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Abstract: A thermal load dispatch problem minimizes the number of objectives viz operating cost
and emission of gaseous pollutants together while allocating the power demand among the com-
mitted generating units subject to physical and technological system constraints. A stochastic ther-
mal load dispatch problem is undertaken while taking into consideration, the uncertainties, errors
in data measurements and nature of load demand which is random. Owing to uncertain load de-
mand, variance due to mismatch of power demand termed as risk, is considered as another conflict-
ing objective to be minimized. Generally multiobjective problems generate a set of non-inferior so-
lutions are generated and supplied to a decision maker to select the best solution from the set of
non-inferior solutions. This paper proposes opposition-based greedy heuristic search (OGHS)
method to generate a set of non-inferior solutions. Opposition-based learning is applied to generate
initial population to select good candidates. Migration to maintain diversity in the set of feasible
solutions is also based on opposition-based learning. Mutation strategy is implemented by perturb-
ing the genes heuristically in parallel and better one solution is sought for each member. Feasible
solutions are achieved heuristically by modifying the generation-schedules in such a manner that
violation of operating generation limits are avoided. The OGHS method is simple to implement and
provides global solutions derived from the randomness of the population generated without tuning
of parameters. Decision maker exploits fuzzy membership functions to decide the final decision.
Validity of the method has been demonstrated by analysing systems in different scenarios consist-
ing of six generators and forty generators.
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1. Introduction

The rising energy demand and diminishing energy reserves have dictated the opti-
mal use of existing resources. The essential intention of economic load dispatch (ELD) of
electric power production is to plan the yield of the dedicated generating units so as to
meet the load requirement at least operational cost, while fulfilling the system’s con-
straints. ELD problem is a large-scale extremely constrained nonlinear optimization prob-
lem.

Economic load dispatch (ELD) assigns the generations as required by the customers
keeping in view the several considerations like least transmission losses, minimal dis-
charge of pollutants, multiple fuels, etc. Efforts on resolving ELD problems were using
various gradient-based mathematical encoding, such as the Newtonian solution of the op-
timality conditions, nonlinear programming, linear programming, interior point ap-
proaches, quadratic programming, Lambda iterative approach, dynamic programming,
Lagrange relaxation, gradient projection method, hybridized integer and linear program-
ming, hybridized linear programming and quadratic programming, [32] etc. has been
used to solve ELD. These approaches' strengths include optimality that has been mathe-
matically demonstrated [51], applicability to big problems [51], independence from prob-
lem-specific characteristics, and computational speed. These numerical techniques use the
unit-incremental cost curves, which increase monotonically, to solve ELD issues.
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Unfortunately, real units' input-output properties are inherently very nonlinear. These
nonlinear physical properties of generating units are a result of ramp rate restrictions,
disconnected prohibited operating zones (POZ), and non-smooth cost functions. Due to
this, these techniques may settle for fake / local optimum. In spite of many benefits, gra-
dient methods are incapable of ensuring global optimum solution for discontinuous and
non-differentiable objective function [23].

Latest heuristic algorithms emerged as efficient tools for nonlinear optimisation chal-
lenges. The algorithms do not need that the objective function must be differentiable and
continuous. Such techniques are evolutionary programming (EP) [4,8,11,12,17], genetic
algorithm (GA) [2], particle swarm optimization (PSO) and its variants[7,10,16],[20-
22,24,25,28,29,32,34,35,38,49,58,62],  differential evolution (DE) and its variants
[14],[17],[18],[31],[55],[57], ant colony optimisation (ACO) [30,37], bio-geography based
optimization (BBO) [48],[51], Taguchi method [19], bacterial foraging optimization (BFO)
[23,39,47], cultural self-organizing migrating strategy (CSMS) [33], artificial bee colony
(ABC) [50,54,56,61], firefly algorithm (FA) [42], opposition-based harmony search algo-
rithm (OHSA)[43], Self-organising hierarchical PSO (SOH-PSO) [20], PSO with crazy par-
ticles (PSO-Crazy) [25], PSO with chaotic and Gaussian approaches (PSO-CG) [21], oppo-
sitional real coded chemical reaction optimization [60] and gravitational search algorithm
(GSA) [46] etc.. These methods are famous for their capabilities of rapid search of huge
solution spaces. Two-phase neural network-based modelling [9], simulated annealing-
based goal attainment [3], fuzzy decision trees [6], weight pattern search by fuzzy logic
[5], modified shuffled frog leaping algorithm [44], fuzzy logic based bacterial foraging
[39], 6-PSO [52], chaotic differential bee colony optimization [56] also attempted to solve
the problem. A evolutionary search strategy based on binary successive approximation
was suggested by Dhillon et al. [26] as a solution to the economic-emission load dispatch
(EELD) problem. The heuristic methods, however, are flawed by the abundance of arbi-
trary or problem-specific parameters [26].

Nowadays hybrid approaches are in use which blends more than one local and global
optimization methods in order to have best features of each algorithm. Recent methods
informed in literature are hybrid differential evolution (DE) with biogeography-based op-
timisation (BBO) (DE-BBO) [31], quantum PSO (QPSO) [29], hybrid genetic algorithm
(GA)-pattern search (PS)-sequential quadratic programming (SQP) (GA-PS-SQP) [36], hy-
bridization of EP and SQP (EP-SQP) [4], chaotic differential evolution hybrid with quad-
ratic programming (CDE-QP) [14], hybrid of comprehensive learning PSO and SQP [35],
hybrid of distributed Sobol PSO and TABU search algorithm (DSPSO-TSA) [38], self-
adapted real coded GA [41], fuzzy adaptive chaotic ant swarm optimization hybrid with
SQP [45], chaotic PSO hybrid with SQP (CPSO-SQP) [49], differential harmony search al-
gorithm by DE and harmony search (HDE-HS) [53], hybrid PSO with gravitational search
algorithm (HPSO-GSA) [58], hybrid PSOGSA based on fuzzy logic [62] and hybrid PSO
with SQP (HPSO-SQP) [10]. These heuristic methods provide a quick and decent solution,
but they don't always provide the globally optimal (or nearly optimal) solution in a finite
amount of time. Heuristic and deterministic methods are used to create hybrid optimiza-
tion algorithms.

