
Systems design and integration of small scale nano and pico-

satellites

Philip Naumann 1, Josh Umansky-Castro 2, Mason Peck 2 and Timothy Sands2,*

1 Systems Engineering Program, Cornell University, Ithaca, New York, USA; pn246@cornell.edu
2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA;

Abstract: Within the past decade, the aerospace engineering industry has evolved

outside the constraints of using single, large, custom satellites. Due to increased reliability

and robustness of commercial off the shelf (COTS) printed circuit board (PCB) compo-

nents, missions instead have transitioned towards deploying swarms of smaller satellites.

This approach significantly decreases the mission cost by reducing custom engineering

and deployment expenses. Nanosatellites are able to be quickly developed with a more

modular design at lowered risk. The Alpha mission at Cornell Space Systems Studio is

fabricated in this manner. However, for the purpose of this mission, only one satellite was

initially developed. This manuscript will discuss a systems engineering approach to the

development of this satellite.

As a disclaimer, this manuscript is written from a systems perspective. Therefore it

will follow many subsystems from a wide range of functionalities. The research in this

manuscript was kept broad with the hope to contribute to the mission as a system, through

a range of development phases including validation and verification of existing methods.

The two systems that will be primarily focused on are the Attitude Control System

(ACS) of the carrier nanosatellite (cubesat), and the RF communications on the excreted

picosatellites (chipsat). Milestones achieved in chipsat RF include chipsat to chipsat com-

munication, chipsat to SDR ground station communication, packet creation, error correc-

tion, appending a preamble, and filtering the signal. Achievements on the ACS side in-

cluded controller traceability/verification and validation, software rigidity tests, hardware

endurance testing, Kane damper and IMU tuning. These developments matured the tech-

nological readiness level (TRL) of our systems in preparation for satellite deployment.

Keywords: Systems Engineering, MBSE, RF communication, GFSK, CDMA, Forward Error Correc-

tion, Matched Filtering, TI-RTOS, RTL-SDR, TinyGS, Controller optimization, Controller modeling,

Controller verification and validation, Kane Damper, PD controller, IMU tuning

Introduction

Background on satellite development

Development of satellites has always been an expensive venture, only accessible to

government agencies and large industry at a high cost. There is a growing importance to

expanding our horizons in space, not only for scientific knowledge and exploration but

also for interplanetary travel and access to natural resources.

Currently, extraterrestrial commercial operations are rapidly growing. In recent

years, space travel has become significantly less expensive. Due to the extreme technolog-

ical advances in microchips, semiconductors, and batteries, satellites can now be pro-

duced on the nano/picosatellite scale. Satellite designs are becoming more modular and

using inexpensive COTS electronics, allowing for faster turnaround times.

Background of the Alpha Mission

This manuscript will discuss the development done on the Alpha mission at the Cor-

nell Space Systems Studio. Specifically, the Alpha mission matures many technologies

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202207.0368.v1
http://creativecommons.org/licenses/by/4.0/

such as cubesat design, and light sail propulsion. These techniques parallel methods pro-

posed for interstellar travel through the Breakthrough Starshot initiative.

Cubesat missions are often used to test and mature technologies. Because of the mod-

ular and versatile chassis, this was the satellite medium Alpha chose to use. Developing

subsystems on the cubesat could provide methods for other cubesat missions in the future

to reference.

A mission in particular that used both the cubesat approach and lightsail technique

is Breakthrough Starshot. Breakthrough Starshot aims to be the first interstellar mission.

The idea was theorized by Steven Hawking, to be able to accelerate an extremely small

payload (on the order of one gram) to a quarter of the speed of light using laser light

propulsion. With a retro reflective sail, this tiny payload could reach this speed within

seconds. If directed towards Alpha Cantari (our closest neighboring star system) 4.37 light

years away, we could reach this system within 20 years.

The purpose of the Alpha mission is to successfully deploy and stabilize a single pay-

load lightsail system. In order to do this, the carrier cubesat must stabilize itself, eject the

lightsail payload, and the payload must communicate with the groundstation

Background on Subsystems Covered in this manuscript

This manuscript will discuss two of the primary systems responsible for a successful

mission. Specifically the stabilization of the cubesat and the ability of the picosatellite

(chipsat) to establish communication with a groundsation.

The first half of the manuscript will discuss how RF could be used with the picosat-

ellite to still receive and debug low power transmissions.

For the Alpha project, the picosatellite payload was developed by Dr. Van Hunter

Adams (previously at Cornell). This satellite is printed on a thin kapton substrate and only

has a solar panel, processor, IMU, GPS, light sensor, and RF transceiver. The satellite was

named chipsat.

The second half will discuss the ACS of a 1U cubesat. For the Alpha mission, a cu-

besat was used to transport our payload because of the affordability of the satellite type,

and the simplicity this satellite structure offered.

The one unit (1U) cubesat is a 10cm by 10 cm by 10cm sized satellite with 5mm by

5mm rectangular rails on each of the corners. cubesats can exist in several multiples of this

size from 1-12U. This modular size standard is chosen such that several of these satellites

can be easily loaded onto a Canisterized Satellite Dispenser (CSD). This dispenser is

spring loaded and fastened to the payload of a launch vehicle. When activated the CSD

will eject the payloads into Low Earth Orbit (LEO).

Systems Analysis Approach

 This manuscript will follow a model-based systems engineering approach for the

analysis and design of both the cubesat and the chipsat. This provides traceability

throughout the lifecycle of the satellites.

The timeline of the design process can be modeled by the systems engineering Vee

diagram. The Vee diagram serves as a flow chart of the product life cycle. On the left

diagonal, the Vee diagram breaks down the design process from concept to the individual

component level. This allows for the requirements to be broken down to the individual

component level. Next, the right-handed diagonal represents the integration process. On

this side, the system is built back up from component to working prototype through val-

idation and verification methods.

To summarize, a product is designed from the top down, but tested from the bottom

up. This ensures that the design stays true to the original problem description. It also

guarantees final functionality. Testing starts at the component level, such that functional-

ity is tracked up though final acceptance testing.

Below is a visual representation of the Vee diagram used in this manuscript in

Diagram 1 below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://www.planetarysystemscorp.com/product/canisterized-satellite-dispenser/
https://doi.org/10.20944/preprints202207.0368.v1

Figure 1. The systems engineering “vee diagram”

This manuscript will follow the Vee diagram process. Chapter 1 begins by modeling

the mission systems. The satellite systems are discussed and then decomposed (top-down)

from concept design to the component level.

 Chapter 2 and 3 follow the chipsat and cubesat development. The satellite require-

ments are given and then followed (bottom-up) though verification and validation tests.

Chapter 1: Systems modeling of the Cubesat

Function Centric Models

An effort was made to model the cubesat microsatellite in order to better understand

the requirements of the system. This was done using the systems models developed by

George E. Mobus Michael C. Kalton in the book “Principles of Systems Science”.

Models were made by breaking down the subsystems and identifying the scores,

sinks, stocks and interfaces. These were first discovered externally. Figure 1 shows the

“Black Box” of the cubesat system. Here all of the system inputs and outputs can be clearly

observed. The inputs are labeled as scores, noted on the left of the diagram. The sinks are

shown coming out of the system to the right. In equilibrium, there is conservation of mass

and energy across the system. See Figure 1. (George E. Mobus Michael C. Kalton, p.604)

Figure 2 Black box diagram

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

In Figure 2, the F values represent the function in which a resource flow. The M de-

notes a transfer of data within the function. See Table 1 for the function definitions of in

Figure 2.

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Dia. Label Function definition

F1 Solar panel

F2 Ambient light sensor

F3 Thermistor

F5 Gyroscope

F6 Malfunctions/ damage

F7 Torque coils

F8 RF transceiver

F9 Dissipated light

F10 Dissipated heat

It can be beneficial to break the system down even further in order to understand the

interactions between the internal subsystems. The resources created in the “Black Box”

can be bi-products, waste products, catalysts, or reaction intermediates used to meet the

desired functional requirements. Understanding how subsystems and their products in-

teract both inside and outside of the system made it possible to more appropriately opti-

mize interfaces within the software. See Figure 2. (George E. Mobus Michael C. Kalton,

p.607)

Table 2 below specifies the GPS function used by the system. There is no outside

source since the GPS location is not determined by an environmental input.

(Table 2)

F4 GPS/ Accelerometer

 Finally, this model can be further developed to show the transfer of energy and in-

formation can be seen within the system. This includes modeling the flow, stocks, buffers,

amplifiers and valves. Through this network, the resources can be mapped and flows can

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

be tracked from source to sink. This gives a holistic view of every function that the cubesat

must go through to go from its inputs to outputs.

In the middle of Figure 3, S1 can be seen. S1 represents the (buffer) memory of the

Teensy microcontroller. The data collected is communicated to the buffer and then trans-

ferred into digital data packets that are then sent though the transceiver.

See Figure 3. (George E. Mobus Michael C. Kalton, p.609)

Table 3 specified the processes shown in Figure 3 within the satellite system. These

deal with the processing and configuring of the data packets.

(Table 3)

F11 Analog to digital converter

F12 Analog to digital converter

F13 Analog to digital converter

F14 Analog to digital converter

F15 Controller feedback

F16 Data Packaging

F17 Digital signal

These models made it possible to visualize the interactions outside of the system, and

the flow of resources within.

Network Models

Figures 1, 2 and 3 are function-centric models; a model is needed to represent sub-

systems on the individual level. A more appropriate approach to analyzing a system on

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

the component level would be to use a network model. Analyzing the network sheds light

on the interface between the subsystems.

Introducing network theory allowed for a more precise outlook on how the compo-

nents interact. There are several network models that could be used to model the cubesat

system. Although the subsystems could be modeled as using clusters, in a more broad

sense, all of the systems tie back into the processor. Therefore for the purposes of this

manuscript, using a central network model is sufficient.

To create a network, the context of each component is recorded. This is commonly

accomplished by listing all of the components of a subsystem and creating an interface

matrix. For simplicity, a more general system interface matrix was made. See Table 4 be-

low.

(Table 4)

Table 4 also shows the directionality of the relationships. Each cell with an X, shows

an interaction between two subsystems. The course of the interaction can be determined

by the side relative to the diagonal that an entry is found. An X is shown such that a flow

originates from the subsystem represented in the row, and concludes in the subsystem

noted by the correlating column.

