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Abstract: The detection of waste plastics in the marine and terrestrial environment using satellite 
Earth Observation data offers the possibility of large-scale mapping and reducing on-the-ground 
manual investigation. In addition, costs are kept to a minimum by utilizing free-to-access Coperni-
cus data. A Machine Learning-based classifier was developed to run on Sentinel-1 and -2 data. In 
support of the training and validation, a dataset was created with terrestrial and aquatic cases by 
manually digitizing varying landcover classes alongside plastics under the sub-categories of green-
houses, plastic, tyres and waste sites. The trained classifier, including an Artificial Neural Network 
and post-processing decision tree, was verified using five locations encompassing these different 
forms of plastic. Although exact matchups are challenging to digitize, the performance has gener-
ated high accuracy statistics, and the resulting land cover classifications have been used to map the 
occurrence of plastic waste in aquatic and terrestrial environments. 
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1. Introduction 
The presence of plastics in the environment is of increasing concern and a pressing 

environmental issue, with incorrect disposal resulting in the contamination of marine, ter-
restrial and airborne environments. In addition, when plastics are exposed to ambient so-
lar radiation, they slowly disintegrate into microplastics and release greenhouse gases, 
methane and ethylene [1]. Some facts of concern are that [2]: half of all manufactured plas-
tics have been made in the last 15 years, and production has increased exponentially, from 
2.3 million tons in 1950 to 448 million tons by 2015. Additionally, the mass of plastics is 
twice that of animate creatures inhabiting planet earth [3]. With an awareness of how 
plastic harms the environment, its mapping and recovery is an increasing focus alongside 
using less plastic in our everyday lives. 

The everyday use of plastic bags and other single-use plastic products is widespread 
in many countries. Additionally, countries can have specific sources of plastics; e.g., in 
Nigeria, the packaging of drinking water in plastic is omnipresent [4]. Combined with 
this, waste management can be a significant problem due to a lack of recycling infrastruc-
ture, trained workforce, and other related factors. In addition, where facilities are availa-
ble illegal fly-tipping can occur when those involved try to avoid disposal fees, e.g., the 
fly-tipping statistics for England in 2020/21 compared to 2019/20 showed a 16% increase 
with the primary source being household waste [5]. Additional concerns have arisen con-
cerning waste materials being wrapped in plastics and disguised as other forms of legal 
waste, such as silage bales, which increases the difficulty of illegal waste detection and 
regulation enforcement [6,7]. 

In agriculture, plastics have become indispensable and are highly visible when used 
for crop protection and shading, such as greenhouses and ground covering films, and 
large plastic bales holding silage—termed plasticulture. However, in Europe, there are 
often inefficient management schemes, with data on the use of plastics in agriculture chal-
lenging to obtain [8]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2022                   doi:10.20944/preprints202207.0410.v2

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Remote Sens. 2022, 14, 4772; doi:10.3390/rs14194772

https://doi.org/10.20944/preprints202207.0410.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs14194772


 2 of 27 
 

 

Stockpiles of waste tyres have been identified as a significant danger to human and 
environmental health [6]. Before the introduction of the European Union’s Waste Frame-
work Directive (2008/98/EC) [9], it was estimated over a billion tyres existed in poorly 
managed or unmanaged stockpiles across Europe [10]. Globally, it is estimated that one 
billion end-of-life tyres are created annually, and approximately four billion are in stock-
piles and landfills [11]. 

The environmental harm caused by waste plastics is not only to the location where 
the plastics are used/dumped, as they can end up in waterways that take them out to sea. 
During their transport in aquatic systems, fresh plastics are gradually broken down into 
microplastics (<5 mm in diameter) and nanoplastics (<1 μm) [12]. It is estimated that about 
150 million tonnes of plastic debris circulate in the world’s oceans [13]. 

Earth Observation (EO) data have the potential to detect plastics as they have a spec-
tral signature that can be separated from the surrounding land cover types. For plastic 
waste floating on water, both Biermann et al. [14] and Themistocleous et al. [15] used in-
dices derived from Sentinel-2 data; the Floating Debris Index and Plastic Index use the 
near-infrared (NIR) and red bands. The advantage of floating plastic is that the plastics 
are bright compared to the background, which is no longer true when plastics are on land 
as the background landcover can also have variable bright targets such as reflective roofs. 
Additionally, separating the detection of waste from the intended presence of plastics in 
the terrestrial environment can be difficult as it is present in greenhouses, synthetic turf 
and on the rooves of buildings as plastic roof tiles. However, the bright surface signatures 
of windrows (litter accumulation due to convergence zones in the ocean) may not only be 
due to the accumulation of plastics [16]. 

Amongst 33 polymers reported in the Indian coastal environment, polyethylene and 
polypropylene were the most dominant type in the sediment, water, and biota [17]. In 
plasticulture, polyethylene is popular as it’s a white semitransparent plastic with a spec-
tral reflectance strongly influenced by the soil/vegetation characteristics it covers. How-
ever, plastic-mulched farmland is brighter, smoother (because it reduces soil roughness) 
and drier (it has low vapor and air permeability and low water absorbability) than other 
classes. So, the reflectance of plastic-mulched farmland has higher reflectance values in 
the shortwave infrared (SWIR) bands [18]. Levin et al. [19] used absorption features at 1 
218 and 1732 nm to detect plastic features associated with plasticulture. Similarly, for 
floating plastic waste, Goddijn-Murphy and Dufaur [20] noted absorption peaks at 
around 1140 and 1680 nm. 

Guffogg et al. [21] noted that an obstacle for spectral detection on some beaches was 
that a large percentage of the plastic debris was shoes, predominantly flip flops, with pol-
yurethane foam not having received as much focus as other plastics. They found that be-
tween 2–8%, depending on the plastic polymer, of a unit area must be covered in plastics 
before the material can be spectrally separated from a non-contaminated area only con-
taining sand. 

