
Comparison of Modern Cryptography Methods

Amandip Dutta1

1Independent Researcher
Correspondence: amandip.dutta@gmail.com

Abstract

In this paper, different cryptography
algorithms were reviewed, and their relative
merits were discussed. Symmetric and
asymmetric cryptography algorithms were
compared for time and space efficiencies.
These experiments were run to measure the
execution time and the memory footprints
of various algorithms to understand the
implications of their real-life applications. In
the experiment performed, it was observed
that elliptic curve cryptography was the most
efficient in terms of encryption/decryption
time, as well as memory usage.

1 Introduction

With the emergence of computers in the 20th and
21st centuries, there was a need to address security.
Software engineers and computer programmers have
designed software systems to help and address
security. Specifically, engineers have focused on
trying to conceal their data as it is transmitted
through the public internet, thus making it hard
for unauthorized users to read and understand the
data. This is formally known as cryptography,
and it has come to be the foundation of computer
security. The objective of cryptography is to enable
specific people to communicate over a channel where
others cannot understand what is being sent in it
[27]. The need for private online communication

in applications involving electronic transactions
and wireless communications led to cryptography
becoming more widespread [26]. There are two main
parts to cryptography: encryption and decryption.
In encryption, a normal message (plaintext) is
transformed into a ciphered message (ciphertext). In
decryption, the ciphertext gets changed back to the
plaintext [2]. The two main types of algorithms
in cryptography are symmetric and asymmetric.
Symmetric algorithms use the same private key to
both encrypt and decrypt messages. Asymmetric
algorithms require different keys (cannot be derived
from each other) to encrypt and decrypt [26]. The
figure below explains how symmetric algorithms use
the same secret key, while asymmetric algorithms
require a public key for encryption and a private key
for decryption:

Figure 1: A Comparison of Symmetric and
Asymmetric Algorithms [7]

1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202207.0389.v2
http://creativecommons.org/licenses/by/4.0/

Due to the different variations of cryptography
algorithms, many different algorithms have been
created in the last 50 years. Most of the ones created
have been asymmetric, and more recently symmetric
methods, but some algorithms aren’t symmetric or
asymmetric. For example, SHA-256, a cryptography
hash function that was created by the NSA, can only
encrypt plaintexts, and not decrypt ciphertexts [22].

In this paper, we looked at RSA (Rivest, Shamir,
Adelman), ECC (Elliptic Curve Cryptography),
ElGamal, and Blowfish, all of which are asymmetric
methods except for Blowfish (symmetric).
Specifically, we looked at the advantages and flaws of
each method and compared them based on execution
time and memory efficiency. We then conducted
an experiment in which we wrote code to compare
the encryption times, decryption times and memory
usage of the different algorithms.

2 Related Work

Many researchers have compared cryptography
methods before. Especially since algorithms have
to be used with inputs and values that are thousands
or potentially millions of characters long, algorithms
and techniques need to be compared to determine
how efficient they are at certain tasks. For example,
in [6], Siahaan, Elviwani, and Oktaviana compared
RSA and ElGamal in terms of encryption and
decryption speeds. They analyzed and concluded
that RSA is faster than ElGamal as the generated
RSA ciphertext has fewer characters than the
ElGamal ciphertext. However, they noted that
ElGamal will be more challenging to solve as it
requires more complicated calculations. In addition,
Yadav and Mahto of the National Institute of
Technology Jamshedpur compared RSA and ECC
in terms of memory consumption. They analyzed
that ECC would perform better than RSA on
memory-constrained devices, as ECC requires less
memory to run [19]. Lastly, researchers Ahmed,
Ali, Maqsood, and Shah compared the Advanced
Encryption Standard, the Data Encryption Standard,
RSA, and ElGamal for encryption/decryption times,
key generation, and file size. Their results show that
AES (Advanced Encryption Standard) surpassed all

other methods in terms of time, file size efficiency,
and key generation [2]. As more cryptographic
algorithms are developed, more research and analysis
need to be done to understand the impact of the
algorithms.