Using the information found in Table 4, the interface matrix can be translated into a

network diagram. Figure 4 outlines the basic structure of the network in the ChipSat. This

network is able to show which of the elements within the ChipSat will have interfaces.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Breaking down the subsystems and including directionality to Figure 4 adds addi-

tional clarity. Figure 5 shows the five different sensors, the torque coils, solar panels and

RF transceiver that the cubesat is equipped with. Visualizing these interactions is helpful

in understanding the flow of data in the system. See Figure 5 below.

In Figure 5, each of the sensors was additionally broken down into each value rec-

orded by the sensor. This gives perspective to the data points that are recorded by the

Teensy 3.5 microcontroller in real time. Counting the data in the network, each data packet

must be assembled with 14 different data points.

A more holistic model based systems engineering (MBSE) model can be seen in the

appendix.

Flight assembly

 To expand this systems perspective into the hardware and assembly of the cubesat,

flight assembly of the EDU satellite was performed. This helped solidify the interfaces of

the satellite while documenting the full assembly procedure. A full flight ready version

(EDU) of the satellite was built. This version would be identical to the flight version. How-

ever, it would not deploy; it simply works as the reference to the flight satellite. For ex-

ample, the integration testing and calibration could be experimented on this replica. See

Image 1 below:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.3guisgy5p1cr
https://doi.org/10.20944/preprints202207.0368.v1

Image 2 shows the flight ready electronics aboard the cubesat. This includes the

• Teensy 3.5 flight computer microcontroller

• Rockblock system (iridium network)

• Adafruit LSM9DS1 IMU

• Two SparkFun TB6612FNG dual Motor Drivers

• INA169 Analog DC Current Sensor Breakout Board

• 5V regulator

• 5V Reg cam

The documentation produced while assembling the EDU version was used as in-

structions to manufacture the flight ready cubesat. In addition, this version can serve as a

guide for similar modular cubesat chassis used in future missions. The updated flight as-

sembly instructions can be found in the appendix.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.cfmyeru4ddxj
https://doi.org/10.20944/preprints202207.0368.v1

Chapter 2: Chipsat RTOS and RF development

The first system that was worked on was the RF system on the chipsat picosatellites.

The following section reviews the methods used to test and modify the system to fit the

requirements of Alpha. See the system level requirements below in Table 5.

(Table 5)

Requirement

1.0 The systems SHALL communicate over RF

2.0 The system SHALL capture IMU data in a packet

2.1 The system SHALL have 16 bit data

2.2 The system SHALL collect magnetometer, accel-

erometer and gyroscope data in 3D space

3.0 The system SHALL be frequency modulated

4.0 The system SHALL FEC the data

5.0 The system SHALL add a preamble

5.1 The preamble SHALL consist of 4 8-bit barker

codes

6.0 The system SHALL apply matched filtering

7.0 The signal SHALL be caught by a ground station

7.1 The signal SHALL be demodulated

Testing RF on the TI LaunchPads

Since the chipsats do not store the data locally, EM communication must be estab-

lished such that the sensor readings can be recorded. In order to meet requirement 1.0 (see

Table 5), RF communication was developed.

Using SmartRF studio

When developing the code for the RF transmissions, TI Launchpad CC1310 were

used as a testing device because they have the same microcontrollers. The TI boards were

used as a substitute to mitigate risk of damage to the chipsats, in case anything failed early

on.

SmartRF studio could be used to verify the TI Launchpad’s functionality and test

their transmitting speeds, range, power and filtering capabilities. When performing these

tests, two TI Launchpad CC1310 were used with SmartRF Studio 7. After installing Smar-

tRF Studio 7 and opening it, this screen will appear. See Figure 6.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

As can be seen in Figure 6, a list of connected devices comes up in the bottom com-

mand window. It was found best to avoid connecting both TI Launchpads to the computer

initially, since you may not be able to distinguish between them. In stead plugging the

boards in separately would allow the user to choose which board should be the transmit-

ter and which one will be the receiver (labeling might help). The Device Control Panel

could be accessed by double clicking on the device from the list of connected devices. For

the transmitter, packet TX mode should be used. The transmitter should be configured as

shown in the following screenshot. See Figure 7.

For the RX receiver, the packet RX mode should be chosen. It will help to have two

separate windows pulled up, so both the RX and TX screens can be seen at once. Make

sure the sync words match for both the RX and the TX. Appropriate settings for the RX

receiver can be seen in the screenshot, Figure 8, below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

The start button at the top of the screen should be pressed for both the transmitter

and receiver. The receiver will listen for the code word. Therefore, starting the receiver

before the transmitter is necessary if one wishes to receive all of the packets.

Through this interface, the transmitting speeds, range, and power could be verified.

It was found that the TI launchpads transmitted well at 915 MHZ. The power available

was around 14dB. The transmission distance was about 400m.

Switching to a Code based RTOS structure

The TI Launchpads were coded using Code Composer Studio (CCS), a C++ based

Texas Instruments coding platform.

When writing RF code, bare metal programming was not possible as it relies on a

sequential timescale to flow through the progression of the code. Prioritizing tasks appro-

priately would have been impossible. For example, if you had two tasks, stabilize and

transmit, it would be important to stabilize before one would transmit. In bare metal cod-

ing, scheduling would have to be done by placing one task above the other in the topo-

logical code sequence. However, if these tasks run intermittently, this becomes compli-

cated. Therefore a scheduler or operating system (OS) is used. The OS assigns a priority

to each task and schedules them accordingly.

The most popular OS is the real time OS or RTOS. As can be inferred by the name,

this scheduler works in real time. In CCS, the RTOS is called TI-RTOS. The TI-RIOS sched-

uler has 4 main modes. If at any time during any operation, a higher mode or priority

operation is scheduled, the OS will pause the current operation and go to the higher pri-

ority one. The highest priority mode is the hardware interrupts (hwis). Priority between

the hardware interrupts are determined by which semiconductor is used. Once a hwi is

finished executing, the scheduler will go back to finish the next highest hwi.

If there are no more hwis, the scheduler will move to the next level; software inter-

rupts (swis). The swis will execute in a similar manner. However, as the name implies, the

priority is established in the software. There are 32 different priority levels available.

If the hwis and the swis are not being executed, the scheduler reverts to the task

thread. This is where the normal tasks are carried out. Normal tasks would include re-

ceiving GPS data, IMU data, or even the RF tasks. This also has 32 priority levels.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

The lowest mode is the idle mode. This mode only occurs when there are no inter-

ruptions or tasks. In this mode there is no priority level, and low level background com-

putation takes place. This mode is used to track time, run low priority background pro-

grams and monitor for hwis, swis or tasks. Mainly the idle mode is used to conserve en-

ergy. It is like a standby mode for the chipsat.

See Figure 9 below for summary of the scheduler priority levels.

The task mode also has a scheduler in-and-of itself. This allows for programs to run

concurrently, while limiting resources or timesets of data collection. A semaphore is used

to schedule tasks appropriately. The semaphore keeps track of how many tasks are ac-

cessing a resource, regulates the use of the resource, and keeps a queue. There are two

kinds of semaphores: a binary semaphore, and a counting semaphore.

The binary semaphore only lets one task run at a time. When the binary semaphore

is equal to 1, the resource is available. After a task occupies the resource, a semaphore

pend is posted. This subtracts one from the semaphore, making it zero, and blocking the

channel. When the task stops using the resource, a semaphore post is posted. This once

again increases the count of the semaphore.

On the chipsat, a counting semaphore is used. This semaphore works similarly to the

binary semaphore, however it allows for n different tasks to access a resource at once. The

semaphore is initialized at n. Tasks can post and pend to the semaphore in the same way

as in a binary semaphore, but when the semaphore is less than 1, the resource is blocked.

See the flowchart below in Figure 10.

The counting semaphore allows for a task to time out. This sends a message in order

to timeout Bypass the next task in the queue. This is seen by the dotted line in Figure 10.

In the TI-RTOS kernel, the following APIs are used to post and pend to a semaphore

See Figure 11 below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Using the RTOS structure allows for easy switching between sensors and actuators

on the chipsat.

Implementing RF communications on TI launchpad using CCS

The next step was to be able to transmit and receive between two chipsats. Code

Composer Studio (CCS) was used to code the RF tasks. For the Alpha mission only the

transmissions were necessary, however, both were accomplished on the chipsats.

A TI-RTOS program had already been written for monarch PCB boards by Dr.

Hunter Adams. This incorporated the use of an IMU, a GPS, and analog to digital con-

verter (ADC), Radio communication (RF) and a hygrometer. However for the purpose of

the RF development, only the RF tasks were relevant. Dr. Hunter Adams code was used

as a structure for the new test code. The code contained a main script that called two task

scripts, receiving and transmitting. However, the new code required restructuring the

semaphore post and pendants. Previously the semaphores had been posted and pended

in various locations throughout the different tasks based on the expected run order. Hav-

ing only two tasks resulted in an unbalanced semaphore. After a single transmission, the

channel was blocked indefinitely.

This issue was solved, and the semaphores were restructured to pend at the start of

the task and post after completion of the task.

The code was successfully implemented for both transmission and receiving between

each of the two TI Launchpads. However the transmissions were set up to send the raw

modulated data without any error correction or filtering. The theory behind the modula-

tion used will be discussed in the next section.

The modulation was programmed using the EasyLink APIs available in Code Com-

poser studio. Non-blocking calls were chosen such that the packets would be transmitted

without needing an indicator from the receiver that they had been received. Also a clear

channel checker was added in order to verify that the transmitter would only transmit if

the chosen channel is available (not busy). The following basic sequence is used to send a

packet from the Launchpad:

EasyLink_setRfPower(14);

EasyLink_setFrequency(915000000);

EasyLink_transmitCcaAsync(&txPacket, lbtDoneCb);

Here the packet name is txPacket and the TX done function pointer is lbtDoneCb.

The power of the transmission is 14dB at 915MHz. These packets can then be received in

the RX taks with the following API:

EasyLink_receiveAsync(rxDoneCb, 0);

Async was also used on the receiver to make sure this function is also non-blocking.

