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Abstract: A thermal load dispatch problem minimizes the number of objectives viz operating cost 

and emission of gaseous pollutants together while allocating the power demand among the com-

mitted generating units subject to physical and technological system constraints. A stochastic ther-

mal load dispatch problem is undertaken while taking into consideration, the uncertainties, errors 

in data measurements and nature of load demand which is random. Owing to uncertain load de-

mand, variance due to mismatch of power demand termed as risk, is considered as another conflict-

ing objective to be minimized. Generally multiobjective problems generate a set of non-inferior so-

lutions are generated and supplied to a decision maker to select the best solution from the set of 

non-inferior solutions. This paper proposes opposition-based greedy heuristic search (OGHS) 

method to generate a set of non-inferior solutions. Opposition-based learning is applied to generate 

initial population to select good candidates. Migration to maintain diversity in the set of feasible 

solutions is also based on opposition-based learning. Mutation strategy is implemented by perturb-

ing the genes heuristically in parallel and better one solution is sought for each member. Feasible 

solutions are achieved heuristically by modifying the generation-schedules in such a manner that 

violation of operating generation limits are avoided. The OGHS method is simple to implement and 

provides global solutions derived from the randomness of the population generated without tuning 

of parameters. Decision maker exploits fuzzy membership functions to decide the final decision. 

Validity of the method has been demonstrated by analysing systems in different scenarios consist-

ing of six generators and forty generators. 

Keywords: fuzzy theory; heuristic search; stochastic economic load dispatch; risk analysis 

 

1. Introduction 

The rising energy demand and diminishing energy reserves have dictated the opti-

mal use of existing resources. The essential intention of economic load dispatch (ELD) of 

electric power production is to plan the yield of the dedicated generating units so as to 

meet the load requirement at least operational cost, while fulfilling the system’s con-

straints. ELD problem is a large-scale extremely constrained nonlinear optimization prob-

lem. 

Economic load dispatch (ELD) assigns the generations as required by the customers 

keeping in view the several considerations like least transmission losses, minimal dis-

charge of pollutants, multiple fuels, etc. Efforts on resolving ELD problems were using 

various gradient-based mathematical encoding, such as the Newtonian solution of the op-

timality conditions, nonlinear programming, linear programming, interior point ap-

proaches, quadratic programming, Lambda iterative approach, dynamic programming, 

Lagrange relaxation, gradient projection method, hybridized integer and linear program-

ming, hybridized linear programming and quadratic programming, [32] etc. has been 

used to solve ELD. These approaches' strengths include optimality that has been mathe-

matically demonstrated [51], applicability to big problems [51], independence from prob-

lem-specific characteristics, and computational speed. These numerical techniques use the 

unit-incremental cost curves, which increase monotonically, to solve ELD issues. 
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Unfortunately, real units' input-output properties are inherently very nonlinear. These 

nonlinear physical properties of generating units are a result of ramp rate restrictions, 

disconnected prohibited operating zones (POZ), and non-smooth cost functions. Due to 

this, these techniques may settle for fake / local optimum. In spite of many benefits, gra-

dient methods are incapable of ensuring global optimum solution for discontinuous and 

non-differentiable objective function [23]. 

Latest heuristic algorithms emerged as efficient tools for nonlinear optimisation chal-

lenges. The algorithms do not need that the objective function must be differentiable and 

continuous. Such techniques are evolutionary programming (EP) [4,8,11,12,17], genetic 

algorithm (GA) [2], particle swarm optimization (PSO) and its variants[7,10,16],[20–

22,24,25,28,29,32,34,35,38,49,58,62], differential evolution (DE) and its variants 

[14],[17],[18],[31],[55],[57], ant colony optimisation (ACO) [30,37], bio-geography based 

optimization (BBO) [48],[51], Taguchi method [19], bacterial foraging optimization (BFO) 

[23,39,47], cultural self-organizing migrating strategy (CSMS) [33], artificial bee colony 

(ABC) [50,54,56,61], firefly algorithm (FA) [42], opposition-based harmony search algo-

rithm (OHSA)[43], Self-organising hierarchical PSO (SOH-PSO) [20], PSO with crazy par-

ticles (PSO-Crazy) [25], PSO with chaotic and Gaussian approaches (PSO-CG) [21], oppo-

sitional real coded chemical reaction optimization [60] and gravitational search algorithm 

(GSA) [46] etc.. These methods are famous for their capabilities of rapid search of huge 

solution spaces. Two-phase neural network-based modelling [9], simulated annealing-

based goal attainment [3], fuzzy decision trees [6], weight pattern search by fuzzy logic 

[5], modified shuffled frog leaping algorithm [44], fuzzy logic based bacterial foraging 

[39], θ-PSO [52], chaotic differential bee colony optimization [56] also attempted to solve 

the problem. A evolutionary search strategy based on binary successive approximation 

was suggested by Dhillon et al. [26] as a solution to the economic-emission load dispatch 

(EELD) problem. The heuristic methods, however, are flawed by the abundance of arbi-

trary or problem-specific parameters [26]. 

Nowadays hybrid approaches are in use which blends more than one local and global 

optimization methods in order to have best features of each algorithm. Recent methods 

informed in literature are hybrid differential evolution (DE) with biogeography-based op-

timisation (BBO) (DE-BBO) [31], quantum PSO (QPSO) [29], hybrid genetic algorithm 

(GA)-pattern search (PS)-sequential quadratic programming (SQP) (GA-PS-SQP) [36], hy-

bridization of EP and SQP (EP-SQP) [4], chaotic differential evolution hybrid with quad-

ratic programming (CDE-QP) [14], hybrid of comprehensive learning PSO and SQP [35], 

hybrid of distributed Sobol PSO and TABU search algorithm (DSPSO-TSA) [38], self-

adapted real coded GA [41], fuzzy adaptive chaotic ant swarm optimization hybrid with 

SQP [45], chaotic PSO hybrid with SQP (CPSO-SQP) [49], differential harmony search al-

gorithm by DE and harmony search (HDE-HS) [53], hybrid PSO with gravitational search 

algorithm (HPSO-GSA) [58], hybrid PSOGSA based on fuzzy logic [62] and hybrid PSO 

with SQP (HPSO-SQP) [10]. These heuristic methods provide a quick and decent solution, 

but they don't always provide the globally optimal (or nearly optimal) solution in a finite 

amount of time. Heuristic and deterministic methods are used to create hybrid optimiza-

tion algorithms.  