3 Chronology

3.1 History

Cryptography was first cited in Circa 600 BC when
Spartans used a device called a “scytale” to send
encoded messages during battle. Despite this, the
most significant and earliest discovery of the scytale
was in 1917, when Edward Hebern invented the
electromechanical machine. The electromechanical
machine contained the mechanical and automatic
components of a typewriter while having a rotor that
connects through a scrambler [15]. Only a year later,
a German engineer named Arthur Scherbius invented
a device similar to the electro-mechanical machine,
which used three rotors, which take in the inputted
letters and bounces off a reflector. The reflector then
pushes the letters back through the three rotors in the
other direction [16]. These letters that were encoded
were formally known as the enigma code.

Alan Turing, a British mathematician, and logician
would later crack the enigma code. During WW2,
Turing took a job where he would have to decipher
military codes used by Germany and their allies. He
eventually created a machine known as the "Bombe",
which helped reduce the work of the "code-breakers"
he had designed before. As a result, this would later
be shared with the French and British by Poland,
in WW2. Few people like Alan Turing were able
to decode the key, which would change daily [21].
This effort along with a few others eventually led the
Allies to win WW2. Shortly after the end of WW2,
Claude E. Shannon of Bell Labs published an article
called “A mathematical theory of cryptography”
which not only shaped modern cryptography but was
the first mathematical interpretation of codes and
keys.

Later on in the 1970s, IBM formed a cryptography
team that created block ciphers to protect IBM’s

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

customers. The US will have adopted it three
years later, and it would come to be known as the
Data Encryption Standard (DES). In 1976, Martin
Hellman and Whitfield Diffie created a paper known
as the “Diffie-Hellman Key Exchange” [15]. This
was the first time where no pre-arranged keys were
used. Instead, they used one private key and one
public key to carry out their algorithm. In the early
2000s, asymmetric key cryptography replaced DES.
More recently in 2005, Elliptic Curve Cryptography
was created and allowed for smaller key sizes, as
well as fast decryption times. As a result, it became
more difficult to break than RSA, and the Diffie-
Hellman key exchange as brute-forcing ECC was a
lot more difficult as it uses only the prime number
points on a cubic function [29]. The rise of so
many different cryptography methods has led me to
research and compare the different methods in terms
of time, space, and efficiency.

3.2 Future

Although cryptography is relatively new, the idea
of quantum computers is very probable in the near
future of cryptography. Quantum computing was
introduced in 1982 by Richard Feynman and has
been researched to be the destructor of modern
asymmetric cryptography. Due to their sheer power
in brute force operations such as factorization of
large primes, they pose a risk to asymmetric methods
that rely on discrete logarithm [17]. As the demand
for cryptographic computation grows, the computing
requirements will also rise. For example, increasing
key sizes (128 to 256 bits) can make symmetric
algorithms less vulnerable to quantum attacks [12].
This increase in bits will likely trend towards
quantum bits (qubits). Due to their susceptibility to
errors, qubits suffer from bit-flips (switching zeroes
and ones) and are easily affected by heat and noise
in their operating environment [17]. Due to the
strengths and challenges of quantum computing,
cryptoanalysts are unsure as to whether or not this
could be a probable future of cryptography.

4 Algorithms

4.1 RSA

4.1.1 Implementation Details

The RSA Algorithm was created by three MIT
colleagues, whose names were Rivest, Shamir, and
Adleman. Their approach to creating this was to take
readable data and scramble it in a way such that only
a person with a key made from prime numbers can
decrypt it. To implement RSA, assume we have a
public key (a,b), and assume an original plaintext
message to be p. Assuming c is the ciphertext, we
can encrypt the plaintext into ciphertext by modular
exponentiation: c = pa mod b [3]. To decrypt, we
reverse the process of encryption. A receiver can
use his private key (d,n) to get the original plaintext.
The same modular exponentiation is also required to
retrieve the original plaintext as well. The sender
must compute the modular exponentiation of c with
respect to modulus n (p = cd mod e) [3].

Because RSA is a well-known public-key system,
that is increasingly being used in the world of
cryptography, fast implementations of RSA are
greatly needed. One implementation that is being
researched is efficient modular multiplication.
As explained above, RSA requires modular
multiplication and performs the modulus and
exponentiation in a single line (c = pa mod b).
However, if we apply Newton’s method, where
an expression (xy) mod m can be reciprocally
approximated [23], the modular multiplication can
be shown through the following:

let a = xy
which then q = s

m
and r = s−qm [23]

Combining this method of modular exponentiation
along with others such as Montgomery’s method
and residue number systems can greatly increase the
speed of RSA implementation.