The zero represents the relative start time of the receiver.

The APIs used above were able to be programed with help of the EasyLink API guide

(see references)

RF signal modulation with Gaussian Frequency Shift Keying (GFSK)

The modulation technique used on the chipsats is frequency shift keying. This tech-

nique was determined by requirement 3.0 (See Table 5). In frequency shift keying, data is

sent through a discrete change in the carrier signal frequency, with no effect on the signal

power. This allows the chipsat to send signals at maximum power.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

The data sent by the chipsats is coded in binary. With Binary frequency shift keying,

the carrier signal oscillates between a high and low frequency. The high frequency repre-

sents the 1, and the low represents a 0. Figure 12 is an example of an 8 bit carrier signal.

BPSK is an effective method for the chipsats because frequency modulation has a

good signal to noise ratio, it has a smaller risk of interference, and the signal power radi-

ates less (it is relatively unidirectional).

However frequency modulation can be expensive. Having to shift frequency (theo-

retically) instantaneously, is straining on the transmitter. It requires costly, powerful,

bulky electronic equipment; all of which are unaffordable for a chipsat. To resolve this

issue, the chisats use a transmitter that implements gaussian frequency shift keying

(GFSK). The receiver measures the period of change of the incoming signal. In approxi-

mately the middle of each of these periods it reads the frequency of the transmission and

translates it into a binary 1 or 0.

This allows for gradual frequency changes, lowering the cost of the equipment and

decreasing the RF leakage.

There are several levels of GFSK. At the base case, a 2GFSK will oscillate between a

higher and lower frequency. The transmitter records the frequencies at each of the gray

circles. This gives the transmitter the ability to gradually change its frequency. See Figure

13.

Note that the Y axis in this instance displays frequency.

To increase transmission speed, one can use a 4GFSK. This is what is implemented

in the chipsat modulator. The 4GFSK splits the input signal into 2 bit sequences. With

binary, there are 4 such possible sequences; 00, 01, 11, and 10. Each of these instances is

given its own carrier frequency. Figure 14 below shows the different discrete frequencies.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Because two bits are able to be sent with each frequency change, 4GFSK is able to

transmit and receive twice as fast as 2GFSK. The next step is going to 8GFSK. Figure 15

below shows a sample 8 bit carrier signal.

8GFSK can also be implemented to send 3 bits. However this only increases trans-

mission speeds 50% from 4GFSK. With 8 discrete frequencies, demodulating becomes

more complicated, expensive, and error prone (because of the many different frequencies).

Therefore, for Alpha, 4GFSK was chosen as the modulation technique.

Packet Formulation

This section will cover how the packets sent from the chipsat RF transmitter are con-

structed. To increase robustness, the data goes through forward error correction (FEC)

and matched filtering (MF). These strategies were proposed by Dr. Zach Manchester, be-

cause they are commonly used in satellite communication. Using them for small sat com-

munications is new. However, both FEC and MF greatly increase the signal-to-noise ratio

which was sought after in order to achieve long range transmissions. Since the power

budget is low, another method to increase the signal robustness is to pad the signal with

extra bits. This can function as a gain-of-sorts. By coding the original binary sequence into

one with repetition, if the signal experiences interference, the original data can be recon-

structed from the repetition. In addition, these techniques add a security feature to the

transmitted data, since the MF PRN sequences and FEC skew matrix would need to be

known to decrypt the signal. (More detail provided in the appropriate sections.)

Raw data

The data from the chipsats is sent synchronously in a packet format. The packets

contained data from each of the sensors onboard. This was done to meet requirement 2.0,

to record IMU data periodically (See Table 5). In addition, packet transmission allows for

the sample data to be taken from a single timestamp, and for a complete set of data to be

sent with each transmission. An advantage to this is to be able to have consistent parsing

of the data from each transmission. Since the chipsats do not use unique identifiers for

each sensor, a known chronological order of the data sets could help identify each

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

component. That way the data could be identified on the basis of the expected transmis-

sion order. Figure 16 below shows the packet creation from the IMU values on the chipsat.

For simplicity, the packets were initially created to just send the IMU data. The pack-

ets start by sending three directional gyroscope values, followed by the accelerometer and

magnetometer values (see requirement 2.3 in Table 5). This made for a total of 9 values

that would be transmitted. In the future we would incorporate data from the GPS, ther-

mocouple and ambient light sensors.

For each of the 9 transmitted values, 16 bit resolution was desired as per requirement

2.1 (see Table 5). Because the RTOS had been written to send the packet in 8-bit parcel

increments, each of the values were split into two halves. This made for a total of 18 8-bit

data transmissions sent.

S/N ratio

Commonly when transmitting signals, the signal-to-noise ratio (S/N ratio) can be in-

creased by adding a gain to the signal in the form of increased amplitude. This requires

extra power, and boosts the signal such that the ambient noise has less of a relative effect

on the transmission. However, because the chipsat mission has a very low power budget,

other techniques had to be considered in order to increase the S/N ratio. The two tech-

niques used were forward error correction (FEC) and matched filtering. These methods

encode extra repetitive bits. If a bitflip occurs (a binary one turns to a binary zero or vice

versa), the original data can be reproduced from the repetition of the transmitted data.

Error Correction

The chipsats in the Alpha mission use forward error correction (FEC) techniques in

their transmission to fulfill requirement 4.0 (See Table 5). This is a common method used

in radio transmissions to pad the signal with extra bits in order to improve robustness.

FEC guarantees that the signal will not have to be retransmitted, and therefore makes

communication much more reliable. For the chipsats, each 8-bit transmission is initially

encrypted using a generator matrix. The generator matrix is a 8 by 16 matrix that is mul-

tiplied by the 8-bit signal to produce an encoded 16-bit output. This relationship can be

seen in Equation 1 below, where m is the original signal, G is the generator matrix, and c

is the resultant 16-bit output.

𝑐 = 𝑚𝐺 (Equation 1)

The generator matrix was made by appending a cross correlation 8 by 8 matrix, P,

with an 8 by 8 identity matrix (I). This retains a copy of the original data as well as a cross

correlated version. Equation 2 shows how the generator matrix is appended.

𝐺 = [𝑃 | 𝐼𝐾] (Equation 2)

The generator matrix used for Alpha is shown in Equation 3 below. This matrix was

created by Dr. Zach Manchester.

(Equation 3)

1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0
1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0

1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

After undergoing FEC, the data now has a hamming distance of 5. This means up to

5 errors can be fixed, or up to two bit flips.

Each 8-bit data block from the packet undergoes matrix multiplication with the gen-

erator matrix at the beginning of the TX task. For improved computational speed, only the

left half of the generator matrix was multiplied. This is because the right hand side is the

identity matrix, so the original data is preserved (and therefore can just be appended to

the cross correlated data). When coding FEC into the flight code, a traditional matrix mul-

tiply could not be used since the data is in binary. Instead, binary matrix operations were

used.

 Binary matrix multiply mirrors the process used by regular matrix multiply. Each of

the entries in the columns of G are multiplied by the respective value in the data vector,

and the values are added to produce a scalar entry in the output vector. Binary multipli-

cation is done using the “binary and'' operator noted by “&” in C. Since a binary 1 is only

produced when both product elements are 1, only the entries in G with a 1 have to be

considered. For the first column, that is entry 7,5,2 and 0. Similar to matrix multiplication,

the resultant values are added to produce a scalar value. This is done by first bit shifting

the values right, to the same position. In C the double greater-than symbol is used, fol-

lowed by the nth number of shifts (ex “>>4” is right 4 entries). This puts all of the values

into the zero index position so they are in the same column. Then, a “binary or” is used to

add them. In C, the “binary or” operator is the “^”. Finally, bit shifting left is done to move

the entry from the zero position back to the respective position. Analogous to the notation

used when shifting right, the left bitshift also uses sideways carrots. Instead they are

pointed left (double less-than symbol). See Figure 17 below for the binary multiplication

code.

After undergoing these operations, the left half of the FEC encoded data is produced.

In Figure 17 this is the p vector. Since the right half of the FEC encode is the original data,

the left half and right half are appended to produce the final 16-bit vector. See Figure 18.

Once the data has been appended, the FEC encoded message can now add preamble

identifiers. Since the message length was doubled, the signal to noise ratio also increases

by 2 by using FEC. The packet length therefore is doubled from 18 8-bit sequences to 36

8-bit sequences.

Pre and post amble

After the data goes through FEC, identifiers can be added to the packet to help with

demodulating the signal. This packet generally is sandwiched with an identifier at the

beginning and the end to be able to differentiate where the packet starts and stops. An

identifier placed before the packet is known as a preamble whereas the one sent after a

packet is called a postamble. In the case of the Alpha mission, only a preamble was used.

Adding a preamble fulfilled requirement 5.0 (see Table 5)

The demodulator uses the preamble for two reasons; to recognize the signal itself,

and to locate where each packet starts. With this information, the signal can be caught and

demodulated. For Alpha, the preamble was made with four 8-bit Barker codes (following

requirement 5.1 in Table 5). This was then followed by the FEC encoded data. See Figure

19 below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

These Barker codes can be set to any desired value as long as they are kept constant

between transmitter and receiver. Using four 8-bit Barker codes statistically ensured a

unique sequence of data that makes identification of the signal possible. In simpler terms,

a preamble of this length guarantees that a random ambient transmission is not acci-

dentally caught instead.

Adding 4 8-bit identifiers drew the total packet length to 40 8-bit transmissions

Filtering

The filtering technique used on the chipsats was matched filtering determined by

requirement 6.0 (See Table 5). Like FEC, matched filtering both increases the S/N ratio,

and adds signal rigidity. However, the theoretical gain can be increased to a much greater

degree. For the chipsats, the matched filtering increases the S/N ratio by 511 times. It does

this by assigning a 64 byte sequence for each binary bit. These 64 byte codes are known as

PRN codes. Two PRN codes are assigned to each chipsat; one for transmitting a binary 1

and the other for transmitting a binary 0.

Another unique feature of matched filtering is the ability to share the communication

channel with multiple devices. This is called code division multiple access (CDMA).

CDMA assigns different pairs of PRN codes for each device that are as orthogonal as pos-

sible. The receiver then tunes to recognize the set of PRN codes that are being received.

