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Abstract: A calibrated mathematical model of antiviral immune response to SARS-CoV-2 infection is
developed. The model considers the innate and antigen-specific responses to SARS-CoV-2 infection.
Recently published data sets from human challenge studies with SARS-CoV-2 were used for parame-
ter estimation. Understanding the regulation of multiple intertwined reaction components of the
immune system is necessary for linking the clinical phenotypes of COVID-19 with the kinetics of
immune responses. Consideration of multiple immune reaction components in a single calibrated
mathematical model allowed us to address some fundamental issues related to pathogenesis of
COVID-19, i.e. sensitivity of the peak viral load to parameters characterizing the specific response
components, the kinetic coordination of the individual responses, and the factors favoring a pro-
longed viral persistence. The model provides a tool for predicting the infectivity of patients, i.e.
the amount of virus which is transmitted via droplets from the person infected with SARS-CoV-2,
depending on the time of infection. The thresholds in the relative unbalance between innate and
adaptive response parameters which lead to a prolonged persistence of SARS-CoV-2 due to the loss
of a kinetic response synchrony/coordination were identified.

Keywords: SARS-CoV-2 infection; innate immune response; antigen-specific immune response;
kinetic coordination; mathematical model; pathogenesis, long COVID-19

1. Introduction

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to persist in the population worldwide causing the disease known as COVID-
19. The time-course and severity of COVID-19 is extremely heterogenous including
asymptomatic-, mild-, severe- and critical disease phenotypes [2]. Mathematical modelling
is considered an important tool for understanding of pathophysiology of the SARS-CoV-2
infection via integration of multiple interactions of the virus with the human host organism
[1]. The difficulties in developing relevant mathematical models of COVID-19 are due to
the systemic nature of the infection, i.e. the broadness of engaged organs and physiologi-
cal systems to be considered in the models, and the lack of coherent time-series data on
the immune response to infection which are required to robustly calibrate the described
processes. So far, more than a dozen of mathematical models of SARS-CoV-2 infection
have been developed [3–14,16–21]. They differ enormously in their complexity, ranging
from low-dimensional models (e.g., the ODE systems of two to five equations) [4,5,7,11,16])
through medium-size models (about ten equations) [3,6,8,13,14,17,21] up to high resolution
models of ODEs (up to 60 equations) [9,10] or hybrid multi-scale models [18,20]. The later
can be categorized as "experimental mathematical" models. The set of data used for the
parameter estimation in the models is mainly based on similar sets of viral load kinetics
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data in upper and lower respiratory tract or data from non-human primates. The biological
questions addressed in the models include

• predicting the effect of therapies [4,7–10,12];
• relationship between the disease phenotype and immune response parameters [4,7,11,

13,19];
• effect of aging on disease course [7,14].

Finally, the models can be categorized according to processes considered to describe the
interactions in the virus-host organism system:

• virus spreading in tissues/organs [4,7,18,19,21];
• virus spreading and innate immune responses [3,13–15];
• virus spreading and adaptive immune responses [5,6,9,11,16];
• virus spreading and innate/adaptive immune responses [8,12,17];
• virus spreading and immunophysiological responses of the host (including thrombosis,

renin-angiotensin system, cytokines [10,20].

Understanding the regulation of multiple intertwined reaction components of the
immune system is necessary for linking the clinical phenotypes of COVID-19 with the
kinetics of the immune responses. One of the challenges is the need to understand the
pathogenesis of long COVID-19. Conceptual view of the regulation of immune reactions by
Grossman and Paul [24] suggests that the immune system responds to a rapid perturbation
of an antigenic homeostasis. The antigenic perturbation percolates through the immune
system being sequentially sensed by the innate and adaptive branches of the system. Hence,
the innate (e.g., the type I interferon and inflammatory) and antigen-specific responses (CD4
T cells, CD8 T cells, B cell-mediated) need to be coordinated both in time and scale. This
fundamental issue of a kinetic synchronization of innate and adaptive immune responses
has not been addressed yet. The objectives of our study are

1. to develop a calibrated mathematical model of antiviral innate and adaptive immune
responses to SARS-CoV-2 during mild- to-moderate symptoms infection;

2. to infer the sensitivity of the peak viral load to the kinetics of innate and adaptive
responses;

3. to quantify the infectiousness of the COVID-19 patients from the onset to the recovery
phase of infection;

4. to examine the effect of accelerated or decelerated components of the immune response
on viral load and prolonged viral persistence;

5. to evaluate the person’s infectiousness and effectiveness of testing procedures.