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

4.1.2 Advantages

RSA has numerous benefits as it is one of the most
commonly-used methods. For example, it has larger
key sizes compared to more modern methods (ECC)
for better and stronger security of data [19]. Due
to its larger key size, its encryption speed doesn’t
significantly change from larger keys as shown in the
graph below:

Figure 2: A Comparison of RSA and ECC
Encryption Times [19]

Additionally, constructing larger keys is relatively
easy as one can increase the modulus or exponents
of the public key. Therefore, one can use a
padding scheme that makes the message larger by
adding random elements and thus, makes it harder
to compute and hack using math or brute force
operations. If an attacker would decrypt encryption
that is padded, they would most likely get decryption
far different than the actual decryption.

4.1.3 Flaws

Despite its strengths, RSA has flaws as well and
may be replaced by other asymmetric methods such
as ECC. For example, its decryption is relatively
slow compared to ECC (reference chart). Due to
RSA being so widely popular, several attacks have
occurred on it. For example, a plaintext attack is
when the attacker knows some of the blocks of the
original message. With this, the attacker could try to
encrypt the blocks he knows, and try to convert them
into ciphertexts. As a result, it makes it easier for the

attacker to discover the original message. To combat
this, many companies use padding bits to confuse
the attacker (characters that fill up unused portions
of data) [24]. For example, if one would need to
pad a 9-bit message such as 110110000 into a 16-
bit message, one would first append a "1" to the end
of the message, followed by zeros. This would result
in 1101100001000000. Another type of padding that
is used is Trailing Bit Complement Padding (TBC
Padding) [24]. If the end of the message ends in a
"0", 1s are appended, and vice-versa.

Original Padded
0-Bit Ending 1100 110011111
1-Bit Ending 1101 110100000

Table 1: Trailing Bit Complement Padding

4.2 ECC

4.2.1 Implementation Details

ECC generates an elliptic curve based on the level of
encryption (the larger the curve, the more secure the
encryption). An elliptic curve E over a finite field F
is the set of all points lying on the curve: y2 = x3 +
ax+b [25]. It requires finite fields, therefore the only
way to solve encryption is by trying random integers,
which makes brute-forcing extremely difficult. It
includes two keys, one public, and one private key.
To generate a key, choose a suitable curve in which
the global parameters fall in, and select the base point
P = (x1,y1), from which we can choose private keys
as long as they are in the range from one to n (cannot
be infinite) [25]. To generate a public key, we can
use the formula Pk = Prk ∗P, where Pk is the public
key, Prk is the private key, and P is a global parameter
[25]. P must be on the curve as well.

4.2.2 Advantages

Although this method is relatively new,
cryptoanalysts have been able to compare its
efficiencies to other cryptography methods. ECC
contains smaller security bits than RSA, thus,
point-multiplication is better than RSA private key
operation. It has also been shown to provide the

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

same level of security as RSA, yet using shorter
keys [19]. Additionally, it can be adapted to lots
of different cryptographic schemes and protocols
like the Elliptic Curve Digital Signature Algorithm.
As a result, it could be used for high-level security
decryption as its use of points on a curve makes it
harder to brute force [28]. Victor S. Miller proposed
an encryption scheme that used ECC and was faster
than the Diffie-Hellman key exchange protocol by
around 20 percent. In addition, Neal Koblitz,
Alfred Menezes, and Scott Vanstone were able to
implement the discrete logarithm problem in ECC,
which provided smaller block spikes, faster speeds
and higher security [33].

4.2.3 Flaws

Despite crypto analysts claiming that ECC will be
the future of cryptography, there are many flaws in
ECC. For example, the encryption is relatively slow
compared to RSA. It is also prone to twist-security
attacks (leakage of the victim’s private key). In
future quantum computers, ECC will be easier to
break than RSA cryptosystems because ECC will
have lower qubits (quantum equivalents for bits).
As a result, incorrect implementations can lead to
ECC privacy key leaks, which can cause branch
or cache-timing errors [19]. In addition, longer
ECC keys can be broken into, as timing attacks
are very apparent. Specifically, timing attacks can
leak execution time, which can lead to even more
timing attacks happening in the future. [8] Other
side-channel attacks can leak power consumption and
electromagnetic emanation (exposure) [19].