See Figure 20 for a visual representation.

When coding the CDMA, the number of devices present will dictate how the PRN

codes are chosen. The PRN codes are generated in order to achieve maximum orthogo-

nality between codes. This is done to optimize the allowable hamming distance. For ex-

ample, with only one device, one could simply send a binary zero 511 times and a binary

one 511 times. However with multiple devices, to be able to recognize which device is

sending the data, the PRN codes can not be perfectly opposite. Therefore, the more devices

present in a system, the more likely one is to experience cross correlation. Luckily, in Al-

pha, only two chipsats are used, so 4 PRN sequences. This allows for a hamming distance

of 127 or 63 possible bit flips.

In the chipsat flight code, matched filtering took place after FEC. The respective PRN

sequences are defined at the beginning of the TX task. A set of “for” loops run though the

preambles and each of the FEC encoded bits. An “if” statement assigns them either PRN[0]

or PRN[1] according to the respective binary value. The final transmitted parcel is built

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

chronologically by appending each of the 16 PRN sequences (From the 16-bit FEC encoded

data). All in all, the final transmitted parcel length is 1,024 bytes. Since there are 22 parcels,

that makes each packet length a total of 22,528 bytes.

Ground station

The last step for a successful RF transmission was to configure a ground station to

catch the signal as per requirement 7.0 (See Table 5). This was attempted in two ways,

both of which will be used for Alpha. The first was to use a software defined radio (SDR).

This would allow Alpha Team Members and other hobbyists to try to catch the signal. The

second method was to use a receiver network. This could allow for a greater network to

monitor for the signal and report back any data collected.

Software defined radio RTL-SDR

For the Alpha groundstation, a SDR was used. This was chosen because it is ex-

tremely versatile in its application. Traditionally, radio receivers are built with hardware

components for a very specific signal recognition type. With a SDR, all of the signal pro-

cessing is done in the software. Anything from mixers, filters, amplifiers, modulators/de-

modulators, detectors are all processed in the software instead of the hardware.

For Alpha, we used a Realtek RTL2832U SDR (RTL-SDR). The RTL-SDR is an inex-

pensive SDR that is tuned using DVB-T TV tuners and has an RTL2832U chip. It com-

municates through a USB port to a COMs channel.

Verifying transmitting using SDR sharp

The first test performed to verify that the RTL-SDR was to observe if it was able to

sense the transmissions sent by the TI Launchpad. To do this SDRSharp was used. SDR

sharp is an SDR software developed by AIRSPY. This software reads the RTL-SDR though

the COM port records signals captured within a specified range. SDRSharp can be in-

stalled though the AIRSPY website and set up with the RTL-SDR (see references).

Once SDRSHarp has been set up with the RTL-SDR, the TI Launchpad can be

plugged in. If the packages are transmitting, the RTL should be able to pick up the pack-

ages. A visual representation of the packages can be seen at the top of the screen. Figure

21 shows a visual representation of the AIRSPY dashboard sensing the chipsat transmis-

sions at 915 MHz.

Receive FEC signal on Raspberry Pi

To complete the SDR ground station, the last step was to receive a signal transmitted

from the TI Launchpad though the RTL-SDR, and undo both the matched filtering and

the forward error correction. A demodulation script had already been written by Dr.

Hunter Adams. However this script was written to demodulate an unencrypted raw sig-

nal.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

The demodulating script coded by Dr. Hunter Adams was intended to run on a Rasp-

berry Pi connected to the RTL-SDR. The script would search for the four 8-bit Barker codes

before demodulating.

 The script was updated to run on the Raspberry Pi 4 Model B. Unencrypted signals

were successfully sent to the Pi, demodulated, and stored in a .txt file. This meets require-

ment 7.1 (See Table 5). Taking this a step further, FEC was built into the demodulating

code. Every two 8-bit transmissions were appended again to regenerate the 16-bit FEC

vector. The 16-bit vector was then multiplied though the Parity check matrix, H, to get the

original data back. The parity check matrix can be formed by appending the identity ma-

trix (I) with the negative transposed cross correlation matrix, P. See Equation 4 below:

H = [I𝐾 | − P𝑇] (Equation 4)

The parity check matrix will automatically correct for any hamming distance of the

received transmission. This process was implemented into the demodulating code. To test

the code, a FEC encoded transmission was then sent from the TI Launchpads. Demodula-

tion of this signal was both accurate and successful.

 The next step was to find a way for the demodulating script to undo matched filter-

ing. This was difficult because the search algorithm in the demodulating script would no

longer be able to identify the preamble, since each Barker code is now filtered. The solu-

tion to this problem will not be discussed in this manuscript. However, a new approach

to the demodulation was found and full demodulation of a FEC and match filtered signal

is possible.

Tiny GS satellite balloon launch

In case the chipsat transmission could not be caught though our SDR, another option

was to use a receiver network. The receiver network however relies on the microchip be-

ing able to receive LoRa (long range). The CC1310 does not have this capability, however

the next generation chipsat will be upgraded to include this capability. The receiver net-

work was tested during a balloon launch on October 10, 2021.The goal was to try and

establish a connection with the LoRa on the chipsat throughout the mission using an Ada-

fruit feather receiver.

This balloon launch was done to test the process flow of the satellite, and to get foot-

age of our satellite to gain awareness of our mission. See Image 3 below for a picture taken

by the cubesat from space.

A TinyGS ground station (an Adafruit feather and antennae) was chosen to com-

municate with the LoRa transceiver. The TinyGS system allows anyone from around the

world to receive signals from LoRa satellites or any other flying device that use low power

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

communication techniques. The TinyGS module uses a ESP32 board. It is compatible to

communicate with the sx126x and sx127x LoRa transceivers.

To connect to the TinyGS system, the TinyGS software is installed. After this is com-

plete, the TinyGS board can be connected to the computer. The software will identify it

and an IP address will appear on the LCD screen on the board. At this point the operator

will connect their laptop WiFi to the TinyGS SSID. Once connected, the IP address dis-

played on the LCD screen can be typed in the internet browser. This will display a dash-

board that will allow the user to configure the parameters of the groundstation. Once this

is complete, the user can listen to the chipsat LoRa though the TinyGS system. The re-

ceived packets will display to the dashboard on the network. See Figure 22 below for an

example of the dashboard.

At the time of the cubesat balloon launch, packets were not ready to be sent. How-

ever, the test was done to prove that we could successfully pick up signals from the chip-

sat LoRa transmitter. Although the transmissions could not be read, a timestamp was

shown when the TinyGS ground station made a connection to the chipsat (inside of the

cubesat). Each time the signal was found, the timestamp and current height of the satellite

were recorded. The current height was measured using GPS onboard the cubesat. Figure

23 below shows the time of the transmissions we received, and the respective height of

the CubeSat.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

This experiment proved that it was possible to pick up a signal from the cubesat even

as it neared LEO. In conclusion, successful verification of the TinyGS system as a receiver

option for Alpha was achieved.

Chapter 3: ACS development

On a satellite, it is important to be able to control angular momentum. The subsystem

responsible for this is referred to as the attitude control system (ACS). For Alpha, it is a

requirement for the ACS system to detumble, spin stabilize, and point the satellite. See

Table 6 below.

(Table 6)

Requirement

1.0 The system SHALL detumble to 10% of the initial angu-

lar velocity

2.0 The system SHALL spin stabilize within 10% of omegaf =

[0 0 1] rad/s

2.1 The system SHALL spin stabilize within 8 hours

3.0 The system SHALL point its Z axis tangent to the Earth's

surface

3.1 The system SHALL point its Z axis perpendicular to its

velocity vector (orbital direction)

4.0 The controller SHALL not use more than 0.75 watts (0.2

amps at 4.2 - 3.7 volts)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

5.0 The Teensy flight computer SHALL be able to handle the

ACS computations

6.0 The system SHALL calibrate the IMU against hard iron

offsets caused by internal electronics

6.1 The system SHALL calibrate the IMU against soft iron

offsets caused by magnetics onboard

6.2 The system SHALL calibrate the IMU against tempera-

ture offset effects

Duties of the Cubesat ACS

Coming out of the ISS, the initial tumble of the cubesat is unknown. The cubesat de-

ployer does not offer a static ejection. However, it guarantees that the angular velocity of

the cubesat shall not be above five degrees per second. Since the residual angular momen-

tum would make it hard to establish a connection with the cubesat it is important to kill

any of the residual momentum. Requirement 1.0 in Table 6 states that the residual mo-

mentum shall be deemed by 10% of the residual angular velocity. Figure 24 shows the

ejection and detumbling of the cubesat.

After the momentum is dissipated, spin stabilization should be established. Spinning

the cubesat about its maximum principal axis gives it stability against any kind of inter-

ference. In addition, it guarantees the lightsail the same stabilization after it is ejected. An

everyday example of spin stabilization is how stability of a frisbee is achieved by spinning

it as it is thrown. The frisbee is able to maintain stability around its maximum principle

access in spite of wind disturbances or other interferences.

Requirement 2.0 requires that the final spin be 1 rad/s around the Z axis, with a tol-

erance of 10%. Having this spin condition for both the cubesat and the lightsail will guar-

antee stability. Consequently, this will allow for a more reliable connection between the

transceivers on the satellite ground station. Another benefit is that the constant rotation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

will offer active cooling for the cubesat. This helps ensure that no one side stays pointed

at the sun for too long. Figure 25 shows how spin stabilization will be established for both

the cubesat and the lightsail.

Finally, the last necessary component of the ACS is to point the satellite. Requirement

3.0 in Table 6 ensures that the system will orient it’s Z axis tangent to the Earth's surface.

This ensures a high radio signal strength to the ground station while affirming that the

lightsail is ejected perpendicular to Earth's gravitational field. In order to do this, both the

positive and negative Z faces of the cubesat must be space pointing. Figure 26 below

shows how the cubesat would point.

 Cubesat ACS Actuators

For modern satellites, the most common ACS systems rely on ion propulsion, reac-

tion wheels, or thrusters. However, given these requirements and the size of our cubesat,

magnetic torque coils became the option of choice. This is because they are small in size,

inexpensive, very easy to control, and relatively low energy.