The detection of municipal or illegal waste sites on land has received less attention, 
although they are a recognized source of poorly managed marine pollution. Page et al. 
[22] is the previous version of this paper’s approach, which classified tyre and plastic 
waste in Scotland using Sentinel-1 and Sentinel-2 data. Kruse et al. [23] focused on plastic 
aggregation sites across Indonesia. They found that the centres of 19% of waste sites in 
Southeast Asia are located within 200 m of a waterway or waterbody listed on Open-
StreetMap, and more than half are within 750 m. Gill et al. [24] used Landsat thermal data 
due to the heat generation in landfills; in comparison to the immediate surroundings, 
higher Land Surface Temperature (LST) values of a few Kelvin were reported within the 
study landfill site [25]. They developed an analytical framework for screening illegal 
dump sites using night-time light from Suomi VIIRS satellite imagery as a proxy. Karimi 
et al. [26] combined night-time light imagery with LST and modified soil adjusted index 
alongside vector layers for highways, railways and disposal sites. The night-time satellite 
imagery was used to determine populated areas [26]. 
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Considering the approaches implemented previously, the objective of this study was 
to develop a method for automatically detecting a variety of plastic waste across aquatic 
and terrestrial environments from EO satellite data to provide a viable approach for re-
peatable, cost-effective, and large-scale monitoring. More specifically, this study assessed 
the suitability of a Sentinel-1 and -2 synergy product for plastic waste detection using a 
Keras implemented Sequential model to define an Artificial Neural Network (ANN); 
Keras is a high-level API that runs on top of TensorFlow for this Python implementation.  

2. Materials and Methods 
In this study, five test sites have been used to showcase the accuracy of the detection 

of plastics in different environments. A classifier has been developed with a pre-pro-
cessing step that processes the input satellite data such that it is suitable for the stack of 
layers supplied to the Neural Network classifier. Then, a post Neural Network Decision 
Tree is applied to refine the generated land cover classification before several accuracy 
measures are used to understand the classifier’s ability to detect plastic waste within dif-
ferent scenarios. 

2.1. Test Sites and Input Satellite Products 
Five test sites with different types of plastic pollution are being used to demonstrate 

the performance of the developed classifier for automatically detecting plastic waste. The 
Sentinel-1 Interferometric Wide Swath (IW) Ground Range Detected High Resolution 
(GRDH) and Sentinel-2 Level-2A (L2A, atmospherically corrected) files used for the plas-
tic waste detection are shown in Table 1. 

Table 1. Test site locations with Sentinel-1 IW GRDH and Sentinel-2 Level 2A files as date/time and 
(for Sentinel-2) tile. 

Test Site (Co-Ordinates) Sentinel-1 IW GRDH Sentinel-2 L2A 
Višegrad Dam 

(43°45’35.62”N 19°17’15.68”E) 
S1A 20210302T163318 S2A 20210302T09303 T34TCP * 

Solo River Mouth 
(6°50’57.89”S 112°34’33.44”E) 

S1A 20210218T220906 
& 20210218T220931 ** 

S2A 20210227T023641 
T49MFN 

Srinagar Landfill 
(34° 7’28.81”N 74°47’11.60”E) 

S1A 20211031T005910 S2A 20211029T053941 T43SDT 

Tyre Graveyard 
(29°15’24.42”N 47°40’22.96”E) 

S1A 20201228T024734 
& 20201228T024709 ** 

S2A 20201226T073321 T38RQT 

Almería Greenhouses 
(36°43’6.72”N 2°45’12.82”W) 

S1A 20210408T061050 S2A 20210505T105031 T30SWF 

* Processed from Level 1C to Level 2A as there were issues using the online Level 2 file. ** Two 
Sentinel-1 files merged to cover the area of interest for the test site fully 

The Sentinel-2 files are from 2021, so they have a relatively consistent processing ver-
sion between themselves and the training data. Version 2.09 became active on 04 February 
2020 with improvements in the NO DATA masking, then version 3.00 on 30 March 2021 
had improved geometry and masks. There was a major upgrade to version 4.0 on 25 Jan-
uary 2022, when the format and radiometry changed [27]. There will be a reprocessing 
activity in the future, so all files have consistent processing.  

Sentinel-1B suffered an anomaly on 23 December 2021, so utilizing data before that 
date offered the opportunity to match either the Sentinel-1A or B missions. However, as 
shown in Table 1, Sentinel-1 was chosen in all cases. Most of the Sentinel-1 files are version 
3.31, with the Srinagar Landfill file being version 3.40 [28], which is not significantly dif-
ferent and is not expected to affect the results. 

2.1.1. Višegrad Dam, Bosnia-Herzegovina 
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The Drina River and its tributaries, located on the border between Bosnia and Serbia, 
filled with trash when weeks of wet winter weather pulled plastic bottles, rusty barrels, 
used tires, old furniture, and other rubbish into the water [29]. This trash built up at the 
Višegrad Dam, piling up faster than the authorities could clear it out, so it was detectable 
from space in March 2021. 

2.1.2. Solo River Mouth, Indonesia 
In 2020 it was reported that the Solo River in East Java, Indonesia, was polluted by 

plastic waste. In the dry season, rubbish covers the surface of the river, making it difficult 
for fishers to go to sea, while in the rainy season, trash drifts into the sea until it ends up 
on the beaches in Bali [30]. 

2.1.3. Srinagar Landfill, India 
In 2021, the overflowing landfill site in Srinagar, the capital of Indian-administered 

Kashmir, was reported to pose a health risk to residents and damage the region’s fragile 
ecosystem [31]. 

2.1.4. Tyre Graveyard, Kuwait 
Tens of millions of tyres have been held in pits within a graveyard in the Arhiya area, 

five kilometres south of the city of Jahra [32]. There have been several fires, posing both 
an environmental and health hazard, so in 2021 the Kuwait government started recycling 
them. 

2.1.5. Almería Greenhouses, Spain 
The economy of Almería is dependent on agricultural products, with greenhouses 

constructed from plastic sheeting producing tons of fruits and vegetables alongside plastic 
waste. Polyethylene is preferred because of its affordability, flexibility, and ease of manu-
facturing [33], with the plastics being transparent or translucent with vegetation below. 
Several papers have focused on detecting the greenhouses themselves, e.g., [34–36], while 
this paper also focuses on the plastic waste between the greenhouses and in abandoned 
areas. 

2.2. Classifier Development 
All Sentinel files were downloaded through the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/ (accessed between 2020 and 2022)) and processed using the 
European Space Agency’s (ESA) open-source Sentinel Application Platform (SNAP) [37] 
version 7.0. 