When there are multiple objectives that are incompatible with one another, a decision 

maker is clearly required. The inescapable multifariousness of complex real-world deci-

sion-making (DM) situations is one of their core characteristics. Such problems have a 

variety of objectives, most of which are incommensurable and frequently at odds with one 

another. Thus, DM issues in the real world frequently result in the formulation of a multi-

objective optimisation problem. Pursuing the most favoured solution from a set of non-

inferior solutions is the ultimate goal of multi-objective optimisation. The US Clean Air 

Act Amendments of 1990 and the increased public awareness of environmental protection 

have forced utilities to change their design or operational procedures to reduce pollutants 

and atmospheric emissions from thermal facilities [1]. Numerous methods have been pub-

lished in the literature for the economic-emission load dispatch (EELD) problem, includ-

ing the multi-objective optimisation strategy that is being proposed. 
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Due to the inherent randomness of natural occurrences or the implicit and inaccurate 

assumptions associated with the method of modelling that is being used, many engineer-

ing problems are susceptible to ambiguity. Even though there has been a lot of research 

on thermal power load scheduling issues, the researchers believe that deterministic pro-

totypes are suited for steady-state situations since they assume deterministic system data. 

In actuality, the input data contains a great deal of uncertainties and inaccuracies from 

several sources, such as measurement mistakes and flaws in long- and short-term load 

predictions. Additionally, power system loads are random variables in real-time pro-

cesses. The electric power system network has been defined by random variables and re-

searched by several researchers at various levels as a result of the increase in production 

costs brought on by uncertain factors [1, 13]. 

In this study, the cost coefficients, emission coefficients, and power demand are 

treated as random variables while constructing the stochastic model of the multi-objective 

problem. The output of the generator thus unavoidably becomes random. Random varia-

bles are seen as statistically reliant on the other variables defining the system and regu-

larly distributed. The deterministic equivalent of the stochastic model is created from ex-

pectations. A function's expected value is obtained by using Taylor's series to expand the 

function around the mean. As an objective function that must also be minimised is the 

minimising of deviations resulting from these errors and uncertainties. Thus, the formu-

lation of a multi-objective problem results from taking into account all of these factors 

during the optimization process. With the help of the proposed search process, this multi-

objective problem is solved for a collection of non-inferior solutions, and the best negoti-

ated solution is obtained. Opposition-based learning is used to select the improved solu-

tion by comparing the objective functions at a solution's position in the search space to its 

opposite position during the initialization of the population and also in the algorithm's 

flow. Heuristics are used by the mutation operator to perturb each gene and search for 

better genes. Migration introduces a new member from the search space or in the opposite 

direction from the present point member in order to maintain diversity. Additionally, the 

method doesn't require any parameter tweaking. This study investigates how OGHS may 

be used to solve stochastic economic load dispatch and stochastic economic emission load 

dispatch issues. To demonstrate the viability of the suggested OGHS technique, small and 

medium power systems are taken into account. The paper is divided in the following sec-

tions. Section-2 discusses the formulation of stochastic thermal load dispatch problem. 

Section-3 and 4 deals with the decision making and constraint handling procedures re-

spectively. Section-5 elaborates the proposed algorithm in detail and Section-6 discusses 

the test case studies and their obtained results. 

2. Stochastic thermal load dispatch problem 

The multi-objective load dispatch problem is a multiple non-commensurable objec-

tive challenge that minimizes operating cost and gaseous contaminants emission simulta-

neously. A stochastic EELD problem is devised with the consideration of uncertainties in 

the system production cost and random nature of load demand [1]. In addition, risk is 

deemed as an additional conflicting objective to be minimised because of random load 

and uncertain system production cost. 

A. Expected fuel cost 

The fuel cost curve is approximated by a quadratic function of the generator power 

yield ��: 

�� = �(����
� + ���� + ��)

��

���

+ ������ ������
��� − ����� (1)

where ��, ��, ��, �� and  �� are fuel cost coefficients of ��� generator and �� is the num-

ber of generators. ��
���  is lower limit of power generation of ��� generator. 
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A stochastic version of objective function �� is formulated by taking into considera-

tion the cost coefficients and power demand as random. Given that the load demand is 

unpredictable, the generator output turn out to be random. The expected value of the fuel 

cost function may be derived by expanding the function, using Taylor's series, about the 

mean [1]. By taking the expectation of the expanded form, the expected fuel cost obtained 

and is represented by  

��
�

=

⎩
⎪
⎨

⎪
⎧� �������

�
+ ������ + ��̅ + ��̅���� ���̅���

��� − ������ +
1

2
�2��� + �̅���̅

�
���� ���̅���

��� − ������� ������� ∀ ��� > ��
���

                                                                                                 

��

���

� �������
�

+ ������ + ��̅ + ��̅���� ���̅���
��� − ������ + ����������                                                 ∀ ��� = ��

���   
     

��

���

 
(2)

where ���is the expected value of the generator output, and ���, ���, ��̅ , �̅� and, ��̅ are the ex-

pected cost coefficients. ���(���) is defined as ���
���

�
, where ���

is the coefficient of varia-

tion of the random variables �� .  

B. Expected emission of gaseous pollutants 

The gaseous pollutants emission is modelled and is given below [1]: 

������� = �(����
� + ���� + �� + �� exp(����))

��

���

 (3)

where ��, ��, ��, �� and �� are emission coefficients of ��� generator. 

Taking randomness in load demand in consideration, the expected discharge of gas-

eous pollutants is represented by 

��
��� = ��������

� + �̅���� + �̅� + ��̅ exp���̅����� + �2��� + ��̅
�

��̅������̅�����

��

���

������ (4)

where ��� is the expected value of the generator output, and ���, �̅�, �̅� , ��̅ and, ��̅ are the 

expected emission coefficients.  

 

 

 

C. Expected risk 

As the generator outputs  ��  are considered as random variables, the expected vari-

ations are proportionate to the expectation of the square of the unfulfilled power demand. 

These anticipated deviations are expected risk and considered as an objective to be mini-

mized [1,13]. The objective is represented as: 

��
��� = � ����

��� + ��
��� − � ���

��

���

�

�

� (5)

This on simplification reduces to 

��
��� = � ���(��)

��

���

+ � � 2������, ���

��

���
���

��

���

 (6)

where ������, ��� =  �����
C��

C��
������ and �����

 is the correlation coefficient of the random vari-

ables  �� and ��  and that range from -1 to +1. 

D. Expected equality and inequality constraints 
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When the power network arrangement is fixed and the power demand is arbitrary, 

then the expected equality constraint is enforced to guarantee real power balance and is 

expressed as 

��
��� + ��

��� − � ���

��

���

= 0 (7)

and expected generator limits as inequality constraint 

��
��� ≤ ��� ≤ ��

���   (� = 1, 2, … , ��) (8)

where ���
���  and ���

��� are the expected minimum and maximum limits, respectively, of 

the generator output. 

E. Expected transmission loss 

According to the well-known Kron's loss formula, the transmission power losses, �� , 

are a quadratic function of the power generation. It is expressed as 

�� = � � �������

��

���

��

���

+ � �����

��

���

+ ��� (9)

The power generations ��  are random variables reliant on each other. 

