-1) was induced by the antioxidant alpha-lipoic acid in human ACCs¹⁰¹. This modification decreased the transcriptional activity of IRF-1, thus inhibiting the IL-1 β -induced expression of OA marker genes, including *MMP3* and *MMP13*¹⁰¹. Furthermore, in human primary ACCs, basic fibroblast growth factor

(bFGF) increases ETS-like-1 protein (ELK-1) phosphorylation but decreases ELK-1 SUMOylation. Decreased ELK-1 SUMOylation enhances its transcription of MMP13, thus promoting cartilage matrix degradation¹⁰².

B.3. SUMOylation in osteoclastogenesis and osteoclast function

Osteoclasts differentiate from the hematopoietic cell lineage upon induction by cytokines, such as m-CSF and RANKL, present in the bone and bone marrow microenvironment^{103,104}. Osteoclast progenitors differentiate, fuse, and form multinucleated mature osteoclasts, which produce acid and matrix-degrading proteases and serve as dedicated bone-resorbing cells of the skeletal system^{103,104}.

Recent studies revealed the regulatory role of SUMOylation in osteoclast formation and function. For instance, SENP3 suppresses osteoclastogenesis. Mice with the *Lyz2*-Cre-mediated *Senp3* deletion in bone marrow-derived monocytes exhibit decreased bone mass¹⁰⁵. These knockout mice also have aggravated bone loss after ovariectomy due to overactivation of osteoclasts. Mechanistically, *Senp3* deletion increases SUMO3 modification of IRF8 and weakens the ability of IRF8 in suppressing *NFATc1* gene expression¹⁰⁵. In addition, transgenic mice overexpressing the SUMO E3 ligase PIAS3 exhibit an osteopetrosic phenotype caused by impaired osteoclast differentiation¹⁰⁶. PIAS3 overexpression in RAW264.7 cells inhibits *c-Fos* and *Nfatc1* expression, thereby blunting RANKL-induced osteoclastogenesis¹⁰⁶. In a bone marrow monocyte–osteoblast co-culture system, PIAS3 overexpression in osteoblasts downregulated IL6-induced RANKL expression and inhibited osteoclast formation. Conversely, downregulation of PIAS3 in osteoblasts increased RANKL expression¹⁰⁶. Thus, PIAS3 inhibits osteoclastogenesis either by intrinsically inhibiting osteoclast differentiation or by indirectly suppressing the expression of osteoclastogenic cytokines, such as RANKL, from osteoblasts. However, as PIAS3 has other functions besides SUMO E3 ligase activity, it is still unclear whether the activity of PIAS3 in osteoclastogenesis depends upon its E3 ligase function or not.

B.4 SUMOylation in developmental diseases

Split hand/split foot malformation (SHFM). SHFM is a rare limb malformation characterized by clefts in the middle of the hands and feet, as well as syndactyly, aplasia/hypoplasia of phalanges, metacarpals and metatarsals¹⁰⁷. P63 α mutations are associated with SHFM^{108,109}. The C-terminal domain of P63 α binds to UBC9, which conjugates

SUMO1 to K549 and K637 of P63 α ^{110,111}. The SHFM-associated P63 α mutation Q634X disrupts the interaction between P63 α and UBC9. K549E and K637E mutations of P63 α , both of which block P63 α SUMOylation, markedly increase the transcriptional activity of TAP63 α (an isoform of P63 α containing the N-terminal transactivation domain)¹¹¹. At the same time, these mutations inhibit the dominant-negative effect of the naturally occurring N-terminus truncated isoform of P63 α , Δ NP63 α . Cells expressing mutant P63 α lacking the two SUMOylation sites have decreased expression of genes related to bone and tooth development, such as *Runx2* and *Mint*¹¹¹. Furthermore, both SUMOylation and ubiquitylation are required for the efficient degradation of Δ NP63 α ¹¹². These data indicate the functional importance of P63 α SUMOylation in limb development.

Craniofacial disorders. Craniofacial disorders are one of the most common human birth defects. Cleft lip and palate are the most frequent types of craniofacial disorders¹¹³. Several studies have linked SUMO1 to cleft lip and palate. First, a balanced chromosomal translocation 46,XX,t(2;8)(q33.1;q24.3) that results in SUMO1 haploinsufficiency was identified in a patient with isolated cleft lip and palate¹¹⁴. Second, a 4-SNP SUMO1 haplotype was found significantly associated with non-syndromic cleft lip with or without cleft palate (NSCLP) from a study of 181 patients and 162 healthy controls of Han Chinese origin¹¹⁵. Other studies have related SUMO1 to cleft lip with or without cleft palate, cleft palate only, or NSCLP in Poland¹¹⁶, Ireland¹¹⁷, and western China¹¹⁸. In addition, transcription factors such as TBX22, MSX1, SATB2, P63, PAX9, TRPS1, and EYA1, which contribute to the development of the lip and palate, have all been identified as substrates of SUMO modification¹¹⁹. For example, SUMOylation regulates the subnuclear localization, stability, and transcriptional activity of SATB2^{120,121}, affects subnuclear localization of MSX1^{122,123}, modulates the transcriptional activity and stability of P63 (see above section on SHFM), facilitates the transcriptional repressor activity of TBX22¹²⁴, and regulates the transcriptional suppression function of TRPS1¹²⁵. In summary, the formation of lip and palate appears to be particularly sensitive to changes in SUMOylation¹¹⁹.

B.5 SUMOylation in rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic systemic, inflammatory disease characterized by joint stiffness and destruction^{126,127}. Synovial inflammation is a hallmark of RA and the main driver of cartilage degradation. The main cellular features of RA include synovial hyperplasia, increased vascularity, and inflammatory cell infiltration^{126,127}.

A direct relationship between the SUMOylation pathway and RA was first reported in 2000¹²⁸. SUMO1 mRNA was found to be highly expressed in synovial specimens from RA patients, predominantly in the synovial fibroblasts of the lining layer and at the sites where cartilage is invaded by synovium¹²⁸. The expression of SUMO1 in RA synovial fibroblasts (RASFs) is over 30 times higher than that of OA synovial fibroblasts or normal fibroblasts¹²⁸. A recent study found that SUMO1 knockdown inhibits the migration and invasion of RA fibroblast-like synoviocytes (RAFLSs), and RAFLS expression of *MMP1* and *MMP3*. Mechanistically, SUMO1 deficiency suppresses the activity of the Rac1/PAK1 pathway, which normally promotes cell motility¹²⁹. Furthermore, the expression of PIAS3 is increased in RAFLSs and RA synovial tissues¹³⁰. PIAS3 promotes the SUMOylation of Rac1 and activates the expression of Rac1 downstream targets, such as PAK1 and JNK¹³⁰. Decreased PIAS3 expression can inhibit the invasion and migration of RAFLSs and the expression of *MMP3*, *MMP9*, and *MMP13*¹³⁰.