When there are multiple objectives that are incompatible with one another, a decision
maker is clearly required. The inescapable multifariousness of complex real-world deci-
sion-making (DM) situations is one of their core characteristics. Such problems have a
variety of objectives, most of which are incommensurable and frequently at odds with one
another. Thus, DM issues in the real world frequently result in the formulation of a multi-
objective optimisation problem. Pursuing the most favoured solution from a set of non-
inferior solutions is the ultimate goal of multi-objective optimisation. The US Clean Air
Act Amendments of 1990 and the increased public awareness of environmental protection
have forced utilities to change their design or operational procedures to reduce pollutants
and atmospheric emissions from thermal facilities [1]. Numerous methods have been pub-
lished in the literature for the economic-emission load dispatch (EELD) problem, includ-
ing the multi-objective optimisation strategy that is being proposed.
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Due to the inherent randomness of natural occurrences or the implicit and inaccurate
assumptions associated with the method of modelling that is being used, many engineer-
ing problems are susceptible to ambiguity. Even though there has been a lot of research
on thermal power load scheduling issues, the researchers believe that deterministic pro-
totypes are suited for steady-state situations since they assume deterministic system data.
In actuality, the input data contains a great deal of uncertainties and inaccuracies from
several sources, such as measurement mistakes and flaws in long- and short-term load
predictions. Additionally, power system loads are random variables in real-time pro-
cesses. The electric power system network has been defined by random variables and re-
searched by several researchers at various levels as a result of the increase in production
costs brought on by uncertain factors [1, 13].

In this study, the cost coefficients, emission coefficients, and power demand are
treated as random variables while constructing the stochastic model of the multi-objective
problem. The output of the generator thus unavoidably becomes random. Random varia-
bles are seen as statistically reliant on the other variables defining the system and regu-
larly distributed. The deterministic equivalent of the stochastic model is created from ex-
pectations. A function's expected value is obtained by using Taylor's series to expand the
function around the mean. As an objective function that must also be minimised is the
minimising of deviations resulting from these errors and uncertainties. Thus, the formu-
lation of a multi-objective problem results from taking into account all of these factors
during the optimization process. With the help of the proposed search process, this multi-
objective problem is solved for a collection of non-inferior solutions, and the best negoti-
ated solution is obtained. Opposition-based learning is used to select the improved solu-
tion by comparing the objective functions at a solution's position in the search space to its
opposite position during the initialization of the population and also in the algorithm's
flow. Heuristics are used by the mutation operator to perturb each gene and search for
better genes. Migration introduces a new member from the search space or in the opposite
direction from the present point member in order to maintain diversity. Additionally, the
method doesn't require any parameter tweaking. This study investigates how OGHS may
be used to solve stochastic economic load dispatch and stochastic economic emission load
dispatch issues. To demonstrate the viability of the suggested OGHS technique, small and
medium power systems are taken into account. The paper is divided in the following sec-
tions. Section-2 discusses the formulation of stochastic thermal load dispatch problem.
Section-3 and 4 deals with the decision making and constraint handling procedures re-
spectively. Section-5 elaborates the proposed algorithm in detail and Section-6 discusses
the test case studies and their obtained results.

2. Stochastic thermal load dispatch problem

The multi-objective load dispatch problem is a multiple non-commensurable objec-
tive challenge that minimizes operating cost and gaseous contaminants emission simulta-
neously. A stochastic EELD problem is devised with the consideration of uncertainties in
the system production cost and random nature of load demand [1]. In addition, risk is
deemed as an additional conflicting objective to be minimised because of random load
and uncertain system production cost.

A. Expected fuel cost

The fuel cost curve is approximated by a quadratic function of the generator power

yield P;:
NG
F, = Z(aiPiz +biP + ) + [egsin (P = P,) )| (1)
i=1

where a;,b;, ¢;, e;and f; are fuel cost coefficients of i*® generator and NG is the num-
ber of generators. P™" is lower limit of power generation of i*" generator.
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A stochastic version of objective function F; is formulated by taking into considera-
tion the cost coefficients and power demand as random. Given that the load demand is
unpredictable, the generator output turn out to be random. The expected value of the fuel
cost function may be derived by expanding the function, using Taylor's series, about the
mean [1]. By taking the expectation of the expanded form, the expected fuel cost obtained
and is represented by

@077 + 5P+ &+ |essin (7i(Pr — P))| + 520+ efi {sin (fi(Pr — P))}] varB] v B, > By
i=1 2)

Eipi + C_',: + e_,:Sin (/E,'(Pl‘mln - PL))| + C_livarpi] A4 Pi = Pirnin

S

o
[\S]

+

where P;is the expected value of the generator output, and a;, b;, ¢;, €; and, f; are the ex-
pected cost coefficients. var(P;) is defined as C piﬁiz, where Cp is the coefficient of varia-
tion of the random variables P;.

B. Expected emission of gaseous pollutants
The gaseous pollutants emission is modelled and is given below [1]:
Ng
F,(Py) = Z(aipiz + BiP; +vi + 6, exp(§;P;)) 3)
i=1

where a;, B, vi, 6; and §; are emission coefficients of i*" generator.
Taking randomness in load demand in consideration, the expected discharge of gas-
eous pollutants is represented by

Ng
— _ = - _ = = — _ ~2 = = — —
FZ = Z(aipiz + BiPi + Yi + 6!' exp(fiPi)) + (Zai + gi 5iexp(fiPi)) UG.T'PL' (4)
i=1
where P; is the expected value of the generator output, and @;, B;, ¥;, §; and, &; are the
expected emission coefficients.

C. Expected risk

As the generator outputs P; are considered as random variables, the expected vari-
ations are proportionate to the expectation of the square of the unfulfilled power demand.
These anticipated deviations are expected risk and considered as an objective to be mini-
mized [1,13]. The objective is represented as:

NG 2
F=E (P;+P7—ZE-> 6)
i=1

This on simplification reduces to

NG NG NG
F; = Z var(P;) + Z Z 2cov(P;, P;) ©)
i=1 i=1 =1
J#i

where cov(Pl-,P]-) = RpiP].CpiCPj PL-P]- and RPiP]. is the correlation coefficient of the random vari-
ables P; and P; and that range from -1 to +1.

D. Expected equality and inequality constraints


https://doi.org/10.20944/preprints202207.0385.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2022 doi:10.20944/preprints202207.0385.v1

When the power network arrangement is fixed and the power demand is arbitrary,
then the expected equality constraint is enforced to guarantee real power balance and is
expressed as

Py + B - ) F=0 )
i=1
and expected generator limits as inequality constraint
P < P, < P (i =1,2,..,NG) (8)
where ISimi" and P/™®* are the expected minimum and maximum limits, respectively, of

the generator output.