���, ��� ��� ���  are deemed as B coefficients with uncertainties. The expected transmis-

sion losses  ��� using Taylor's series are expressed as [1] 

��� = � � ����������

��

���

��

���

+ � �������(��)

��

���

+ � � 2����������, ���

��

�����

����

���

+ � �������

��

���

+ ���� (10)

where ����, ���� and ���� are the expected B-coefficients. 

From the above equations, the stochastic economic emission problem is characterized 

as a multi-objective optimization problem specified as  
Minimize [��

� , ��
���, ��

���]�             (11a) 
Subject to 

� �� = �� + ��

��

���

 (11b) 

���
��� ≤ ��� ≤ ���

���   (� = 1, 2, … , ��) (11c) 

The objective is to get the expected generation schedule, P�� , (i = 1, 2, … , NG) by em-

ploying proposed OGHS algorithm. 

3. Decision making 

Due to the decision maker's ambiguous decisions, his aims could be vague. The mem-

bership functions used to define fuzzy sets express the degree of membership in particular 

fuzzy sets and have values between 0 and 1. 1 indicates complete set satisfaction, whereas 

0 indicates complete set unsatisfaction. The DM determines the membership function by 

taking into account the minimum and maximum values of each objective function con-

currently with the rate of rise of membership function. μ��
. Presuming that μ��

 is a pre-

cisely monotonic diminishing and continuous function [1] defined as 

μ��
=

⎩
⎪
⎨

⎪
⎧ 1                F�� ≤ F��

���

F��
��� − F��

F��
��� − F��

���
        F��

��� < F�� < F��
���

0               F�� ≥ F��
���

  ;  (i = 1,2,3) (12)

The membership function's value represents how well (on a scale from 0 to 1) a solu-

tion has met the ��� objective.  
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In multi-objective optimization problem, where more than one contradictory objec-

tive is considered, min-max fuzzy operation is employed for decision making to choose 

the best compromised result. Mathematically, it can be expressed as 

�� = ��������
�  (� = 1,2, … , ���)�  (� = 1,2, … , ��) (13) 

4. Constraint handling 

Both direct and indirect approaches can be used to tackle the non-linear, constrained 

optimization issue. Contrary to indirect methods, which turn the constrained optimiza-

tion issue into an unconstrained problem and then solve it as an unconstrained minimi-

zation problem, direct methods explicitly integrate constraints. Heuristics that are de-

tailed in the subsections are used to explicitly control equality and POZ constraints. When 

fixing the generation within the generation limits, ramp-rate limits are taken into account. 

In the procedure of obtaining solution, it may fall out of the feasible range in search 

space with the breach of some constraints linked with the power dispatch problem. A 

constraint handling algorithm is developed for this purpose, which addresses the problem 

of violation of constraints, based on direct constraint handling methodology. The dispar-

ity in power demand constraint of  ���  member is calculated as 

����
� = ��� + ���

� − � ���
�

��

���

 (14) 

This disparity in power demand is dispensed among all the generator units by ran-

domly choosing ��� generating unit, ����
�  of ���  member from whole population that is 

perturbed as 

���
� = �

���
� + ∆���

���  ; ���
� > 0

���
� − ∆���

���  ; ���
� < 0

    (15)

 

Algorithm-I: Constraint handling procedure for  ���  member 

 �� 

o ��� � = 1, �� 

 ������� ���
�  ����� ��. (14) 

 �� �����
� � ≤ �� ���� 

 ������ � ��������� ��
� �������� ���� �� ����� ��  

 ��� ������ �� ���������� 

 IF (���
� < 0) ���� 

 ������� ∆��
��� ����� ��. (16) 

 ������ ��
� ����� ��. (15) 

 ����� 

 IF (���
� > 0) ���� 

 ������� ∆��
��� ����� ��. (17) 

 ������ ��
� ����� ��. (15) 

 ����� 

o ������ 

 ����� �����
� � > ��  

������  
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Calculated perturbation is contained within the prescribed range and ramp-rate lim-

its as described below.  

∆��
��� = �

����
� �     ; �� ����

� � < ∆��
���

∆��
��� ; ��ℎ������             

 (16)

where ∆��
��� = �[���

� − ��
���]�����

� � ���⁄ � and � is a uniform random number in the range of (0-
1). 

Perturbation is calculated and violation of limits of generation is contained within 

recommended range and ramp-rate limits and is expressed below 

∆��
��� = �

����
� �  ; �� ����

� � < ∆��
���

∆��
��� ; ��ℎ������             

 (17)

where ∆��
��� = �[���(��

���, ��
� + ���) − ��

�](���
� ��⁄ ) and r is a uniform random variable. 

Any generating unit is chosen only once in a cycle. This procedure is repeated until 

����
� � reaches some infinitesimally small value. The stepwise procedure is detailed in Al-

gorithm-I. 

5. Proposed Opposition based greedy heuristic search method  

The multi-objective power dispatch problem is solved using a heuristic search strat-

egy that is suggested in the study. Expected risk is seen as a second objective that should 

be minimized in addition to expected operational cost, which is taken as the objective 

function,  ���,. The overall member function  �� = �������
�  (� = 1,2, … , ����, is maximized. 

If the objective function improves, the decision to choose a member and obtain a superior 

member is deemed a "success"; if not, it is deemed a "failure". The members are randomly 

initialized. Utilizing opposition-based learning to the choice variables, a good, varied set 

of population is obtained after random initialization of the members. The diversity is pre-

served through migration that is also based on opposition-based learning. 

5.1. Random initialization 

In random initialization, the initial NP members (solutions) are produced randomly 

within the search space making use of uniformly distributed random numbers as  

���
� = ���

��� + ��
�����

��� − ���
���� ; � � = 1,2, … , ��;   � = 1,2, … , ��� (18)

where ��
� is uniform random number for ��� generator and ��� member, �� is popula-

tion size. 

5.2. Opposition-Based Learning 

Heuristic optimization strategies start with a randomly selected member and then 

increase its quality to get the best solution. The difference between these initial estimations 

and the ideal solution affects calculation time. However, it can be enhanced by taking 

advantage of the chance to start with a better solution while also checking its own oppos-

ing solution [17]. The superior initial answer is chosen, either randomly or according to 

its opposite guess. Therefore, the convergence can be sped up by starting with the estimate 

that is closer than the other, as determined by its objective function. The same method can 

be constantly applied to every solution in the current population as well as to original 

solutions. The population in opposition is obtained as 

���
���� = ���

��� + ���
��� − ���

� ; � � = 1,2, … , ��;   � = 1,2, … , ��� (19)

5.3. Objective function evaluation 

Proposed strategy can be employed to single objective and multi-objective situation. 