To proceed with the analysis of SARS-CoV-2 infection, we consider our previously
developed mathematical model of antiviral immune responses [23]. Recently, it was
used to infer multiplicative cooperativity of CTL and antibody responses in protection
against cytopathic and non-cytopathic virus infections [25]. Originally, the model was
calibrated to describe an influenza A virus infection. Both influenza A and SARS-CoV-2
are controlled by immune reactions that proceed in the system of lymph nodes draining
the upper and lower respiratory tract and follow a stereotypical clonal expansion kinetics.
The use of the influenza infection model as a starting point to proceed with modelling of
SARS-CoV-2 infection has been shown to be useful as providing some initial parameter
values [3,8,18]. Using recently published extensive data sets on the kinetics of viral load in
adult humans [22] as well as some other reference data for the observed levels of CD8 T
cells, antibodies and type I IFNs in serum, we refine a subset of the model parameters to
reproduce the observed dynamics of the SARS-CoV-2 loads. Then, the sensitivity of the
infection characteristics to model parameters is computationally studied.

In Section 2 we present the details of the mathematical model, the data used for calibra-
tion and the resulting trajectory of SARS-CoV-2 infection in terms of model characteristics.
Section 3 summarizes the results of computational experiments studying the effects of
variations of the process parameters on kinetics of the viral load. Finally, in Section 4 we
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Figure 1. Biological scheme of the mathematical model of the immune response in SARS-CoV-2
infection.

discuss the implications of our analysis for SARS-CoV-2 infection (long COVID) and the
coordinated regulation of immune response components.

2. Materials and Methods
2.1. Mathematical model of antiviral immune response

Mathematical model of antiviral immune response considers three major subsets of
the virus-host interaction processes, i.e. the virus spreading in sensitive tissue, induction
of the innate response and antigen-specific immune reactions as shown in Figure 1 and
is detailed below. Consideration of innate cellular and humoral immune responses in
conjunction with the infection of target organ cells and virus replication dynamics provides
a tool to examine the joint impact of the considered arms of the immune system on the
protection against virus infection.

2.1.1. Virus spreading in sensitive tissue

SARS-CoV-2 targets primarily the respiratory tract spreading in upper (nasal mucosa
and pharynx) and lower respiratory tract (bronchi and lungs). It infects epithelial cells,
ciliated airway cells, alveoli Type 2 cells [26]. The rate of change of the populations of
virus-infected target cells CV(t), type I interferon protected cells CR(t), damaged target
cells D(t), and freely circulating virus V(t) is considered to be governed by the following
equations:

dV
dt

(t) = νCV(t)− (γVC(C∗ − CV(t)− CR(t)− D(t)) +

γVF fV(l)F(t) + γVM)V(t), (1)
dCV
dt

(t) = σV(t)(C∗ − CV(t)− CR(t)− D(t))− (bCE fC(l)E(t) + bm)CV(t), (2)

dCR
dt

(t) = σR I(t)(C∗ − CV(t)− CR(t)− D(t))− αRCR(t), (3)

dD
dt

(t) = (bCE fC(l)E(t) + bm)CV(t)− αmD(t). (4)
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2.1.2. Innate immune defence reaction

The first line of reaction is related to sensing of the pathogen by the cells of the innate
immune system. The innate immune response module considers the activation of profes-
sional antigen-presenting cells (including CD169 macrophages, and conventional dendritic
cells, DCs) MV(t), type I Interferon (IFN) producing cells (including plasmacytoid DCs)
MI(t), and type I IFN I(t). The rate of changes of the concentration of these components is
described by the following set of equations:

dMV
dt

(t) = γMV M∗V(t)− αM MV(t), (5)

dMI
dt

(t) = γMI (M∗I −MI)V(t)− αMI MI(t), (6)

dI
dt

(t) = ρI MI(t)− (σI(C∗ − CV(t)− CR(t)− D(t)) + αI)I(t). (7)

2.1.3. Antigen-specific immune response

The viral antigens processed by antigen-presenting cells activate the clones of CD4 T
cells (Th1 HE(t), Th2 HB(t)), CD8 T cells E(t), B cells B(t) resulting in the generation of
plasma cells P(t) and antigen-specific antibodies F(t) via multiple interactions as shown in
Figure 1. The respective equations of their dynamics have the structure presented below:

dHE
dt

(t) = bE
H(ξ(m)ρE

H MV(t− τE
H)HE(t− τE

H)−MV(t)HE(t))

−bHE
p MV(t)HE(t)E(t) + αE

H(H∗E − HE(t)), (8)
dHB

dt
(t) = bB

H(ξ(m)ρB
H MV(t− τB

H)HB(t− τB
H)−MV(t)HB(t))

−bHB
p MV(t)HB(t)B(t) + αB

H(H∗B − HB(t)), (9)
dE
dt

(t) = bE
p (ξ(m)ρE MV(t− τE)HE(t− τE)E(t− τE)−MV(t)HE(t)E(t))