2.2.1. Pre-Processing 
Sentinel-1 Level-1 IW GRDH vertical single polarisation (VV) polarized data were 

converted to backscatter values using SNAP through: (i) the application of an orbit file to 
correct for orbital error; (ii) radiometric correction using a Gamma0 coefficient calibration; 
(iii) Range-Doppler terrain correction through orthorectification against Shuttle Radar To-
pography Mission (SRTM) 1-arc-second Digital Elevation Model (DEM) data; (iv) the ap-
plication of a Lee Sigma speckle filter; and (v) conversion to decibels (dB) to produce a 
non-linear valued output. This workflow is a modified version of the standard SNAP pre-
processing workflow to determine the radar backscatter in dB [38], but the thermal noise 
correction was dropped as it was found to introduce artefacts and is primarily of use for 
the cross-polarisation channel. The Lee Sigma filtering was included to reduce the speckle 
while preserving edges [39]. The VV rather than cross-polarisation (VH) data were chosen 
because they are more sensitive to rough surface scattering [40], and their primary role in 
the classification process is the separation of water from land.  
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Sentinel-2 Level-2A data produced by ESA were used to provide bottom-of-atmos-
phere reflectance imagery. When Level-2A data were unavailable, Level-1C products 
were atmospherically corrected through the Sen2Cor v2.10 processor [41] available in 
SNAP. 

2.2.2. Thematic Indices 
A range of optical indices were calculated covering vegetation, biophysical, water 

and soil thematic groups to aid in the differentiation between land cover types and waste 
products. The setup started with those used in Page et al. [22] and was adjusted to include 
additional indices to support the detection of marine plastics alongside waste sites on 
land. 

The normalized difference vegetation index (NDVI) algorithm is a measurement of 
photosynthetic activity and is strongly correlated with vegetation density and vitality [42]. 
Designed by Tucker [43], it is based on a high reflectance in the NIR by plant matter in 
contrast to the strong absorption by chlorophyll-a in the red wavelengths, known as the 
red edge. For the Sentinel-2 MultiSpectral Instrument (MSI) the chosen bands were band 
8 (B08) for the NIR and band 4 (B04) for Red. 

NDVI =  
(NIR − Red)
(NIR + Red)

 (1) 

The soil adjusted vegetation index (SAVI) provides a hybrid between ratio-based and 
perpendicular indices. It is based on simple radiative transfer and a more coherent theo-
retical background than other vegetation indices. Developed by Huete [42], it is necessary 
to use a correction value that varies from 0 for very high vegetation cover to 1 for very 
low. For use across various land cover types, an intermediate correction value (L) of 0.5 
has been used in this instance. 

SAVI = (1 ∗ L)
(NIR − Red)

(NIR + Red + L)
 (2) 

The second normalized difference water index (NDWI2) was developed by 
McFeeters [44] to detect surface waters in wetlands and to allow the measurement of the 
extent of surface water. The index has reduced errors in separating tyres and plastic from 
water-dominated pixels. Previous work demonstrated more consistent values for all tar-
get land cover classes for NDWI2 compared to its predecessor, NDWI [22], MSI band 3 
(B03) was used for Green. 

NDWI2 =  
(Green − Red)
(Green + Red)

 (3) 

The Road Mask is based on the approach defined by Fisser [45], which includes the 
following criteria: 
• Visible bands (B02, B03 and B04) > 0.04 to avoid building shadows 
• Green/Red ratio (B03/B04) < 0.15 to avoid industry, greenhouses and other surfaces 

of very high reflectance 
• Blue (B02) < 0.4 to be less strict with blue as we target it 
• NDVI < 0.7 to avoid vegetation but keep in mind mixed pixels 
• NDWI < 0.001 to avoid water [for this work NDWI2 was used 
• Normalised Difference Snow Index (NDSI) < 0.0001 to avoid snow 
• 0.05 > SWIR (B11) < 0.55 

The Normalised Difference Build-Up Index (NDBI) developed by Zha et al. [46] was 
initially applied to Landsat Thematic Mapper imagery, with MSI B11 used as the SWIR 
band. 

NDBI =  
(SWIR − NIR)
(SWIR + NIR)

 (4) 
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2.2.3. Improved Shadow Masking 
Zhou et al. [47] implemented an approach, see Equation (5), to mask cloud shadows 

in WorldView-3 data in an urban context using the red, green and blue bands. The algo-
rithm was applied to MSI by using the B04, B03 and B02 bands that were first converted 
into the YCbCr colour space and then the Improved Shadow Index (ISI) was calculated. 

ISI =  
SI + (1 − NIR)
SI + (1 + NIR)

 (5) 

SI =  
Cb − Y
Cb + Y

 (6) 

where Y is the luma component and Cb is the blue-difference chroma component of the 
Tsai [48] YCbCr model. 

To further support the application in aquatic and terrestrial environments as opposed 
to the original purely urban context, the resulting ISI layer was adjusted using NDWI2; 
otherwise, all open water pixels were flagged as shadow—as a result, the shadow mask is 
not triggered over water, but this was not foreseen as an issue as the miss-classification of 
plastic due to shadow is not an issue encountered over water. Additionally, to account for 
terrain shadowing, which can also cause misclassification, the terrain slope was calculated 
from the DEM, SRTM accessed during the Sentinel-1 processing, and high slope pixels 
were added to the ISI to create a raster layer termed the shadow mask. Figure 1 shows an 
example of the developed shadow mask applied to an area with clouds. The ISI was used 
as a layer in the ANN, while the shadow mask was used in the post-processing decision 
tree that reassigns pixels that the ANN has misclassified. 

2.2.4. Neural Network 
ANNs are mathematical models inspired by the structure and behaviour of the hu-

man brain. The multilayer perceptron supervised learning approach has multiple layers 
with the information transferred from the input layer to the output (feed-forward), and 
the weights are changed until the simulated outputs are similar to the observed ones [49].  

All thematic indices were stacked into one file alongside a subset of Sentinel-2 MSI 
bands, and the Sentinel-1 Gamma0 VV data. The resulting stack consists of 17 layers (Ta-
ble 2). Different Sentinel-2 bands have different spatial resolutions in the original Sentinel 
datasets, so the coarser spatial resolution band were resampled to 10 m. For Sentinel-2, 
this occurs just before inclusion in the stack using the SNAP raster resampling tool, and 
for Sentinel-1 it is included as part of the terrain correction. 