Power attacks are also similar to timing attacks
except that voltage peaks are analyzed by the hacker.
Another type of hack that can occur is fault attacks,
also known as twist-security hacks. During this
attack, the attacker shares a selected public key that
does not lie on the ECC curve [28]. Once the victim
creates a shared key with his private key, and the
attacker’s public key, the attackers can then extract
the victim’s secret key.

One we may encounter is known as a “Grover
attack” where an attacker creates a superposition over
all possible inputs and continually destroys invalid

states, which results in finding inputs that satisfy a
given function. Due to the introduction of quantum
computers, it can also result in brute force attacks,
but that will have to overcome very difficult physical
and hardware limitations [28].

4.3 ElGamal

4.3.1 Implementation Details

In ElGamal, a public-key cryptosystem, the
encryption key is published, but the decryption key is
kept private. The mathematical relationship between
encryption and decryption cannot be exploited easily
because there are many different inputs one can
decrypt from a single output. The mathematical
relationship between encryption and decryption relies
on the discrete logarithm problem [1].

To encrypt with ElGamal, assume one has a prime
number n and the public key (p,m,k). Assuming one
has a random integer a, and the intended message to
send is b. The ciphertext pair would be as shown
down below:

To decrypt with ElGamal, first, calculate the
following parameter c1

p−1−z where the private key
is z. To recover the secret message S, multiply the
calculated parameter by c2 by using the following
equation: S = (c1

p−1−z)c2 mod p [1].

4.3.2 Advantages

Since ElGamal uses the discrete logarithm problem,
the encryption process is faster than decryption than
RSA. In addition, the strength of the algorithm
relies on the calculation of discrete logarithms
[14]. Also, encrypting the same plaintext multiple
times will result in different ciphertexts. In
regards to encryption, the encryption process
requires two modular exponentiations (αk mod
p,(αa)k mod p), which can be sped up by selecting
a random exponent k [20]. Similar to the Digital
Signature Algorithm, ElGamal can also support the
electronically signing of messages, in addition to
encryption and decryption.

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

4.3.3 Flaws

The three main types of attacks that occur on
ElGamal encryption and decryption are chosen-
plaintext attacks, non-adaptive chosen-ciphertext
attacks, and adaptive chosen-ciphertext attacks. A
chosen-plaintext attack is when an attacker chooses
random plaintexts and encrypts them to obtain the
ciphertexts, their goal is to use the ciphertexts
to gain more information regarding the original
message [14]. A non-adaptive chosen-ciphertext
attack is when the attacker can gather information by
gathering decryptions of chosen ciphertexts, like the
opposite of the chosen-plaintext attack. An adaptive
version of the previous attack is when an attacker
sends specific ciphertexts to be decrypted in a certain
order [10].

4.4 Blowfish

4.4.1 Implementation Details

Blowfish is a key-using, symmetric cryptography
block cipher designed by Bruce Schreiner. It has a
64-bit block size and a key length from 32 to 448 bits.
Also, it consists of a key-expansion part and a data-
encryption part [30]. The key expansion converts
keys into different subkeys. It is then encrypted using
modulo 232 and XORed (eXclusive OR) to create a
32-bit output as shown below:

Figure 4: Key Expansion in Blowfish [5]

In addition to Blowfish being the first symmetric
method ever introduced, its implementation in
hardware is also unique. In addition to computing on
a central processing unit (CPU), cryptoanalysts have
been able to implement it on graphical processing
units (GPUs). They observed that even if input file
size increases, the encryption and decryption time
can be reduced by using GPUs [18].

4.4.2 Advantages

Blowfish is used in password management, file/disk
encryption, backup tools, email encryption, operating
systems, as well as secure shells. In addition,
applications such as AEdit, Foopchat, and Freedom,
use the Blowfish algorithm for encrypted emails and
chats, as well as privacy for web browsing [32]. Due
to Blowfish’s fast decryption speeds, it is commonly
used in password-hashing. Because of this, Blowfish
is commonly used in the cryptography space as
it has one of the fastest decryption speeds among
most cryptography algorithms. In addition to its
use in applications, Blowfish can be used for bulk
encryption of data files, multimedia voice encryption,
and hard disk backup [4].