E. Expected transmission loss
According to the well-known Kron's loss formula, the transmission power losses, Py,
are a quadratic function of the power generation. It is expressed as
NG NG

p, = ZZPBUP +ZBLOP + By, )

i=1j=

The power generations P; are random variables reliant on each other.
Bij, Bjy and By, are deemed as B coefficients with uncertainties. The expected transmis-
sion losses P, using Taylor's series are expressed as [1]

NG NG NG-1 NG
P, = P,B;P +ZB”var(P) + Z Z 2B;jcov (P, P;) +ZBloP + Boo (10)
i=1 i=1 j=i+1

where B, B;y and By, are the expected B-coefficients.

From the above equations, the stochastic economic emission problem is characterized
as a multi-objective optimization problem specified as

Minimize [Fy, F,, F5]" (11a)
Subject to
NG
Y Fi=P,+P, (11b)
i=1
Pmin < P < PM* (i =1,2,...,NG) (11c)

The objective is to get the expected generation schedule, P, (i = 1,2,...,NG) by em-
ploying proposed OGHS algorithm.

3. Decision making

Due to the decision maker's ambiguous decisions, his aims could be vague. The mem-
bership functions used to define fuzzy sets express the degree of membership in particular
fuzzy sets and have values between 0 and 1. 1 indicates complete set satisfaction, whereas
0 indicates complete set unsatisfaction. The DM determines the membership function by
taking into account the minimum and maximum values of each objective function con-
currently with the rate of rise of membership function. pg,. Presuming that pg, is a pre-
cisely monotonic diminishing and continuous function [1] defined as

1 F; < Fin
Filnax - F‘i —_ — — .
HE, =\ Smar—=mm FM" < F; < Fimax ; 1=1,2,3) (12)

Fmax _ Fimm
0 F; = F"&

The membership function's value represents how well (on a scale from 0 to 1) a solu-
tion has met the F; objective.
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In multi-objective optimization problem, where more than one contradictory objec-
tive is considered, min-max fuzzy operation is employed for decision making to choose
the best compromised result. Mathematically, it can be expressed as

uk = min(uf; G = 1,2,..,Nopp)) (k =1,2,...,Np) (13)

4. Constraint handling

Both direct and indirect approaches can be used to tackle the non-linear, constrained
optimization issue. Contrary to indirect methods, which turn the constrained optimiza-
tion issue into an unconstrained problem and then solve it as an unconstrained minimi-
zation problem, direct methods explicitly integrate constraints. Heuristics that are de-
tailed in the subsections are used to explicitly control equality and POZ constraints. When
fixing the generation within the generation limits, ramp-rate limits are taken into account.

In the procedure of obtaining solution, it may fall out of the feasible range in search
space with the breach of some constraints linked with the power dispatch problem. A
constraint handling algorithm is developed for this purpose, which addresses the problem
of violation of constraints, based on direct constraint handling methodology. The dispar-
ity in power demand constraint of k™ member is calculated as

Ng
Dky =Py +PE = ) P (14)
i=1
This disparity in power demand is dispensed among all the generator units by ran-
domly choosing s** generating unit, 2% of k™ member from whole population that is
perturbed as

(15)

N

_— {PS" +APM*  Df, >0
P¥ —APM™™  ;Df, <0

Algorithm-I: Constraint handling procedure for k‘* member
e DO
o FORi=1,N,
= Compute Dfp using Eq. (14)
= IF(|Dfy| <€) EXIT
= Select a generator P¥ randomly from NG units of
k" member of population
= IF (D, <0) THEN
* Compute AP using Eq. (16)
* Update P¥ using Eq. (15)
= ENDIF
= [F(Dk, > 0) THEN
*  Compute AP using Eq. (17)
* Update P¥ using Eq. (15)
= ENDIF
o ENDFOR
o WHILE (|Dfy| > €)
RETURN
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Calculated perturbation is contained within the prescribed range and ramp-rate lim-
its as described below.

|D1’§D| sif |D1’D(D| < AP

) i (16)
AP™™  ;otherwise

APMIN — {
N
where AP™" = r[Pk — PMn|(|DE,|/Pp) and 7 is a uniform random number in the range of (0-
1).

Perturbation is calculated and violation of limits of generation is contained within
recommended range and ramp-rate limits and is expressed below

|D1ID(D| if |D1’D(D| < ApmeX

17
APM™%X  ;otherwise (17)

APMmex = {
where AP = r[min(P/"%*, P? + UR;) — P¥](Dk,/Pp) andr is a uniform random variable.
Any generating unit is chosen only once in a cycle. This procedure is repeated until
|DEp| reaches some infinitesimally small value. The stepwise procedure is detailed in Al-
gorithm-L.

5. Proposed Opposition based greedy heuristic search method

The multi-objective power dispatch problem is solved using a heuristic search strat-
egy that is suggested in the study. Expected risk is seen as a second objective that should
be minimized in addition to expected operational cost, which is taken as the objective
function, F;,. The overall member function uk = min(u,’ﬁj (G=12, ...,Nob), is maximized.
If the objective function improves, the decision to choose a member and obtain a superior
member is deemed a "success"; if not, it is deemed a "failure". The members are randomly
initialized. Utilizing opposition-based learning to the choice variables, a good, varied set
of population is obtained after random initialization of the members. The diversity is pre-
served through migration that is also based on opposition-based learning.

5.1. Random initialization

In random initialization, the initial NP members (solutions) are produced randomly
within the search space making use of uniformly distributed random numbers as

Pf = pmin 4k (Pmax — pminy; (i =1,2,..,Ny; k =12,..,Np) (18)

where 7 is uniform random number for i*" generator and k" member, NP is popula-
tion size.

