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Abstract: In order to improve the operation performance of the multi-stage double-suction centrif-

ugal pump and reduce the internal energy loss of the pump, this paper proposes a single-objective 

optimization design method based on non-hierarchical response surface model (RSM) and the 

multi-island genetic algorithm (MIGA). Nine parameters, such as the blade outlet width and blade 

wrap angle, were used as design variables, and the optimization objective was the efficiency under 

design conditions. In total, 149 sets of valid data were obtained under the latin hypercube sampling 

method (LHS), the corresponding thresholds were set for efficiency and head, and 99 sets of valid 

data were obtained. A cross-validation analysis of the sieved data was carried out based on non-

hierarchical RSM, global optimization of the efficiency was carried out using MIGA, and numerical 

verification was carried out via CFD. The research results show that compared with hierarchical 

RSM, non-hierarchical RSM can approximate the nonlinear relationship between the objective func-

tion and the design variables with higher accuracy, and the model fitting R2 value was 0.919. The 

efficiency was improved by 3.717% after optimization. The overall prewhirl of the impeller inlet 

after optimization decreased, the internal speed of the volute significantly improved, the large-area 

vortex at the volute and the outlet pipe was eliminated, the impact loss at the volute separating 

tongue disappeared, and the overall hydraulic performance of the pump was improved. The total 

entropy output value of the optimized pump was reduced by 4.79 (W/K), mainly concentrated in 

the reduction in the entropy output value of the double volute, and the overall energy dissipation 

of the pump was reduced. 

Keywords: multi-stage double-suction centrifugal pump; non-hierarchical RSM; MIGA; optimiza-

tion 

 

1. Introduction 

As general mechanical equipment in the field of fluid machinery, pumps are widely 

used in production and life for the purpose of conveying fluid media. For the multi-stage 

double-suction centrifugal pumps used in the fields of sewage treatment, water diversion 

irrigation, and industrial water supply, during the operation of large flow and high head, 

due to the complexity of the structure, it is easy to cause internal flow disorder, resulting 

in low overall efficiency of the pump [1-2]. 

However, current pump manufacturers and users have higher and higher require-

ments for pump performance, and obtaining a high-efficiency pump type has become key. 

In the field of hydraulic machinery, the use of numerical simulation methods to optimize 

the mechanical properties of pumps has been widely used [3]. Traditional pump design 

occurs via a combination of numerical calculations and experiments; the design process is 

very complicated, and the calculation process takes a long time. At present, with intelli-

gent optimization algorithms being applied more and more widely, optimization design 
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that combines numerical calculations and an intelligent optimization algorithm is also 

very common. The operational speed and accuracy of this combination method are greatly 

improved compared with those of the original model. This can reduce the labor and ex-

perimental costs, and a better pump model is ensured. Yunguang et al. [4] proposed to 

use a radial basis function (RBF) neural network to optimize the impeller of a turbo cen-

trifugal pump, with sampling based on the latin hypercube sampling (LHS) method, the 

results show that the optimized model efficiency and head are improved compared with 

the original model 5.74% and 4.85%. Jie et al. [5] combined the Kriging model with nu-

merical analysis to find the optimal design parameters for a torque converter impeller, 

thereby improving the performance of the torque converter. Jamshid et al. [6] proposed a 

hybrid analysis framework based on an artificial neural network (ANN) to evaluate the 

probability of failure of sewage pumping stations, which accurately predicted the safety 

margin of the pump and reduced the computational burden. Nataraj et al. [7] used re-

sponse surface model (RSM) and computational fluid dynamics (CFD) to design an im-

peller to improve the performance of a centrifugal pump, resulting in a 2.06m increase in 

total head and a 65.22W reduction in power dissipation. Peng et al. [8] used RSM to study 

and optimize the jet pump, taking the pressure amplitude and time-averaged power dis-

sipation of a jet pump as a response to achieve maximum pressure amplitude and mini-

mum power consumption. The final results showed that RSM is feasible as an evaluation 

method for optimizing jet pumps. Khaled et al. [9] optimized the efficiency of a pump 

based on RSM and the multi-objective genetic algorithm, and they used geometric param-

eters including the number of blades, impeller speed, etc. As design variables to predict 

the performance of the pump under stable and transient conditions, and also predict cor-

rosion. The Kriging model, radial basis neural network, and artificial neural network are 

generally applicable to occasions with a large sample size, while RSM is suitable for occa-

sions with a small sample size, which can obtain better fitting accuracy and randomness 

in the case of more design variables [10]. 