4.4.3 Flaws

Some key disadvantages are that it is one of the
fastest block ciphers, but very slow when changing
keys. The decryption process is far slower than
other algorithms in terms of time [30]. Each new
key requires the equivalent of encrypting 4KB of
text which prevents its use in certain applications.
Each pair of users needs a new unique key, so
as the number of users increases, key management
becomes more complicated. In addition, it has not
been tested as much as other symmetric cryptography
methods such as DES [32]. The algorithm can’t
provide authentication as two people have the same
key (since Blowfish is a symmetric algorithm).
Because of Blowfish’s slow decryption times and
its vulnerability to plaintext attacks, crypto analysts
are recommending switching to Blowfish’s successor,
TwoFish.

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

5 Experiment

For this experiment, we gathered code from various sources that demonstrated both the encryption and
decryption algorithms of RSA, ECC, ElGamal, and Blowfish. We implemented encryption and decryption
timers to measure the encryption and decryption times. In addition, we implemented a memory dump function
that collects the memory used from encryption and decryption. The links to the source code used can
be found here: https://github.com/amandipd/Comparison-of-Modern-Cryptography-Methods-Source-Code-
[9, 11, 13, 31]. We collected the data in five trials and averaged them to get a generalized time/memory size
for the data. Due to system limitations and multiple processes running during data collection, there may be a
small margin of error in the data.

RSA

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Encryption Time (ms) 44.16 57.03 58.32 41.00 63.45 52.79
Decryption Time (ms) 0.494 0.878 0.548 0.477 0.987 0.677
Memory Used (KB) 1392 922 1952 1960 1172 1479.6

ECC

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Encryption Time (ms) 0.855 0.577 0.907 0.682 0.757 0.756
Decryption Time (ms) 0.770 0.397 0.750 0.399 0.649 0.593
Memory Used (KB) 583 945 428 758 1043 751.4

ElGamal

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Encryption Time (ms) 1.782 2.548 2.135 2.446 3.108 2.404
Decryption Time (ms) 2.180 2.319 1.899 2.218 2.950 2.313
Memory Used (KB) 1176 1637 715 1176 715 1084

Blowfish

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Encryption Time (ms) 51.54 52.51 57.37 57.53 52.66 54.32
Decryption Time (ms) 0.201 0.190 0.248 0.375 0.189 0.241
Memory Used (KB) 1386 1637 1637 1386 1637 1536.6

These results were collected on a AMD Ryzen 9 4900HS with 8 cores, 16 threads, and 16GB of RAM.

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://github.com/amandipd/Comparison-of-Modern-Cryptography-Methods-Source-Code-
https://doi.org/10.20944/preprints202207.0389.v2

Figure 5: A Comparison of Encryption Times

Figure 6: A Comparison of Decryption Times

Figure 7: A Comparison of Memory Consumption

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

6 Comparison of Cryptography
Techniques

6.1 Space

Firstly, we believe that the memory usage collected from
all algorithms are high as the initial source codes were not
optimized for efficient memory use. With this in mind,
ECC used the least memory compared to any of the other
cryptography methods. Despite requiring the least memory,
ElGamal’s memory usage was arbitrarily similar. ElGamal
used the second least amount of memory to encrypt and
decrypt data. Due to its use of a random exponent to speed
up the two modular exponentiations required, it yields
small memory usage. However, after ECC and ElGamal,
Blowfish and RSA also had similar memory consumption.
However, Blowfish had the largest amount of memory
consumption overall. This would explain the growth in
use of asymmetric cryptography, as it requires less space to
perform encryption/decryption. In server-level programs,
tens of thousands of kilobytes can be wasted when using a
symmetric method versus an asymmetric method.