SUMO E1 conjugating enzymes SAE1 and SAE2 are also increased in FLSs and synovial tissues of RA patients¹³¹. Knockdown of SAE1 or SAE2 by siRNA results in a less aggressive phenotype and reduced inflammation of RAFLSs¹³¹. SAE1 and SAE2-mediated SUMOylation of pyruvate kinase M2 (PKM2), thereby promoting its phosphorylation and nuclear translocation, results in the suppression of pyruvate kinase activity, which contributes to synovial glycolysis and joint inflammation¹³¹.

In line with these reports, the expression of the SENP1 desumoylase is decreased in RA synovial fibroblasts (RASFs)^{132,133}, indicating the anti-RA function of SENP1. Further mechanistic studies have revealed that overexpression of SENP1 can desumoylate nuclear promyelocytic leukemia (PML) nuclear bodies and inhibit the recruitment of DAXX, a FADD (Fas-associated death domain)-interacting protein, to PML nuclear bodies, thus promoting the Fas-mediated apoptosis of RASFs¹³². In addition, SENP1 suppresses *MMP1* expression by promoting HDAC4 binding to the *MMP1* promoter, further weakening the invasiveness of RASFs¹³³.

These studies show that increased SUMOylation is positively related to RA, suggesting that down-regulation of SUMOylation may have therapeutic benefits. In support of this, in a mouse collagen-induced arthritis model, down-regulation of UBC9 using siRNA can reduce arthritis intensity scores and joint destruction¹³⁴. RA-related markers, including serum levels of anti-collagen (CII) antibodies, VEGF-A, MMP3, and MMP9, were also decreased. Moreover, down-regulating UBC9 expression in *ex vivo* human RAFLS cultures inhibits TNF- α -stimulated secretion of VEGF-A, MMP-3, and MMP-9 and blocks RAFLS proliferation and migration¹³⁴. The

expression of SUMO2 in RA tissue or RASFs is significantly higher than that of OA tissues and is increased in the synovium and synovial fibroblasts of human TNF-transgenic (hTNFtg) mice, a common RA model¹³⁵. TNF- α treatment promotes the expression of SUMO2 *in vitro*, while SUMO2 knockdown significantly increases the expression of *MMP3* and *MMP13* induced by the TNF- α - and IL-1 β -stimulated NF- κ B pathway¹³⁵, suggesting the anti-inflammatory function of SUMO2. Most of these studies show that gross alteration of SUMOylation in the joint contributes to the development of OA and RA. Although the detailed mechanisms are still not well understood, some insight may be derived from studies in other disease conditions or cell types, which suggest that SUMOylation regulates inflammation by modulating the NF κ B pathway, the PPAR γ pathway, among others^{67,136-139}.

B.6 SUMOylation in osteosarcoma

Osteosarcoma is the most common cancer type in the human skeletal system. It occurs in humans in a biphasic pattern, i.e., with a peak in adolescents and another in patients over 60 years of age^{140,141}. SUMOylation of proteins has a crucial role in regulating the cell cycle, genome stability, and the expression of oncoproteins and tumor suppressors^{142,143}, and has been linked to the development of osteosarcoma^{83,144-152}. However, there is no consensus view on whether SUMOylation is pro- or anti-tumorigenic in osteosarcoma, as this is likely dependent on the specific proteins modified, and the individual effects of the SUMO PTM on each protein.

B.6.a Studies supporting a pro-tumorigenic effect of SUMOylation: Several studies have linked increased SUMOylation to osteosarcoma. For example, *UBC9* is overexpressed in osteosarcoma tissues and cell lines¹⁴⁴. *UBC9* knockdown inhibits the proliferation and migration of osteosarcoma cells and markedly increases the sensitivity of these cells to the combination treatment of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV)¹⁴⁴. The integrity of gap-junction-mediated intercellular communication (GJIC) is required for the HSV-TK/GCV-induced tumor repression. *Ubc9* knockout decreases SUMO1 modification and increases the free protein level of connexin 43 (CX43), which is important for GJIC¹⁴⁴. Thus, *UBC9* deficiency sensitizes osteosarcoma cells to chemotherapy by reconstructing and promoting GJIC¹⁴⁴.

In addition, *SENP1* expression is decreased in osteosarcoma tissues, cell lines, and osteosarcoma stem cells compared to non-cancer cells and stem cells¹⁴⁵. Low *SENP1* is essential for maintaining the stemness of osteosarcoma stem cells, and overexpression of *SENP1* markedly decreases the stemness of osteosarcoma cells while sensitizing them to

apoptosis induced by HSV-TK/GCV combination treatment¹⁴⁵. This shows the potential of using SENP1 activation for the treatment of osteosarcoma. SENP2 expression is also significantly decreased in osteosarcoma compared with adjacent normal tissue⁸³. SENP2 overexpression inhibits osteosarcoma cell proliferation, migration, and invasion, while SENP2 knockout by CRISPR-Cas9 has the opposite effect⁸³. Mechanistically, SENP2-mediated deSUMOylation promotes SOX9 ubiquitylation and degradation⁸³. SOX9 knockdown greatly reduces the proliferation and invasiveness of the SENP2 knockout osteosarcoma cells⁸³. This study suggests that SENP2 acts as an osteosarcoma suppressor by destabilizing SOX9.