The goal is to minimize operating cost,  ��, in scalar objective problem using Eq. (1). In 

multi-objective setting, fuzzy max-min operator is utilized to manage the conflicting 
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objective functions after the individual objective functions' membership values are found 

using Eq. (14), as  

�� = ��������
�  (� = 1,2, … , ���)�  (� = 1,2, … , ��) (20)

For each generated solution, the fuzzy operator "min-max" evaluates the amount of 

satisfaction that is simultaneously obtained by all of the objective functions. The decision-

making process selects the best-negotiated option with the highest level of satisfaction, or 

cardinal priority rating. Eq. (13) is treated as objective function to be maximized for multi-

objective problem solved by OGHS algorithm. 

5.4. Mutation Policy 

The task of mutation policy is to deliver ability for good exploration with the crucial 

obligation of the solution improvement. Mutation strategy is centred on random pertur-

bation. One dimension in the search is thought as a gene. Every gene of current member 

is modified by doing perturbation with random size in both directions in such a way so 

that the solution remains within feasible range. This considered current member is re-

newed to its best mutated inheritor at the end of every mutation procedure. The mutation 

is termed as a success if the mutated member is superior one from the previous one, or 

else the mutation is ignored. Mathematically, the approach is detailed as below:  

For the mutation, ��� expected member, ���
�  from population is chosen randomly 

and is regarded as a candidate member as ���
��� . Evaluate objective function either ���

���  

using Eq. (1) for single objective optimization problem or ��
��� ( = �������

��� ; (� =

1,2, ⋯ , ���)�) and membership functions, ���
��� using Eq. (13) for multi-objective optimiza-

tion problem. This candidate member of ��� unit is perturbed as indicated below: 

�����
��� = ����

��� + (−1)����∆����  ; �� = 1,2, … , �� ; � = 1,2; � = 1,2, … , ��� (21)

where ��� = �
1 ; � = �
0 ; � ≠ �

 and �� is uniformly distributed random number. � is a adaptive 

factor that reduces the step length in every iteration. 

The calculation of perturbation is within the normalized permitted range of genera-

tion as defined below: 

�∆�= ������
��� − ���

������� �����
��� − ���

����

��

���

�  ;  �� = 1,2, … , ��� (22)

The genes (generator outputs) are confined within their prescribed during the muta-

tion process as 

�����
��� = �

����
��� − ���∆���� ;  �� ��∆�< ����

���

���
���                   ; ��ℎ������      

 (23)

�����
��� = �

����
��� + ���∆���� ;  �� ��∆�< ��

���

���
���                   ; ��ℎ������      

 (24)

Evaluate objective function �����
���  using Eq.(1) or  ���

��� �= ��������
��� (� =

1,2, ⋯ , ���; � = 1,2)�� and membership function ����
��� is evaluated using Eq. (13). 

Selection operator is utilised to select the improved perturbed member (solution). 

The selection is as stated below (� = 1):  

For economic thermal power dispatch problem: 

����
��� = �

�����     ; �����
��� < �� ��,���

���  

����,��� ; ��ℎ������        
 (25)

For multi-objective thermal power dispatch problem: 

����
��� = �

�����     ; ���
��� > � �,���

���  

����,��� ; ��ℎ������        
 (26)
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Update the objective either ����
�  or ��

� �= �������
� , ���

� �� corresponding to ����
���. Up-

dated gene is taken for (� + 1)�� generation as 

For economic thermal power dispatch problem: 

����
��� = �

����
��� ; �����

��� < ����
���

����
��� ; ��ℎ������   

 (27)

For multi-objective thermal power dispatch problem: 

����
��� = �

����
��� ; ���

��� > ��
���

����
��� ; ��ℎ������   

 (28)

and best value is chosen for ��� member of population as ���
� = �����

��� and its corre-

sponding objective function either ���
� or �� 

5.5. Random Migration Operator 

With the advancement of the algorithm, the population's diversity and capacity for 

exploring the search space rapidly decrease, and the grouped entities are unable to mutate 

into new, superior race. Randomly selected individuals begin migrating in order to over-

come this restriction, improve the exploration of the search space, and lower the selection 

pressure for a small population. The ��� generator of ��� member is randomly migrated 

as follows 

���
���� = �

���
��� + ���

��� − ���
�           ;  � ≤ ����

���
��� + ��

�����
��� − ���

���� ;  ��ℎ������
 � � = 1,2, … , ��;  � = 1,2, … , ��� (29)

where � is uniform random number and ���� is the probability of migration. 
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Algorithm-II gives detail to implement the proposed OGHS. 

Algorithm-II: OGHS 

 ���������� �ℎ� 2�� ���������� ����� ���. (18) ��� (19) 

 ��� �������� �����������, �� ��� ����� ���������� ℎ������� �������ℎ� − � 

 �������� ��������� �������� �� ����� Eq. (20) 

 ������ ���� ���������� �� ��� �� 2�� 

 ������ ������ ���� �������� 

 ������� ���� �����ℎ ∆� �� ��� ��. (22) 

 ��� ��������� = 1, max_��������� 

o ∆�= �∆� ; �� = 1,2, ⋯ , ��� 

o ��� � = 1, �� 

 ��� � = 1, �� 

 ������ ��� ������ �������� ��� �������� ��������� �������� ��
����= �������

��� ; (� =

1,2, ⋯ , ���)�� ����� ��. (20) 

 ��������� �����
��� ��� �����

��� �� ��� ��. (23) ��� (24)  

 ��� �������� �����������, �� ���, ����� ���������� ℎ������� �������ℎ� − � 

 �������� ��������� ��������  ���
��� �= ��������

��� (� = 1,2, ⋯ , ���; � = 1,2)�� ���  

����
��� �� ��������� ����� ��. (20).  

 ����
��� = �����

���; ��
��� = ���

��� 

 �� (���
��� > ���

���){  ��
��� = ���

��� ��� ����
��� = �����

���} 

 �� ���
��� > ��

���� {��
��� = ��

��� ��� ����
��� = ����

���} 

 ������ 

 ���
� = ����

���, ��  = ��
��� ,  

o ������ 

o ��� � = �� + 1,2�� 

 �������� ���������� ����� ������ ��������� �� ��� ��. (29) 

 ���� �������ℎ� − 1 �� ������� ������ ������� ���������� �������� 

 �������� ��������� �������� �� �������
� (� = 1,2, ⋯ , ���)�� ��� ��

� �� ��������� ����� ��. (20).   

o ������ 

o ������ ���� ���������� �� ��� �� 2�� 

o ������ ������ ���� �������� 

 ������ 

6. Test Systems and results  

By investigating stochastic multi-objective thermal load dispatch issues for small and 

medium power systems, the validity of the suggested strategy has been demonstrated. 