6.2 Time

In terms of encryption speed, ECC can encrypt plaintext the
fastest among any other methods, and by a large margin.
ECC’s encryption speed was roughly half of ElGamal and
more than 50 times faster than RSA and Blowfish. Due
to its low-bit keys, ECC was able to encrypt faster than
any other method. In terms of decryption, the results
were slightly different. Blowfish had the fastest decryption
time and came second, and only around 0.3 milliseconds
after Blowfish. Although this number may seem extremely
small, in brute-force operations, this could save large
amounts of time. ElGamal took close to one millisecond,
and Blowfish took nearly two milliseconds. As a result, we
can conclude that ECC and RSA had the fastest decryption
times among all of the methods compared.

6.3 Efficiency

Overall, the most efficient method in terms of time
and space was ECC. Although it didn’t have the least
memory consumption, it was the quickest in encryption and
decryption. Although RSA did come close to ECC in terms
of decryption speeds because of how close the times were,
and the potential bloatware in the code, we tried to optimize
where we collected our time. For example, we placed the
timers before any other code we wrote in order to minimize
the time that wasn’t spent encrypting/decrypting.

Figure 8: Memory Collection Code in ElGamal

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

In addition, ElGamal was significantly more efficient than
RSA and Blowfish. It used a small amount of memory and
had quick encryption speeds, however, it had extremely
slow decryption speeds, which explains why it is used in
privacy software, as encryption would be more important
than decryption. Although RSA and Blowfish were the
least efficient compared to ECC and ElGamal, there are still
big reasons as to why people still use these methods. RSA
is one of the oldest and most secure cryptography methods
to existing. In addition, Blowfish had the fastest decryption
speed among all the methods.

7 Conclusion

All in all, cryptography methods have been used in
computer systems to optimize security, efficiency, time,
and space. The four cryptography methods we looked
at were Elliptic Curve Cryptography, Rivest Shamir
Adleman, ElGamal, and Blowfish. We analyzed how
older methods such as RSA and Blowfish may have
larger memory consumption, slower encryption times, and
slower decryption times, however, they own offer their
benefits. For example, RSA is commonly used in everyday
applications since it laid the foundations for asymmetric
cryptography and was traditionally used in Transport Layer
Security. Blowfish is unique as it uses a single key to both
encrypt and decrypt data. Also, it can accommodate any
key length from 32 to 448 bits and can expand keys as well.
Newer cryptography methods offer unique approaches to
encrypt and decrypt data, while still being efficient and
reliable. For example, ECC generates elliptic curves and
picks prime number keys from the curve. Not only is
this unique, but it makes it harder for hacks to occur as
hackers would have to guess prime number possibilities.
Lastly, ElGamal is unique as many different inputs can
be decrypted from an output, and it requires two modular
exponentiations.

In conclusion, certain cryptography methods have different
encryption and decryption speeds, as well as memory
usage, and are utilized accordingly based on what is needed
in a program. For example, ECC is used in digital
signatures, as well random-number generators, and tasks
such as Lenstra elliptic curve factorization. Because of
its unique strengths, it is used in security and password
generation as it requires a small amount of memory
and has fast encryption speeds. Due to RSA’s age and
reliability, it is commonly used in web browsers, VPNs,
email, chat, and other communication channels as well.
Especially since it has slow encryption and decryption
speeds, it is not as commonly used in the security of

data or password management. Because ElGamal has
relatively fast encryption speeds, it is commonly used in
hybrid cryptosystems, where messages are encrypted with
ElGamal but are then decrypted with another cryptography
method. Due to ElGamal being older and being a
symmetric method, it is not as commonly used. However,
it is used in some password management tools, as well as
backup software.

8 Future Work

Looking forward, this experiment can be modified to better
compare modern cryptography methods. For instance,
longer plain texts may affect the results. Also, the time
capturing method does have a margin of error, which
could me made smaller by restricting the computer to only
necessary applications. The addition of these ideas will
further the research in comparing cryptography methods.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

blowfish, cryptography, elgamal, elliptic-curve, encryption,
decryption, Rivest-Shamir-Adleman

References
[1] Wisam Najm Al-Din Abeda, Isam Salah Hameeda,

Ali Thaeer Hammid, Omar A. Imran, and Sura F.
Yousifa. Implementation of el-gamal algorithm for
speech signals encryption and decryption. pages 1–
10. ICCIDS, 2020.

[2] Muhammad Ahmed, Muhammad Mumtaz Ali, Faiqa
Maqsood, and Munam Ali Shah. Cryptography:
A comparative analysis for modern techniques.
volume 8, pages 442–448, 2017.