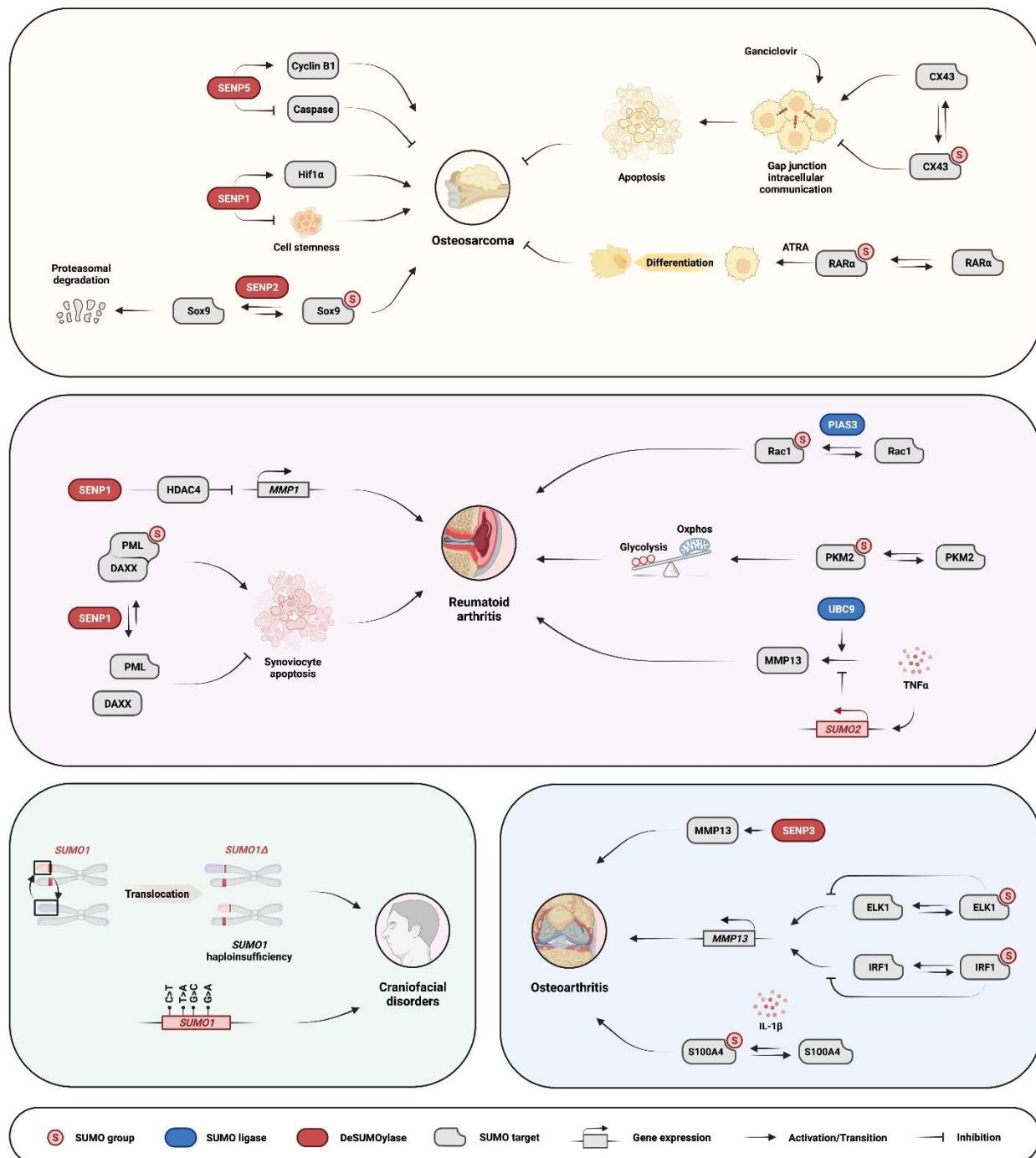
Talin is a key component of focal adhesions¹⁵³ and can be modified by SUMOylation in U2OS osteosarcoma and MDA-MB-231 breast cancer cells. Using ginkgolic acid (GA) to inhibit SUMOylation increases the number and size of talin-containing focal adhesions¹⁴⁶. Inhibition of SUMOylation can significantly reduce the migration of MDA-MB-231 breast cancer cells, but this effect was not studied in U2OS cells¹⁴⁶. Cumulatively, these studies indicate that SUMOylation has a positive role in promoting osteosarcoma proliferation, invasion, and migration, and that targeting it may be a relevant point of therapeutic intervention.

B.6.b Studies supporting an anti-tumorigenic effect of SUMOylation: In contrast to what was presented above, several studies suggest that SUMOylation can have *anti-osteosarcoma* effect. For example, the desumoylase SENP5 is highly expressed in osteosarcoma cells and tissues¹⁴⁷. Silencing SENP5 expression in two osteosarcoma cell lines, U2OS and Saos-2, significantly inhibits growth and colony formation and promotes apoptosis¹⁴⁷. This tumor-suppressor effect of SENP5 silencing may be via the regulation of apoptosis and cell cycle genes, as SENP5-knockdown in U2OS and Saos-2 cells increases caspase-3/-7 activity (apoptosis activators), and decreases the expression of cyclin B1¹⁴⁷.

The expression of the E3 ligase PIAS α is lower in osteosarcoma compared to adjacent tissue¹⁴⁸. Notably, PIAS α overexpression can significantly inhibit osteosarcoma cell proliferation and increase apoptosis¹⁴⁸, whereas PIAS α silencing in U2OS cells increases the expression of cyclin D kinase genes. Moreover, PIAS α overexpression weakens the tumorigenic potential of U2OS cells in nude mice¹⁴⁸. Again, given the pleiotropic functions of PIAS α , further studies are needed to determine whether the anti-tumor effects observed depends on SUMO-E3 ligase activity of PIAS α .

As another example, all-trans-retinoic acid (ATRA), is an anti-cancer drug that can induce osteosarcoma cell differentiation, which is used as a prognostic indicator of weakened osteosarcoma malignancy and tumor progression¹⁴⁹. SUMO1 is required for the differentiation

effect of ATRA, as SUMO1 deletion blocks the anti-osteosarcoma efficiency of ATRA¹⁵⁰. In addition, retinoic acid receptor α (RAR α), the ATRA target, can be stabilized by SUMOylation at K399¹⁵⁰. Mutation of K399 inhibits SUMO1 modification of RAR α and impairs ATRA-induced osteosarcoma cell differentiation¹⁵⁰. These suggest that SUMO1 acts as an anti-osteosarcoma molecule by targeting RAR α .


In a hypoxic environment, the human osteosarcoma cell line MG-63 expresses high amounts of SENP1¹⁵¹. SENP1 inhibition reduces the expression of two major hypoxia-induced genes, *HIF1 α* and *VEGF* (vascular endothelial growth factor). In turn, blockage of HIF1 α normalizes hypoxia-induced SENP1 expression¹⁵¹. SENP1 knockdown accelerates apoptosis by decreasing *Bcl-2* expression while increasing *Bax* expression, and weakens cell invasiveness by suppressing epithelial-mesenchymal transition (EMT) genes under hypoxic exposure¹⁵¹. These findings suggest a positive feedback loop between SENP1 and HIF1 α in regulating proliferation, invasion, and EMT of osteosarcoma cells in hypoxic conditions. In a more recent study, presence of SENP1 expression was found more often in osteosarcoma tissue than in adjacent normal tissue (53/60 vs. 28/60)¹⁵². Levels of SENP1-derived from plasma exosomes correlate with osteosarcoma tumor size and location, necrosis rate, pulmonary metastasis, and surgical stage¹⁵². Patients with higher plasma exosome derived SENP1 levels had worse disease-free and overall survival. The prognostic value of plasma exosome derived SENP1 levels in osteosarcoma was found to be better than plasma SENP1¹⁵². This finding contrasts with the previous finding in which SENP1 expression was lower in osteosarcoma tissue.