−bECCV(t)E(t) + αE(E∗ − E(t)), (10)
dB
dt

(t) = bB
p (ξ(m)ρB MV(t− τB)HB(t− τB)B(t− τB)−MV(t)HB(t)B(t))

+αB(B∗ − B(t)), (11)
dP
dt

(t) = bP
p (ξ(m)ρP MV(t− τP)HB(t− τP)B(t− τP) + αP(P∗ − P(t)), (12)

dF
dt

(t) = ρFP(t)− (γFVV(t) + αF)F(t). (13)

2.1.4. Effects of inflammation and tissue damage

Acute infection with SARS-CoV-2 is characterized by inflammatory reactions and
immune cell recruitment to the site of infection [27]. To represent this enhancing effect of
elimination on the infected cells and free viruses, the following parameterizations are used

fi(l) = 1 + µil, i = V, C, l = CV(t)/C∗. (14)

Finally, severe damage of the upper and lower respiratory tract suppresses the antigen-
specific immune responses [28,29]. This negative feedback regulation is taken into account
via the following function

ξ(D) = 1− D(t)/C∗. (15)

2.1.5. Initial conditions

The initial conditions for model equations (1-15) were defined as folows:
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V(0) = V0, HE(0) = H∗E, HB(0) = H∗B, E(0) = E∗,

B(0) = B∗, P(0) = P∗, F(0) = F∗,

CV(0) = 0, CR(0) = 0, D(0) = 0, MV(0) = 0, MI(0) = 0, I(0) = 0,

(16)

where V0 is the initial viral load in the upper respiratory tract, H∗E, H∗B, E∗ and B∗ are
homeostatic concentrations for antigen-specific Th1, Th2, CTL and B cells in the lung-
draining LNs, P∗ and F∗ are homeostatic concentrations for antigen-specific plasma cells
and antibodies in blood, respectively. We assume no immune activation is present before
the moment of infection:

MV(t) = 0, t < 0. (17)

2.2. Reference data on SARS-CoV-2 infection

In our study, we used recent data on viral kinetics during SARS-CoV-2 human chal-
lenge in young adults [22]. The data provide a most detailed characterization of the viral
load (copies per ml) in nose and throat of the adult volunteers. In addition, we considered
the data on the serum levels of IFN [32], the virus-specific Abs and the CD8 T cells [31].
The data are shown either as mean +/- sem (viral load in nose), or some shadowed areas in
Figure 2.

2.3. Calibration of the model

The estimate for initial viral load V0 can be derived from the experimental data on
viral load [22] which we aim to reproduce. The participants were inocculated intranasally
with the dose of 10 TCID50 ≈ 7 PFU of SARS-CoV-2. To obtain the initial concentration
V0, we estimate the volume of nasal mucosa as 120− 150 cm2 of surface area times the
thickness of 0.3− 5 mm [39,40]. This gives us the range of values from 3.6 to 75 ml, with
7 ml being a harmonic mean. Thus, we fix V0 ≈ 7 PFU/7 ml= 1 virion/ml. Note that
more thorough estimates for infection dose and model parameters affecting the incubation
period dynamics should be obtained using discrete-state stochastic models.

The homeostatic concentrations H∗E, H∗B, E∗, B∗ are estimated as follows: the frequency
of antigen-specific cells is about 10−7 − 10−4 [33–36], there are about 2× 1011 immune cells
of each type totally in approximately 1 litre of lymphoid tissue of the organism [37], the
volume of the lung-draining lymphoid tissue is about 10 ml (=1%) [23], which gives the
range (10−7, 10−4)× 2× 1011× 0.01/10 = (20, 20000) cells/ml. We use the geometric mean
of around 600 cells/ml for the point estimate. The estimates for P∗ and F∗ are borrowed
from [23].

The calibration procedure consists of three stages: (i) deriving the estimates for ad-
missible ranges and initial guesses of model parameters based on available literature, (ii)
choosing a subset of parameters having a large effect on discrepancy between model solu-
tion and data based on sensitivity analysis, (iii) tuning parameters from a chosen subset in
specified ranges to obtain an overall good fit, (iv) final refinement of parameters by solving
a local nonlinear optimization problem to minimize the specified discrepancy.

The measure of discrepancy to be minimized is defined as

Φ(p) =
M

∑
j=1

(V(tj, p)−Vobs
j

Vobs
j

)2

+

(
V(tj, p)−Vobs

j

V(tj, p)

)2, (18)

where V(tj, p) is the viral load predicted by the model with parameter values p at M time
points tj, Vobs

j is the experimental data on viral load at corresponding time points. This
functional weighs similarly both deviations at high and low viral load values [23].
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As a starting point, we used the parameter values and ranges specified in the previ-
ously calibrated model of influenza A virus infection [23,25]. Some parameter estimates
were refined, as described below.