As a commonly used statistical analysis technique, RSM has the characteristics of 

strong applicability and wide application range, among which it can effectively locate the 

individual effects and interactions between parameters [11]. In the optimization process 

with many design variables, there is generally a high-intensity nonlinear programming 

between the objective function and the design variables. At present, most scholars use 

low-order polynomial functions to fit the objective function. Tijana et al. [12] studied the 

usefulness of combinations based on RSM and ANN in characterization, modeling, and 

optimization, and they found better results with the prediction of second-order polyno-

mial functions by comparing the fitted R2values of linear and second-order response sur-

face polynomial functions. Xuhe et al. [13] proposed an optimization strategy for devel-

oping a turbine runner model based on CFD technology, a second-order response surface 

model and a multi-objective genetic algorithm. Taking six geometric parameters such as 

the blade load as design variables, some design problems of the turbine runner are effec-

tively solved, and the calculation cost is reduced. Han et al. [14] proposed an integrated 

method based on second-order RSM and the genetic algorithm to analyze the influence of 

various parameters of the standpipe inlet and outlet and obtain an optimal design; finally, 

the total head loss coefficient and the inflow and outflow velocity distribution coefficients 

were reduced by 4.687%, 11.765%, and 38.596%, respectively. However, compared with 

low-order polynomial functions, using high-order polynomial functions to fit functions 

can obtain higher prediction accuracy. In order to obtain more reliable test data for an air 

source heat pump, Eleonora et al. [15] used fourth-order RSM to expand the data sample; 

they examined the performance of the air heat source pump by changing the water supply 

temperature of the indoor terminal under different environmental conditions, and they 

obtained the performance of the air source heat pump. An optimal configuration of the 

system was found, minimizing power consumption while maintaining interior comfort. 

We can improve the quality of the higher-order RSM, by eliminating unnecessary 

terms, also reducing the uncertainty of model prediction, and improving the fitting accu-

racy. This kind of polynomial that randomly ignores some lower-level terms is called a 
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non-hierarchical polynomial [16]. Nuo et al. [17] proposed an efficient stochastic model 

update method based on statistical theory and developed incomplete fourth-order poly-

nomial RSM. Combining RSM with Monte Carlo Simulation (MCS) reduces computation 

and enables fast random sampling. Teppei et al. [18] applied interactive layered RSM to 

the parameter optimization of photonic crystal nanocavities, and they demonstrated the 

effectiveness of this method for parameter optimization. 

In this paper, the improved response surface method is used to optimize the design 

of the impeller and volute of a multi-stage double-suction centrifugal pump. On the basis 

of CFD numerical simulation, the LHS method is used to generate data and filter them. 

Based on the improved fourth-order incomplete polynomial RSM, the nonlinear relation-

ship between the efficiency and geometric parameters is established, using the multi-is-

land genetic algorithm (MIGA) to solve an optimal point of efficiency and carry out nu-

merical verification, the pump performance before and after optimization is compared 

and analyzed to obtain the impeller and volute design parameters with higher fitting ac-

curacy and better running stability. The state and characteristics of the internal and exter-

nal flow fields before and after pump optimization, and an analysis of the entropy pro-

duction performance are presented. 

2. Pump model parameters and computational method 

2.1. Hydraulic Model 

The first-stage single-suction impeller and the secondary double-suction impeller of 

the multi-stage double-suction centrifugal pump use the same impeller hydraulic model. 

In order to better eliminate the radial force of the impeller when the pump is running, the 

volute of the flow passage adopts a double volute design. At the design operating point, 

the design performance parameters of the pump are: Q=540m3/h, design head H=132m, 

speed n=1490r/min, specific speed ns=64. The formula for calculating the specific speed is 

as follows: 
1/2

3/4

3.65
s

nQ
n

H
                                       (1) 

The overall 3D pump fluid domain was modeled in the model design software UG 

NX, as shown in Figure 1. After the water enters the suction chambers on both sides, it 

flows into the middle symmetrical flow channel perpendicular to the axis through the 

single-suction impellers on both sides, then flows into the double-suction impeller from 

the flow channel, and finally discharges through the middle pressure water chamber. The 

specific details of the flow through the impeller are shown in Figure 2. The main design 

parameters of the multi-stage double-suction centrifugal pump are shown in Table 1. 