5.2. Opposition-Based Learning

Heuristic optimization strategies start with a randomly selected member and then
increase its quality to get the best solution. The difference between these initial estimations
and the ideal solution affects calculation time. However, it can be enhanced by taking
advantage of the chance to start with a better solution while also checking its own oppos-
ing solution [17]. The superior initial answer is chosen, either randomly or according to
its opposite guess. Therefore, the convergence can be sped up by starting with the estimate
that is closer than the other, as determined by its objective function. The same method can
be constantly applied to every solution in the current population as well as to original
solutions. The population in opposition is obtained as
P/*NP = pmin 4 pmax _ pk; (i =12,..,N; k=12,..,Np) (19)

i

5.3. Objective function evaluation

Proposed strategy can be employed to single objective and multi-objective situation.
The goal is to minimize operating cost, F;, in scalar objective problem using Eq. (1). In
multi-objective setting, fuzzy max-min operator is utilized to manage the conflicting
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objective functions after the individual objective functions' membership values are found
using Eq. (14), as

pk =min(ug; G = 1.2,...,Nop)) (k = 1,2,...,Np) (20)

For each generated solution, the fuzzy operator "min-max" evaluates the amount of
satisfaction that is simultaneously obtained by all of the objective functions. The decision-
making process selects the best-negotiated option with the highest level of satisfaction, or
cardinal priority rating. Eq. (13) is treated as objective function to be maximized for multi-
objective problem solved by OGHS algorithm.

5.4. Mutation Policy

The task of mutation policy is to deliver ability for good exploration with the crucial
obligation of the solution improvement. Mutation strategy is centred on random pertur-
bation. One dimension in the search is thought as a gene. Every gene of current member
is modified by doing perturbation with random size in both directions in such a way so
that the solution remains within feasible range. This considered current member is re-
newed to its best mutated inheritor at the end of every mutation procedure. The mutation
is termed as a success if the mutated member is superior one from the previous one, or
else the mutation is ignored. Mathematically, the approach is detailed as below:

For the mutation, k" expected member, P} from population is chosen randomly
and is regarded as a candidate member as P3'*. Evaluate objective function either Ff/
using Eq. (1) for single objective optimization problem or u?® (=min{uf/®;(j =
2% using Eq. (13) for multi-objective optimiza-
tion problem. This candidate member of i*" unit is perturbed as indicated below:

1,2,-+,N,,)}) and membership functions, u

Ppew = PO + (—-D™ryaluy ;(1=12,..,N;;m =120 =12,..,N,) (21)
1 ;i=1
0 ;i#l
factor that reduces the step length in every iteration.

The calculation of perturbation is within the normalized permitted range of genera-
tion as defined below:

where u;; = { and r; is uniformly distributed random number. « is a adaptive

Ng
at= (a(Bre = Prim)py) /) (Brex = Brin) 5 (i = 1.2,...,Ny) (22)
i=1

The genes (generator outputs) are confined within their prescribed during the muta-
tion process as

pold . pold
pnew — Pi? —nabduy ;5 if A< Pil; 23)
i pmn s otherwise
pold g
prew _ [Pt rabuy 5 if nA < P (24)
iz pmax ; otherwise
Evaluate objective function FJi5Y using Eq.(1) or v (= min{y}?ﬁx’

new

1,2,---,Nop;m = 1,2)}) and membership function pjy" is evaluated using Eq. (13).
Selection operator is utilised to select the improved perturbed member (solution).
The selection is as stated below (m = 1):
For economic thermal power dispatch problem:
Snew _ [Pam S FY < Fifna 5)
i Pym+1 ;Otherwise
For multi-objective thermal power dispatch problem:

new new

prew = Pim SHim™ 2 Bimsa 26)
. Piz,mﬂ ; otherwise
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Update the objective either Ff; or p¥ (=min{u¥, u%}) corresponding to P7. Up-
dated gene is taken for (i + 1) generation as
For economic thermal power dispatch problem:

_ pnew ;Fnew < Fold
Piczld — —l(l)ld 1im . 1l (27)
3 ; otherwise
For multi-objective thermal power dispatch problem:
_ pnew sumtev > old
poud = _l(l)ld Him .llz (28)
3 ; otherwise

and best value is chosen for k™ member of population as Pf = Py'{ and its corre-

sponding objective function either F{ or p*

5.5. Random Migration Operator

With the advancement of the algorithm, the population’s diversity and capacity for
exploring the search space rapidly decrease, and the grouped entities are unable to mutate
into new, superior race. Randomly selected individuals begin migrating in order to over-
come this restriction, improve the exploration of the search space, and lower the selection
pressure for a small population. The i*" generator of k™ member is randomly migrated

as follows
_ pmin 4 pmax _ pk 3PS Pmi
prve—ft T R TP Pmie Ny k=12, Np) (29)
P™ 4 1y (Pimax — PL-"“") ; otherwise

where p is uniform random number and p,; is the probability of migration.
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Algorithm-II gives detail to implement the proposed OGHS.
Algorithm-I1I: OGHS
e [nitialize the 2Np population using Eqs.(18) and (19)

e Fix violated constraints,if any using constraint handling Algorithm — |
e Evaluate objective function u* using Eq. (20)
e Select best population Np out of 2Np
o Select global best solution
e (Compute step length A; as per Eq. (22)
e FOR iteration = 1, max_iteration
o A=ah;;(i=12,+,N,)
o FORk=1,Np
= FORi=1,N,
* Select I™" member randomly and consider objective function pf**(= min{u%®; (j =
1,2,+, Nop)}) using Eq. (20)
* Calculate PI$Y and PJiY as per Eq.(23) and (24)
*  Fix violated constraints,if any,using constraint handling Algorithm — |

* Evaluate objective function ule" (= min{u?ﬁ,‘:’ (G =12, Nop;m = 1,2)}) and

Wi is evaluated using Eq. (20).
v B = P I =
* IF (ui™ > ™) ™ = wi™ and P = Piig*
* IF (e > pf'®) (uf'® = pf” and Pg'* = P}
= ENDFOR
« Pk =pold yk — yold
o ENDFOR
o FORk = Np +1,2Np
= (Generate population using random migration as per Eq.(29)
= Call Algorithm — 1 to satisfy energy balance constraint equation
* Evaluate objective function u* (min{u}‘ (G=12,-, Nob)}) and /15-‘ is evaluated using Eq. (20).
o ENDFOR
o Select best population Np out of 2Np

o Select global best solution

e ENDFOR

6. Test Systems and results

By investigating stochastic multi-objective thermal load dispatch issues for small and
medium power systems, the validity of the suggested strategy has been demonstrated.
Analysis is considered for stochastic economic load dispatch (SELD) and stochastic eco-
nomic-emission load dispatch (SEELD) situations. By assigning one of the objectives full
weight and ignoring the others, the minimum values of the objectives are met. When the
assumed weight value is 1.0, the objective is given full weight, and when it is zero, the
objective is disregarded. The summary of considered power systems to implement SELD
and SEELD is given in Table-1. In addition, the values of the coefficients of variation and
correlation coefficients assumed in the study in all the cases are Cp, = 0.01t0 0.1; V (i =
12,-+,Ny) and Rpp = =0.03t0 0.03; V (i = 1,2,-++,Ng;j = 1,2, -+, Ng; i # j) with the step
interval of 0.01. The population size, NP is taken as 100 for every experiment. Maximum
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iterations are set to 1000 for all the experiments. Robustness of the suggested algorithm is
confirmed by 100 mutually exclusive trial runs.
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Table 1. Outline of undertaken power system for analysis.