An augmented land cover classification is the desired output of the ANN classifier, 
which is separated into nine classes (see Table 3). These classes are adapted from the 
CORINE land cover mapping scheme [50], a consistent classification system developed 
for application in Europe. The classes were modified by adding plastics as an additional 
Level 2 class and then the different types of plastics (where plural the paper refers to the 
four Level 3 classes together). 
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Figure 1. Full Sentinel-2 tile processed for the Solo River, Indonesia, as the pseudo-true colour image 
(bands B04, B03 and B02 as red, green, and blue) at the top, with a zoomed-in (see red box) compar-
ison of pseudo-true colour to the pixels that have been identified using the shadow index for a sub-
set. 

Table 2. Layers within the classification stack, including the spatial resolution and MultiSpectral 
Instrument (MSI) band and central wavelength for the Sentinel-2 reflectance bands. 

Layer Number 
MSI Band Number and Central 

Wavelength (nm) 
Description 

Original Spatial 
Resolution (m) 

1 B02 (490) Blue 10 
2 B03 (560) Green 10 
3 B04 (665) Red 10 
4 B05 (705) Red Edge 20 
5 B06 (740) Red Edge 20 
6 B07 (783) Red Edge 20 
7 B08 (842) NIR 10 
8 B08A (865) Red Edge 20 
9 B11 (1610) SWIR 20 

10 B12 (1190) SWIR 20 
11  NDVI 10 
12  SAVI 10 
13  NDWI2 10 
14  Road Mask 10 
15  NDBI 10 
16  ISI 10 
17  Gamma0 VV 5 x20 
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Table 3. Classification of the land cover types through a tiered approach following CORINE, with 
an additional Level 2 class for plastics. 

Level 1 Level 2 Level 3 
1. Water 1.1. Clear Water   
  1.2. Algal Blooms   
  1.3. Aqueous Deposits   

2. Land 2.1. Non-Photosynthetic   
      
  2.2. Green Vegetation 2.2.1. Woodland 
    2.2.2. Grassland 
      
  2.3. Urban 2.3.1. Industrial 
    2.3.2. Artificial Surfaces 
      
  2.4. Plastics 2.4.1 Tyres 
    2.4.2 Plastic 
    2.4.3 Greenhouses  
    2.4.4 Waste sites 

The training/validation dataset used Sentinel-1 and -2 satellite imagery collected over 
a global set of 30 test sites; see Figure 2. Test sites were accumulated over several years by 
reviewing peer-reviewed papers, reports and news articles on plastic waste and its detec-
tion using remote sensing. Training pixels manually identified using a combination of the 
high spatial resolution satellite imagery within Google Earth and the Sentinel-2 RGB col-
our composite. Where the locations of the plastics could not be reliably identified, these 
land cover classes were not digitized, and the background land cover classes were only 
digitized so as not to reduce the accuracy of the overall dataset. 

 
Figure 2. Locations and focus for the manually digitized training/validation dataset. 

For each target class, multiple homogeneous training pixels were taken across the 
different sites through the digitizing of polygons. Figure 3 shows the digitization for the 
Višegrad Dam aquatic site and tyre graveyard in Kuwait with the digitized pixels shown 
as crosses overlaid on the Sentinel-2 pseudo-true colour (left) and SAR backscatter image 
shown on the right. The fusion of Sentinel-1 and -2 for land cover mapping provides the 
land surface’s combined spectral and structural characteristics, with the results often hav-
ing a higher accuracy than using either of the datasets individually [51]. For the Višegrad 
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Dam, the SAR image shows that the floating mass has a higher backscatter than the water 
before the dam accumulation (top right), and similarly the tyre graveyard also shows 
higher backscatter for the filled tyre pits compared to the surrounding sand and empty 
pits (bottom right). 

 
Figure 3. Example of pixels being digitized for the Višegrad Dam aquatic site (top) and tyre grave-
yard in Kuwait (bottom) as the Sentinel-2 pseudo-true colour (left) and SAR backscatter image 
(right)—digitized polygons are coloured red. 

The top 25 sites in Table A1 were used for training/validation, which resulted in the 
pixel numbers shown in Table 4. As the original plastics classes of interest have low num-
bers of pixels, such that they are from 0% to 0.3% of the total pixels to within 1dp, the 
training/validation dataset has a class imbalance. Therefore, a re-weighting was applied 
to reduce the number of pixels for the classes with high numbers, such as clear water and 
clouds, and increased the number of pixels for classes with low numbers through dupli-
cation. The decision on which classes had their values decreased versus increased was 
based on their original percentages; greater or less than 5.6% that equated to the total 
number of pixels divided by the number of classes. The result is that this approach has 
reduced the class imbalance, although it remains and should be accounted for when as-
sessing performance. 
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Table 4. Training sample distribution amongst the classes. 

Class 
Original Num-

ber of Pixels 
Original Percent-

age 
Updated Num-

ber of Pixels 
Updated Per-

centage 
Clear Water 810,210 65.4% 587,792 47.5% 

Algal Blooms 10,184 0.8% 27,773 2.2% 
Aqueous Deposits 37,924 3.1% 47,191 3.8% 

Bare Ground 34,307 2.8% 44,659 3.6% 
Murrum Soil 56 0.0% 20,683 1.7% 

Sand 9097 0.7% 27,012 2.2% 
Grassland 11,513 0.9% 28,703 2.3% 
Shrubland 10,341 0.8% 27,882 2.3% 

Forest 31,502 2.5% 42,695 3.4% 
Cropland 7939 0.6% 26,201 2.1% 
Buildings 7038 0.6% 25,570 2.1% 

Artificial Surfaces 7519 0.6% 25,907 2.1% 
Cloud 247,323 20.0% 193,771 15.6% 

Shadow 7387 0.6% 25,815 2.1% 
Plastic 667 0.0% 21,111 1.7% 
Tyres 351 0.0% 20,889 1.7% 

Greenhouses 4163 0.3% 23,558 1.9% 
Waste Sites 1143 0.1% 21,444 1.7% 

Total number after 
adjustment 

1,238,656 pixels split into 928,992 training pixels and 309,664 valida-
tion pixels 

Different models were tested to investigate the bands that could be used and their 
relative contribution: Linear Regression, Random Forest and ANN. As it was difficult to 
understand the different input layer contributions to the ANN output, the relative im-
portance was tested using the two other types of models. Figure 4 shows the resulting 
layer importance graphs for applying Linear Regression (top) and Random Forest (bot-
tom) models generated using the permutation importance function in the sklearn Python 
module; it was not possible to apply this function to the ANN due to its model structure 
that was not compatible. The graphs are log-scaled as the single bands for the Linear Re-
gression model contribute significantly more than the SAR-derived roughness. In con-
trast, all layers except for the Road Mask significantly contribute to the Random Forest 
model. 