To determine a subset of parameters to variate, we analyzed the sensitivity of param-
eters towards the partial sums of functional (18) at certain time points, corresponding to
different stages of infection (see section 2.4). We can select the following parameters as
having the most effect on each stage:

• First stage (incubation period, 0-3 days): ν, σ, γVC, γVM.
• Second stage (activation of immune response and peak of viral load, 4-7 days) and

third stage (recovery period, 8-13 days): σR, ρI , γVF, γFV , σI , µV , γMI , bP
p , γMV .

• Forth stage (post-symptomatic period, 14-19 days): bCE, γVC, bB
H .

Note that some parameters naturally have influence on several stages. However, one
can derive a good fit by sequentially tuning the subsets of parameters for each stage. Also,
the parameters reported above don’t include parameters for which we already have a good
estimate and narrow ranges from [23].

For the rate of SARS-CoV-2 virions secretion per infected epithelial cell, ν, we set the
initial guess ν = 130 day−1 and admissible range (10, 1000) day−1 based on our previous
experience of modelling SARS-CoV-2 replication cycle [30,38].

The infection rate of target epithelial cells with SARS-CoV-2, σ, can be estimated
as σ ≈ 1/(tl.c. × VMOI × fD × C∗), where tl.c. is a typical duration of the intracellular
replication cycle, VMOI is a multiplicity of single cell infection, and fD is a fraction of
epithelial cells in lungs damaged during infection [23]. Taking the ranges tl.c. ∈ (7, 24) h,
VMOI ∈ (1, 10) [30,38], and fD ∈ (0.1, 0.5), C∗ ∈ (109, 1010) cells [23], we arrive to the
estimate σ ∈ (2× 10−11, 3× 10−8) (cells/ml)−1day−1.

The expenditure rate of virions on the infection of target cells, γVC, should be balanced
with the infection rate σ. These parameters can be related through γVC = VMOI × σ, where
VMOI is the number of virions infecting a single target cell, for which we set the initial
guess and the range VMOI = 10 ∈ (1, 20).

The rate of CTL-mediated destruction of epithelial cells, bCE, can be estimated using
the scheme suggested in [23]: bCE ≈ 1/(tLN→RT × Esu f ). Here, Esu f is the number of
CTLs sufficient to destroy fD × C∗ epithelial cells, and tLN→RT ∈ (2, 12) h is the typical
time for a CTL to reach the target compartment of respiratory tract mucosa from LNs
draining the lungs. As one CTL can destroy several target cells (≈ 10), the estimate is
bCE ∈ (4× 10−9, 4× 10−7) (virions/ml)−1day−1.

We used the estimates as initial guesses and ranges from [23] for parameters γVM, γMI , σR, σI , γVF, γFV , µV , bP
p , bB

H .
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Table 1. Parameters of the calibrated model.

Parameter, units Range, initial guess Estimate

M∗ Concentration of APCs, cells/ml (3× 105, 2× 106) 6× 105

M∗I Concentration of IFN-producing APCs, cells/ml (107, 109) 109

H∗E Concentration of SARS-CoV-2 specific Th1 cells, cells/ml (20, 20000) 600

H∗B Concentration of SARS-CoV-2 specific Th2 cells, cells/ml (20, 20000) 600

E∗ Concentration of SARS-CoV-2 specific CTLs, cells/ml (20, 20000) 600

B∗ Concentration of SARS-CoV-2 specific B cells, cells/ml (20, 20000) 600

P∗ Concentration of SARS-CoV-2 specific plasma cells, cells/ml (2, 42) 10

F∗ Concentration of SARS-CoV-2 specific antibodies, molecules/ml (107, 108) 5× 107

C∗ Concentration of epithelial cells, cells/ml (109, 1010) 1010

αM Rate of stimulated state loss for APCs, day−1 (1, 3.3) 3.3

αE
H Rate of activated state loss for Th1 cells, day−1 (0.8, 1.2) 1

αB
H Rate of activated state loss for Th2 cells, day−1 (0.8, 1.2) 1

αE Rate of natural death for CTLs, day−1 (0.33, 0.5) 0.4

αB Rate of natural death for B cells, day−1 (0.05, 0.1) 0.1

αP Rate of natural death for plasma cells, day−1 (0.33, 0.5) 0.4

αF Rate of natural death for antibodies, day−1 0.043 0.043

τE
H Duration of Th1 cell division cycle, days (0.4, 0.8) 0.6

τB
H Duration of Th2 cell division cycle, days (0.4, 0.8) 0.6

τE Duration of CTL division cycle, days (0.5, 1) 0.5

τB Duration of B cell division cycle, days (0.5, 1) 0.5

τP Duration of B cell differentiation into plasma cells, days (0.5, 1) 0.5

ρE
H Number of Th1 cells created during division cycle (2, 4) 4

ρB
H Number of Th2 cells created during division cycle (2, 4) 4

ρE Number of CTLs created during division cycle (2, 4) 2

ρB Number of B cells in clone created by series of 1 or 2 divisions (1.5, 3) 3

ρP Number of plasma cells in clone created by series of 1 or 2 divisions (0.5, 1) 1