SUMOylation is also associated with malignant tumors that form from bone cartilage, known as conventional chondrosarcoma^{140,154}. SUMO1 and SUMO2/3 expression are positively correlated with increased aggressiveness of chondrosarcomas, and patients with high SUMO2/3 expression have poorer survival outcomes¹⁵⁴. While there is no simple generalization that SUMOylation is always associated with tumor suppressor or promoter activity, these studies clearly demonstrate that SUMOylation as a PTM must be considered as an important factor in the regulation of cancer cell survival, invasion, and tumor progression.

C. Summary and Future Perspectives

In summary, PTM by SUMOylation regulates signaling pathways and transcription factors that are crucial for skeletal cell differentiation, development, and homeostasis. Dysregulation of SUMOylation is associated with skeletal diseases such as OA and RA,

craniofacial defects, and bone tumors (**Figure 3**). Thus, targeting SUMOylation/deSUMOylation pathways is a promising strategy for the development of new treatments for these disorders. However, this requires a better characterization of the SUMOylation/deSUMOylation processes, especially in a tissue- and disease-specific manner. The establishment of related mouse genetic models will be a valuable resource to achieve this goal. In addition, future studies will need to focus on dissecting the functions of the components of the SUMOylation/deSUMOylation machinery, identifying the regulators and effectors (substrates) of SUMOylation/deSUMOylation, and discovering therapeutic molecules that can specifically target this machinery. SUMOylation is involved in regulating signal transduction, stress response, epigenetics, and senescence, which are closely associated with age-related and degenerative diseases. Further studies dissecting the relationship between SUMOylation and aging will bring forth new perspectives to promote skeletal health.

Fig. 3 Exemplary sumoylation pathways in skeletal diseases.

REFERENCES

- 1 Percival, C. J. & Richtsmeier, J. T. Angiogenesis and intramembranous osteogenesis. *Dev Dyn* **242**, 909-922, doi:10.1002/dvdy.23992 (2013).
- 2 Long, F. & Ornitz, D. M. Development of the endochondral skeleton. *Cold Spring Harb Perspect Biol* **5**, a008334, doi:10.1101/cshperspect.a008334 (2013).
- 3 Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. *Nat Cell Biol* **16**, 1157-1167, doi:10.1038/ncb3067 (2014).
- 4 Kronenberg, H. M. Developmental regulation of the growth plate. *Nature* **423**, 332-336, doi:10.1038/nature01657 (2003).
- 5 Wan, C. *et al.* Role of HIF-1alpha in skeletal development. *Ann N Y Acad Sci* **1192**, 322-326, doi:10.1111/j.1749-6632.2009.05238.x (2010).
- 6 Zhou, X. *et al.* Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. *PLoS Genet* **10**, e1004820, doi:10.1371/journal.pgen.1004820 (2014).
- 7 Yang, L., Tsang, K. Y., Tang, H. C., Chan, D. & Cheah, K. S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. *Proc Natl Acad Sci U S A* **111**, 12097-12102, doi:10.1073/pnas.1302703111 (2014).
- 8 Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K. S. & Mirams, M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. *Int J Biochem Cell Biol* **40**, 46-62, doi:10.1016/j.biocel.2007.06.009 (2008).
- 9 Morini, S., Continenza, M. A., Ricciardi, G., Gaudio, E. & Pannarale, L. Development of the microcirculation of the secondary ossification center in rat humeral head. *Anat Rec A Discov Mol Cell Evol Biol* **278**, 419-427, doi:10.1002/ar.a.20016 (2004).
- 10 Novack, D. V. & Teitelbaum, S. L. The osteoclast: friend or foe? *Annu Rev Pathol* **3**, 457-484, doi:10.1146/annurev.pathmechdis.3.121806.151431 (2008).
- 11 Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. *J Biol Chem* **285**, 25103-25108, doi:10.1074/jbc.R109.041087 (2010).
- 12 Liu, Y., Molchanov, V. & Yang, T. Enzymatic Machinery of Ubiquitin and Ubiquitin-Like Modification Systems in Chondrocyte Homeostasis and Osteoarthritis. *Curr Rheumatol Rep* **23**, 62, doi:10.1007/s11926-021-01022-w (2021).
- 13 Wilkinson, K. A. & Henley, J. M. Mechanisms, regulation and consequences of protein SUMOylation. *Biochem J* **428**, 133-145, doi:10.1042/BJ20100158 (2010).
- 14 Liang, Y. C. *et al.* SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. *Sci Rep* **6**, 26509, doi:10.1038/srep26509 (2016).
- 15 Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H. & Owerbach, D. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. *J Biol Chem* **279**, 27233-27238, doi:10.1074/jbc.M402273200 (2004).
- 16 Guo, D. *et al.* A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. *Nat Genet* **36**, 837-841, doi:10.1038/ng1391 (2004).
- 17 Han, Z. J., Feng, Y. H., Gu, B. H., Li, Y. M. & Chen, H. The post-translational modification, SUMOylation, and cancer (Review). *Int J Oncol* **52**, 1081-1094, doi:10.3892/ijo.2018.4280 (2018).
- 18 Saitoh, H. & Hinckley, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. *J Biol Chem* **275**, 6252-6258, doi:10.1074/jbc.275.9.6252 (2000).

19 Kunz, K., Piller, T. & Muller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. *J Cell Sci* **131**, doi:10.1242/jcs.211904 (2018).

20 Matic, I. *et al.* In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. *Mol Cell Proteomics* **7**, 132-144, doi:10.1074/mcp.M700173-MCP200 (2008).

21 Hendriks, I. A. *et al.* Uncovering global SUMOylation signaling networks in a site-specific manner. *Nat Struct Mol Biol* **21**, 927-936, doi:10.1038/nsmb.2890 (2014).

22 Pichler, A., Fatouros, C., Lee, H. & Eisenhardt, N. SUMO conjugation - a mechanistic view. *Biomol Concepts* **8**, 13-36, doi:10.1515/bmc-2016-0030 (2017).