In simple terms, magnetic torque coils are just electromagnets. The torque coils on

the cubesat are made in house. A thin copper wire is wrapped five hundred times around

an mu metal ferromagnetic core. The core is an inch long and three millimeters in diame-

ter. It works as an amplifier. When the electromagnet is on, the polarized dipoles of the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

ferromagnetic electrons align. Unlike a permanent magnet, because the core is made out

of a softer metal, it does not stay magnetized and almost instantly dissipates it’s alignment

after the coil is turned off. The core is added as a gain-of-sorts to the magnetic coil. Adding

this core increases the magnetic field strength by around 15 times. Please see Image 4 be-

low:

The magnitude of magnetization of the torque coils is determined by the ACS con-

troller. The controller runs on the Teensy 3.5 flight computer. The flight computer uses an

inertial measurement unit (IMU) to measure the real time rotational velocity. From this

input, the controller assigns a pulse width modulation (PWM) value to the coil. Since the

flight computer runs on low power, an H bridge is needed. The H bridge powers the

torque coils proportional to the PWM value sent by the flight computer. This lets the mag-

netic coils operate at the desired strength.

Other than the coils themselves, all of the other components are inexpensive com-

mercial off the shelf (COTS) parts that are readily available online. They are not space

rated, instead just hobbyist microcontrollers, electronics and sensors. However, similar

products have been tested in space with very reliable results. All in all, the system includ-

ing the flight computer can be put together for under fifty dollars. This is incredibly inex-

pensive compared to the ACS systems of other similar satellites.

Attitude control

Passive and active measures were taken when designing the cubesat ACS system.

Both the shape of the satellite, and controller gains were configured to attempt to mini-

mize power consumption. Tradeoffs included satellite stability and controller robustness.

These three factors were optimized such that the ACS system met the system level re-

quirements.

Passive techniques

Since the power aboard the cubesat is limited, the attitude control system in the cu-

besat incorporated passive techniques. The cubesat used passive ACS by manipulating

the mass distribution. This served two purposes, both to balance the cubesat on each of

its axes to avoid tipping or wobble, and to bias the z axis as the maximum principal axis

(requirement 2.0 in Table 6). Lead weights were installed in a square-like fashion in the

XY plane. They were placed in the lightsail compartment, across from the electronics. This

was done to balance the cubesat weight along the Z axis. Steel weights were also added

pointing in the Z axis direction. They straddle the perimeter of the cubesat, running up

and down the inside of each of the side facing panels. Having both of the lead and steel

weights on the outside of the cubesat, forces the principal moment of the inertia axis to

align to the geometric Z axis. See Figure 27 for clarification on mass placement.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Active techniques

The cubesat uses a controller algorithm as an active measure to optimize the ACS

system. The controller algorithm uses two controllers to handle spin stabilization and axis

alignment respectively.

Kane Damper

The first controller used in the ACS system is a Kane Damper. The Kane Damper is a

controller modeled after a rigid body under the influence of a frictional damper. Specifi-

cally, the algorithm mimics a hypothetical state in which the spacecraft has an internal

spherical cavity. Inside this cavity, a slightly smaller spherical mass exists with a viscous

fluid surrounding it. The cubesat is damped due to the theoretical difference in angular

velocities between the spacecraft and damper. See Figure 28 for clarification.

This circumstance allows for two tunable coefficients; the moment of inertia of the

internal sphere, Id, and the damping constant of the viscous fluid, c. Since the internal

mass is modeled as a sphere, the moment of inertia can be simplified as a coefficient mul-

tiplied by the identity matrix. Tuning the Kane Damper can therefore be reduced to ad-

justing two scalar values. A surface plot can be created to choose a set of values that best

optimize the stability and convergence of the controller.

PD controller

The second part of the ACS system is the pointing. This system is tuned on using a

toggle switch in Simulink that activates once stability is reached by the damper. Pointing

is achieved through a proportional derivative (PD) controller. A PD controller is a feed-

back controller that adjusts its system outputs based on the difference, error, between the

desired value and the real time value. The PD controller does both by 1) a proportional

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

correlation of the error and 2) a derivative correlation to the error history. Figure 29 below

shows a diagram of the feedback process.

The proportional control is measured with every iteration of the feedback loop. The

reference value is noted as “ybar” in figure 29 above. The real time value is noted by “y”.

The error, “e”, is determined as the difference between the reference and feedback values.

The proportional control is tuned by the gain constant “Kp”. This is done to increase the

output torque proportional to the observed error.

The derivative control is measured by the slope of the tangent taken at the last two

or more iterations of the feedback loop. This is done to avoid overshooting the reference

value. It can also provide a small degree of disturbance rejection. The derivative control

is tuned by the gain constant “Kd”.

 Proportional Integral Derivative (PID) controllers are widely known and commonly

used in many industries. Adding the integral component helps increase the disturbance

rejection and guarantees zero steady state error. However, adversely, it will also drasti-

cally increase computational cost and runtime of the controller. The requirement to estab-

lish communication allows for a steady state error margin that the PD controller may in-

cur.

The requirement for our settling time is to reach steady state within 8 hours. Simula-

tions suggested that settling time would not be a limiting factor. Therefore, robustness of

the system was a larger priority. This meant guaranteeing lower computational rigor for

our flight computer. Since this flight computer controls the entire satellite, it was decided

to keep computation at a minimum to decrease risk.

Validating PD control method

To verify that the PD controller was the most effective controller in fulfilling our re-

quirements, our system was compared against the industry standard controllers. This was

done as an effort of the class Astronautical Optimization taught by Dr. Timothy Sands at

Cornell University. For the final control manuscript, six alternative controllers were tested

and compared on the basis of controller quadratic cost, computational time, rise time, and

rigidity (see full manuscript in the Appendix). Each of these values were determined

based on the controller's ability to move from quiescent initial conditions, to a unitless

position of one. The results were then compared to that of a PD controller. The results

showed the following table. See Table 7.

(Table 7)

 Quadratic Cost End Point Error - Theta Standard deviation -Theta Rise time

PD controller 1.309573 9.28393e-02 4.857353e-02 8.57e-01

P+V Controller 55.709082 8.239661e-03 1.061509e-02 3.90e-01

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.cfmyeru4ddxj
https://doi.org/10.20944/preprints202207.0368.v1

P+V Double Integrator 2.544054 1.216665e-01 1.044603e-02 N/A

Double Integrator gain tuning 6.579885 1.087292e-01 1.085613e-02 7.80e-01

2DOF feed forward 6.147382 2.911532e-02 1.115621e-02 8.00e-01

P+V Control Law Inversion 6.127791 2.929454e-02 1.106685e-02 8.00e-01

Open loop guidance (DQC) 6.181200 5.775071e-03 5.761962e-02 8.00e-01

RTOC 6.169038 1.865604e-05 2.710996e-03 8.10e-01

A general optimal controller is undefinable, since controllers have trade-offs. There-

fore, optimality can only be found for a specific system based on the system needs (Dr.

Timothy Sands, Cornell University). For the cubesat, low quadratic cost was optimized.

Quadratic cost is a measure of acceleration over the time interval, and therefore it corre-

lates to power usage. Requirement 4.0 in Table 6 states that the power must be under 0.75

watts. This requirement was found to be the limiting factor of the control system, since

the rise time requirement (requirement 3.0) was easily met by all of the controllers. As can

be seen in Table 7, the PD controller has the smallest quadratic cost.

As an additional verification of the robustness of the PD controller, the rise time was

recorded as a function of the timestep. This was done to fulfill requirement 5.0 in Table 6

theoretically. Since the Teensy microcontroller runs both the ACS and the flight code, this

was checked such that the computational burden could be decreased for the ACS. It was

found that the timestep had very minimal effects on the rise time. The flight computer

could therefore run at a slower timestep if needed. See Table 8 below.

(Table 8)

Timestep (s) Rise time (s)

0.1 8.67e-01

0.01 8.29e-01

0.001 8.20e-01

The PD controller was validated as the best option for our ACS system, due to the

optimal quadratic cost, and the robustness of the rise time with respect to varying

timesteps.

Traceability, Verification and Validation

The controller software

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

For Alpha, the ACS software is modeled in Simulink with the parameters defined in

a MATLAB script. The Simulink model consists of a controller that is able to toggle be-

tween the Kane Damper and the PD controller when appropriate. A plant was added such

that the system dynamics could be simulated. The end goal was to add the final tuned

controller to the Arduino flight code as a “.h” library file.

The original code was developed by Davide Carabellese for his masters thesis. (see

in references). However, to fulfill the system requirements for the cubesat ACS, traceabil-

ity was necessary. This started with labeling every flow with the appropriate variable.

Furthermore, at every interaction point, the correlating equation was referenced. This

made it possible for the control algorithm to easily be verified by outside experts. Each

step could be tied back to a fundamental equation, checking for accuracy in the algorithm.

After traceability was achieved, the controller was verified functionally. This was

done using a Verification Cross Reference Matrix (VCRM). The VCRM pointed out the

changes that were necessary in the code. Some of the values that were updated included

the initial spin conditions, projected orbital inclination, orbital height, the mass of the cu-

best, the number of coils in the magnetorquer, and the cross sectional area of the magnetic

torquer. These variables were redefined in the MATLAB script accordingly.

The controller was verified holistically by running a simulation with a plant model

of the dynamics. When running the simulation, it was evident a certain parameter caused

the controller to approach the stable steady state values much too fast. See Figure 30 below

for the initial results of the simulation.

 After viewing the results of this simulation, validation tests were conducted for the

cubesats ACS parameters. The first attempt was to update the principal moment of iner-

tias. This was done because the values approximated by SOLIDWORKS did not include

many of the finer components, making its prediction too low.

Experimentally calculating the moment of inertia of the chipsat

Using Newton's second law of Rotation, the angular acceleration can be determined

by solving for alpha using the net torque applied by the magnetic coils and the moment

of inertia of the cubesat. Therefore, in order to stabilize the cubesat dynamically, the mo-

ment of inertia must be known accurately. See Equation 5 below.
∑ 𝜏 = 𝐼𝛼 (Equation 5)

The moment of inertia was initially calculated using the SOLIDWORKS model. How-

ever, this model did not include many of the wires and other components that were

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

difficult to draw. In order to verify the values found and determine their accuracy, a more

accurate calculation was needed.