ρF Rate of IgG production per plasma cell, molecules/cell/day (8.5× 105, 1.7× 106) 1.7× 106

bE
H Rate of Th1 cells stimulation, (cells/ml)−1day−1 (5× 10−7, 4.5× 10−4) 4.5× 10−5

bB
H Rate of Th2 cells stimulation, (cells/ml)−1day−1 (5× 10−7, 4.5× 10−4) 4.5× 10−5

bE
p Rate of CTL stimulation, (cells/ml)−2day−1 (1.4× 10−10, 2× 10−8) 1.4× 10−8

bB
p Rate of B cell stimulation, (cells/ml)−2day−1 (1.4× 10−10, 3× 10−9) 2.2× 10−9

bP
p Rate of plasma cell stimulation, (cells/ml)−2day−1 (1.4× 10−10, 3× 10−9), 2.2× 10−9 3× 10−9

bHE
p Rate of Th1 cells suppression, (cells/ml)−2day−1 - 2.8× 10−13

bHB
p Rate of Th2 cells suppression, (cells/ml)−2day−1 - 2.8× 10−13

γMV Rate of APC stimulation, (cells/ml)−1day−1 (1.7× 10−13, 10−7), 2× 10−6 1.9× 10−9

γFV Rate of IgG binding to SARS-CoV-2, (virions/ml)−1day−1 (1.4× 10−10, 1.4× 10−8), 1.4× 10−9 2.8× 10−9

σ Rate of epithelial cell infection with SARS-CoV-2, (cells/ml)−1day−1 (2× 10−11, 3× 10−8), 10−10 1.4× 10−10

bCE Rate of infected epithelial cell damage by CTLs, (virions/ml)−1day−1 (4× 10−9, 4× 10−7), 5× 10−8 4× 10−9

bEC Rate of CTL death due to lytic interactions with infected cells, (cells/ml)−1day−1 - 2.7× 10−10

bm Rate of infected cell damage due to SARS-CoV-2 cytopathicity, day−1 (0.5, 2) 1.5

αm Rate of epithelial cell regeneration, day−1 (1, 4) 4

ν Rate of SARS-CoV-2 virions secretion per infected epithelial cell, day−1 (10, 104), 130 144

γVC Rate of SARS-CoV-2 absorption by epithelial cell, (cells/ml)−1day−1 (2× 10−11, 6× 10−7), 10−9 3.2× 10−9

γVM Rate of nonspecific SARS-CoV-2 elimination, day−1 (2, 4), 1.7 4

γVF Rate of SARS-CoV-2 neutralization by specific IgG, (virions/ml)−1day−1 (1.4× 10−11, 1.4× 10−8), 1.4× 10−9 1.4× 10−8

µV Parameter for inflamation-based enhancement of IgG effect (10, 105), 1000 2628

µC Parameter for inflamation-based enhancement of CTL effect (10, 105), 1000 1407

γMI Rate of induction of IFN-producing state in APCs, (cells/ml)−1day−1 (2.3× 10−9, 2.3× 10−7), 1.7× 10−8 5.7× 10−8

αMI Rate of IFN-producing state loss by APCs, day−1 (0.3, 0.5) 0.5

ρI Rate of IFN production per IFN-producing cells, molecules/cell/day (500, 12000) 6000

αI Type I IFN clearance rate, day−1 (10, 100) 24

σI Rate of IFN binding with epithelial cells, (cells/ml)−1day−1 (1.7× 10−11, 1.7× 10−9), 1.7× 10−9 1.7× 10−11

σR Rate of virus-resistant state induction in epithelial cells, (cells/ml)−1day−1 (3.3× 10−12, 3.3× 10−10), 3.3× 10−11 9.9× 10−11

αR Rate of virus-resistant state loss in epithelial cells, day−1 - 1
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Figure 2. Baseline solution of the model describing the intra-host SARS-CoV-2 infection dynamics
and the available clinical data.