23 Bonne-Andrea, C. *et al.* SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. *Nature communications* **4**, 1850, doi:10.1038/ncomms2875 (2013).

24 Cubeñas-Potts, C. *et al.* Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. *Proteomics* **15**, 763-772, doi:10.1002/pmic.201400400 (2015).

25 Hong, Y. *et al.* Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. *The Journal of biological chemistry* **276**, 40263-40267, doi:10.1074/jbc.M104714200 (2001).

26 Ritho, J., Arold, S. T. & Yeh, E. T. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress. *Cell Rep* **12**, 734-742, doi:10.1016/j.celrep.2015.07.002 (2015).

27 Zhang, X. D. *et al.* SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. *Mol Cell* **29**, 729-741, doi:10.1016/j.molcel.2008.01.013 (2008).

28 Gareau, J. R. & Lima, C. D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. *Nat Rev Mol Cell Biol* **11**, 861-871, doi:10.1038/nrm3011 (2010).

29 Sarge, K. D. & Park-Sarge, O. K. Sumoylation and human disease pathogenesis. *Trends Biochem Sci* **34**, 200-205, doi:10.1016/j.tibs.2009.01.004 (2009).

30 Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. *J Biol Chem* **276**, 12654-12659, doi:10.1074/jbc.M009476200 (2001).

31 Hay, R. T. SUMO: a history of modification. *Mol Cell* **18**, 1-12, doi:10.1016/j.molcel.2005.03.012 (2005).

32 Yunus, A. A. & Lima, C. D. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. *Mol Cell* **35**, 669-682, doi:10.1016/j.molcel.2009.07.013 (2009).

33 Werner, A., Flotho, A. & Melchior, F. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. *Mol Cell* **46**, 287-298, doi:10.1016/j.molcel.2012.02.017 (2012).

34 Kagey, M. H., Melhuish, T. A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. *Cell* **113**, 127-137, doi:10.1016/s0092-8674(03)00159-4 (2003).

35 Yang, Y. *et al.* Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. *Proc Natl Acad Sci U S A* **110**, 6841-6846, doi:10.1073/pnas.1217692110 (2013).

36 Rabellino, A., Andreani, C. & Scaglioni, P. P. The Role of PIAS SUMO E3-Ligases in Cancer. *Cancer Res* **77**, 1542-1547, doi:10.1158/0008-5472.CAN-16-2958 (2017).

37 Yeh, E. T. SUMOylation and De-SUMOylation: wrestling with life's processes. *J Biol Chem* **284**, 8223-8227, doi:10.1074/jbc.R800050200 (2009).

38 Nayak, A. & Muller, S. SUMO-specific proteases/isopeptidases: SENPs and beyond. *Genome Biol* **15**, 422, doi:10.1186/s13059-014-0422-2 (2014).

39 Shin, E. J. *et al.* DeSUMOylating isopeptidase: a second class of SUMO protease. *EMBO Rep* **13**, 339-346, doi:10.1038/embor.2012.3 (2012).

40 Schulz, S. *et al.* Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. *EMBO Rep* **13**, 930-938, doi:10.1038/embor.2012.125 (2012).

41 Hickey, C. M., Wilson, N. R. & Hochstrasser, M. Function and regulation of SUMO proteases. *Nat Rev Mol Cell Biol* **13**, 755-766, doi:10.1038/nrm3478 (2012).

42 Seeler, J. S. & Dejean, A. Nuclear and unclear functions of SUMO. *Nat Rev Mol Cell Biol* **4**, 690-699, doi:10.1038/nrm1200 (2003).

43 Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. *Annu Rev Biochem* **82**, 357-385, doi:10.1146/annurev-biochem-061909-093311 (2013).

44 Yan, D., Davis, F. J., Sharrocks, A. D. & Im, H. J. Emerging roles of SUMO modification in arthritis. *Gene* **466**, 1-15, doi:10.1016/j.gene.2010.07.003 (2010).

45 Chang, H. M. & Yeh, E. T. H. SUMO: From Bench to Bedside. *Physiol Rev* **100**, 1599-1619, doi:10.1152/physrev.00025.2019 (2020).

46 Berendsen, A. D. & Olsen, B. R. Bone development. *Bone* **80**, 14-18, doi:10.1016/j.bone.2015.04.035 (2015).

47 Rowe, H. M. *et al.* TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. *Genome Res* **23**, 452-461, doi:10.1101/gr.147678.112 (2013).

48 Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. *Nat Rev Mol Cell Biol* **21**, 696-711, doi:10.1038/s41580-020-00279-w (2020).

49 Li, J. *et al.* Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway. *Nat Commun* **9**, 143, doi:10.1038/s41467-017-02413-3 (2018).

50 Wan, M. & Cao, X. BMP signaling in skeletal development. *Biochem Biophys Res Commun* **328**, 651-657, doi:10.1016/j.bbrc.2004.11.067 (2005).

51 Song, B., Estrada, K. D. & Lyons, K. M. Smad signaling in skeletal development and regeneration. *Cytokine Growth Factor Rev* **20**, 379-388, doi:10.1016/j.cytofr.2009.10.010 (2009).

52 Shen, J., Li, S. & Chen, D. TGF-beta signaling and the development of osteoarthritis. *Bone Res* **2**, doi:10.1038/boneres.2014.2 (2014).

53 Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S. & Asaduzzaman, S. M. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. *Bone Res* **3**, 15005, doi:10.1038/boneres.2015.5 (2015).

54 Shimada, K. *et al.* Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. *Bone* **42**, 886-893, doi:10.1016/j.bone.2008.01.009 (2008).

55 Yukita, A. *et al.* Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells. *Bone* **50**, 1092-1099, doi:10.1016/j.bone.2012.02.008 (2012).

56 Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. *Histochem Cell Biol* **149**, 313-323, doi:10.1007/s00418-018-1640-6 (2018).

57 Tang, C. Y. *et al.* Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis. *Biochem J* **477**, 2421-2438, doi:10.1042/BCJ20200036 (2020).

58 Tang, J. *et al.* Runt-related transcription factor 1 is required for murine osteoblast differentiation and bone formation. *J Biol Chem* **295**, 11669-11681, doi:10.1074/jbc.RA119.007896 (2020).

59 Wang, Y. *et al.* RUNX3 plays an important role in mediating the BMP9-induced osteogenic differentiation of mesenchymal stem cells. *Int J Mol Med* **40**, 1991-1999, doi:10.3892/ijmm.2017.3155 (2017).

