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Abstract: In this paper, we investigated the trajectory of the massive particle in the

vicinity of a general spherical symmetric black hole. Also, in the framework of general

sphericalily symmetric black hole, Pseudo-Newtonian potential (PNP) and effective po-

tentials has been investigated. As an example, static spherically symmetric black hole in

f(R) gravity is considered and presented the brief discussion on the structure of spacetime

and horizons. We calculated energy and angular momentum in the framework of gen-

eral relativity as well as in Pseudo-Newtonian theory. A graphical comparison of angular

momentum in this both framework has been studied.
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1 Introduction

Study of motion of a massive particle around a black hole has a relevance to enquire the

behavior of the gravitational field in the vicinity of a black hole [1–3]. Such an enquiry

has started around 1915 after the discovery of Einetein’s general theory of relativity and

publication of Schwarzschild’s vacuum solution Einstein field equations (1916) [4–8]. Also

the motion of a massive particle near the Schwarzchild black hole can be found in [1–3].

Pseudo-Newtonian Potential (PNP) can reproduce all the properties of accretion disk

around a black hole [9–12]. Few years back, S. Chakraborty and S. Chakraborty gave a

general formalism of the trajectory of test particles in the vicinity of a general spherically

symmetric non-rotating black hole [13] and as an example they considered non-rotating

charged Reissner-Nordström black hole. It is to be noted that, the general formulation of

the trajectory is not limited to standard general relativity, this formulation can also be

applicable and extendable for any black hole solution in the modified theories of gravity.

They did not adress the analysis by using modified theories of gravity. Here, in this paper,

as an example we have considered a static and spherically symmetric black hole in f(R)

gravity.
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Modified theories of gravity helps people to study the problems such as the accelerated

expansion [14, 15] and the dark matter origin [16] of our universe. f(R) theory of gravity

is one of modified theory of gravity [17]. In f(R) modified gravity, at large distances,

the geometry of the space-time will be different from that of general theory of relativity.

Analysis of accretion disks around a black hole can be one of the possible way that can

differentiates the possible deviations from general relativity. It is well established that

black hole can grow in mass due to the accretion process and the extensive study on mass

accretion near rotating black holes in general relativity can be found in [18]. Thereafter a

study on steady state accretion disk around black hole was made in [19–21]. The study on

thermal corrections and phase transition for static black hole in f(R) gravity was made in

[22]. Prateek Sharma an others [23] have studied the geodesics of a Static Charged black

hole in f(R) gravity. A brief study on static and spherically symmetric black holes in f(R)

gravity theories can be found [24]. Recently, Saheb Soroushfar and Sudhaker Upadhyay

have studied on accretion disks near a static black hole in f(R) theory of gravity [25].

The paper is organized in eight parts. In Section 2, we outline the motion of a massive

particle near a general spherically symmetric black hole. Effective potential, trajectory

of massive particle at equatorial plane, condition for turning point and circular orbit are

also presented for the black hole in general framework. In section 3, we compared Pseudo-

Newtonian potential (PNP) with the effective potential. A brief study on the structure

of spacetime in f(R) gravity is presented in section 4. The horizon of this black hole and

graphical analysis of the horizon function with respect to radial coordinate r are studied

in section 5. We calculated the energy and general relativistic angular momentum in

section 6 and also determined the energy and angular momentum in the framework of

Pseudo-Newtonian theory in section 7. In this section, a graphical comparison study of

angular in the framework of GR and PNP theory has been presented. Finally, we make

our conclusion in section 8.

2 Motion of massive particles in the vicinity of a general black

hole

For static spherically symmetric spacetime the line element is,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 (2.1)

here, dΩ2
2 = dθ2 + Sin2θdφ2 represents the metric on unit two sphere and to describe a

black hole solution f(r) should satisty the conditions such as : (i) It should have a zero

for some positive values of r (let r?) in such a way that time dilation will be infinite at r?.

(ii) The Kretschmann scalar (K = RµνσλRµνσλ) must be positive at r = r? but it should be
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diverge at r = 0. This indicates that the spacetime of eq. (2.1) has a curvature singularity

at r = r?.