The ANN model, shown in Figure 5 (left), was generated using a Sequential model 
that creates a deep learning model by adding layers; sequential patterns are important 
because they can be exploited to improve the prediction accuracy of classifiers. The layers 
include: 
• Flatten is used to flatten all its input into a single dimension. 
• Dense implements a regular, deeply connected neural network layer that receives 

inputs from all neurons in the previous layer and applies a matrix-vector multiplica-
tion. 

• Dropout reduces the training dataset size so that overtraining does not occur. 
The model training used the KerasTuner [52] to iteratively perform testing until the 

optimal model setup was achieved in terms of the overall accuracy achieved with the re-
sulting Loss function shown in Figure 5 (right) used to diagnose the behaviour of the 
model. In this case, as should occur, the training and validation plots of loss and accuracy 
have converged over successive epochs. 
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Figure 4. Linear Regression (top) and Random Forest (bottom) layer importance. 
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Figure 5. Artificial Neural Network model (left) and training loss plot (right) generated during the 
training process. 

Figure 6 shows the confusion matrices generated during the training to indicate the 
ANN and RF performance across all land cover classes. For the ANN (Figure 6 top), there 
is some misclassification, but overall, most validation pixels fall on the prime diagonal; a 
value of 1.0 indicates all validation pixels were assigned to the same class they were dig-
itized according to. A similar result is seen for the Random Forest model (Figure 6 bottom) 
but with increased confusion between bare ground and tyres. 
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Figure 6. Artificial Neural Network model (top) and Random Forest (bottom) confusion matrix gen-
erated during the training process. 

2.2.5. Post Neural Network Decision Tree 
The post-ANN decision tree, see Figure 7, was used for reclassification. It was dis-

covered through testing the performance across multiple sites that the ANN could not 
fully capture a radiometric interpretation of the surface and is also not designed to accept 
categorical layers. 

 
Figure 7. Post-Artificial Neural Network decision tree. 

The Sentinel-2 Scene Classification Layer (SCL) was extracted from the Sentinel-2 
L2A file and resampled to 10 m resolution; pixels classified as cloud (value of 9) and cloud 
shadow (value of 1) were used. Then, the Python multidimensional image processing li-
brary (scipy.ndimage) was then applied so the pixel values were extracted as dilated and 
hole-filled binary layers. This meant that both cloud edges and cloud shadow edges could 
be captured, which was essential as both can end up misclassified as plastics. Addition-
ally, the previously calculated shadow mask (Section 2.2.3) was used to further exclude 
pixels influenced by shadow from being classified as plastics and plastic/tyre/waste pixels 
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were reclassified where they had a high NDWI2 value, high SAVI value or high B02 re-
flectance, as these were found to be frequent misclassifications. 

Figure 8 shows the classification results’ differences before (top) and after (bottom) 
the post-network decision tree. The cloud shadows (grey) have been filled in as the pixels 
within these are likely to be incorrect. In addition, the number of plastic (red) pixels have 
been reduced in the top right to what mixed cloud pixels exist. Incorrectly, bare ground 
cultivated pixels are classified as waste sites (lilac) as the current bare ground training 
data are not sufficiently capturing the soil’s spectral properties. In the RGB pseudo-true 
colour composite (Figure 1), the soil appears red, which might alternatively indicate the 
atmospheric correction is erroneous due to the high aerosol load. 

 
Figure 8. Comparison of the classification results before (top) and after (bottom) the post-network 
decision tree for the subset of the Solo River location shown in Figure 1. 

2.3. Accuracy Assessment Methodology 
The correctness of a classification can be evaluated by computing the number of cor-

rectly recognized class examples (True Positives, TP), the number of correctly recognized 
examples that do not belong to the class (True Negatives), and examples that either were 
incorrectly assigned to the class (False Positives, FP) or that were not recognized as class 
examples (False Negatives, FN) [53]. These four counts constitute a confusion matrix, from 
which Precision and Recall are calculated and commonly used to evaluate classification 
performance [54]: 
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Precision =  
TP

(TP + FP)
 (7) 

Recall =  
TP

(TP + FN)
 (8) 

Precision (Equation (7)) quantifies the proportion of the predicted positives that were 
truly positive, while Recall (Equation (8)) is a measure of the proportion of actual positives 
which were classified correctly. The average of all accuracy values yielded the aggregate 
average Precision. 

As accuracy is not a good metric to use when there is a class imbalance, which we 
have, the F1-score that assesses the Precision-Recall trade-off has also been calculated [54]; 
see Equation (9). The F1-score ranges from zero to one, with a high value indicating high 
classification performance. 

𝐹𝐹1 − score =  
2 ∗ Precision ∗ Recall

Precision + Recall
 (9) 

Additionally, Cohen’s KAPPA coefficient is a statistical measure of agreement that 
provides a more robust result than percentage agreement calculations [55]. In the equa-
tions below, po is the observed agreement (percentage of instances classified correctly from 
the error matrix), and pe is the expected agreement. The overall expected agreement is 
calculated using Equation (10), where the expected agreement is calculated for each class, 
and then these are added together and divided by the total number of pixels. 

KAPPA =  
(po − pe)
(1 + pe)

 (10) 

pe =  
(expectedclass1 + expectedclass2 + ⋯ )

N
 (11) 

expectedclass1 =  
(actualclass1 ∗  estimatedclass1)

N
 (12) 

3. Results 
This section showcases the effect of the decision tree, accuracy statistics extracted 

during the training process and the classification results for the Test sites. 