 

Figure 1. Computational domain of the multi-stage double-suction centrifugal pump. 
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Figure 2. Schematic diagram of water flow through the impeller. 

Table 1. Main design parameters of the multi-stage double-suction centrifugal pump. 

Parameter Abbreviation Value 

Flow rate Q 540m3/h 

Head H 132m 

Rotating speed n 1490r/min 

Specific speed ns 54.09 

Impeller inlet diameter D1 196mm 

Impeller outlet diameter D2 485mm 

Impeller outlet width b2 15mm 

Volute inlet width b3 70mm 

Volute inlet diameter D3 495mm 

Volute outlet diameter D4 200mm 

Number of blades Z 8 

2.2. Mesh Generation and Numerical Calculation 

For the multi-stage double-suction centrifugal pump, due to the complexity of its 

double volute internal structure, ANSYS ICEM was used to generate unstructured 

meshes. The impeller, suction chamber, interstage runner and other components were 

based on the commercial software TurboGrid with high precision and good convergence 

performance of high-quality structural grid. In order to better satisfy the subsequent high-

precision flow field analysis and more accurately characterize the complex flow phenom-

ena around the solid wall, the mesh of the solid surface was refined. Part of the computa-

tional domain grid is shown in Figure 3. 

The CFD in the commercial software ANSYS CFX was used to study and analyze the 

hydraulic characteristics of the pump. The turbulence model adopted was the shear stress 

transfer model (SST k-ω) widely used in multi-stage double suction centrifugal pumps 

[19-20]. In order to meet the requirements of the above turbulence model, the maximum 

y+ of the walls of the volute tongue and the impeller blade was less than 10, and the max-

imum y+ of the other walls was less than 50. 

In the independence analysis of the effect of the number of grid cells on the numerical 

calculation results, a total of five groups of independent grid numbers were generated, 

and the calculation results of the corresponding lift and efficiency are shown in Figure 4. 

After grid-independence analysis, the grid size was finally determined. The final number 

of cells was 130.858×105. The boundary conditions of the pump were set to total pressure 

inlet and mass flow outlet. The computational domain generated a total of 11 networks 
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including the suction chamber, suction pipe, first-stage impeller, inter-stage flow channel, 

second-stage impeller, double volute and outlet pipe grid. The number of grid cells for 

each computational domain is shown in Table 3. 

          
(a) (b) 

      
                             (c)                                   (d) 

Figure 3. Meshes of the calculation domain: the impeller (a), the inter-stage flow channel (b), the 

suction chamber (c),and the volute (d). 
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Figure 4. Result of grid independence analysis. 

Table 2. The number of grid cells for each computational domain. 

Domain Number of grid cells(×105) Number 

Suction pipe 1.67 2 

Suction chamber 7.78 2 

Impeller 12.45 4 

Inter-stage flow channel 12.78 2 

Double volute 27.10 1 

Discharge pipe 9.48 1 

2.3. Experimental verification 

A comparison between the test results and the numerical calculation results is shown 

in Figure 5. It can be seen from the figure that the trends of the test curve and the numerical 

calculation curve are almost the same. Since the energy loss generated by the pump itself 

was not fully considered during the test, the test results of head and efficiency were gen-

erally lower than the numerical calculation results. At the design operating point, the nu-

merical calculation result of the pump was 76.512%, the test result was 73.705%, and the 

absolute error of the two was 2.807%. Under non-design conditions, the error between the 

numerical calculation results and the experimental results did not increase greatly, so the 

numerical simulation method in this paper is reliable and can be used for subsequent op-

timization studies. 
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Figure 5. Comparison of experimental results and numerical calculation results. 

3. Optimization process 

Figure 6 presents the optimization flow chart for this paper. The efficiency under the 

design condition of the multi-stage double-suction centrifugal pump was selected as the 

optimization objective, the nine design parameters of the pump were used as the optimi-

zation variables, and respective boundary conditions were set for the nine variables. The 

latin hypercube sampling (LHS) method was used to generate 149 groups of valid sample 

data, the performance of the original scheme was compared, the data were screened, the 

functional relationship between the objective function and the design variables was estab-

lished, and the objective function was fitted based on the improved response surface 

model (RSM) using multi-island genetic algorithm (MIGA). This algorithm finds the op-

timal efficiency point for CFD verification and finally obtains the optimal geometric pa-

rameter design of the volute and the impeller. 