Now, the Lagrangian for metric (2.1) is,

2L = −f(r)ṫ2 +
ṙ2

f(r)
+ r2(θ̇2 + Sin2θφ̇2) (2.2)

here dot is the differentiation with respect to affine parameter λ along the geodesics. This

Lagrangian has two cyclic coordinates t and φ, gives the two conserved quantity, namely

enargy E and momentum h and defined as

E = −p
0

m
= constant, h =

pφ

m
= constant (2.3)

At equatorial plane (θ = π
2
), momentum components in explicit form :

p0 = E
m

f(r)
(2.4)

pr = m
dr

dλ
(2.5)

pθ = 0 (2.6)

pφ =
mh

r2
(2.7)

Using the above momentum components and the energy-momentum conservation relation

pµpµ = −m2 we get, (dr
dλ

)2
= E2 − V 2

eff (r) (2.8)

where

V 2
eff (r) = f(r)

(
1 +

h2

r2

)
(2.9)

is the effective potential for massive particle moving around the black hole.

Now differentiating eq. (2.8) we get

d2r

dλ2
= −1

2

dV 2
eff

dr
(2.10)

Now from eqs. (2.4)-(2.7) we can write the momentum in the φ direction as

dφ

dλ
=

h

r2
(2.11)

The differential equation for the trajectory of the massive particle at the equatorial plane

can be calculated from eqs. (2.9), (2.10) and (2.11) as( dr
dφ

)2
=
r4

h2

[
E2 − f(r)

(
1 +

h2

r2

)]
(2.12)
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( dr
dφ

)2
=
r4

h2
P (r) (2.13)

where

P (r) = E2 − f(r)
(

1 +
h2

r2

)
(2.14)

The significant conclusion for the trajectory of massive particle near black hole is :

a) Effective potential must be less than the energy of the particle.

b) Particles will comes from infinity for those values of r in which P (r) > 0 and go to the

origin. This is generally known as terminating escape orbit.

c) If particles comes from finite distance for an one positive zero of P(r) then either it fall

directly to the origin (called terminating bound orbit) or it can follow the escape orbit

with impact parameter h
E

.

d) There arises two cases for two positive zeros of P(r) : i) If P(r) takes positive values

between two zeros then this type of trajectory is known as periodic bound orbit ; and ii)

When P(r) takes negative values between two zeros then trajectory will be one among the

escape orbit and terminating bound orbit.

e) Turnating point of the trajectory can be calculated when P(r) = 0. In this case it

satisfies the following condition :

E2 = f(r)
(

1 +
h2

r2

)
(2.15)

f) Circular orbits can be obtained when
dV 2

eff

dr
= 0. Therefore we get

f ′(r)

f(r)
=

2h2

r(r2 + h2)
(2.16)

3 Pseudo-Newtonian potential (PNP) and effective potentials

Pesudo-Newtonian gravitational potential can be stated as [12]

ψ =

∫
l2c
r3
dr (3.1)

here r denotes the radial coordinate and lc represents the ratio of the conserved angular

momentum Lc to the energy per particle mass Ec and is known specific angular momentum

in general relativity.

Gravitational potential ψN in view of Newtonian theory,

ψN =

∫
l2cN
r3
dr (3.2)
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where lcN is the Newtonian angular momentum per particle mass. To match the Pesudo-

Newtonian angular momentum per particle mass with the general relativistic angular

momentum, here we take PN potential (3.1). From eqs. (2.15) and (2.16), energy per

particle mass Ec and relativistic conserved angular momentum Lc for circular orbit, re-

spectively, are obtained by

Ec =

√
2f(r)√

2f(r)− rf ′(r)
(3.3)

and

Lc =

√
r3f ′(r)

2f(r)− rf ′(r)
(3.4)

Therefore,

lc =
1

f(r)

√
r3f ′(r)

2
(3.5)

Using (3.1) pseudo-Newtonian ψ can be calculated as

ψ = c− 1

2f(r)
(3.6)

here c has no physical meaning and can be estimated from the result of Schwarzschild

geometry.