Analysis is considered for stochastic economic load dispatch (SELD) and stochastic eco-

nomic-emission load dispatch (SEELD) situations. By assigning one of the objectives full 

weight and ignoring the others, the minimum values of the objectives are met. When the 

assumed weight value is 1.0, the objective is given full weight, and when it is zero, the 

objective is disregarded. The summary of considered power systems to implement SELD 

and SEELD is given in Table-1. In addition, the values of the coefficients of variation and 

correlation coefficients assumed in the study in all the cases are C��
 = 0.01 to 0.1; ∀ (i =

1,2, ⋯ , ��) and R����
= −0.03 to 0.03; ∀ (i = 1, 2, ⋯ , ��; j = 1, 2, ⋯ , ��; i ≠ j) with the step 

interval of 0.01. The population size, �� is taken as 100 for every experiment. Maximum 
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iterations are set to 1000 for all the experiments. Robustness of the suggested algorithm is 

confirmed by 100 mutually exclusive trial runs.  
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Table 1. Outline of undertaken power system for analysis. 

Example �� VPL 
Transmission 

losses 
Remarks 

1 6 [1] × √ SELD 

2 40 [8] × × SELD 

3 40 [8] √ × SELD 

4 40 [8,40] √ √ SELD 

5 40 [8,40] √ × SEELD 

6.1Example-1: 6-thermal generator electric power system problem 

Six generator systems are used to show the effectiveness of the suggested strategy. 

In Table 2, the projected fuel price, gas emissions, and generator operating limitations are 

shown. In Table 3, the expected average transmission loss coefficients are shown. Three 

power demands of 700 MW, 900 MW, and 1100 MW are examined in this scenario. 

Changes in the predicted fuel cost's % deviation from deterministic fuel cost in rela-

tion to the coefficient of variation, C��
 and correlation coefficient, R����

 is shown in Fig.1. 

The variation in percentage deviation in expected pollutant emission from deterministic 

pollutant emission with respect to the coefficient of variation, C��
 and correlation coeffi-

cient, R����
 is shown in Fig.2 respectively. Figure 3 depicts the expected risk as a function 

of the coefficient of variation, C��
 and correlation coefficient, R����

. Table-4 displays the 

percentage deviation of expected fuel cost from its deterministic value, the percentage 

deviation of expected pollutant emissions from its deterministic value, the expected risk, 

and the expected generation schedule at different coefficients of variation, (C��
=1% and 

C��
=10%) and correlation coefficient (R����

= ±0.03) for the load demands of 700MW, 

900MW and 1100MW respectively. 

Table 2. The fuel cost, economic emission constants and generator operating limits [1]. 

Gen 

Fuel cost coefficients Emission coefficients 
��

���  

(MW) 

��
���  

(MW) 
�� 

(Rs/MW2h) 

�� 

(Rs/MWh) 

�� 

(Rs/h) 

α 

(kg/h) 

β 

(kg/h) 

γ 

(kg/h) 

1.  0.15247 38.53973 756.7989 0.00419 0.32767 13.85932 10 125 

2.  0.10587 46.15916 451.3251 0.00419 0.32767 13.85932 10 150 

3.  0.02803 40.39655 1049.998 0.00683 0.54551 40.2669 35 225 

4.  0.03546 38.30553 1243.531 0.00683 0.54551 40.2669 35 210 

5.  0.02111 36.32782 1658.57 0.00461 0.51116 42.89553 130 325 

6.  0.01799 38.27041 1356.659 0.00461 0.51116 42.89553 125 315 
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Table 3. Average expected transmission loss coefficients (in MW-1). 

0.002022 -0.000286 -0.000534 -0.000565 -0.000454 0.000103 

-0.000286 0.003243 0.000016 -0.000307 -0.000422 -0.000147 

-0.000533 0.000016 0.002085 0.000831 0.000023 -0.000270 

-0.000565 -0.000307 0.000831 0.001129 0.000113 -0.000295 

-0.000454 -0.000422 0.000023 0.000113 0.000460 -0.000153 

0.000103 -0.000147 -0.000270 -0.000295 -0.000153 0.000898 

 

Figure 1. Percentage deviation from the expected fuel cost objective versus the correlation coefficient 

R����
 and coefficient of variance C��

. 

 

Figure 2. Percentage deviation in expected emission of gaseous pollutants along versus correlation 

coefficient R����
 and coefficient of variance C��

. 
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Figure 3. Expected risk versus correlation coefficient R����
 and coefficient of variance C��

. 

Table 4. Values of objective functions and generation plans for load demands of 700MW, 900MW, 

and 1100MW at various coefficients of variation and correlation coefficients. 

�� �����
 ���

 µ F� F� F� P� P� P� P� P� P� 

700 

0.00 0.0 0.65170 39037.44 1078.698 0.00 97.67036 72.7025 61.97384 105.0953 227.6541 169.2725 

-0.03 0.01 0.54891 40155.08 1044.428 8.71476 115.9856 87.75609 77.8606 113.9939 190.7215 155.0199 

-0.03 0.10 0.50028 42125.18 1096.881 842.4584 125 105.1449 97.5015 126.8699 160.908 142.6784 

0.03 0.01 0.49165 41003.92 1042.469 11.21391 125 96.20328 87.371 124.6204 171.1524 144.6385 

0.03 0.10 0.42348 41711.22 1090.179 1125.297 125 100.0111 89.14144 125.4332 168.8068 143.8901 

900 

0.00 0.00 0.35549 49933.38 1687.299 0.00 99.51418 74.99191 63.43766 148.6791 325 252.7803 

-0.03 0.01 0.34756 50564.48 1589.907 18.09034 120.3983 90.53859 82.77207 152.7629 292.9168 222.7011 

-0.03 0.10 0.32113 51865.32 1651.258 1591.262 125 100.4988 94.59234 159.0681 272.8531 217.8652 

0.03 0.01 0.32937 51123.79 1560.996 20.35286 125 102.9383 90.36965 158.878 273.7344 215.371 

0.03 0.10 0.28547 52424.08 1638.733 2017.158 125  114.0865 98.22901 163.6979 261.6143 212.2133 

1100 

0.00 0.00 0.20497 64189.68 2259.394 0.00 125 131.5968 116.3736 210 325 315 

-0.03 0.01 0.11956 65187.36 2255.252 25.31987 125 150 129.2949 210 325 292.294 

-0.03 0.10 0.1129 66393.91 2402.271 2552.278 125 150 131.4576 210 325 295.3218 

0.03 0.01 0.12209 65020.35 2250.679 32.6899 125 150 121.8579 210 325 296.099 

0.03 0.10 0.11747 66191.11 2396.016 3294.397 125 150 122.9375 210 325 299.4826 

 

When the coefficient of variation, C��
, remains constant, the percentage deviation in 

expected fuel cost decreases at a very small rate in relation to the variation in correlation 

coefficient, R����
. However, when the coefficient of variation, C��

, changes and the corre-

lation coefficient, R����
, is fixed at one value, the percentage deviation in expected fuel 

cost rises more quickly. When the correlation coefficient, R����
, is changed while the coef-

ficient of variation, C��
, remains constant, the percentage deviation in expected emission 

exhibits a nearly constant trend. Furthermore, when the coefficient of variation, C��
, varies 

while the correlation coefficient, R����
, remains constant, the percentage deviation in ex-

pected emission increases more rapidly. Similarly, expected risk is nearly constant with 

correlation coefficient, R����
, at constant coefficient of variation, C��

, and increases at a 

faster rate with coefficient of variation, C��
, at constant correlation coefficient, R����

. 