 

Figure 6. Optimization flow chart. 
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3.1. Optimization objective 

Due to the long-term and continuous operation of the pump and the frequent opera-

tion under low load or variable load, the operating point of the pump easily deviates from 

the high-efficiency area; the operating efficiency of the pump is then greatly reduced, and 

a large amount of energy is wasted. In order to save energy and reduce the internal energy 

loss, so as to improve the operating efficiency of the two-stage split centrifugal pump, this 

paper takes the efficiency at the design operating point as the optimization goal. The effi-

ciency equation is as follows: 

2 1

3600
d t tQ P P

T





 


                         (2) 

where Qd is the flow rate at the design operating point, m3/h; P2t and P1t are the total pres-

sure at the inlet and outlet respectively, Pa; T is the torque of the impeller, N m� ; and 
is the rotational speed of the impeller, rad/s. 

3.2. Design variables and parameter ranges 

Since this paper only addresses the design and optimization of the blade profile, in 

order to reduce the complexity and error of the overall calculation, the diameter of the 

impeller inlet and outlet and the thickness of the blade were kept unchanged. There were 

nine design variables to be optimized and controlled, and the range of each design varia-

ble is shown in Table 3. In the table, x1 represents the outlet width of the blade, which is 

used to control the variation range of the size of the impeller on the axial projection dia-

gram. x2 and x3 represent the inlet placement angles of the rear and front cover plates of 

the blade, respectively, and x4 and x5 represent the outlet placement angles of the rear and 

front cover plates of the blade, respectively. The blade wrap angle was set as the design 

variable x6; variable x7 is the Stepanoff number that controls the change of the cross-sec-

tional area in the volute; and x8 and x9 represent the volute inlet width and the starting 

position of the volute baffle, respectively. 

Table 3. Boundary range of design parameters. 

Design parameter Lower limit Upper limit 

x1 10 20 

x2 25 35 

x3 20 30 

x4 20 30 

x5 20 30 

x6 115 135 

x7 0.15 0.3 

x8 70 90 

x9 150 180 

3.3 Latin hypercube sampling method 

As an important step in the optimization process of an experimental design, it is nec-

essary to choose an appropriate sampling technique. Since there are many variables in this 

optimization design, in order to obtain better space filling randomness, accuracy, and ro-

bustness for the sample parameters. The LHS method was used to generate 149 sets of 

valid data for the defined nine variables and the range of the design variables. In order to 

further reduce the error of the sample and obtain more concentrated data sample points, 

thereby improving the convergence and fitting accuracy of the data, corresponding 

thresholds were set for the head and efficiency in the sample data. Set the threshold of 

head to 135m, and the threshold of efficiency to 78%. Finally, three partial data sets as 
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shown in Figure 7 were screened out; the 99 groups of valid data screened in the second 

part were selected for subsequent model training and prediction. 

 

Figure 7. Sample data screening diagram. 

3.4. Non-hierarchical response surface methodology(RSM) 

As a common approximation model established between the objective function and 

design variables, RSM has multiple selectable polynomial orders, such as first- (linear), 

second-, third-, and fourth-order polynomial functions. Based on the multi-parameter op-

timization design in this paper, in order to improve the accuracy of the model prediction 

results, the fourth-order response surface model was selected for fitting calculations. The 

fourth-order response surface polynomial function expression is as follows: 

2 3 4
0

1 ( ) 1 1 1

( )
n n n n

i i ij i j i i i i i i
i ij i j i i i

f x a b x c x x d x e x g x
    

                   (3) 

where x=(x1,x2,…,xn), xi(i=1,2,…,n) are design variables, 0 , , , , ,i ij i i ia b c d e g are the regres-

sion coefficients of each polynomial, and the number of hierarchical polynomials is 

1+9+(81-9)/2+9+9+9=73. The non-hierarchical RSM was selected in this paper to use non-

hierarchical polynomials to analyze and verify the accuracy of the model. 

3.5 Optimization algorithm 

As an improved genetic algorithm based on the traditional genetic algorithm, MIGA 

is a pseudo-parallel genetic algorithm based on population grouping. The function of di-

versity and preventing premature maturity solves the problem that traditional genetic al-

gorithms have in which are prone to falling into local optima [21-22]. 