Instead, the moment of inertia was calculated experimentally by analyzing the pen-

dulum motion of the cubesat rotating around its axes. This required setting up a bifilar

pendulum. The pendulum was assembled by suspending the cubesat from two fishing

lines at a distance h from the suspension point to the pivot point. The two fishing lines

were separated across the cubesat diagonal at a distance D. This distance was kept con-

stant (the fishing lines hung vertically) . Figure 31 below shows the setup of the experi-

ment.

After completing the setup shown in Figure 31, an initial rotational displacement was

applied to the cubesat. The period of the oscillations was calculated. To minimize human

error, the period of three continuous oscillations was recorded and then adjusted (divided

by 3). For further accuracy, this evaluation was done five times and averaged again. A

final period was found.

The cubesat was rotated to spin around both of the remaining axes and the experi-

ment was re-done. The periods were found around the remaining two axes

The equation for the period of a Bifilar Pendulum is written below in Equation 6.

𝑇 =
4𝜋

𝐷
∙ √

ℎ𝐼

𝑚𝑔
 (Equation 6)

Solving for the moment of inertia, Equation 7 is derived:

𝐼 =
𝑚𝑔𝐷2𝑇2

16𝜋2ℎ
 (Equation 7)

The mass of the cubesat, the separation distance, and the length of the bifilar pendu-

lum are known. Therefore the moment of inertia was calculated in each of the principal

directions, using the periods recorded.

The inertia matrix was evaluated using the principal moment of inertias found. Since

the maximum principal moment of the inertia axis was aligned within 5 deg of the z axis,

the off-diagonal elements were considered insignificant and set to zero.

The resultant inertia matrix can be seen below in Equation 8. The inertias are in units

of g*mm^2.

(Equation 8)

2109759.45

0

0

1983906.17

0

0

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

0 0 2308281.50

The SolidWORKS predicted values can be seen below. See the values in Equation 9.

(Equation 9)

2050068.12

-1682.74

-1901.26

-1682.74

1652976.53

81119.53

-1901.26

81119.53

2193395.14

Comparing these values to the Solidworks predictions, the calculated values seem

highly accurate. The principal axis moments dominate the behavior of the cubesat, and

are similar in magnitude. All of the off-diagonal entries are smaller in magnitude by an

order of 20 - 100 times. This makes it safe to consider these values negligible.

 The calculated principal moment values are all proportionally higher than the Solid-

WORKS ones. This makes sense because of the wires and other features that the Solid-

Works model does not take into account. The experimentally derived values were consist-

ently larger.

Although the experimental values did show to be 5-20% larger, the difference was

not substantial enough to be the sole reason for the high rise time observation.

Consequently, the next verification was done to check the amplification factor of the

mu metal rod in the magnetic torque coils.

Calculating the amplification factor of the Mu-metal core

To know the magnetic strength of the torque coils accurately, the amplification factor

of the mu metal rod was necessary. This had been approximated before based on values

found online, however, an experimental value had never been found for our system. To

find the amplification factor of the torque coils on the cubesat, the magnetic dipole needed

to be determined. This was measured with the IMU magnetometer. The equation used to

calculate the magnetic dipole of the coil is shown below. It was originally derived by Dr.

Lee (see references). See Equation 10.

𝑀 =
4𝜋

𝜇0
 ∙ [

𝑅𝑥
𝐿

−
1

2

(𝑅𝑥
2−𝑅𝑥𝐿+

𝐿2

4
)

3/2 −
𝑅𝑥
𝐿

+
1

2

(𝑅𝑥
2−𝑅𝑥𝐿+

𝐿2

4
)

3/2]

−1

 (Equation 10)

 Here Rx represents the distance from the coil to the magnetometer and L represents

the length of the coil. The magnetic field, B, is measured in units of Teslas. Having the

magnetic dipole of the magnetorquer, the amplification factor was able to be determined

using the applied current (I) , the number of coils (N), and the cross sectional area (A). See

Equation 11:

𝐴𝐹 =
𝑀𝑑𝑖𝑝𝑜𝑙𝑒

𝑁𝐼𝐴
 (Equation 11)

A code was written in Arduino to turn on and off the magnet coils. Both the radius

of the coil and length of it were recorded. The length of the coil from the IMU was also

measured. A magnetic field of 55 uT was found. This translated to a magnetic dipole of

0.0619 amps - m2. The amplification factor was calculated to be ~13.5 to 14 times.

The amplification factor found experimentally was significantly smaller than the one

predicted by Davide Carabellese. The amplification factor measured at around a tenth of

the previous expectation.

ACS verification conclusion

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

After verifying and validating the controller code, the following results were pro-

duced. This was done with initial angular velocities of 0.06, -0.05, and 0.07 for x, y, and z

respectively. See Figure 32 below.

This model was verified mathematically using Euler's coupled equations of motion.

Since both the X and Y axis rotational motion are set to reach zero, when evaluating their

effects on the Z axis rotational motion, they can be neglected. Solving this simplified equa-

tion, an asymptotic exponential increase function is derived. The X and Y velocities, how-

ever, are very dependent on each other. Evaluating the general solution to these coupled

equations will reveal sinusoidal behavior. As predicted, this is what is seen in Figure 32.

As can be seen, the convergence time is more reasonable. The controller is predicted

to take 25 -35 min to stabilize the cubesat. The oscillations also are theoretically predicted

because of the damped nature of the system. Observing Figure 31, the system seems to be

nearly critically damped. This solution meets requirements 1.0 and 2.0, since the system

is successfully tumbled and spin stabilized.

The measures discussed above, advanced the TRL of the control system from a 2-3 to

a 6. The advancements in TRL were accomplished through adding traceability of the

model to the respective requirements, verifying the constants, and going through a robust

validation of the parameters. The controller was matured to work as intended for the cu-

besat ACS. Further technological maturation could be done by checking the controller ex-

perimentally in an air bearing environment, and ultimately launching a cubesat into low

earth orbit (LEO) to test the rotational kinematics.

The Hardware

Once the ACS code was ready, the hardware could be tested. This was done to make

sure that all of the components could handle the outputs from the controller, and to verify

that the pant model works in actuality as predicted by theory.

Tested software on Teensy flight computer

Verification testing was done for all of the hardware used in the ACS system. The

first component tested was the microcontroller. For Alpha, a Teensy 3.5 microcontroller is

used. This controller runs all of the flight software for the cubesat. This component was

hardware tested to experimentally test compliance with requirement 5.0 in Table 6.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

To test the Teensy, the ACS controller algorithm was uploaded as a library to the

Teensy flight software. Using the plant model in the Arduino code, the script was run.

Controller runtime, computational speed and accuracy were recorded and plotted. These

plots could be compared to the simulations carried out in MATLAB/ Simulink. No major

differences were observed.

Several timesteps were tried. It was found that the Teensy refresh at 0.01s. This is a

conservative estimate given that Teensy was also running the plant simulation (which will

not be the case when deployed). An endurance test was performed where the Teensy

would run until the plant returned stable values. This was done three times back to back.

The Teensy was verified to be able to run the ACS control algorithm.

Magnet Coil Endurance tests

The next components tested where the magnet coils. This testing had two facets; mak-

ing sure the hardware could handle very periodic and fast PWM shifts, and making sure

the system could be active for long periods of time. For each of these tests, The Teensy

was connected to the H bridge which was connected to one torque coil. The IMU was not

used and the PWM values were chosen both periodically and at random instead. See Fig-

ure 33 for the electrical diagram of the setup.

Longevity test

 For the longevity test, the system was evaluated on its ability to run for a long period

of time. After the cubesat is deployed from the ISS, the ACS system may have to be run-

ning continuously for several hours to detumble and reach its desired spin. To verify the

dependability of the ACS subcomponents, specifically the H bridge and the coil, a longev-

ity test was run for two days. In this test, the PWM values were periodically incremented

from 0 to 255 for both polarities of the coil. Each PWM value for each current direction

was run for ten microseconds. The coil therefore would switch its polarity about every 2.5

seconds. This was verified with a gyroscopic compass. Figure 34 below shows the verifi-

cation of the working coil using the gyrocompass.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

 The loop was on continuously for the duration of the two days. Throughout the two

days the magnetic field was tested using the gyrocompass. The system stayed active and

accurate for the entire duration. For test procedures on this experiment please refer to the

Appendix.

Fluctuation test

In the fluctuation test, the ACS system was evaluated on its ability to react precisely

to large and fast changes in the PWM value. Because of the oscillating torque values out-

put by the Kane damper, the controller may at times attempt to drastically change the

power while detumbling. It has been measured that the flight computer has a character-

istic reaction time of approximately 3 milliseconds. Therefore, a program was written to

randomly choose a PWM value and current direction every 3 milliseconds. The magnetic

field was then tested with the gyrocompass. As a preliminary test it appeared to change

at an interval on the order of a few milliseconds. (further testing was done later using the

IMU).

In addition longevity was once again tested. This was done in case the fluctuation

over time would degrade any of the hardware. Every few hours the magnetic fields were

measured. There was no apparent change in the magnetic field strength and the system

functioned similarly after two days. For test procedures on this experiment please refer to

the Appendix.

Tuning the system

Kane damper tuning

To produce optimal results for the ACS, the Kane Damper was tuned. This was ini-

tially done by guess-and-check to get the approximate range of convergence of the cubesat

system. These initial values were also used as a starting point for the search algorithm

discussed later on.

 After stable Id and c values had been chosen, the controller went though robustness

testing by altering the initial kinematic conditions. The controller was proven to be robust

at varying initial conditions. Finally, a MATLAB algorithm was written to fine-tune the

Kane Damper.

The Kane damper was tuned using two iterative “for” loops. The “for” loops iterated

the scalar moment of inertia, Id , and the damping constant, c, of the damper. Since both

of these values are directly proportional to the angular velocity, the assumption was made

that the surface plot would be both smooth and continuous. The Kane tuner optimized

computational time by using a very broad search. Instead of solving for a precise array of

damping constants and moments of inertia, the code would find a region with the fastest

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.cfmyeru4ddxj
https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.cfmyeru4ddxj
https://doi.org/10.20944/preprints202207.0368.v1

convergence time. For example, the parameters could be set up to find 25 values, by in-

crementing each variable (Id and c) by 5. A minimum rise time of the controller would be

found for the granular search. The surrounding region would be zoomed in on and further

searched. This would avoid wasting computational time solving for precise solutions that

are clearly not in the optimal region.