6.2. Example-2: 40 generator system neglecting transmission loss (with convex characteristics of 

generator system) 
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In this example, a 40-thermal generator power system is studied. The operating cost 

coefficients are derived from [8] for a load demand of 10500MW. In this case, the system 

is modelled with convex generator characteristics without taking into account valve point 

loading effects. Transmission losses are ignored. Figures 4 and 5 illustrate, respectively, 

the percent deviation of the expected fuel cost from its deterministic value and the ex-

pected risk together with the correlation coefficient   R����
 and coefficient of variation C��

. 

As the correlation coefficient   R����
 is raised, it can be seen in Fig. 4 that the percent var-

iation in projected fuel cost increases. At greater coefficients of variation, C��
, this rate of 

increase is more rapid. The similar rise pattern is shown in Figure 5. The rate of rise is 

more for higher coefficients of variations, C��
, as compared to lower coefficients of varia-

tions, C��
. Table 6 displays the values of the objectives, including the predicted risk and 

the percentage difference between the expected fuel cost and its deterministic value. Table 

7 displays the anticipated generating schedule and anticipated fuel costs for the scenario 

with independent variables (deterministic case) 

 

Figure 4. Percentage deviation in expected fuel cost objective with correlation coefficient R����
 and 

coefficient of variance C��
. 

 

Figure 5. Expected risk with correlation coefficient R����
 and coefficient of variance C��

. 
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6.3. Example-3: 40 generator system without transmission loss (with non-convex characteristics 

of generator system) 

This example system's case study includes 40 non-convex fuel cost characteristics 

with effects of valve point loading [8]. Losses in the transmission are disregarded. The 

load demand is taken to be 10500MW. Fig-6 and Fig-7 show the percentage variation in 

expected fuel cost from its deterministic value as well as expected risk versus correlation 

coefficients R����
 and coefficient of variation C��

. Fig-6 and Fig-7 show a nearly identical 

rate of increase in the percentage deviation of predicted fuel and variance of power de-

mand mismatch as were shown in Fig-4 and Fig-5, respectively. Even though the total rise 

is lower than in Example-2, there is no discernible difference between the deviation pat-

terns in the convex and non-convex system case analyses that are being taken into consid-

eration. The sinusoidal term in Eq. 2 for the valve point loading effect is what causes the 

estimated operational cost of generators to increase or decrease. Table 6 lists the values of 

the objectives, including the estimated risk and the percentage difference between the pre-

dicted fuel cost and its deterministic value. Table 7 shows the anticipated generating 

schedule and fuel cost, taking into account the situation of independent variables (deter-

ministic case). 

The results for the deterministic scenario are compared with those by other tech-

niques provided in literature, as shown in Table 5, to demonstrate the competitiveness of 

the recommended algorithm. 30 mutually independent test runs of the suggested ap-

proach were performed to evaluate the algorithm's resilience. Table 5 also includes the 

least, highest, average, and standard deviation values from these 30 algorithm test runs 

that are mutually incompatible. The same results from other methods that are docu-

mented in literature are also presented for comparison. 
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Table 5. Statistical values for 40 generator system ELD problem. 

Method 

Fuel cost 

Minimum Average Maximum 
Standard 

deviation 

CTPSO[32] 121694.6056 121944.3959 – – 

CSPSO [32] 121435.9581 121945.0564 – – 

COPSO [32] 121411.8975 121499.9769 – – 

CCPSO [32] 121403.5362 121445.3269 – – 

CSOMA[33] 121422.10 – – – 

MBFA [39] 121415.65 – – – 

FCASO-SQP [45] 121456.98 122026.21 – – 

CPSO-SQP [49] 121458.54 122028.16 – – 

IABC [50] 121412.75 – 121503.58 – 

IABC-LS [50] 121412.73 – 121471.61 – 

MsEBBO/mig [51] 121415.520 121521.68990 121476.25170 36.40770 

MsEBBO/mut[51] 121416.288 121585.01860 121500.92790 32.74280 

MsEBBO/sin[51] 121415.3090 121479.36570 121421.65560 11.56960 

MsEBBO[51] 121412.53440 121450.00260 121417.18770 5.79960 

θ-PSO [52] 121420.90 121509.84 121852.42 – 

HPSO–GSA [58] 121412.5682 – – – 

MABC/P/Log [61] 121412.590 121431.580 121493.190 18.160 

MABC/D/Cat [61] 121412.540 121431.780 121503.760 19.161 

OGHS 121403.6 121431.3 121494.5 25.718 

 

Figure 6. Percentage deviation in expected fuel cost objective along with correlation coefficient 

R����
and coefficient of variance C��

. 
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Figure 7. Expected risk with correlation coefficient R����
 and coefficient of variance C��

. 

6.4. Example-4: 40 generator system considering transmission loss (with non-convex 

characteristics of generator system) 

This case study includes implications of valve point loading and non-convex fuel cost 

features for 40 generators [8]. In this instance, the transmission losses are also included. 

Expected load demand is considered as 10500MW. Fig-8 and Fig-9 show, respectively, the 

predicted fuel cost % deviation from its deterministic value and the estimated risk with 

respect to the correlation coefficient, R����
, and coefficient of variation, C��

. At greater co-

efficients of variation, C��
, the rate of increase in percentage deviation in projected fuel 

cost and expected risk is steeper. Although the total rise is less than the prior case, Exam-

ple-3, the growth pattern is identical to an earlier case taken under investigation. The si-

nusoidal term in Eq. 2 for the valve point loading effect is what causes the estimated op-

erational cost of generators to increase or decrease. Table 6 lists the values of the objec-

tives, including the estimated risk and the percentage difference between the predicted 

fuel cost and its deterministic value. Table 7 shows the anticipated power generation 

schedule and fuel cost for the scenario with independent variables (deterministic case). 
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Figure 8. Percentage deviation in expected fuel cost objective versus correlation coefficient R����
 

and coefficient of variance C��
. 