60 Bauer, O. *et al.* Loss of osteoblast Runx3 produces severe congenital osteopenia. *Mol Cell Biol* **35**, 1097-1109, doi:10.1128/MCB.01106-14 (2015).

61 Nakashima, K. *et al.* The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. *Cell* **108**, 17-29, doi:10.1016/s0092-8674(01)00622-5 (2002).

62 Kim, J. H. *et al.* RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation. *Oncogenesis* **3**, e101, doi:10.1038/oncsis.2014.15 (2014).

63 Cai, Z. *et al.* Ablation of Adenosine Monophosphate-Activated Protein Kinase alpha1 in Vascular Smooth Muscle Cells Promotes Diet-Induced Atherosclerotic Calcification In Vivo. *Circ Res* **119**, 422-433, doi:10.1161/CIRCRESAHA.116.308301 (2016).

64 Hosoya, A. *et al.* Localization of SUMOylation factors and Osterix in odontoblast lineage cells during dentin formation and regeneration. *Histochem Cell Biol* **140**, 201-211, doi:10.1007/s00418-013-1076-y (2013).

65 Ali, M. M. *et al.* PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. *J Cell Sci* **120**, 2565-2573, doi:10.1242/jcs.005090 (2007).

66 Kung, V. L., Liu, T. C. & Ma, C. Collagenous Enteritis is Unlikely a Form of Aggressive Celiac Disease Despite Sharing HLA-DQ2/DQ8 Genotypes. *Am J Surg Pathol* **42**, 545-552, doi:10.1097/PAS.0000000000001022 (2018).

67 Zhang, Y. *et al.* Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. *Gene* **557**, 209-214, doi:10.1016/j.gene.2014.12.039 (2015).

68 Kawano, H. *et al.* Suppressive function of androgen receptor in bone resorption. *Proc Natl Acad Sci U S A* **100**, 9416-9421, doi:10.1073/pnas.1533500100 (2003).

69 Wu, J. *et al.* Androgen receptor SUMOylation regulates bone mass in male mice. *Mol Cell Endocrinol* **479**, 117-122, doi:10.1016/j.mce.2018.09.008 (2019).

70 Ali, A. & Tyagi, S. Diverse roles of WDR5-RbBP5-ASH2L-DPY30 (WRAD) complex in the functions of the SET1 histone methyltransferase family. *J Biosci* **42**, 155-159, doi:10.1007/s12038-017-9666-9 (2017).

71 Bochynska, A., Luscher-Firzlaff, J. & Luscher, B. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. *Cells* **7**, doi:10.3390/cells7030017 (2018).

72 Ernst, P. & Vakoc, C. R. WRAD: enabler of the SET1-family of H3K4 methyltransferases. *Brief Funct Genomics* **11**, 217-226, doi:10.1093/bfgp/els017 (2012).

73 Nayak, A., Viale-Bouroncle, S., Morsczeck, C. & Muller, S. The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. *Mol Cell* **55**, 47-58, doi:10.1016/j.molcel.2014.05.011 (2014).

74 Liu, C. F., Samsa, W. E., Zhou, G. & Lefebvre, V. Transcriptional control of chondrocyte specification and differentiation. *Semin Cell Dev Biol* **62**, 34-49, doi:10.1016/j.semcd.2016.10.004 (2017).

75 Decker, R. S., Koyama, E. & Pacifici, M. Articular Cartilage: Structural and Developmental Intricacies and Questions. *Curr Osteoporos Rep* **13**, 407-414, doi:10.1007/s11914-015-0290-z (2015).

76 Akkiraju, H. & Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. *J Dev Biol* **3**, 177-192, doi:10.3390/jdb3040177 (2015).

77 Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. *Sports Health* **1**, 461-468, doi:10.1177/1941738109350438 (2009).

78 Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* **16**, 2813-2828, doi:10.1101/gad.1017802 (2002).

79 Lefebvre, V., Behringer, R. R. & de Crombrugghe, B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. *Osteoarthritis Cartilage* **9 Suppl A**, S69-75, doi:10.1053/joca.2001.0447 (2001).

80 Liu, C. F. & Lefebvre, V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. *Nucleic Acids Res* **43**, 8183-8203, doi:10.1093/nar/gkv688 (2015).

81 Hattori, T. *et al.* Interactions between PIAS proteins and SOX9 result in an increase in the cellular concentrations of SOX9. *J Biol Chem* **281**, 14417-14428, doi:10.1074/jbc.M511330200 (2006).

82 Liu, J. A. *et al.* Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. *Proc Natl Acad Sci U S A* **110**, 2882-2887, doi:10.1073/pnas.1211747110 (2013).

83 Pei, H. *et al.* SUMO-specific protease 2 (SENP2) functions as a tumor suppressor in osteosarcoma via SOX9 degradation. *Exp Ther Med* **16**, 5359-5365, doi:10.3892/etm.2018.6838 (2018).

84 Oh, H. J., Kido, T. & Lau, Y. F. PIAS1 interacts with and represses SOX9 transactivation activity. *Mol Reprod Dev* **74**, 1446-1455, doi:10.1002/mrd.20737 (2007).

85 Zuo, C. *et al.* SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. *Bone Res* **6**, 12, doi:10.1038/s41413-018-0013-z (2018).

86 Grossmann, K. S., Rosario, M., Birchmeier, C. & Birchmeier, W. The tyrosine phosphatase Shp2 in development and cancer. *Adv Cancer Res* **106**, 53-89, doi:10.1016/S0065-230X(10)06002-1 (2010).

87 Neel, B. G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. *Trends Biochem Sci* **28**, 284-293, doi:10.1016/S0968-0004(03)00091-4 (2003).

88 Fernandez-Lloris, R. *et al.* Repression of SOX6 transcriptional activity by SUMO modification. *FEBS Lett* **580**, 1215-1221, doi:10.1016/j.febslet.2006.01.031 (2006).

89 Choi, H. J., Kwon, S. & Kim, D. W. A post-translational modification cascade employing HDAC9-PIASy-RNF4 axis regulates chondrocyte hypertrophy by modulating Nkx3.2 protein stability. *Cell Signal* **28**, 1336-1348, doi:10.1016/j.cellsig.2016.06.006 (2016).

90 Deng, L. *et al.* Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. *Nature communications* **10**, 3329, doi:10.1038/s41467-019-10831-8 (2019).

91 Zhu, C. *et al.* SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. *Nucleic Acids Res* **43**, 7945-7960, doi:10.1093/nar/gkv741 (2015).