Based on the 99 groups of sample data obtained by screening the original data, the 

above-mentioned fourth-order response surface polynomial function was used to estab-

lish the relationship between the optimization objective and the design variables, the 

MIGA was used for optimization, and the performance of the impeller was finally veri-

fied. The parameter settings of the optimization algorithm are shown in Table 4. 
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Table 4. The parameter settings of the optimization algorithm. 

Option Value 

Sub-population size 10 

Number of islands 10 

Number of generations 50 

Rate of crossover 1.0 

Rate of mutation 0.01 

Elite size 1 

Rel tournament size 0.5 

Penalty multiplier 1000 

Penalty exponent 2 

Default variable bound 1000 

Max failed runs 5 

4. Results 

4.1. Approximate model fit accuracy 

In order to verify the accuracy of the approximate model, this paper compares the 

accuracy of the model prediction of the third-order and fourth-order response surface pol-

ynomials in the hierarchical and non-hierarchical models. The R2 value is used to repre-

sent the degree of agreement between the approximate model and the sample points. The 

closer the value is to 1, the higher the prediction accuracy of the approximate model. For 

the fourth-order response surface polynomial, the number of polynomials when layered 

is 73, and for the third-order response surface polynomial, the number of polynomials 

when layered is 64. Figure 8 a, b presents the corresponding R2 values of the third-order 

and fourth-order polynomials under the hierarchical polynomial. It can be seen that the 

R2 value is higher under the third-order hierarchical fitting, and the fitting effect is better. 

Figure 8 c, d presents the R2 values corresponding to 40 third-order and fourth-order pol-

ynomials without layering. In this optimization process, the cross-validation method was 

used for error analysis, and 50 groups of random data were selected for cross-validation 

error analysis. At the same time, automatic three-dimensional modeling and numerical 

simulation were performed on these 50 groups of data, and the corresponding calculation 

results were finally obtained. After many instances of repeated training, it can be seen that 

the fitting effect of the fourth-order non-hierarchical model is better than that of the third-

order model. The combined accuracy is higher than that of layering. 

In this model verification, when the fourth-order model is non-hierarchical, and 

when the number of polynomials is selected as 40, a higher fitting accuracy can be ob-

tained. Table 5 shows the design variable values before and after optimization. The effi-

ciency of the optimal scheme is 80.939%, which is 4.427% higher than the 76.512% before 

optimization. The efficiency value verified by CFD is 80.229%, and the relative error is 

0.88%. Therefore, the optimization model has good reliability and can be accurately used 

for pump performance prediction. 
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(a)                                 (b) 

  
(c)                                  (d) 

Figure 8. Corresponding values of R2 for polynomials: cubic hierarchy (a), quartic hierarchy (b), 

cubic non-hierarchy (c), quartic non-hierarchy (d). 

Table 5. Design variable values before and after optimization. 

Variables b2/mm β1h/° β2h/° β1s/° β2s/° φ/° Ks b3/mm θ/° 

Original 15 33.82 25.38 25.53 25.15 124 0.2982 70 190 

Optimal 14.74 32.58 26.15 20.03 26.58 127.74 0.1992 70.01 165.32 

4.2 Sensitivity analysis 

In order to verify the influence of the design variables on the performance and effi-

ciency of the pump, sensitivity analysis was carried out for the nine variables in the opti-

mal design. Table 6 shows the corresponding coefficient values of each polynomial using 

the fourth-order non-hierarchical 40th-degree polynomial. It can be seen from the table 

that the coefficients of x1, x4, x6, x8, and x9 are negative numbers; that is, the blade outlet 

width b2, the blade front cover inlet placement angle β1s, the blade wrap angle φ, the volute 

outlet width b3, and the double-volute starting position θ of the diaphragm have a nega-

tive effect on the overall efficiency of the pump. The blade wrap angle φ and the starting 

position θ of the diaphragm of the double volute have a significant impact on the hydrau-

lic power of the pump. The blade outlet width, the blade front cover inlet placement angle, 

and the volute outlet width have little influence on the overall performance of the pump 

and can be almost ignored. Because the coefficients of x3 and x7 are positive values, the 

outlet placement angle β2h of the rear cover plate of the blade and the Stepanoff number 

Ks have a positive impact on the overall efficiency of the pump, of which the Stepanoff 

number Ks has a greater influence. The influence of the placement angle β2h at the outlet of 

the rear cover plate of the blade is small. 
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Table 6. Corresponding coefficients for each polynomial. 