 

Figure 9. Expected risk versus correlation coefficient R����
 and coefficient of variance C��

. 

6.5. Example-5: 40 generator system economic-emission load dispatch neglecting transmission 

loss (with non-convex characteristics of generator system) 

In this example, a 40-generator system with a non-convex fuel cost objective function 

considering valve point loading is used to illustrate stochastic economic emission load 

dispatch. The transmission losses are also taken into account. Information on emission 

coefficients and operating cost coefficients is taken, respectively, from [8] and [40]. Ex-

pected load demand is considered as 10500MW. Figures 10 through 12 illustrate the ex-

pected risk as well as the expected fuel cost as compared to its deterministic value and the 

percentage deviation in pollution emission from its deterministic value in relation to the 

correlation coefficient R����
 and the coefficient of variance,  C��

. The percentage variation 

in predicted fuel cost and expected risk from Figs. 10 and 12 showed the same rate of 

increase as in previous case studies, however the overall increase was less substantial than 

in case 2. Even though transmission losses are ignored in this example study, the 
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environmental target was taken into account, which resulted in a lower overall rise. On 

the other hand, as the correlation coefficient, R����
, increases at various coefficients of var-

iation,  C��
, the deviation in the emission of gaseous pollutants does not exhibit any fixed 

monotonic pattern. The values of the objectives, including the percentage deviation in 

projected fuel cost from its deterministic value, the percentage deviation in pollutant emis-

sion from its deterministic value, and the predicted risk, are shown in Table 6. For the case 

of independent variables, Table 7 displays the anticipated generation schedule, fuel cost, 

and gaseous pollutant emissions (deterministic case) 

 

Figure 10. Percentage deviation in expected fuel cost objective versus correlation coefficient R����
 

and coefficient of variance C��
. 

 

Figure 11. Percentage deviation in expected emission objective versus correlation coefficient R����
 

and coefficient of variance C��
. 
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Figure 12. Expected risk versus correlation coefficient R����
 and coefficient of variance C��

. 

6.6. Sensitivity 

There are no factors that can be changed or tuned for the suggested algorithm be-

cause the sole component that impacts algorithm acceleration, namely, α, is made adapt-

able in nature. This demonstrates the algorithm's independence.  

6.7. Conclusion  

The investigation on the fluctuation in predicted costs and pollutant gas emissions as 

a result of random measurements in generator characteristics and erratic load demand is 

presented in this paper. Stochastic economic load dispatch and stochastic economic-emis-

sion load demand example case studies are analysed and presented. In order to find the 

most comprehensive answers to the optimization problem, the opposition-based greedy 

heuristic search (OGHS) method is suggested in this study. The primary advantage of this 

search method is that it can be applied easily to solve any optimization problem, regard-

less of its complexity. The process begins with good population and struggles for the bet-

ter member during mutation and has ability of migrating a new member or it’s opposite 

to preserve diversity. This demonstrates the greedy conduct of the algorithm. Heuristics 

constrains the movement of solution procedure within feasible region owing to the phys-

ical limitation of the system components involved. Direct constraint handling procedure 

guarantees to satisfy the equality constraints. This method is efficiently applied to differ-

ent examples of economic load dispatch which intrinsically are having discontinuities and 

non-differentiability in their objective functions. The suggested algorithm doesn’t have 

the necessity of tweaking the algorithm parameters as these are made adaptive. The pre-

sent analysis shows the risk involved due to the randomness of parameters. Furthermore, 

in the study of the randomness of parameters for the cases in which valve point loading 

effect is also considered. The expected operating cost of generators have percentage rise 

with respect to the correlation coefficient and coefficient of variance due to dependency 

on the sinusoidal term of expected cost function. 

Table 5. Percentage deviation in expected fuel cost, expected emission of pollutants and the ex-

pected risk objectives for various correlation coefficient, R����
 and coefficient of variance, C��

 for 

40 generators power system. 

 Example-2 Example-3 Example-4 Example-5 

����� -0.03 -0.03 0.03 0.03 -0.03 -0.03 0.03 0.03 -0.03 -0.03 0.03 0.03 -0.03 -0.03 0.03 0.03 
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���
 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 

µ 0.242410.59236 
0.0964

7 
0.09673 0.24844 0.5744 0.09773 0.09527 0.2819 0.56758 0.16486 0.17406 0.24303 0.57783 0.08949 0.10196 
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159679.

5 

123506.

8 

83924.2

1 
143967.2 157466 

120961.

4 
77070.3 

144933.

8 

163569.

4 

F� -- -- -- -- -- -- -- -- -- -- -- -- 
377780.

5 

819709.

9 

361426.

4 

946159.

4 

F� 63.978 
3632.68

5 

655.51

7 

64959.4

5 
61.974 

3608.77

1 
657.310 

64970.1

7 
59.222 

3469.93

3 
681.510 

67400.5

1 
63.678 

3548.46

6 
656.007 

64945.4

8 

P� 114 114 
113.99

9 
114 114 114 114 114 114 114 114 114 114 114 114 114 

P� 114 114 114 114 113.999 114 114 114 114 114 114 114 114 114 114 114 

P� 97.399 120 120 119.999 97.399 120 120 120 120 120 120 120 97.400 120 120 120 

P� 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 190 

P� 92.661 97 97 96.999 88.584 97 97 97 89.940 97 97 96.999 97 97 97 97 

P� 140 140 140 140 140 140 140 139.999 140 140 140 140 140 140 139.999 140 

P� 300 298.062 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

P� 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

P� 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

P�� 204.799 300 300 300 204.800 300 300 300 279.601 300 300 300 204.799 300 300 300 

P�� 243.599281.829 
374.99

6 
375 243.602 287.731 374.996 375 312.123 289.766 374.997 375 168.799 285.442 375 375 

P�� 243.600281.892 
374.99

6 
375 243.601 287.638 374.995 375 243.605 289.542 375 375 243.601 286.03 375 375 

P�� 214.761343.792 
379.98

3 
371.383 304.532 353.289 385.665 369.543 125 336.612 125.002 125 304.521 350.262 375.107 371.126 

P�� 304.525344.066 
381.16

2 
371.038 304.54 353.575 387.457 371.442 304.522 352.204 356.596 351.46 393.567 350.526 381.79 371.058 

P�� 394.208 343.95 378.97 370.768 304.523 353.736 386.232 370.082 304.52 352.471 387.546 377.36 304.528 351.045 382.536 369.48 

P�� 304.524344.483 
381.97

8 
370.439 304.523 353.668 387.787 369.466 389.573 352.848 394.196 391.019 304.52 350.793 379.304 370.989 

P�� 472.753 436.88 
399.53

6 
415.982 472.782 445.617 399.626 417.998 468.46 442.615 436.579 428.915 471.495 442.779 399.566 414.418 