The remaining model parameters were not varied; instead, their values were fixed1

to the estimates from [23]. Note that concentrations are reported in Table 1 as numbers of2

cells, virions or molecules per ml as opposed to molar units used in the previous work.3

For final stage of calibration we numerically solved a problem of minimizing (18)4

with respect to parameters, using a local method. We used first the derivative-free Nelder-5

Mead method, followed by the derivative-based quasi-Newton L-BGFS method using the6

meta-package Optimization.jl in julia language.7

The final estimates of calibrated model parameters p are presented in Table 1. Initial8

guess is reported only for parameters which were tuned during the calibration process.9

The calibrated model parameters correspond to discrepancy Φ(p) = 1086. The baseline10

solution of the model describing the intra-host SARS-CoV-2 infection and antiviral immune11

response dynamics and the available clinical data are shown in Figure 2.12

2.4. Sensitivity analysis13

Sensitivity analysis was employed both as exploratory tool in the calibration process,14

and as a way to derive meaningful predictions of the calibrated model. We used a local15

sensitivity approach, in which sensitivity indices of some functional of the model solution16

Φ(y(p)) with respect to variations in model parameters pj are defined as17

sj =
dΦ
dpj

(p), ŝj = pjsj, (19)

and provide a measure of the influence of parameter variations on the functional. The18

normalized version ŝj of sensitivity indices provides the way to compare and rank the19

parameters based on their effect.20

We used the following functionals of interest in this work:21

ΦAUC =
∫ T

0
V(t)dt, Φpeak = max

t∈[0,T]
(V(t)), (20)
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Figure 3. Normalized sensitivity indices for cumulative viral load ΦAUC(p) = 1.6× 108.

where ΦAUC refers to the cumulative viral load during the time course of infection, Φpeak is22

the peak viral load. Additionally, we analyzed sensitivity of the functional of discrepancy23

with experimental data (18) at various subsets of time points during the calibration process.24

All sensitivity indices were calculated using forward-mode automatic differentiation25

available in the package ForwardDiff.jl in julia language.26

3. Results27

3.1. Local sensitivity analysis28

The sensitivity analysis of the cumulative viral load, which is an important charac-29

teristic affecting positive and negative the dynamics of immune responses [42], showed a30

strong positive dependence on the virus secretion rate, the target cell infection rate and the31

number of available target cells expressing ACE2. It is most strongly negatively affected32

by the parameter of innate immune response related to activation of APCs and type I IFN33

system as summarized in Figure 3. The peak viral load has a similar sensitivity ranking34

with respect to the most influential parameters, see Figure 4.35

3.2. Induction of antigen-presenting cells36

The cascade of antiviral immune responses starts with activation of antigen presenting37

cells. The sensitivity threshold is characterized by model parameter γMV . We examined the38

effect of its 10-times increase and decrease on the course of the virus infection as shown in39

Figure 5. The model predicts that a higher sensitivity induces faster and stronger responses40

which spread through the whole response cascade. However, a ten-fold decrease results in41

higher viral antigen levels which are needed to induce activate the immune system, which42

delays the immune response and finally, favours prolonged viral persistence. Interestingly,43

that a stronger type I IFN response is not sufficient to clear the infection in this case.44

3.3. Induction of type I IFN response45

The ten-fold increase of the rate constant of activation of type I IFN response γMI46

results in a lower viral peak as one can see in Figure 6. However, this affect the activation of47

antigen-presenting cells and the resulting reduced response percolates through to antigen-48

specific arms. Both the T-cell and B-cell responses appear to be weaker. The virus is not49
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Figure 4. Normalized sensitivity indices for viral load peak Φpeak(p) = 5.9× 107.

Figure 5. Dashdot: 10-fold increase of γMV , dot: 10-fold decrease of γMV relative to baseline value.
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Figure 6. Dashdot: 10-fold increase of γMI , dot: 10-fold decrease of γMI relative to baseline value.

eliminated within 25 days so that the viral persistence is observed. A similar decrease in50

γMI leads to a poorer control of viral load so that it reaches higher peaks. The antigen51

specific-response turn out to be stronger. However, the damage of the target organs also52

increases by one order of maginitude.53

The effect of 10-fold variation of the parameter σR characterizing the rate of type I IFN-54

mediated induction of resistance to infection of target cells expressing ACE2 is displayed55

in Figure 7. Its impact on the solution of the model is similar to that of γMI .56

3.4. Disregulation of CTL and B-cell responses57

Next, we examined the extent of kinetic cooperativity between the T- and B cell58

responses. To this end, a 10-fold variation was applied to parameter bB
p , clonal activation59

rate of B cells. The results are summarized in Figure 8. An earlier activation of the60

humoral immune response results in faster (by 5 days) viral elimination but reduces the61

CTL response. A delayed activation of B cells critically affects the dynamics of infection62

resulting in a prolonger viral persistence.63

A similar exploration of the effect of two-fold increasing the activation rate of CTL64

clonal expansion at the background of an opposite two-fold variation of the activation rate65

of B cells is shown in Figure 9. The increase in CTL response turns out to be much stronger66

but it fails to eliminate the infection because the humoral immune response is not sufficient.67