92 Deng, L. *et al.* Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. *Nat Commun* **10**, 3329, doi:10.1038/s41467-019-10831-8 (2019).

93 Kobayashi, T. *et al.* Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and impairs the structural integrity of the articular cartilage. *Osteoarthritis Cartilage* **23**, 1214-1220, doi:10.1016/j.joca.2015.02.015 (2015).

94 Li, S. *et al.* CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor- α . *Oncogene* **32**, 4883-4891, doi:10.1038/onc.2012.518 (2013).

95 Liang, C. *et al.* Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. *Cell Research* **31**, 187-205, doi:10.1038/s41422-020-0385-7 (2021).

96 Chen, D. *et al.* Osteoarthritis: toward a comprehensive understanding of pathological mechanism. *Bone Res* **5**, 16044, doi:10.1038/boneres.2016.44 (2017).

97 arc, O. C. *et al.* Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. *Lancet* **380**, 815-823, doi:10.1016/S0140-6736(12)60681-3 (2012).

98 Johnson, K., Reynard, L. N. & Loughlin, J. Functional characterisation of the osteoarthritis susceptibility locus at chromosome 6q14.1 marked by the polymorphism rs9350591. *BMC Med Genet* **16**, 81, doi:10.1186/s12881-015-0215-9 (2015).

99 Miranda, K. J., Loeser, R. F. & Yammani, R. R. Sumoylation and nuclear translocation of S100A4 regulate IL-1beta-mediated production of matrix metalloproteinase-13. *J Biol Chem* **285**, 31517-31524, doi:10.1074/jbc.M110.125898 (2010).

100 Daouti, S. *et al.* Development of comprehensive functional genomic screens to identify novel mediators of osteoarthritis. *Osteoarthritis Cartilage* **13**, 508-518, doi:10.1016/j.joca.2005.02.003 (2005).

101 Sun, T. *et al.* alpha-Lipoic acid (alpha-LA) inhibits the transcriptional activity of interferon regulatory factor 1 (IRF-1) via SUMOylation. *Toxicol In Vitro* **28**, 1242-1248, doi:10.1016/j.tiv.2014.06.003 (2014).

102 Im, H. J. *et al.* Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes. *Open Access Rheumatol* **1**, 151-161, doi:10.2147/oarrr.s7527 (2009).

103 Ash, P., Loutit, J. F. & Townsend, K. M. Osteoclasts derived from haematopoietic stem cells. *Nature* **283**, 669-670, doi:10.1038/283669a0 (1980).

104 Feng, X. & Teitelbaum, S. L. Osteoclasts: New Insights. *Bone Res* **1**, 11-26, doi:10.4248/BR201301003 (2013).

105 Zhang, Y. *et al.* SENP3 Suppresses Osteoclastogenesis by De-conjugating SUMO2/3 from IRF8 in Bone Marrow-Derived Monocytes. *Cell Rep* **30**, 1951-1963 e1954, doi:10.1016/j.celrep.2020.01.036 (2020).

106 Hikata, T. *et al.* PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. *Blood* **113**, 2202-2212, doi:10.1182/blood-2008-06-162594 (2009).

107 Elliott, A. M., Evans, J. A. & Chudley, A. E. Split hand foot malformation (SHFM). *Clin Genet* **68**, 501-505, doi:10.1111/j.1399-0004.2005.00530.x (2005).

108 Ianakiev, P. *et al.* Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. *Am J Hum Genet* **67**, 59-66, doi:10.1086/302972 (2000).

109 van Bokhoven, H. *et al.* p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. *Am J Hum Genet* **69**, 481-492, doi:10.1086/323123 (2001).

110 Ghioni, P. *et al.* The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation. *Cell Cycle* **4**, 183-190, doi:10.4161/cc.4.1.1359 (2005).

111 Huang, Y. P. *et al.* Altered sumoylation of p63alpha contributes to the split-hand/foot malformation phenotype. *Cell Cycle* **3**, 1587-1596, doi:10.4161/cc.3.12.1290 (2004).

112 Ranieri, M. *et al.* Sumoylation and ubiquitylation crosstalk in the control of DeltaNp63alpha protein stability. *Gene* **645**, 34-40, doi:10.1016/j.gene.2017.12.018 (2018).

113 Mossey, P. A., Little, J., Munger, R. G., Dixon, M. J. & Shaw, W. C. Cleft lip and palate. *Lancet* **374**, 1773-1785, doi:10.1016/S0140-6736(09)60695-4 (2009).

114 Alkuraya, F. S. *et al.* SUMO1 haploinsufficiency leads to cleft lip and palate. *Science* **313**, 1751, doi:10.1126/science.1128406 (2006).

115 Song, T. *et al.* SUMO1 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate. *Biochem Biophys Res Commun* **377**, 1265-1268, doi:10.1016/j.bbrc.2008.10.138 (2008).

116 Mostowska, A. *et al.* Association between genetic variants of reported candidate genes or regions and risk of cleft lip with or without cleft palate in the polish population. *Birth Defects Res A Clin Mol Teratol* **88**, 538-545, doi:10.1002/bdra.20687 (2010).

117 Carter, T. C. *et al.* Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. *Birth Defects Res A Clin Mol Teratol* **88**, 84-93, doi:10.1002/bdra.20639 (2010).

118 Jia, Z. L., Li, Y., Meng, T. & Shi, B. Association between polymorphisms at small ubiquitin-like modifier 1 and nonsyndromic orofacial clefts in Western China. *DNA Cell Biol* **29**, 675-680, doi:10.1089/dna.2010.1034 (2010).

119 Pauws, E. & Stanier, P. FGF signalling and SUMO modification: new players in the aetiology of cleft lip and/or palate. *Trends Genet* **23**, 631-640, doi:10.1016/j.tig.2007.09.002 (2007).

120 Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. *Genes Dev* **17**, 3048-3061, doi:10.1101/gad.1153003 (2003).

121 Antonio Urrutia, G. *et al.* ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. *Genes Dev* **35**, 1142-1160, doi:10.1101/gad.345843.120 (2021).

122 Gupta, V. & Bei, M. Modification of Msx1 by SUMO-1. *Biochem Biophys Res Commun* **345**, 74-77, doi:10.1016/j.bbrc.2006.03.232 (2006).

123 Song, Y. J. & Lee, H. PIAS1 negatively regulates ubiquitination of Msx1 homeoprotein independent of its SUMO ligase activity. *Mol Cells* **32**, 221-226, doi:10.1007/s10059-011-1020-8 (2011).