3.1. Decision Tree Impact 
Figures 8 and 9 shows the impact of the decision tree on the ANN classification out-

put. For Figure 8, the focus of the example is removing spurious plastics pixels that are 
caused by cloud shadow. In Figure 9, it is the over classification of bright bare ground 
incorrectly classified as plastic or waste sites. The determination of the thresholds, shown 
in Figure 7, was based on analysis of the data held in the training/validation dataset so 
this biases the accuracy towards locations already encountered. 
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Figure 9. Višegrad Dam aquatic site (top) and tyre graveyard in Kuwait (bottom) as the original 
ANN classification (left) and result after the decision tree filtering (right). 

3.2. Accuracy Assessment 
The accuracy statistics for the developed classifier are shown in Table 5, with the 

Precision and Recall alongside F1-score calculated for each class. To improve the robust-
ness of the assessment, an additional five validation sites (shown at the bottom of Table 
A1) were added that were not included in the iterative model training/validation process 
and that statistics recalculated; shown in Table 6. 

In Table 5, all the Precision values except Aqueous Deposits are high, greater than 
0.8, equating to the classifier being correct more than 80% of the time. When the addition 
validation sites are included, Table 6, all classes remain high (greater than 0.7) except for 
the Aqueous Deposits, Building and Plastic. These classes have a highly variable spectral 
shape across the training/validation datasets and so a single class is a generalization of 
that variability. The Plastic class was strongly influenced by the inclusion of sites such as 
Haiti with a windrow that was not detected; see Figure 10. The windrow can see be visible 
seen in the stretched pseudo-colour composite, Figure 10 (bottom left), but is not visible 
in the unstretched Sentinel-2 pseudo-colour composite or backscatter image. 

All the Recall values are also high; the classifier can capture most of the positive pre-
dictions. As a result, the F1-scores are high except for those classes with a low Precision, 
i.e., both Precision and Recall are high. This behaviour is evident in both Tables 5 and 6, 
where the classes with low Precision scores have lower F1-scores. 

In terms of the overall statistics, the average Precision and KAPPA coefficient were 
calculated for the aggregate of all the classes, with both also presenting high values of 95% 
and 0.86 in Table 5. For Table 6, the aggregate Precision has dropped to 0.820 but the 
KAPPA has increased to 0.897. KAPPA is better at assessing imbalanced class problems, 
and a value of greater than 0.81 is classified as “Almost Prefect” [56]. 
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Table 5. ANN accuracy statistics generated during the training process. 

Class Precision Recall F1-Score 
Clear Water 0.99 1.00 1.00 

Algal Blooms 1.00 0.89 0.94 
Aqueous Deposits 0.57 0.89 0.72 

Bare Ground 0.95 0.92 0.93 
Murrum Soil 1.00 1.00 1.00 

Sand 0.99 0.98 0.98 
Grassland 0.92 0.95 0.94 
Shrubland 0.90 0.97 0.93 

Forest 0.96 0.96 0.96 
Cropland 0.84 0.98 0.91 
Buildings 0.78 0.85 0.82 

Artificial Surfaces 0.91 0.90 0.91 
Cloud 0.99 0.78 0.88 

Shadow 0.99 0.98 0.98 
Plastic 0.91 0.90 0.90 
Tyres 1.00 1.00 1.00 

Greenhouses 0.99 0.99 0.99 
Waste Sites 0.95 0.94 0.94 

Aggregate average Precision 0.950 
KAPPA coefficient 0.860 

Table 6. Classifier accuracy statistics after the addition of five validation sites (shown at the bottom 
of Table A1). 

Class Precision Recall F1-Score 
Clear Water 0.99 1.00 1.00 

Algal Blooms 0.99 0.89 0.94 
Aqueous Deposits 0.28 0.97 0.44 

Bare Ground 0.97 0.91 0.94 
Murrum Soil 0.74 1.00 0.85 

Sand 0.99 0.98 0.98 
Grassland 0.88 0.95 0.91 
Shrubland 0.87 0.97 0.92 

Forest 0.95 0.96 0.96 
Cropland 0.72 0.98 0.83 
Buildings 0.45 0.85 0.59 

Artificial Surfaces 0.88 0.90 0.89 
Cloud 1.00 0.78 0.88 

Shadow 0.96 0.98 0.97 
Plastic 0.43 0.89 0.58 
Tyres 0.95 1.00 0.97 

Greenhouses 0.91 0.99 0.95 
Waste Sites 0.74 0.94 0.83 

Aggregate average Precision 0.820 
KAPPA coefficient 0.897 
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Figure 10. Comparison of the Sentinel-2 pseudo-true colour image (top left), SAR backscatter input 
(top right), stretched Sentinel-2 pseudo-true colour image to show the windrow (bottom left) and 
classification output (bottom right) for the Haiti site. 

Figure 11 shows examples of layer values extracted from the test sites for the Sentinel-
2 bands 12 and 11 in the SWIR, SAVI and NDVI vegetation indices, Sentinel-2 band 2 
(blue) and the Sentinel-1 Gamma0 VV layers. In terms of importance, these are the top six 
layers identified when the Random Forest model was executed on the training dataset; 
see Figure 4 (bottom), and the increased blue darkness followed by green indicates a 
greater number of pixels as indicated by the legend. For the plastics categories, there is a 
separation, but the layer pixel ranges do overlap with non-plastic classes. So, for example, 
greenhouses exist within the range of pixel values seen within clouds. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2022                   doi:10.20944/preprints202207.0410.v2

Peer-reviewed version available at Remote Sens. 2022, 14, 4772; doi:10.3390/rs14194772

https://doi.org/10.20944/preprints202207.0410.v2
https://doi.org/10.3390/rs14194772


 19 of 27 
 

 

  

   
Figure 11. Horizontal density plots show the distribution of the values for the manually labelled 
pixels in each land cover class for the five test sites, for the Sentinel-2 bands 12 and 11 in the SWIR, 
SAVI and NDVI vegetation indices, Sentinel-2 band 2 (blue) and the Sentinel-1 Gamma0 VV layers. 

3.3. Application to the Test Sites 
Figures 12 and 13 show the results of the classifier applied to the five test sites, which 

indicates the performance for different types of plastic and with varying land cover back-
grounds. 

For the Višegrad Dam river accumulation, Figure 12 (top), and Solo mouth test site, 
Figure 12 (bottom), it is predominately plastic (red) that is being detected. For the river 
mouth example, there are thin cloud and cloud shadow pixels, and some are classified as 
artificial surfaces where the cloud masking has not removed all cloud pixels. 