The effect of the reduced activation rate of CTL response can be compensated by a two-fold68

increase of the activation rate of B cells, so that the infection is completely eliminated.69

The 10-fold increase of the differentiation rate of antigen-specific B cells into plasma70

cells bP
p leads to an earlier appearance of antibodies as displayed in Figure 10. However, the71

clonal expansion of B cells and CTL is smaller which finally results in failure of the system72

to eliminate the virus. Reduced differentiation rate slightly increases the duration of the73

peak viral load but a stronger B- and T cell responses finally eliminate the virus infection74

five days earlier compared to the basal solution pattern.75

A higher extent of variation of the differentiation rate of B cells into plasma cells (i.e.,76

by 40-times) changes the dynamics as shown in Figures 11. The respective increase results77

in sufficient production of antibodies eliminating the virus. However, the cumulative78

viral load is smaller and hence, the expansion of T cells and B cells. The decrease of the79
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Figure 7. Dashdot: 10-fold increase of σR, dot: 10-fold decrease of σR relative to baseline value.

Figure 8. Dashdot: 10-fold increase of bB
p , dot: 10-fold decrease of bB

p relative to baseline value.
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Figure 9. Dashdot: 2-fold increase of bE
p with 2-fold decrease of bB

p , dot: 2-fold decrease of bE
p with

2-fold increase of bB
p relative to baseline value.

Figure 10. Dashdot: 10-fold increase of bP
p , dot: 10-fold decrease of bP

p relative to baseline value.
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Figure 11. Dashdot: 40-fold increase of bP
p , dot: 40-fold decrease of bP

p relative to baseline value.

differentiation rate of B cells into plasma cells results in an delayed but enhanced Th1, Th2,80

CTL and B cell and plasma cell expansion. This solution trajectory is characterized by a81

higher number of damaged infected target cells and prolonged viral persistence at the peak82

levels.83

3.5. Asymmetry of Th1 versus Th2 responses84

It has been recently observed that epidemiological data indicate a reduced risk of85

severe COVID-19 in SARS-CoV-2 infected patients with the type 2 asthma [41]. Asthma86

is considered to be associated with a dominance of T helper 2 (Th2) cells. We used the87

model to predict the impact of a stronger activation rate of Th2 cells bB
H compared to Th188

cells on the dynamics of infection. The results are presented in Figure 12. The ten-fold89

increase of the clonal expansion rate of Th2 cells leads to an earlier elimination of virus90

due to enhanced (by several orders or magnitude) humoral immune response, with the91

CTL response left almost unchanged. However, a similar reduction in the activation rate92

essentially reduced all components of the B-cell and antibody responses. The stronger93

induction of CTL response is not enough to compensate the weaker humoral immune94

response and the prolonged viral persistence is predicted.95

The biased towards Th2 cells antigen-specific immune response could also be a conse-96

quence of a larger homeostatic number of this population compared to Th1 cells. Figure97

13 shows the effect of a five-times variation of the respective parameter H∗B. A higher98

initial number of SARS-CoV-2-specific Th2 cells leads to an earlier and stronger B-cell99

response and faster virus elimination. Similar reduction results in a delayed CTL and B-cell100

responses and prolonged viral persistence.101

3.6. Kinetic mechanisms of long COVID-19 pathogenesis102

Following the above examination of the degree of synchrony in the cascade of antiviral103

immune response, we estimated the degree of variation in the respective parameters which104

lead to prolonged viral persistence, i.e. beyond 30 days post infection. The results are105

summarized in Table 2.106
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Figure 12. Dashdot: 10-fold increase of bB
H , dot: 10-fold decrease of bB

H relative to baseline value.

Figure 13. Dashdot: 5-fold increase of H∗B, dot: 5-fold decrease of H∗B relative to baseline value.
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Figure 14. Kinetics of the number of virions in expelled droplets during the time course of infection.

Table 2. Thresholds for individual parameter variations which lead to virus persistence.