Example N, VPL Transmission Remarks
losses
1 6[1] x < SELD
2 40 [8] x x SELD
3 40 [8] \ x SELD
4 40 [8,40] \ SELD
5 40 [8,40] \ x SEELD

6.1Example-1: 6-thermal generator electric power system problem

Six generator systems are used to show the effectiveness of the suggested strategy.
In Table 2, the projected fuel price, gas emissions, and generator operating limitations are
shown. In Table 3, the expected average transmission loss coefficients are shown. Three
power demands of 700 MW, 900 MW, and 1100 MW are examined in this scenario.

Changes in the predicted fuel cost's % deviation from deterministic fuel cost in rela-
tion to the coefficient of variation, Cp, and correlation coefficient, Rpp, is shown in Fig.1.
The variation in percentage deviation in expected pollutant emission from deterministic
pollutant emission with respect to the coefficient of variation, Cp, and correlation coeffi-
cient, Rp;p, is shown in Fig.2 respectively. Figure 3 depicts the expected risk as a function
of the coefficient of variation, Cp; and correlation coefficient, Rpp,. Table-4 displays the
percentage deviation of expected fuel cost from its deterministic value, the percentage
deviation of expected pollutant emissions from its deterministic value, the expected risk,
and the expected generation schedule at different coefficients of variation, (Cp, =1% and
Cp, =10%) and correlation coefficient (Rpp; = £0.03) for the load demands of 700MW,

900MW and 1100MW respectively.

Table 2. The fuel cost, economic emission constants and generator operating limits [1].

Fuel cost coefficients Emission coefficients

Gen a b c o B » pmn pmex
i i i

(Rs/MW?2h)  (Rs/MWh) (Rs/h) (ke/h) (ke/h) (ke/h) Mw) - (MW)
1. 0.15247 38.53973 756.7989 0.00419 0.32767 13.85932 10 125
2. 0.10587 46.15916 451.3251 0.00419 0.32767 13.85932 10 150
3. 0.02803 40.39655 1049.998 0.00683 0.54551 40.2669 35 225
4. 0.03546 38.30553 1243.531 0.00683 0.54551 40.2669 35 210
5. 0.02111 36.32782 1658.57 0.00461 0.51116 42.89553 130 325
6. 0.01799 38.27041 1356.659 0.00461 0.51116 42.89553 125 315
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Table 3. Average expected transmission loss coefficients (in MW-).

0.002022 -0.000286 -0.000534 -0.000565 -0.000454 0.000103
-0.000286 0.003243 0.000016 -0.000307 -0.000422 -0.000147
-0.000533 0.000016 0.002085 0.000831 0.000023 -0.000270
-0.000565 -0.000307 0.000831 0.001129 0.000113 -0.000295
-0.000454 -0.000422 0.000023 0.000113 0.000460 -0.000153
0.000103 -0.000147 -0.000270 -0.000295 -0.000153 0.000898

m 66000-66500
W 6550066000
™ 65000-65500
W 54500-65000
W 54000-64500

% deviation in expected fuel cost

T 4 ooz ‘si"
0

_wa ooz ¥ om0 <_’oc'
Corelation coefficient 0.03

Figure 1. Percentage deviation from the expected fuel cost objective versus the correlation coefficient
Rp,p; and coefficient of variance Cp,.

2450
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m 2350-2400
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m2200-2250
W 2150-2200

% deviation in expected emission
2

1]

0.01 £ 001
0.03

0.02
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Figure 2. Percentage deviation in expected emission of gaseous pollutants along versus correlation
coefficient Rp,p; and coefficient of variance Cp,.
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Figure 3. Expected risk versus correlation coefficient Rp,p; and coefficient of variance Cp,.

Table 4. Values of objective functions and generation plans for load demands of 700MW, 900MW,
and 1100MW at various coefficients of variation and correlation coefficients.

P, Rep, Cp u F, F, Fs P, P, P, P, Ps P,
000 0.0 065170 39037.44 1078.698  0.00  97.67036 72.7025 61.97384 105.0953 227.6541 169.2725
-0.03 0.01 054891 4015508 1044428 871476 1159856 87.75609 77.8606 113.9939 190.7215 155.0199

700 -0.03 0.10 0.50028 4212518 1096.881 8424584 125 1051449 975015 126.8699 160.908 142.6784
003 001 049165 4100392 1042469 1121391 125 9620328 87.371 124.6204 171.1524 144.6385
003 0.10 042348 4171122 1090.179 1125297 125  100.0111 89.14144 1254332 168.8068 143.8901
000 0.00 035549 4993338 1687.299  0.00 9951418 7499191 63.43766 1486791 325 2527803
-0.03 0.01 034756 5056448 1589.907 18.09034 120.3983 90.53859 82.77207 152.7629 2929168 222.7011

900 -0.03 0.10 032113 5186532 1651258 1591262 125  100.4988 9459234 159.0681 272.8531 217.8652
003 001 032937 5112379 1560996 20.35286 125  102.9383 90.36965 158.878 2737344 215.371
003 0.0 028547 5242408 1638733 2017.158 125  114.0865 9822901 163.6979 261.6143 2122133

0.00 0.00 0.20497 64189.68 2259.394 0.00 125 131.5968 116.3736 210 325 315
-0.03 0.01 0.11956 65187.36 2255252 25.31987 125 150 129.2949 210 325 292.294
1100 -0.03 0.10 0.1129 6639391 2402271 2552.278 125 150 131.4576 210 325 295.3218
0.03 0.01 0.12209 65020.35 2250.679 32.6899 125 150 121.8579 210 325 296.099
0.03 010 011747 66191.11 2396.016 3294.397 125 150 122.9375 210 325 299.4826

When the coefficient of variation, Cp,, remains constant, the percentage deviation in
expected fuel cost decreases at a very small rate in relation to the variation in correlation
coefficient, Rpipj. However, when the coefficient of variation, Cpi, changes and the corre-

lation coefficient, Rp;p;, is fixed at one value, the percentage deviation in expected fuel
cost rises more quickly. When the correlation coefficient, Rpp, is changed while the coef-
ficient of variation, Cp,, remains constant, the percentage deviation in expected emission
exhibits a nearly constant trend. Furthermore, when the coefficient of variation, Cp,, varies
while the correlation coefficient, Rpip]., remains constant, the percentage deviation in ex-
pected emission increases more rapidly. Similarly, expected risk is nearly constant with
correlation coefficient, Rpip]., at constant coefficient of variation, Cp,, and increases at a
faster rate with coefficient of variation, Cp,, at constant correlation coefficient, Rpip]..