A mixture of plastic (red) and waste sites (lilac) pixels are being classified for the 
Srinagar Landfill in Figure 13 (top). For the Almería province of Spain, on the coast, Figure 
13 (middle) shows an area dominated by greenhouses, with the greenhouses themselves 
being classified according to this category (light blue) but also as clouds (white) and build-
ings (pale pink). In between the greenhouses, there are areas classified as plastic (red) that 
coincide with the storage of water within pools lined with black plastic. The third site, 
Figure 13 (bottom) is the tyre graveyard in Kuwait, with the tyre pits predominately clas-
sified correctly (cerise), although there are also pixels classified as artificial surfaces (bright 
pink). 
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Figure 12. Comparison of the Sentinel-2 pseudo-true colour image (bands B04, B03 and B02 as red, 
green, and blue) on the left and classification output for the riverine/marine sites on the right. From 
top to bottom, the subset areas are the Višegrad Dam with plastic (red) detected for the accumula-
tion behind the dam and the Solo River Mouth with plastic (red) pixels in the sea offshore. 
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Figure 13. Comparison of the Sentinel-2 pseudo-true colour image (bands B04, B03 and B02 as red, 
green, and blue) on the left and classification output for the terrestrial locations on the right. From 
top to bottom, the subset areas are the Srinagar Landfill with plastic (red) and waste (lilac) detected 
within the boundaries of the site, the tyre graveyard in Kuwait with the tyre piles classified as tyres 
(cerise), and Almería with greenhouses (light blue) detected alongside plastic (red). 

4. Discussion 
The usage of Sentinel-2 for detection plastic waste is the focus of numerous papers as 

its combination of wavebands and high spatial resolution imagery alongside systematic 
acquisition provides a dataset not available from other missions. Martínez-Vicente et al. 
[57] identified a separation between requirements for land/shoreline and in/on water plas-
tic waste due to the higher temporal variability of the processes controlling marine plastic 
debris floating or in water compared to those controlling marine plastic dynamics on the 
shore. However, new missions are being developed/launched that can act as an improve-
ment to what Sentinel-2 offers alone. For example, Garaba et al. [58] demonstrated the 
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potential of high spatial and spectral resolution AVIRIS airborne imagery of a landfill and 
its neighbouring industrial and water treatment facilities. Additionally, Taggio et al. [59] 
have combined ML with pan-sharpened hyperspectral satellite data from the recently 
launched, 2019, PRecursore IperSpettrale della Missione Applicativa (PRISMA) mission 
to recognize floating objects and plastic targets. In 2022, the Environmental Mapping and 
Analysis Program (EnMAP) was also launched and the Copernicus Hyperspectral Imag-
ing Mission for the Environment (CHIME) on Sentinel-10, is due for launch in 2029. Com-
mercial missions of relevance include Satellogic’s constellation with missions having 0.25 
m spatial resolution and 29 visible to NIR wavebands. 

The use of Sentinel-1 and -2 together assumes that both are acquired contemporane-
ously, but in practice there will be a time delay of a few days; see Table A1. When the 
plastic is stationary because it is on land or the accumulation on water is blocked from 
moving significantly, there will be a signal in the backscatter as shown in Figure 5. As well 
as being used in the precursor paper by Page et al. [22], using both Sentinel missions have 
also been seen as an advantage by other researchers aiming to detect plastic waste on land, 
e.g., Lu et al. [60] who were focusing on plasticulture. However, when plastic is floating 
on water where objects will move over a few days’, as focused on by several authors 
[14,15,61,62], detection is not improved by the presence of the Sentinel-1 layer and is likely 
to be hindered as demonstrated by the results for the windrow (Haiti) site. 

The developed classifier includes pre-processing, ANN and decision tree steps (see 
Figure 14) that can accurately classify different forms of waste plastic and separate them 
when they are present in their distinct environments. However, it will also generate false 
positives and negatives due to similar spectral signatures and where plastic waste is in 
low concentrations compared to the background signal. The decision tree step can be 
tuned depending on whether the user wishes the results to be conservative or relaxed. 
Currently, a conservative approach has been adopted because when time-series datasets 
are automatically processed, a build-up of false positives becomes distracting to users 
when they look at composite outputs. 

 
Figure 14. Flow diagram summarizing the developed classifier’s processing approach. 

In the setup of the classes separate sub-classes for plastic, tyres, waste site and green-
houses classes were used to minimize confusion in classifying these different types of 
plastics. Misclassification occurs because of spectral similarities between the classes. Ad-
ditionally, waste often co-exists, i.e., tyre waste is covered in plastic sheeting, and plastic 
sheeting is weighed down with tyres. Additionally, the waste sites class is confused with 
bare ground as soil versus waste mixture per pixel varies across the sites. 

The training/validation dataset has been built up carefully through manual digitiz-
ing, and finding sufficient plastics pixels has been challenging despite several sites having 
been identified. Kruse et al. [23] faced similar issues as this research because the visual 
inspection of such waste, even using higher-resolution imagery, does not allow human 
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labellers to delineate boundaries between bare earth and waste reliably. So, these two clas-
sification categories overlap. Therefore, community-shared databases such as the Marine 
Debris Archive (MARIDA) [63] and Ocean Scan (https://www.oceanscan.org/ (accessed 
on 27 June 2022)) provide valuable resource for developing ML techniques; some data for 
this activity have already been submitted to Ocean Scan and further dataset will be added. 

As investigated by D’Amour et al. [64], ML models often exhibit unexpectedly poor 
behaviour when they are deployed in real-world domains. This drop in performance was 
identified as being caused by underspecification, where observed effects can have many 
possible causes. Recommendations include thoroughly testing models on application-spe-
cific tasks, in particular, to check that the performance on these tasks is stable. When the 
accuracy assessment was initially applied using just the validation fraction of the train-
ing/validation dataset the reported accuracy for some of the classes was significantly 
higher (Table 5), e.g., the plastic category. When five additional sites, previously unknown 
to the classifier, were added the accuracy reduced to that shown in Table 6. This reflects a 
more realistic view of the application in real-world domains and the difficulty of training 
a classifier so that it can be sufficiently generalized to handle plastics occurring in multiple 
environments with both varying signatures from the plastics themselves alongside vary-
ing background characteristics. Further work will continue on building the training/vali-
dation dataset so that it can sufficiently cover all locations where the approach is being 
applied. When applied to a new location, further testing will be needed to have confidence 
it can detect the plastic contamination of interest. 