Parameter γMV bP
p bB

p bE
p bB

H bE
H γMI σR µV µC

Variation ÷1.12 ×3 ÷1.4 − ÷1.15 − ×1.15 ×1.06 ×1.3 ×8× 104

The model predicts that a 12%, 15% and 6% shift in the values of innate immune cells107

activation parameters, i.e. γMV , γMI , σR respectively, turns out to be sufficient to extend the108

viral persistence beyond 30 days post infection. The robustness with respect to the B cell109

proliferation and differentiation shift is stronger. The inflammation-related enhancement110

of virus- and infected cell elimination parameters µV , µC is robust to 30% and 8× 104-fold111

increase, respectively. 15% reduction of the activation rate of Th2 cells compared to Th1112

cells results in prolonged virus persistence.113

3.7. Individual’s infectiousness114

The kinetics of the viral load in upper respiratory tract reproduced by the model can115

be translated into the estimates of the number of viruses expelled by infected individual116

during talking via droplets [9]. Given the estimate of the volume of the expelled droplets117

Vdroplets = 1.1× 10−4 ml [9], we can obtain the number of expelled virions (infectiousness)118

as Vdroplets × V(t). The time-course of an airborne transmission intensity of an infected119

person as predicted by the calibrated model is presented in Figure 14.120

4. Discussion121

In this study we developed a calibrated mathematical model of antiviral immune122

response to SARS-CoV-2 infection. Recently published data sets from the human challenge123

studies with SARS-CoV-2 were used for parameter estimation [22]. The model considers in-124

nate and antigen-specific responses to SARS-CoV-2 infection. In turn, the innate subsystem125

of equations describes the dynamics of the type I IFN responses and antigen presentation.126

The antigen specific immune response includes the clonal dynamics of Th1- and Th2 CD4 T127

cells, CD8 T cells, B cells, plasma cells and antibodies. The effect of inflammatory responses128

on elimination of the virus and infected cells is taken into account. The damage of the129

infected target cells (epithelial and endothelial cells, ciliated airway cells, alveoli type 2130
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cells) results in the suppression of antigen-specific immune responses. In our view, the131

model details provide an appropriate balance between the description of the complexity of132

SARS-CoV-2 infection and the consistency with the quantitative view of a mild-to-moderate133

symptoms COVID-19 [2,31,32,52].134

Consideration of multiple immune reaction components in a single calibrated mathe-135

matical model allows one to address some fundamental issues related to the pathogenesis136

of COVID-19, e.g., sensitivity of peak viral load to parameters characterizing specific137

response components, the kinetic coordination of the individual responses, and factors138

favoring prolonged viral persistence.139

Our model-based analyses suggest that the sequele of immune responses differentially140

mounted by innate and adaptive subsystems needs to be kinetically synchronized to ensure141

an optimal induction of the whole cascade. An improper increase of the activation rate142

of one single component may result into reduced responses of the others thus favouring143

the virus persistence. This observation corroborate results of the recent studies on age-144

related differences in immune dynamics in SARS-CoV-2 infection of non-human primates145

[46] and a delayed viral clearance in some asymptomatic human infections [47]. It was146

summarized that the major difference between the young and old rhesus macaques is a147

much stronger innate response and a delayed antigen-specific response in older animals148

[46]. The dysregulation of innate and adaptive immune responses was considered to result149

in a prolonged SARS-CoV-2 persistence [47].150

The above finding bears a direct implication for a mechanistic understanding of151

prolonged viral persistence, i.e. beyond 30 days post infection. The problem of long-152

COVID-19 is emerging as a key pathological consequence of SARS-CoV-2 infection [43].153

Although the set of etiological factors is very broad [44], the residual persistence of viral154

RNA is considered among them [48]. We identified the thresholds in the increase of the155

innate and adaptive responses parameters which lead to a prolonged persistence of SARS-156

CoV2 due to the loss of a kinetic synchrony/coordination of the responses, i.e. to the loss157

of an optimal pattern of their cascade.158

Finally, the model can be used to predict the intensity of airborne infection spreading159

by infected individuals, e.g. the amount of virus which is transmitted via droplets from a160

SARS-CoV-2 infected person, depending on the time of infection and the immune response161

parameters. This type of estimates provide a direct information that may be included162

into the epidemiological models of virus spreading in the human population [49,53]. We163

note that a probabilistic model was recently elaborated linking the viral load and the host164

infectiousness [15]. It was used to evaluate the effectiveness of PCR and antigen-based165

testing.166

The future development of the model will be related to a fine tuning of parameters and167

compartmental (multi-organ) extension of the equations to deal with the systemic aspects of168

COVID-19 [27,50]. A fundamental issue which remains to be explored is the incorporation169

of the regulatory feedbacks into the model, e.g., taking into account the pleiotropic effects of170

type I IFN, cytokines and networking of immune cells subsets. However, these refinements171

should go in coordination with clinical and experimental studies so that the increase of the172

model complexity could be justified.173

Overall, our study highlights the value of mathematical modelling in gaining a mech-174

anistic view of the kinetic regulations of SARS-CoV-2 infections and antiviral immune175

responses. It enables to draw novel hypotheses clarifying the concept of the ‘numbers176

game‘ [51] or race between viral replication and activation of immune system arms [52], i.e.,177

the kinetic coordination of multi-component immune reactions, on the course and outcome178

of COVID-19.179
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