6.2. Example-2: 40 generator system neglecting transmission loss (with convex characteristics of
generator system)
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In this example, a 40-thermal generator power system is studied. The operating cost
coefficients are derived from [8] for a load demand of 10500MW. In this case, the system
is modelled with convex generator characteristics without taking into account valve point
loading effects. Transmission losses are ignored. Figures 4 and 5 illustrate, respectively,
the percent deviation of the expected fuel cost from its deterministic value and the ex-
pected risk together with the correlation coefficient Rpp, and coefficient of variation Cp,.
As the correlation coefficient Rp,p, is raised, it can be seen in Fig. 4 that the percent var-
iation in projected fuel cost increases. At greater coefficients of variation, Cp,, this rate of
increase is more rapid. The similar rise pattern is shown in Figure 5. The rate of rise is
more for higher coefficients of variations, Cp, as compared to lower coefficients of varia-
tions, Cp,. Table 6 displays the values of the objectives, including the predicted risk and
the percentage difference between the expected fuel cost and its deterministic value. Table
7 displays the anticipated generating schedule and anticipated fuel costs for the scenario
with independent variables (deterministic case)

m 30-40
W 20-30
= 10-20
u0-10

e =100

0.01 .\1 . ®-20-10
- . 0.02 003
Corelation coefficient w-30-20

- -40-30

% Deviation in expected fuel cost

4

Figure 4. Percentage deviation in expected fuel cost objective with correlation coefficient Rp,p, and
coefficient of variance Cp,.

70000

Expected risk

) &
) .n.ue e 003 ‘..ré.
Coefficient of variance o

Figure 5. Expected risk with correlation coefficient Rp,p; and coefficient of variance Cp,.
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6.3. Example-3: 40 generator system without transmission loss (with non-convex characteristics
of generator system)

This example system's case study includes 40 non-convex fuel cost characteristics
with effects of valve point loading [8]. Losses in the transmission are disregarded. The
load demand is taken to be 10500MW. Fig-6 and Fig-7 show the percentage variation in
expected fuel cost from its deterministic value as well as expected risk versus correlation
coefficients Rp;p, and coefficient of variation Cp,. Fig-6 and Fig-7 show a nearly identical

rate of increase in the percentage deviation of predicted fuel and variance of power de-
mand mismatch as were shown in Fig-4 and Fig-5, respectively. Even though the total rise
is lower than in Example-2, there is no discernible difference between the deviation pat-
terns in the convex and non-convex system case analyses that are being taken into consid-
eration. The sinusoidal term in Eq. 2 for the valve point loading effect is what causes the
estimated operational cost of generators to increase or decrease. Table 6 lists the values of
the objectives, including the estimated risk and the percentage difference between the pre-
dicted fuel cost and its deterministic value. Table 7 shows the anticipated generating
schedule and fuel cost, taking into account the situation of independent variables (deter-
ministic case).

The results for the deterministic scenario are compared with those by other tech-
niques provided in literature, as shown in Table 5, to demonstrate the competitiveness of
the recommended algorithm. 30 mutually independent test runs of the suggested ap-
proach were performed to evaluate the algorithm's resilience. Table 5 also includes the
least, highest, average, and standard deviation values from these 30 algorithm test runs
that are mutually incompatible. The same results from other methods that are docu-
mented in literature are also presented for comparison.
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Table 5. Statistical values for 40 generator system ELD problem.

Fuel cost
Method Minimum Average Maximum Star.ldz?rd
deviation
CTPSO[32] 121694.6056 121944.3959 - -
CSPSO [32] 121435.9581 121945.0564 - -
COPSO [32] 121411.8975 121499.9769 - -
CCPSO [32] 121403.5362 121445.3269 - -
CSOMA[33] 121422.10 - - -
MBFA [39] 121415.65 - - -
FCASO-SQP [45] 121456.98 122026.21 - -
CPSO-5QP [49] 121458.54 122028.16 - -
IABC [50] 121412.75 - 121503.58 -
TABC-LS [50] 121412.73 - 121471.61 —
MsEBBO/mig [51] 121415.520 121521.68990 121476.25170  36.40770
MsEBBO/mut[51] 121416.288 121585.01860 121500.92790  32.74280
MsEBBO/sin[51] 121415.3090 121479.36570 121421.65560  11.56960
MsEBBOI51] 121412.53440 121450.00260 121417.18770  5.79960
0-PSO [52] 121420.90 121509.84 121852.42 -
HPSO-GSA [58] 121412.5682 - - -
MABC/P/Log [61] 121412.590 121431.580 121493.190 18.160
MABC/D/Cat [61] 121412.540 121431.780 121503.760 19.161
OGHS 121403.6 121431.3 121494.5 25.718

EL I

0.01 0.02

Correlation coefficient

% Deviation in expected fuel cost

=]

a0 -

Figure 6. Percentage deviation in expected fuel cost objective along with correlation coefficient
Rp,p,and coefficient of variance Cp,.
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Figure 7. Expected risk with correlation coefficient Rp,p, and coefficient of variance Cp,.

6.4. Example-4: 40 generator system considering transmission loss (with non-convex
characteristics of generator system)

This case study includes implications of valve point loading and non-convex fuel cost
features for 40 generators [8]. In this instance, the transmission losses are also included.
Expected load demand is considered as 10500MW. Fig-8 and Fig-9 show, respectively, the
predicted fuel cost % deviation from its deterministic value and the estimated risk with
respect to the correlation coefficient, Rp;p;/ and coefficient of variation, Cp,. At greater co-

efficients of variation, Cp,, the rate of increase in percentage deviation in projected fuel
cost and expected risk is steeper. Although the total rise is less than the prior case, Exam-
ple-3, the growth pattern is identical to an earlier case taken under investigation. The si-
nusoidal term in Eq. 2 for the valve point loading effect is what causes the estimated op-
erational cost of generators to increase or decrease. Table 6 lists the values of the objec-
tives, including the estimated risk and the percentage difference between the predicted
fuel cost and its deterministic value. Table 7 shows the anticipated power generation
schedule and fuel cost for the scenario with independent variables (deterministic case).
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Figure 8. Percentage deviation in expected fuel cost objective versus correlation coefficient Rp,p,
and coefficient of variance Cp,.
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Figure 9. Expected risk versus correlation coefficient Rp,p, and coefficient of variance Cp,.