124 Andreou, A. M. *et al.* TBX22 missense mutations found in patients with X-linked cleft palate affect DNA binding, sumoylation, and transcriptional repression. *Am J Hum Genet* **81**, 700-712, doi:10.1086/521033 (2007).

125 Kaiser, F. J., Ludecke, H. J. & Weger, S. SUMOylation modulates transcriptional repression by TRPS1. *Biol Chem* **388**, 381-390, doi:10.1515/BC.2007.051 (2007).

126 Guo, Q. *et al.* Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. *Bone Res* **6**, 15, doi:10.1038/s41413-018-0016-9 (2018).

127 Rheumatoid arthritis. *Nat Rev Dis Primers* **4**, 18002, doi:10.1038/nrdp.2018.2 (2018).

128 Franz, J. K. *et al.* Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. *Arthritis Rheum* **43**, 599-607, doi:10.1002/1529-0131(200003)43:3<599::AID-ANR17>3.0.CO;2-T (2000).

129 Lao, M. *et al.* Role of small ubiquitin-like modifier proteins-1 (SUMO-1) in regulating migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. *Exp Cell Res* **375**, 52-61, doi:10.1016/j.yexcr.2018.12.011 (2019).

130 Lao, M. *et al.* Protein Inhibitor of Activated STAT3 Regulates Migration, Invasion, and Activation of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. *J Immunol* **196**, 596-606, doi:10.4049/jimmunol.1403254 (2016).

131 Wang, C. *et al.* Increased SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes. *JCI Insight* **5**, doi:10.1172/jci.insight.135935 (2020).

132 Meinecke, I. *et al.* Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. *Proc Natl Acad Sci U S A* **104**, 5073-5078, doi:10.1073/pnas.0608773104 (2007).

133 Maciejewska-Rodrigues, H. *et al.* Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. *J Autoimmun* **35**, 15-22, doi:10.1016/j.jaut.2009.12.010 (2010).

134 Li, F. *et al.* SUMO-conjugating enzyme UBC9 promotes proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis. *Inflammation* **37**, 1134-1141, doi:10.1007/s10753-014-9837-x (2014).

135 Frank, S. *et al.* Regulation of matrixmetalloproteinase-3 and matrixmetalloproteinase-13 by SUMO-2/3 through the transcription factor NF-kappaB. *Ann Rheum Dis* **72**, 1874-1881, doi:10.1136/annrheumdis-2012-202080 (2013).

136 Vatsyayan, J., Qing, G., Xiao, G. & Hu, J. SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing. *EMBO Rep* **9**, 885-890, doi:10.1038/embor.2008.122 (2008).

137 Liu, J. *et al.* Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. *BMC Cancer* **15**, 675, doi:10.1186/s12885-015-1665-3 (2015).

138 Leidner, J. *et al.* SUMOylation attenuates the transcriptional activity of the NF-kappaB subunit RelB. *J Cell Biochem* **115**, 1430-1440, doi:10.1002/jcb.24794 (2014).

139 Liu, J. *et al.* Mesencephalic Astrocyte-Derived Neurotrophic Factor Inhibits Liver Cancer Through Small Ubiquitin-Related Modifier (SUMO)ylation-Related Suppression of NF-kappaB/Snail Signaling Pathway and Epithelial-Mesenchymal Transition. *Hepatology* **71**, 1262-1278, doi:10.1002/hep.30917 (2020).

140 Whelan, J. S. & Davis, L. E. Osteosarcoma, Chondrosarcoma, and Chordoma. *J Clin Oncol* **36**, 188-193, doi:10.1200/JCO.2017.75.1743 (2018).

141 Ritter, J. & Bielack, S. S. Osteosarcoma. *Ann Oncol* **21 Suppl 7**, vii320-325, doi:10.1093/annonc/mdq276 (2010).

142 Seeler, J. S. & Dejean, A. SUMO and the robustness of cancer. *Nat Rev Cancer* **17**, 184-197, doi:10.1038/nrc.2016.143 (2017).

143 Eifler, K. & Vertegaal, A. C. O. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. *Trends Biochem Sci* **40**, 779-793, doi:10.1016/j.tibs.2015.09.006 (2015).

144 Zhang, D. *et al.* Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin 43 SUMOylation. *Int J Oncol* **53**, 1323-1331, doi:10.3892/ijo.2018.4448 (2018).

145 Liu, F. *et al.* Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV. *Int J Oncol* **53**, 2010-2020, doi:10.3892/ijo.2018.4537 (2018).

146 Huang, Z., Barker, D., Gibbins, J. M. & Dash, P. R. Talin is a substrate for SUMOylation in migrating cancer cells. *Exp Cell Res* **370**, 417-425, doi:10.1016/j.yexcr.2018.07.005 (2018).

147 Wang, K. & Zhang, X. C. Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. *Exp Ther Med* **7**, 1691-1695, doi:10.3892/etm.2014.1644 (2014).

148 Wang, J., Ni, J., Yi, S., Song, D. & Ding, M. Protein inhibitor of activated STAT xalpha depresses cyclin D and cyclin D kinase, and contributes to the inhibition of osteosarcoma cell progression. *Mol Med Rep* **13**, 1645-1652, doi:10.3892/mmr.2015.4705 (2016).

149 Luo, P. *et al.* Retinoid-suppressed phosphorylation of RARalpha mediates the differentiation pathway of osteosarcoma cells. *Oncogene* **29**, 2772-2783, doi:10.1038/onc.2010.50 (2010).

150 Zhou, Q. *et al.* Small ubiquitin-related modifier-1 modification regulates all-trans-retinoic acid-induced differentiation via stabilization of retinoic acid receptor alpha. *FEBS J* **281**, 3032-3047, doi:10.1111/febs.12840 (2014).

151 Wang, X., Liang, X., Liang, H. & Wang, B. SENP1/HIF-1alpha feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. *J Cell Biochem* **119**, 1819-1826, doi:10.1002/jcb.26342 (2018).

152 Wang, L. *et al.* Plasma Exosome-Derived Sentrin SUMO-Specific Protease 1: A Prognostic Biomarker in Patients With Osteosarcoma. *Front Oncol* **11**, 625109, doi:10.3389/fonc.2021.625109 (2021).

153 Zhu, L., Plow, E. F. & Qin, J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. *Protein Sci* **30**, 531-542, doi:10.1002/pro.4014 (2021).

154 Kroonen, J. S. *et al.* SUMOylation Is Associated with Aggressive Behavior in Chondrosarcoma of Bone. *Cancers (Basel)* **13**, doi:10.3390/cancers13153823 (2021).