This kind of optimization technique is only possible because the surface plot is

known to be smooth and continuous based on linearity. This can be seen in Davide Davide

Carabellese’s thesis (see references) See Figure 35.

Figure 35 shows the 25 solutions as dots, the optimal being in red. Now, a zoom can

be applied to search more granularly in the selected region. The search region is applied

to the area located closest to the red dot. Because of the correlation of both Id and c to the

angular velocity, this answer is guaranteed to live in this region. In other words the max

and min are determined to be plus or minus half a deviation from the optimal solution.

The new search region is shown below in Figure 36.

 The zoom continues until the desired level of precision is found. However, if the

optimal solution is found on the perimeter of the search region, the problem becomes

more complex. See Figure 37.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

This means that the solution may lie right on the border, or it lies outside of the search

region. The MATLAB script will execute a popup window for the operator to decide. Ei-

ther the program can continue to search along the borderline, or it can autonomously ex-

pand it’s search region. If autonomously expanded, the search region will grow by the

same interval as initially defined. However, it will still keep a half unit into the old region

in case the operator is wrong and the solution lies close to the border. See Figure 38.

Since no zoom was achieved, the zoom factor will not be incremented by one.

The other option may be chosen if the operator is constrained to expand the search

region or if they are confident that the optimal solution lies within the original definition.

This would keep the same search area, and continue to zoom in along the border. See

Figure 39.

In this case, the zoom will continue along the border.

The optimal result was determined by finding the index at which each of the three

angular velocities (X, Y and Z) converged. The index of the largest settling time of the X,

Y, and Z angular velocities was recorded. This was because the ACS would be considered

converged once all of the desired angular velocities had been reached. The index of total

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

settling time was compared as the algorithm incremented Id and c. Once a lower index

was found it would replace the previous one and record the respective Id and c values.

Below, Figure 40 shows pseudocode that depicts this logic.

Optimality of the tuner was based on the settling time of the system at the given

conditions. The settling time was found by indexing the time at which convergence was

achieved. Convergence was found by averaging the past n values, and ensuring that they

fall into a m% convergence region of the desired angular velocities. In addition, to validate

the solution in the long term, the endpoint value was checked to make sure it still resided

in the convergence region. For the tuner, a n value of 5 and an m value of 20 were chosen.

See Figure 41 below.

The Matlab code was run on a zoom level of 3. With this MATLAB optimization code,

the optimal values for Id and c were recorded in Table 9 below.

(Table 9)

Id c

0.07 0.0025

With these values, the controller was able to reach its convergence within 21 minutes.

This convergence time meets requirement 2.1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Tuning the IMU

Since the IMU is used to measure earth's magnetic field, it is important that the meas-

urement is not tainted by the magnetic fields output by the cubesat itself. In order to ac-

curately measure the earth's magnetic field, the IMU must be calibrated to subtract out

the influence of the cubesat dipoles. There are two kinds of magnetic offsets produced by

the cubesat; hard iron offsets and soft iron offsets. The hard offsets are the magnetic fields

produced by the electronics onboard. This is a relatively constant value that can simply

be subtracted from the IMU reading. The soft iron offsets, however, are more complex

because they change as a function of the controller. The offsets themselves are caused by

the magnetic fields emitted by the magnetic torquers.

To illustrate the effects of these better, the hard iron offsets are a displacement vector

that displaces the three dimensional readings linearly. On the other hand, the soft iron

offsets are like a three by three transformation matrix that distorts the vector space.

See Figure 42 below.

Additionally, the temperature of the cubesat had relatively large effects on the mag-

netometer readings. These effects would also need to be accounted for in our model.

Soft iron offsets

The soft iron offsets are the offsets that taint the IMU readings due to the magnetic

fields produced by the magnetic torque coils. This value is constantly fluctuating since

each of the three torque coils will affect the magnetometer reading independently. As the

controller adjusts the PWM gains in each of the three coils, the offsets caused by the mag-

netic fields of the torque coils must be continuously calculated. These values are then sub-

tracted from the IMU magnetometer reading in real time.

However, it was found that PWM was not the only factor that affected the magnetic

field though the coils. Experimentation and systems verification determined that the mag-

netic offsets change as the battery is draining, due to lowered voltage. Therefore, a model

was generated that would return soft iron offset values based on the PWM input to the X,

Y, and Z coils, and the current battery voltage.

PWM Offsets

In order to find the PWM offsets, experimental data was collected for the change in

magnetic field measured by the magnetometer in the X, Y, and Z directions, for all three

coils. Each coil produces a three dimensional offset vector due to the fact that naturally

there is a displacement vector between the IMU reference frame and that of the. This re-

sulted in 9 different offset values that if superimposed would return an overall three di-

mensional offset vector.

 The flight code was uploaded to the cubesat with a command to turn the magnet

coils on for one second. Magnetometer readings were taken at a 0.0015 second interval.

Every ten readings were averaged and printed out to the serial monitor. Using a serial

monitor to .txt file converter called PuTTY, the data was stored and later copied into an

Excel sheet. An indicator was also printed out in order to clearly note the interval of which

the coil was on for. Once imported into Excel, these measurements could then be averaged

once again, both before and after the indicators. The averages while the coil is on in the X,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Y and Z directions could be compared to the same respective averages while the coil is

off. The resultant vector represents a three dimensional offset for the coil tested.

During experimentation, one coil was turned on at a time, starting with the X coil.

The PWM value was incremented by factors of five, starting at 255 though -255. The offsets

were measured as a three dimensional vector; a function of the input PWM level. After

building a matrix with offsets over the PWM range, the raw data was read into MATLAB.

A script was written to assist an operator in determining the order of the best fit polyno-

mial. The line of best fit was then plotted on top of the raw data. In order to evaluate the

level of goodness of fit, a root mean squared error (RMS) was calculated and displayed in

the legend. The highest marginal return was found in the second and third degree polyfit

models. See Figure 42 a) for a three degree polyfit below.

Analogously, the same procedure was used to increment the PWM values in the Y

and the Z magnet coils. Similar graphs were produced. See Figure 43 b) and c) below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

The nine polyfits seen above represent the effects of each of the three individual mag-

net coils along each of the three coordinate axes. By adding the effects of all three magnet

coils, these equations could be superimposed into just three; total X offset, total Y offset,

and total Z offset. Each of these three final equations would be in terms of all three PWM

value inputs into each of the magnetic coils.

In order to correctly adjust the curves found above, the cubesat battery voltage was

measured. This would provide a reference to which the voltage correction could be com-

pared to. All of the PWM tests were done at full battery with the cubesat charging (4.2V).

Battery Voltage Offset correction

It was observed that as the battery drains, the decreasing battery voltage of the cu-

besat causes the soft iron offsets to also decrease. Over the lifespan of the battery the volt-

age could change from 4.2 to 3.7 volts. If the battery drains below 3.7, the ACS is automat-

ically turned off to preserve power, so voltages lower than this were not considered.

This change in voltage did not have a significant effect on the magnetic field pro-

duced. In fact, the differences ranged from 1 - 2.5 times the resolution error of the IMU

magnetometer. Initially a linear subtraction was considered because it was quick and easy.

However, knowing that the PWM model was not linear, this seemed overly simplistic.

Even though the extra precision was not necessary, correction coefficient was calculated

instead.

Data was recorded experimentally by connecting the cubesat to a variable power

supply and incrementing the voltage from 4.2 to 3.7 volts by a factor of 0.1 volts. This was

done for each of the three coils and the changes in offsets were calculated along all three

coordinate axes measured by the IMU. The PWM value of each respective coil was set to

255. A total of nine experiments were conducted.

 The change in the offsets from the 4.2 to the 3.7 was recorded on average for all 9

situations. This value was then normalized. The normalization was done to find the pro-

portion of change of the offsets relative to full battery conditions. Since the experiments

were carried out at a PWM value of 255, normalizing against the 4.2 volt 255 PWM value

would return the percentage of change in the offsets at 3.7 volts. In other words, this value

represents the proportional difference of the magnetic offsets between full battery and 3.7

volts. A linear gradient was programmed such that any input voltage could be used, and

the change in offsets would be corrected appropriately. Subtracting one from this answer

would reveal the factor by which the polyfit would need to flatten. See Equation 12 below.

 𝐶𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 1 −
𝑜𝑓𝑓𝑠𝑒𝑡(𝑃𝑊𝑀(255), 4.2𝑉)−𝑜𝑓𝑓𝑠𝑒𝑡(𝑃𝑊𝑀(255) ,𝑏𝑎𝑡𝑡𝑉𝑜𝑙𝑡𝑠)

𝑜𝑓𝑓𝑠𝑒𝑡(𝑃𝑊𝑀(255), 4.2𝑉)
 (Equation 12)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

In this equation, the “offset” function returns the magnetic field offsets at the condi-

tions listed in the parenthesis. The variable battVolts represents the instantaneous battery

voltage. Using Equation 12 , all nine correlation coefficients were found. The resulting

coefficients were multiplied by each of the respective nine polyfits derived by the PWM

values (discussed in previous section).

This method proved both accurate experimentally and theoretically. If the battery is

full, the correlation coefficient will stay at 1 and nothing changes. As the battery drains,

the coefficient will be weighted according to the difference of the offsets calculated exper-

imentally. If a battery voltage of zero was possible, each of the polyfits would flatline as

expected. This approach is therefore much more reliable and robust than a simple linear

subtraction.

To verify the soft iron solution, offsets were predicted using the model with random

PWM inputs. The IMU offsets were consistent with the predictions. Therefore, this model

met requirement 6.1 in Table 6.

Hard Iron offsets

Hard iron offsets are the effects that the onboard cubesat electronics have on the mag-

netometer readings. These are static magnetic fields that are present whenever the satellite

is turned on. In order to calculate the hard iron offsets, a procedure written by Adafruit

was followed. A detailed procedure can be found in the references.