Term Coefficient Term Coefficient Term Coefficient Term Coefficient 

x1 -9.82 x42 1.98×10-3 x2x8 -3.43×10-3 x63 -0.04 

x3 0.38 x62 7.26 x3x6 -1.20×10-3 x73 2.54×104 

x4 -0.49 x72 -9.13×103 x3x7 0.19 x83 -1.56×10-4 

x6 -612.25 x82 3.61×10-2 x3x8 -1.82×10-3 x93 -4.11×10-3 

x7 1418.98 x92 1.01 x4x6 1.60×10-3 x14 1.07×10-3 

x8 -2.79 x1x7 2.28 x4x7 0.22 x24 -5.70 

x9 -111.13 x1x8 -4.20×10-3 x7x9 -0.09 x64 7.52 

x12 1.19 x1x9 3.00×10-3 x8x9 1.06×10-3 x74 -2.67×104 

x22 -0.10 x2x4 3.71×10-3 x13 -0.06 x94 6.23 

x32 -2.41×10-3 x2x7 0.25 x23 4.49×10-3 const 2.40×104 

4.3 Inner flow analysis 

Figure 9 presents a comparison of the impeller inlet peripheral speed before and after 

optimization. The inlet peripheral speed of the impeller has an important influence on the 

pump head. If the peripheral speed is too large, it easily forms a prewhirl at the inlet and 

affects the impeller head. In the steady calculation, due to the uneven distribution of the 

dual-inlet flow channels and the water suction chamber, for the second-stage impeller, the 

inter-stage flow channels have a great influence on the flow distribution. Under the cen-

trifugal force of the first-stage impeller, the overall increase in the velocity distribution of 

the second-stage impeller is higher than that of the first- stage impeller. Compared with 

that before optimization, the peripheral velocity distribution of the first-stage impeller in-

let shows almost no great change. After optimization, the average circumferential speed 

at the inlet of the second-stage impeller is 4.45[m s^-1], and the average circumferential 

speed of the second-stage impeller inlet of the original scheme is 6.14[m s^-1]. Thus, com-

pared with the original model, the overall prewhirl of the impeller inlet has decreased, so 

the hydraulic performance of the impeller is been significantly improved, and the opti-

mized second-stage impeller has improved significantly. 

 

 
 

(a) (b) 

Figure 9. Comparison of the peripheral speed distribution of impeller inlet before (a) and after (b) 

optimization. 
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Figures 10 and 11 presents a comparison of the speed distribution before and after 

the optimization of the first-stage impeller and the second-stage impeller, respectively. It 

can be seen from the figures that the internal flow of the first-stage impeller of the original 

scheme fits better with the blade profile, while the hydraulic performance of the optimized 

first-stage impeller is not improved to a certain extent, but flow separation occurs in two 

of the flow channels. For the optimized second-stage impeller, the internal flow of the 

second-stage impeller of the original scheme is smooth overall, and the streamlines in the 

other optimized flow channels show no obvious change, but there is a backflow phenom-

enon in the upper flow channel, resulting in a vortex. 

 

  

(a) (b) 

Figure 10. Comparison of the first-stage impeller velocity distribution before (a) and after (b) opti-

mization. 

 

 
 

(a) (b) 

Figure 11. Comparison of the second-stage impeller velocity distribution before (a) and after (b) 

optimization. 
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Figure 12 presents a comparison of the distribution of the velocity streamlines of the 

double volute before and after optimization. It can be seen from the figure below that the 

velocity of the volute after optimization is significantly improved, the vortex at the volute 

and the outlet pipe is eliminated, and the impact loss at the volute tongue is eliminated. 

The overall velocity inside the volute is reduced and the velocity at the outlet tube is in-

creased, so the overall hydraulic performance of the volute is improved. Since the volute 

is a static water-passing component, we generally think that it has little effect on the pump 

efficiency. However, as an energy recovery component that converts kinetic energy into 

pressure energy, the volute has a considerable impact on the efficiency of the pump. 

Therefore, improvement of the internal flow performance of the volute can effectively im-

prove the overall operating efficiency of the pump [23]. 

 

  

(a) (b) 

Figure 12. Comparison of the velocity streamline distribution of the double volute before (a) and 

after (b) optimization. 