6.5. Example-5: 40 generator system economic-emission load dispatch neglecting transmission
loss (with non-convex characteristics of generator system)

In this example, a 40-generator system with a non-convex fuel cost objective function
considering valve point loading is used to illustrate stochastic economic emission load
dispatch. The transmission losses are also taken into account. Information on emission
coefficients and operating cost coefficients is taken, respectively, from [8] and [40]. Ex-
pected load demand is considered as 10500MW. Figures 10 through 12 illustrate the ex-
pected risk as well as the expected fuel cost as compared to its deterministic value and the
percentage deviation in pollution emission from its deterministic value in relation to the
correlation coefficient Rpp, and the coefficient of variance, Cp,. The percentage variation
in predicted fuel cost and expected risk from Figs. 10 and 12 showed the same rate of
increase as in previous case studies, however the overall increase was less substantial than
in case 2. Even though transmission losses are ignored in this example study, the
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environmental target was taken into account, which resulted in a lower overall rise. On
the other hand, as the correlation coefficient, Rpip]., increases at various coefficients of var-
iation, Cp,, the deviation in the emission of gaseous pollutants does not exhibit any fixed
monotonic pattern. The values of the objectives, including the percentage deviation in
projected fuel cost from its deterministic value, the percentage deviation in pollutant emis-
sion from its deterministic value, and the predicted risk, are shown in Table 6. For the case
of independent variables, Table 7 displays the anticipated generation schedule, fuel cost,
and gaseous pollutant emissions (deterministic case)
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Figure 10. Percentage deviation in expected fuel cost objective versus correlation coefficient Rp,p,

and coefficient of variance Cp,.
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Figure 12. Expected risk versus correlation coefficient Rp,p, and coefficient of variance Cp,.

6.6. Sensitivity

There are no factors that can be changed or tuned for the suggested algorithm be-
cause the sole component that impacts algorithm acceleration, namely, «, is made adapt-
able in nature. This demonstrates the algorithm's independence.

6.7. Conclusion

The investigation on the fluctuation in predicted costs and pollutant gas emissions as
a result of random measurements in generator characteristics and erratic load demand is
presented in this paper. Stochastic economic load dispatch and stochastic economic-emis-
sion load demand example case studies are analysed and presented. In order to find the
most comprehensive answers to the optimization problem, the opposition-based greedy
heuristic search (OGHS) method is suggested in this study. The primary advantage of this
search method is that it can be applied easily to solve any optimization problem, regard-
less of its complexity. The process begins with good population and struggles for the bet-
ter member during mutation and has ability of migrating a new member or it’s opposite
to preserve diversity. This demonstrates the greedy conduct of the algorithm. Heuristics
constrains the movement of solution procedure within feasible region owing to the phys-
ical limitation of the system components involved. Direct constraint handling procedure
guarantees to satisfy the equality constraints. This method is efficiently applied to differ-
ent examples of economic load dispatch which intrinsically are having discontinuities and
non-differentiability in their objective functions. The suggested algorithm doesn’t have
the necessity of tweaking the algorithm parameters as these are made adaptive. The pre-
sent analysis shows the risk involved due to the randomness of parameters. Furthermore,
in the study of the randomness of parameters for the cases in which valve point loading
effect is also considered. The expected operating cost of generators have percentage rise
with respect to the correlation coefficient and coefficient of variance due to dependency
on the sinusoidal term of expected cost function.

Table 5. Percentage deviation in expected fuel cost, expected emission of pollutants and the ex-
pected risk objectives for various correlation coefficient, Rpp, and coefficient of variance, Cp, for

40 generators power system.

Example-2

Example-3 Example-4 Example-5

RPin -0.03

-0.03 0.03 0.03

-0.03 -0.03 0.03 0.03 -0.03 -0.03 0.03 0.03 -0.03 -0.03 0.03 0.03
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Cp, 0.01 010 0.01 010 0.01 0.10 0.01 0.10 0.01 0.10

0.01 0.10 0.01 0.10 0.01 0.10

v 0.242410.592360'07%40.096730.24844 0.5744 0.09773 0.09527 0.2819 0.56758

0.16486 0.174060.24303 0.57783 0.08949 0.10196

120932.76341.4 14561 161278.

76224.3 142196. 159679. 12 . 24.2
121004 6224.3 96. 159679. 123506. 839

Fy

143967.2 157466

120961.