In order to calculate the hard iron offsets, the IMU had to be turned on. This was

done using a sample Arduino script from the Adafruit sensor library. Running this script

activated both the gyroscope and the accelerometer. This allowed the IMU to know how

it itself was being displaced. Additionally, the magnetometer was turned on.

Having these sensors active, the resultant values could be read by a third party soft-

ware. The software used was called “Motion Sensor Calibration Tool”. Downloading this

tool allowed for the hard iron offsets to be calibrated by twisting and turning the cubesat

around the IMU. Datapoints were recorded as the cubesat was rotated. A trajectory path

was traced out with each rotation. Once enough of the surface area had been traced out,

offset values were revealed. Figure 44 below shows a snapshot of the process.

As can be seen in Figure 44, a good contour outlining the rotational field of the IMU

is shown. The hard iron magnetic offsets are displayed in the upper right hand corner.

 This experiment was conducted 5 different times and the values were averaged. The

results of each trial can be seen in Table 10 below.

(Table 10)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.dy5j07p3rez0
https://docs.google.com/document/d/1pHMgNusAoVLlQDDSPzUWZd08oTiJP4tQJQ05460cB34/edit#heading=h.tmirlq432tax
https://doi.org/10.20944/preprints202207.0368.v1

Trial X Offset Y Offset Z offset

1 -14.80 35.81 7.13

2 -13.10 36.68 7.04

3 -13.50 36.80 6.30

4 -13.70 34.78 7.46

5 -13.15 36.22 6.71

avg -13.65 36.058 6.928

Table 10 shows very consistent and precise readings from the Motion Sensor Calibra-

tion Tool. These values proved compliance with requirement 6.0 in Table 6.

These values were included with the soft iron offsets to get the total iron offsets.

 Temperature Offset

 The final correction factor that was considered was the temperature of the cubesat.

This factor was unintentionally discovered while doing experimental testing. It was found

that the offset reading of the IMU increases as the temperature of the cubesat decreases.

This was predicted to be due to lowered resistance in the IMU.

Experimental data was collected in an appropriate temperature range that the cu-

besat might experience in LEO. It was found through a case study that cubesats in LEO

often range temperatures of -5 degrees Fahrenheit in Earth’s shadow, up to 130 degrees

Fahrenheit when in direct illumination by the sun. Ambient conditions tend to fluctuate

much more. However, because of the spin of the satellite, residual heat, and waste heat

produced by the electronics, the temperature is more stable. In order to test for hysteresis,

the experiment was split into two different parts.

In the first experiment, the cubesat started at room temperature, 73 degrees Fahren-

heit. It was packaged in an ESD safe bag and moved into a cooler with dry ice to observe

cooling effects. The temperature and magnetic field was recorded. Similar to the PWM

experiment, the temperature and magnetometer values were averaged over ten values.

However, data was only printed to the serial monitor every ten seconds. This was done to

avoid overaccumulation of data (because these tests took one hour to reach the desired

temperatures). The magnetic field strength was measured until a temperature of -18 de-

grees Fahrenheit was reached.

The next test was done starting in the dry ice, and moving the cubesat under heat

lamps. These heat lamps were meant to simulate solar radiation. The cubesat was placed

on an ESD bench and allowed to heat from -18 deg to 134 deg Farenheit. Once again, the

magnetic field was recorded throughout this process. This was done to have a continual

data stream from the low to high temperature range. In previous experiments splitting

the heating and cooling had been attempted. This proved inaccurate due to variations in

the positioning of the IMU with respect to Earth's magnetic field and possible changes of

the ambient temperature . Also, appending the data was difficult because of complications

associated with aligning the offsets at these different reference conditions.

To evaluate the offsets, the magnetic field at ambient temperature was subtracted

from both of these data sets. The sets were compared to each other in order to check for

hysteresis error. Please see Figure 45 below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

 After analyzing this data, the error was found to be negligible as compared to the

resolution of the IMU. The increasing data set was used. This was done because this data

set spanned the entire desired range from -18 deg Fahrenheit to 134 deg Fahrenheit. A

polyfit was matched to this dataset. An appropriate degree of fit was determined by in-

crementally increasing the fit order and observing the marginal decreasing returns with

respect to the RMS error. A third degree polynomial was found most effective. Please see

Figure 46 below.

The temperature model was verified similarly to the soft iron model. Through exper-

imentation, the values found closely matched the simulated ones. This showed that the

temperature model met requirement 6.2 in Table 6.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

The equations of the polyfits shown in Figure 46 above could be used with the soft

and hard iron offsets to get the final offsets of the IMU magnetometer.

Conclusion

In conclusion of the work performed for the Alpha mission, a systems perspective

was able to advance the TRL of the chipsat RF system and the ACS system. This was ac-

complished by noting the requirements of the respective systems, and going through rig-

orous verification and validation tests. These tests pointed out if the system would run as

requirements intended. If not, MBSE tools could be applied to identify flaws in the system.

Corrective action was taken to come up with new methods, remodel old ones, tune sen-

sors, or simply reevaluate through experimentation.

Acknowledgments:

Dr. Mason Peck for mentoring me and providing me with this project. I thank him

for his guidance throughout my time at Cornell. He has increased my understanding of

aerospace systems architecture and given me an appreciation for the satellite/space indus-

try that I will continue to cherish.

Dr. Timothy Sands for greatly furthering my knowledge in controls engineering. His

class “Astronautic Optimization” was the best class that I have taken in college. I want to

thank him for his mentorship throughout the past two years. I am grateful for his efforts

and support with my thesis.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://doi.org/10.20944/preprints202207.0368.v1

Appendix A

Cubesat Flight Assembly

See manuscript

MBSE Chipsat Modeling

MBSE Portfolio

See manuscript

Chipsat MBSE Lifecycle

See manuscript

Controller Optimality Verification

See manuscript

Endurance Test Procedures

Endurance Test

See manuscript

Longevity test

See manuscript

References

1. Ada, Lady. “Adafruit Sensorlab - Magnetometer Calibration.” Adafruit Learning System, https://learn.adafruit.com/adafruit-

sensorlab-magnetometer-calibration?view=all.

2. Adams, Van Hunter, and Dr. Mason Peck. THEORY AND APPLICATIONS OF GRAM-SCALE SPACECRAFT. Cornell Uni-

versity , May 2020, https://vanhunteradams.com/Manuscripts/Thesis.pdf.

3. Adams, Van Hunter. “GFSK Demodulator on Raspberry Pi.” PiGFSK, https://vanhunteradams.com/Monarch/PiGFSK.html.

4. Amin, John, and Dr. E. Glenn Lightsey. The Design, Assembly, and Testing of Magnetorquers for a 1U CubeSat Mission. Georgia

Institute of Technology, https://www.ssdl.gatech.edu/sites/default/files/ssdl-files/manuscripts/mastersProjects/AminJ-

8900.pdf.

5. Carabellese, Davide, and Dr. Mason Peck. Design of ACS Controller for a Spinning CubeSat. Cornell University , July 2018.

6. Debris, Stephen. “RTOS-MCU.” TI, https://www.ti.com/tool/TI-RTOS-MCU.

7. “Easylink API Reference.” EasyLink API Reference - SimpleLink™ CC13x0 SDK Proprietary RF User's Guide 2.60.0 Documen-

tation, https://software-dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/3.20.00.23/exports/docs/proprietary-rf/proprietary-rf-

users-guide/easylink/easylink-api-reference.html.

8. Habeck , Joseph, and Peter Seiler. Moment of Inertia Estimation Using a Bifilar Pendulum. University of Minnesota, https://con-

servancy.umn.edu/bitstream/handle/11299/213305/UROP%20report.pdf?sequence=1.

9. Lee, J., et al. “On Determining Dipole Moments of a Magnetic Torquer Rod - Experiments and Discussions.” Canadian Aero-

nautics and Space Journal, vol. 48, no. 1, 1 Mar. 2002, pp. 61–67., doi:10.5589/q02-014.

10. Manchester, Zach, and Dr. Mason Peck. CENTIMETER-SCALE SPACECRAFT: DESIGN, FABRICATION, AND DEPLOY-

MENT. Cornell University, Aug. 2015, http://zacmanchester.github.io/docs/Zac_Manchester_PhD_Dissertation.pdf.

11. McCluny, George. “About RTL-SDR.” Rtl, 10 Feb. 2022, https://www.rtl-sdr.com/about-rtl-sdr/.

12. MOBUS, GEORGE E. Principles of Systems Science. SPRINGER-VERLAG NEW YORK, 2016.

13. “Quick Start Guide.” Rtl, 11 Mar. 2022, https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/.

14. Samurkashian, Armen, and Dr. Mason Peck. Alpha Cub eSat Project. Cornell University , 21 May 2018.

15. Schrum, Jacob, director. Error Detection and Correction 3: Forward Error Correction. Southwestern University , 7 June 2016,

https://www.youtube.com/watch?v=0CLTy231Hsw. Accessed 17 Mar. 2022.

16. Wertz, James Richard, et al. Space Mission Engineering: The New Smad. Microcosm Press, 2011.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2022 doi:10.20944/preprints202207.0368.v1

https://docs.google.com/document/d/1iH7EWaF_gsCGxlsJxSNFH79M0jiFNa-_/edit?usp=sharing&ouid=115086372127799224409&rtpof=true&sd=true
https://drive.google.com/file/d/1XOped7esiOOiMAa-cPgj4lsNZ6WJBsQ8/view?usp=sharing
https://drive.google.com/file/d/1CG8dmZBZweLj19qjVD6D58WYf9F-hLfX/view?usp=sharing
https://docs.google.com/document/d/1qHVfSIlwyFVfGeAsNTmwA1WDdzZTbICf/edit?usp=sharing&ouid=115086372127799224409&rtpof=true&sd=true
https://docs.google.com/document/d/1H3ye-bYWdZ864TDGLV9eZbwQgd5HfnNv/edit?usp=sharing&ouid=115086372127799224409&rtpof=true&sd=true
https://docs.google.com/document/d/1LxLtF7VWyKXeI5hXV7j3a8Ax3b-1aJfI/edit?usp=sharing&ouid=115086372127799224409&rtpof=true&sd=true
https://doi.org/10.20944/preprints202207.0368.v1