In summary, the current remote sensing approach primarily uses spectral infor-
mation. However, as part of the post-processing, when time-series datasets are classified, 
there is an optional additional step that clusters waste pixels and remove small clusters 
(<5 pixels); not detailed, shown in Figure 14 as the final optional step. This extra step al-
lows the approach to focus the output on more significant accumulations of waste and 
remove individual erroneous miss-classifications. The minimum size of detected plastic 
accumulations varies, and so it is difficult to give a value. Therefore, for the operator to 
have certainty accumulations need to be greater than several pixels in size give confidence 
that a detection has occurred. Other features, such as textural or spatial features, have not 
been the focus because of the spatial resolution of the Copernicus data but may be consid-
ered if data from higher-resolution satellite data are included. 

5. Conclusions 
The developed classifier has proven to be helpful in several applications, including 

detecting waste plastics in aquatic and terrestrial environments. The detailed conclusions 
are as follows: 
• Sentinel-2 is a valuable dataset for plastic waste detection due to its combination of 

wavebands and high spatial resolution imagery alongside systematic acquisitions. 
However, research has shown the improvement possible with high-resolution hyper-
spectral measurements, and the number is increasing with data from precursor sat-
ellite missions, such as PRISMA and EnMAP now available, alongside a focus by 
commercial operators together with the future Copernicus CHIME mission. 

• Sentinel-1 improves the overall result when the classifier is applied in terrestrial en-
vironments or when there are relatively stationary floating accumulations. However, 
as Sentinel-1 acquisitions do not coincide with Sentinel-2 tile acquisitions, the com-
bined use of the two missions is not ideally suited to detect plastic floating on water 
where objects will move over a few days. 

• The training/validation dataset is critical to building accurate ML approaches, and 
validation for plastics waste remains challenging as it is often difficult to see in high-
resolution imagery. Therefore, community-shared databases are significant in sup-
porting these efforts. Work will also continue to build the existing training/validation 
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dataset with new locations that cover instances of plastics accumulation in multiple 
environments. 

• The current remote sensing approach primarily uses spectral information due to the 
size of the accumulations versus Sentinel pixels. Ongoing work is focused on pan-
sharpening such datasets with contemporaneous higher resolution commercial da-
tasets, and future work will also consider using hyperspectral missions alongside 
Sentinel-2. 
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Appendix A 

Table A1. Full training/validation dataset in alphabetical order with Sentinel-1 IW GRDH and Sen-
tinel-2 Level 2A files as date/time and (for Sentinel-2) tile. 

Test Site Sentinel-1 IW GRDH Sentinel-2 L2A 

Alexandrov Landfill, Russia 
S1B 20200928T033648 
S1B 20210502T033646 

S2B 20200923T083659 T37VDC 
S2B 20210511T083559 T37VDC 

Almería Greenhouses, Spain S1A 20210408T061050 S2A 20210505T105031 T30SWF 
Chemor Landfill, Malaysia S1A 20180901T230325 S2A 20181026T032821 T47NQF 
Dandora Landfill, Kenya S1A 20200209T155606 S2B 20200208T074009 T37MBU 

Empang River Mouth, Indonesia S1A 20210225T111520 S2B 20210228T025649 T48MXU 
Gioto Landfill, Kenya S1A 20210603T155640 S2A 20210610T074611 T36MZE 

Jakata Landfill, West Java S1A 20190819T223351 S2B 20190818T025549 T48MYU 

Jenjarom, Malaysia S1A 20190424T225548 
S2A 20190424T032541 

T47NQD 
Kerala Landfill, India S1A 20210314T004059 S2A 20210314T050651 T43PFM 

Kuta Beach, Bali S1A 20190216T104117 S2B 20190217T021749 T50LKR 
Madrid Landfill, Spain S1A 20211115T061821 S2A 20211114T110321 T30TVK 

Manilla, Philippines S1A 20170313T214633 S2A 20170314T023321 T51PTS 
Mucar Port, Java S1A 20190727T104933 S2A 20190725T022551 T49LHL 

PML beach target, England [57] S1B 20180515T063101 S2B 20180515T112109 T30UVA 
Scotland, various sites used for 

Page et al. [21] 
S1B 20180625T063732 S2B 20180627T113319 T30VVH 

Serayu River Mouth, Indonesia S1A 20200613T110629 
S2B 20200610T024549 

T49MBM 
Seyhan, Turkey S1A 20211210T034252 S2B 20211211T082239 T36SXG 

Solo River Mouth, Indonesia 
S1A 20210218T220906 & 

20210218T220931 ** 
S2A 20210227T023641 

T49MFN 
Srinagar Landfill, India S1A 20211031T005910 S2A 20211029T053941 T43SDT 
Tapuhia Landfill, Tonga S1A 20220220T061455 S2B 20220216T215909 T01KFS 

TPA Kabupaten Tangerang, 
Indonesia [65] 

S1A 20210422T223357 
S2A 20210424T025541 

T48MXU 
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Test Site Sentinel-1 IW GRDH Sentinel-2 L2A 
Landfill, Turkey S1A 20211026T040642 S2A 20211026T085041 T35TPE 

Tyre Graveyard, Kuwait 
S1A 20201228T024734 & 

20201228T024709 ** 
S2A 20201226T073321 T38RQT 

Višegrad Dam, Bosnia-Herze-
govina 

S1A 20210302T163318 S2A 20210302T09303 T34TCP * 

Walleys Landfill, England S1B 20200920T062219 
S2B 20200921T112119 

T30UWD 
Additional sites used only for the accuracy assessment 

Accra, Ghana S1A 20220130T181813 S2B 20220126T102209 T30NYM 
Ankara Tyre Site, Turkey S1A 20211027T155127 S2B 20211028T083949 T36TVK 

Hamburg, Germany S1A 20220326T053329 S2A 20220325T102651 T32UNE 
Mariupol, Ukraine S1A 20220111T152022 S2A 20220108T083331 T37TCN 

Windrow, Haiti S1A 20201220T230129 S2B 20201222T153619 T18QYF 
* Processed from Level 1C to Level 2A as there were issues using the online Level 2 file. ** Two 
Sentinel-1 files merged to cover the area of interest for the test site fully. 
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