144933. 1 .
77070.3 933. 163569

9 1 84 9 8 4 5 8 1 8 4
v 377780.819709. 361426. 946159.
z - - - - 5 9 4 4
F. 63978 363;.68655;51649;9.4 61074 00877 (oo 649701 ) 346993 o 674005 o 354846 . 649454
113.99
P14 114 7 114 114 114 114 114 114 114 114 114 114 114 114 114
P, 114 114 114 114 113999 114 114 114 114 114 114 114 114 114 114 114
P, 97399 120 120 119.999 97399 120 120 120 120 120 120 120 97400 120 120 120
P, 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 190
P 92661 97 97 96999 88584 97 97 97  89.940 97 97 96999 97 97 97 97
P, 140 140 140 140 140 140 140 139.999 140 140 140 140 140 140 139.999 140
P, 300 298.062 300 300 300 300 300 300 300 300 300 300 300 300 300 300
P, 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
P, 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
P, 204799 300 300 300 204.800 300 300 300 279.601 300 300 300 204799 300 300 300
P, 243.599281.82937‘2‘99 375 243.602 287.731 374.996 375 312.123 289.766 374.997 375 168.799285.442 375 375
374.99
P,, 243.600281.892 375 243.601 287.638 374.995 375 243.605 289.542 375 375 243.601 286.03 375 375
P 214.761343.79237@'98371.383304.532 353.289 385.665 369.543 125 336.612 125.002 125 304.521350.262 375.107 371.126
P, 304.525344.0663812'16371.038 304.54 353.575 387.457 371.442 304.522 352.204 356.596 351.46 393.567350.526 381.79 371.058
P, 394.208 343.95 378.97370.768 304.523 353.736 386.232 370.082 304.52 352.471 387.546 377.36 304.528351.045 382.536 369.48
P 304.524344.483°0 %7 370 439 304,503 353.668 387.787 369.466 389.573 352.848 394196 391.019 304.52 350.793 379.304 370.989
Py, 472.753 436.88 399-53 115,082 472.782 445.617 399.626 417.998 468.46 442.615 436579 428.915471.495442.779 399,566 414.418
399.53
Pig 472.88436.896 416.426472.063 445.704 399.526 418.598 469.621 442.602 448.043 438.111471.123277.607 399.524 414.202
P 488.028458.146 2122 423,99 487.875 467.159 421.501 423.465 484.425 463.939 439.668 437.526 486.078 465.179 421.728 419.974
421.51
Pro 487.89458.191°" " 421.970487.407 466.994 421.523 426397 484.332 463.699 433.587 431.973486.230465.169 421.455 418.848
P, 503.319470.26402° 357,759 503.383 310.155 350.389 355.826 499.745 475.681 441.538 435.176501.114476.737 433.063 358.789
P,, 503.059301.225348.48 358.45 502.325 479.091 433.577 355.946 499.414 475.696 434.679 431.346501.579477.067 349.466 359.066
P,; 503.886470.540 00"V 356.500 503.221 479.002 349.842 355.878 499.454 475.666 433.893 433148 502.504307.258 433.502 360.434
347.19
P,, 503.745470.411 356.803 503.133 310.063 348.049 358.104 498.056 475.438 433.527 402.755 501.96 476.798 347.208 357.760
P,s 502.528 470.64 3451'97357.627501.941 479.043 349.95 355.950 495.081 475.241 343.872 362.629 500.240477.001 344.724 358.718
Py 502.266470.468° 127 356.257502.509 479.047 433.589 355.616 495.791 475478 433.507 369.820500.204 477.364 433.469 361.324
111.04
P, 10.004 50855~ 77 150 10001 47719 100334 150 1001 91.064 112542 150 10 48745 107.514 150
111.61
P 10 50.822 150 10.004 47.680 100.691 150 10 91331 105.843 150 10 48.754 110.498 150
113.55
P, 10 50.806 150 10  47.807 100.705 150 10 57938 107775 150 10 48.688 111.128 150

5
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P;p 88.808 97 96.96596.999 97 97  96.994 96.999 96.998 97 97 96.999 89.521 97 97 97
P;; 190 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190
P;; 190 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190
P;3 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 190
P;, 164.802199.999 200 200 164.808 200 200 200 200 200 200 200 164.816 200 200 200
P35 164.808168.6631998'99 200 164.827 200 199.999 200 200 200 199.999 200 164.799 200 200 200
P;c 164.802166.814 200 200 164.853 166.176 200 200 200 200 200 200 164.804 200 200 200
P;; 110 110 110 110 110 110 110 110 110 110 109.999 110 110 110 110 110

P;g 110 110 1099'99109.999 110 110 110 110 110 110 110 110 109.999 110 109.999 110

P;y 110 110 110 110 110 110 109.999 110 110 110 110 110 110 110 110 110

4
Pyo 488.362458.305422 9422.517487.672 467.102 421.57 423.688 484.481 463.631 435.942 434.244 486.796 464.756 346.419 421.814
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Table 6. Generation schedule along with objective function values for the case of independent var-
iables (deterministic case).

Example-2 Example-3 Example-4 Example-5
Fy 121411.9 121411.9 123468.3 121685.8
F, -- -- -- 353785.9
523.280
P,  110.8136 P,y 6 P, 110.8136 P,; 523.2806 P, 113.0465 P,; 5232803 P, 110.8006 P,; 522.4756
P, 110.8384 Py, 523i281 P, 110.8384 P,, 5232811 P, 114 P, 5232794 P, 110.7995 P, 522.6317
P; 9740414 Py 523&280 P; 97.40414 P,3 523.2807 P 120 P,z 5232797 P 9739978 P,; 5232175

P, 179737 P, 523&279 P, 179737 P, 5232797 P, 179.7334 P,, 5232796 P, 179.7325 P,, 523.0742
P;  87.8691 P, 523583 P; 87.8691 P, 523.2832 Ps 97 P, 5232802 Ps 87.79984 P,s 521.5883
523.280
P, 140 P O B 140 Py 5232806 P 140 P, 5232794 P 140 Py, 520914
P, 259.5999 P,, 10 P, 259.5999 P,, 10 P, 259.602 P,, 10 P, 300 P, 10
P, 284.6023 P,; 10 Py, 284.6023 Py, 10 P,  284.6002 Pyg 10 P, 284.598 Pyg 10
P, 284.6008 P,, 10 P, 284.6008 P,y 10 P, 284.6064 Pyq 10 P, 284.5977 Pyq 10
P 130 Py 96'92996 Po 130 Py 96.99962 Py, 130 Py, 9699976 P, 204.6555 Py, 87.80145

P, 168.8007 P,; 190 P, 168.8007 P;; 190 P, 1688 Py 190 P, 168.7987 P,; 159.7331
P, 94  Pp 190 P, 94 Py, 190 P, 243.5995 P, 190 P, 168.7997 P, 190
P, 2147596 P,; 190 P, 2147596 P, 190 P, 125 Py, 190 P, 2147599 P,;  189.9993

P, 3942798 Py, 164;307 P, 3942798 Py, 164.8072 P, 3045193 Py, 200 P, 3045194 P, 200

Pis 394279 Py 1995.999 Pis 394279 Py 199.9995 Ps 3942793 Py 199.9995 Ps 304.5186 Py 199.9986
Py  304.5201 Py 1995999 Py 3045201 Py 199.9995 Ps 3942794 Py 199.9995 Ps 304.5188 Py 199.9995

P, 4892791 P,, 110 P, 4892791 P, 110 P, 489.2794 P, 110 P, 489.2798 P,, 109.9988
Py 489.2805 P,z 110 P, 4892805 Py 110 Pz 489.2805 Py 110 Py 489.2786 Pug 110
Po 511281 P,y 110 P 511281 Py 110 Py 5112792 Py 110 Py 511.2686 Py 110

P,y 511.2793 Py, 5“2’;279 Py, 5112793 P,, 5112798 P,, 5112791 P,, 511281 P,y 511.2517 P, 511.187
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