P�� 472.88 436.896 
399.53

6 
416.426 472.063 445.704 399.526 418.598 469.621 442.602 448.043 438.111 471.123 277.607 399.524 414.202 

P�� 488.028458.146 
421.52

3 
423.99 487.875 467.159 421.501 423.465 484.425 463.939 439.668 437.526 486.078 465.179 421.728 419.974 

P�� 487.89 458.191 
421.51

4 
421.970 487.407 466.994 421.523 426.397 484.332 463.699 433.587 431.973 486.230 465.169 421.455 418.848 

P�� 503.319470.264 
433.55

2 
357.759 503.383 310.155 350.389 355.826 499.745 475.681 441.538 435.176 501.114 476.737 433.063 358.789 

P�� 503.059301.225 348.48 358.45 502.325 479.091 433.577 355.946 499.414 475.696 434.679 431.346 501.579 477.067 349.466 359.066 

P�� 503.886470.540 
433.50

0 
356.590 503.221 479.002 349.842 355.878 499.454 475.666 433.893 433.148 502.504 307.258 433.502 360.434 

P�� 503.745470.411 
347.19

9 
356.803 503.133 310.063 348.049 358.104 498.056 475.438 433.527 402.755 501.96 476.798 347.208 357.760 

P�� 502.528 470.64 
345.97

1 
357.627 501.941 479.043 349.95 355.950 495.081 475.241 343.872 362.629 500.240 477.001 344.724 358.718 

P�� 502.266470.468 
347.39

1 
356.257 502.599 479.047 433.589 355.616 495.791 475.478 433.507 369.820 500.204 477.364 433.469 361.324 

P�� 10.004 50.855 
111.04

6 
150 10.001 47.719 100.334 150 10.01 91.064 112.542 150 10 48.745 107.514 150 

P�� 10 50.822 
111.61

9 
150 10.004 47.680 100.691 150 10 91.331 105.843 150 10 48.754 110.498 150 

P�� 10 50.806 
113.55

5 
150 10 47.807 100.705 150 10 57.938 107.775 150 10 48.688 111.128 150 
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P�� 88.808 97 96.965 96.999 97 97 96.994 96.999 96.998 97 97 96.999 89.521 97 97 97 

P�� 190 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 

P�� 190 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 

P�� 190 190 190 190 190 190 190 190 190 190 189.999 190 190 190 190 190 

P�� 164.802199.999 200 200 164.808 200 200 200 200 200 200 200 164.816 200 200 200 

P�� 164.808168.663 
199.99

8 
200 164.827 200 199.999 200 200 200 199.999 200 164.799 200 200 200 

P�� 164.802166.814 200 200 164.853 166.176 200 200 200 200 200 200 164.804 200 200 200 

P�� 110 110 110 110 110 110 110 110 110 110 109.999 110 110 110 110 110 

P�� 110 110 
109.99

9 
109.999 110 110 110 110 110 110 110 110 109.999 110 109.999 110 

P�� 110 110 110 110 110 110 109.999 110 110 110 110 110 110 110 110 110 

P�� 488.362458.305 
421.49

8 
422.517 487.672 467.102 421.57 423.688 484.481 463.631 435.942 434.244 486.796 464.756 346.419 421.814 
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Table 6. Generation schedule along with objective function values for the case of independent var-

iables (deterministic case). 

 Example-2 Example-3 Example-4 Example-5 
 F� 121411.9 121411.9 123468.3 121685.8 
 F� -- -- -- 353785.9 

 P� 110.8136 P�� 
523.280

6 
P� 110.8136 P�� 523.2806 P� 113.0465 P�� 523.2803 P� 110.8006 P�� 522.4756 

 P� 110.8384 P�� 
523.281

1 
P� 110.8384 P�� 523.2811 P� 114 P�� 523.2794 P� 110.7995 P�� 522.6317 

 P� 97.40414 P�� 
523.280

7 
P� 97.40414 P�� 523.2807 P� 120 P�� 523.2797 P� 97.39978 P�� 523.2175 

 P� 179.737 P�� 
523.279

7 
P� 179.737 P�� 523.2797 P� 179.7334 P�� 523.2796 P� 179.7325 P�� 523.0742 

 P� 87.8691 P�� 
523.283

2 
P� 87.8691 P�� 523.2832 P� 97 P�� 523.2802 P� 87.79984 P�� 521.5883 

 P� 140 P�� 
523.280

6 
P� 140 P�� 523.2806 P� 140 P�� 523.2794 P� 140 P�� 520.914 

 P� 259.5999 P�� 10 P� 259.5999 P�� 10 P� 259.602 P�� 10 P� 300 P�� 10 
 P� 284.6023 P�� 10 P� 284.6023 P�� 10 P� 284.6002 P�� 10 P� 284.598 P�� 10 
 P� 284.6008 P�� 10 P� 284.6008 P�� 10 P� 284.6064 P�� 10 P� 284.5977 P�� 10 

 P�� 130 P�� 
96.9996

2 
P�� 130 P�� 96.99962 P�� 130 P�� 96.99976 P�� 204.6555 P�� 87.80145 

 P�� 168.8007 P�� 190 P�� 168.8007 P�� 190 P�� 168.8 P�� 190 P�� 168.7987 P�� 159.7331 
 P�� 94 P�� 190 P�� 94 P�� 190 P�� 243.5995 P�� 190 P�� 168.7997 P�� 190 
 P�� 214.7596 P�� 190 P�� 214.7596 P�� 190 P�� 125 P�� 190 P�� 214.7599 P�� 189.9993 

 P�� 394.2798 P�� 
164.807

2 
P�� 394.2798 P�� 164.8072 P�� 304.5193 P�� 200 P�� 304.5194 P�� 200 

 P�� 394.279 P�� 
199.999

5 
P�� 394.279 P�� 199.9995 P�� 394.2793 P�� 199.9995 P�� 304.5186 P�� 199.9986 

 P�� 304.5201 P�� 
199.999

5 
P�� 304.5201 P�� 199.9995 P�� 394.2794 P�� 199.9995 P�� 304.5188 P�� 199.9995 

 P�� 489.2791 P�� 110 P�� 489.2791 P�� 110 P�� 489.2794 P�� 110 P�� 489.2798 P�� 109.9988 
 P�� 489.2805 P�� 110 P�� 489.2805 P�� 110 P�� 489.2805 P�� 110 P�� 489.2786 P�� 110 
 P�� 511.281 P�� 110 P�� 511.281 P�� 110 P�� 511.2792 P�� 110 P�� 511.2686 P�� 110 

 P�� 511.2793 P�� 
511.279

8 
P�� 511.2793 P�� 511.2798 P�� 511.2791 P�� 511.281 P�� 511.2517 P�� 511.187 
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