[3] Rekib Uddin Ahmed, Prabir Saha, Mridupawan
Sonowal, and Sheba Diamond Thabah. Fast and area
efficient implementation of rsa algorithm. pages 525–
526. Elsevier B.V., 2019.

10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

[4] V. Josephraj B. Shamina Ross. Performance
enhancement of blowfish encryption using rk-
blowfish technique. volume 12, pages 9236–9244.
Research India Publications, 2017.

[5] Abhay Bhat. Blowfish algorithm with examples.
2021.

[6] Andysah Putera Utama Siahaan Boni Oktaviana,
Elviwani. Comparative analysis of rsa and elgamal
cryptographic public-key algorithms. pages 1–10.

[7] Kate Brush. Asymmetric cryptography (public key
cryptography). September 2021.

[8] Jean-Luc Danger, Sylvain Guilley, Philippe
Hoogvorst, Cédric Murdica, and David Naccache.
A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards. volume 3, pages
241–265, 2013.

[9] Christian d’Heureuse. How to use the blowfish
algorithm to encrypt 64-bit blocks with a constant
key.

[10] J. Wu D.R. Stinson. On the security of the elgamal
encryption scheme and damgard’s variant. pages 1–
15, 2014.

[11] Washington Edu. Security of elgamal.

[12] Wajdi Fegali. The future of cryptography in hardware
processors. EE Times, June 2021.

[13] Geeks For Geeks. Implementation of diffie-hellman
algorithm. May 2021.

[14] Jaspreet Kaur Grewal. Elgamal:public-key
cryptosystem. pages 1–12, 2015.

[15] Thales Group. A brief history of encryption. 2021.

[16] Alex Hern. How did the enigma machine work: On
the day the imitation game hits cinemas, a look at
how allied codebreakers untangled the enigma. The
Guardian, 2014.

[17] Audun Jøsang, Vasileios Mavroeidis, and Mateusz
D. Zych Kamer Vishi. The impact of quantum
computing on present cryptography. volume 9, pages
1–4, 2018.

[18] Mohammad Qatawneh Mahmoud
Rajallah Aasassfeh. Performance evaluation of
blowfish algorithm on supercomputer iman1.
volume 9, pages 219–223, 2018.

[19] Dindayal Mahto and Dilip Kumar Yadav. Rsa and
ecc: A comparative analysis. volume 12, pages 9053–
9061. Research India Publications, 2017.

[20] Amer R. Zerek Mohamed A. Abuinjam, Amer Daeri.
Elgamal public-key encryption. pages 1–3, 2014.

[21] Imperial War Museums. How alan turing cracked the
enigma code. 2021.

[22] N-able. Sha-256 algorithm overview. 2019.

[23] David Pearson. A parallel implementation of rsa.
pages 1–9, 1996.

[24] J. Pieprzyk S. Bakhtiar, R. Safavi-Nain.
Cryptographic hash functions: A survey. page 7.

[25] J. Renita Johnson Shantha Arumugam, N.
Edna Elizabeth. Analysis and implementation
of ecc algorithm in lighweight device. page 6.
International Conference on Communication and
Signal Processing, 2019.

[26] Sarah Simpson. Cryptography defined/brief history.
1997.

[27] Douglas Robert Stinson. Cryptography theory and
practice. page 1. Taylor and Francis Group, 2006.

[28] Veronika Stolbikova. Can elliptic curve cryptography
be trusted? a brief analysis of the security of a popular
cryptosystem. volume 3, page 5, 2016.

[29] Nick Sullivan. A (relatively easy to understand)
primer on elliptic curve cryptography. 2013.

[30] Tibco. Managed file transfer platform server for z/os:
Data encryption algorithms.

[31] Quick Programming Tips. Java asymmetric
encryption decryption example with rsa.

[32] UKEssays. Blowfish algorithm advantages and
disadvantages. November 2018.

[33] S. Vasundhara. The advantages of elliptic curve
cryptography for security. volume 13, pages 4995–
5011. Research India Publications, 2017.

11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2022 doi:10.20944/preprints202207.0389.v2

https://doi.org/10.20944/preprints202207.0389.v2