4.4 Characteristic analysis of the entropy field 

Due to the phenomena of secondary flow, backflow, pressure pulsation, and flow 

separation that aggravate energy dissipation during pump operation, energy dissipation 

can be effectively evaluated by comparing the entropy production results before and after 

optimization. For this entropy production analysis, the entropy production including wall 

dissipation, turbulent dissipation, and direct dissipation is considered based on the Reyn-

olds time-averaged turbulent motion. 

Table 7 shows the entropy production values corresponding to the wall, turbulence 

and direct dissipation of different components before and after optimization, where Imp 

1st1 represents the first-stage impeller on the left in Figure 1, Imp 1st2 is the first-stage 

impeller on the right, Vol is the double volute, and Imp 2nd is the second-stage impeller. It 

can be seen from the table that the entropy production of various dissipations of the opti-

mized first-stage impeller is increased, and the wall dissipation of the second-stage im-

peller is reduced to a certain extent. The dissipation of the volute in all three parts is re-

duced, mainly concentrated in the dissipation of the wall, which is reduced by 9.07(W/K) 

compared with that before optimization. 

Figure 13 presents a comparison chart of the entropy production results of the first-

stage impeller, the second-stage impeller, and the double volute before and after optimi-

zation. As can be seen from the figure, due to the optimization of the structure of the dou-

ble volute, the entropy production value after optimization is reduced by 9.64 (W/K), and 

the energy dissipation of the volute is significantly reduced. The other parts may have a 

small increase in entropy production due to the deterioration of the optimized flow state, 

but the overall entropy production of the pump is decreased by 4.79 (W/K), so the overall 

energy loss of the pump is reduced, the performance is improved, and the optimization 

effect of the volute is better than that of the impeller. 
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Table 7. Entropy production for the wall, turbulence, and direct dissipation of different components 

before and after optimization. 

 Original Optimization 

Dissipation type Wall  Turbulence Direct Wall  Turbulence Direct 

Imp 1st1 12.12 2.32 2.04 12.44 3.01 2.77 

Imp 1st2 12.13 2.32 2.04 12.29 3.05 2.82 

Vol 35.25 7.82 0.60 26.18 7.18 0.67 

Imp 2nd 23.95 5.53 4.57 23.84 6.34 5.32 

 

Figure 13. Comparison of entropy field values of components before and after optimization. 

5. Conclusions 

In this paper, the efficiency of a multi-stage double-suction pump under its design 

conditions was selected as the optimization target, and nine design parameters were used 

as the optimization variables. The LHS method was used to sample and screen the data, 

based on the improved RSM to optimize the efficiency. Finally, the MIGA was used for 

global optimization, and the hydraulic performance of the pump before and after optimi-

zation was compared and analyzed. 

(1) The non-hierarchical RSM selected in this paper, namely, the fourth-order 40th- 

degree non-hierarchical polynomial, can effectively approximate the nonlinear relation-

ship between the optimization target efficiency and the design variables. The fitted R2 

value was 0.919, which was significantly improved compared with the fourth-order hier-

archical polynomial and met the accuracy requirements. The efficiency under the design 

case after the final numerical verification was increased by 3.717%. 

(2) For the fourth-order 40th-degree hierarchical polynomial selected in this paper, 

the degree of influence of each variable on the efficiency can be obtained through the co-

efficients of each polynomial, among which the blade front cover inlet placement angle 

β1s, the baffle starting position θ, and the blade wrap angle φ were found to have a greater 

impact on the efficiency, while other variables were found to have less impact.  

(3) The internal flow of the optimized double volute was well improved, eliminating 

the large-area vortex phenomenon in the low-pressure area at the outlet of the volute and 

the impact loss at the separation tongue, and the overall velocity inside the volute was 

reduced, improving the outlet, the speed at the exit is increased, so that kinetic energy is 

converted into pressure energy to a greater extent, and the energy loss is reduced.  

(4) By comparing and analyzing the entropy production value of each component 

before and after optimization, it is concluded that the total entropy production of the 
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pump was reduced by 4.79 (W/K) compared with that before optimization, and the opti-

mized double volute entropy production was reduced by 9.64 (W/K), which is mainly due 

to the reduction in the wall surface entropy generation and dissipation value in the double 

volute, which effectively reduces the energy loss of the pump and improves the overall 

operating performance of the pump. 
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