In Schwarzchild black hole geometry, the well known Paczynski-Witta gravitational po-

tential is in the form [26]

ψPW = − M

r − 2M
(3.7)

Substituting this in (3.6) we obtain Pseudo-Newtonian potential as

ψ =
1

2

[
1− 1

2f(r)

]
(3.8)

Gravitational potential will be zero for static radius (rs), so f(rs) = 1 in (3.8). Hence the

circular orbit of massive particles can have the radius rc in following range [27]

ra < rc < rs

here ra denotes the photon circular orbit.

It is clear to us from (3.8) that PNP diverges at event horizon then reaches maximum

point at r = rmax where f ′(rmax) = 0 and it will decreases at larger distance from rmax.

This clearly indicates that the gravitational field due to this PNP will be repulsive for

distance larger than rmax. When the metric shows asymptotically flat behavior then

ψ → 0 [27, 28]. Keplarian motion in the radial direction gives

1

2

(dr
dt

)2
= e− veff (3.9)
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where e and veff stands for pseudo Newtonian energy and pseudo Newtonian effective

potential per particle mass respectively. Pseudo Newtonian effective potential has the

following form [29]

veff = ψ +
l2

2r2
(3.10)

where ψ is the PNP calculated in (3.8) and l stands for pseudo Newtonian angular mo-

mentum per particle mass. Circular orbits (keplarian) can be obtained when
dveff
dr

= 0

and as a result we get,

l2c =
r3f ′(2)

2[f(r)]2
(3.11)

It can also be estimated with the help of eqs. (3.3) and (3.4) as

lc =
Lc
Ec

(3.12)

Therefore energy expression will be

ec =
1

2

[
1 +

rf ′(r)− 2f(r)

2[f(r)]2

]
(3.13)

Another way of calculating ec is as follows :

ec =
1

2

[
1− 1

E2
c

]
(3.14)

It is important to note that general relativistic angular momentum will be identical with

the angular momentum obtained from pseudo-Newtonian effective potential theory.

Extrema condition of effective potential veff gives us the information about the sta-

bility of circular orbit, discussed above, so for stable and unstable circular orbit we have,

respectively
∂l2c
∂r

> 0

and
∂l2c
∂r

< 0

Since both GTR and PNP theory provides same angular momentum, so their stability

criteria would be same. For innermost and outermost marginally stable circular orbits we

have the following condition :

2r[f ′(r)]2 = f(r)[3f ′(r) + rf ′′(r)] (3.15)

To get stability we should follow the below condition :

2r[f ′(r)]2 < f(r)[3f ′(r) + rf ′′(r)] (3.16)
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Few important points :

a) l2c and ec will diverge at event horizon and Ec and Lc exist when [2f(r)− rf ′(r)] > 0.

b) l2c and ec will vanish at the static radius (f(r)= 1) while Ec and Lc depend on dif-

ferent values of f(r).

4 Structure of spacetime in f(R) gravity

In this section, we introduce metric tensor and horizon of static black hole in the context

of f(R) gravity. f(R) gravity in 4-dimensions is described by the action :

I =
1

2k

∫
d4x
√
−gf(R) + Im (4.1)

where k is Einsteins constant, R is the Ricci scalar and the matter part is defined by

Im. Considering variational principle in account, the action (4.1) gives the following field

equations :

f ′(R)Rµν −
1

2
f(R)gµν − (∇µ∇ν − gµν�)f ′(R) = kTµν (4.2)

with � = ∇α∇α and f ′ = df(R)
dR

The line element for 4-dimensional static spherically symmetric black hole in f(R) gravity

can be written as [30]

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2(dθ2 + Sin2θdφ2) (4.3)

where metric function becomes

g(r) = 1− 2M

r
+ βr − 1

3
Λr2 (4.4)

Here, M is the mass, β and Λ are the real constant and the cosmological constant re-

spectively [30, 31]. Non-zero cosmological constant has importance in various perspective

of static spherically symmetric black holes can be found in [32, 33]. The idea of static

radius is evidential here as it can address a natural boundary of gravitationally bound

frameworks in an extending universe ruled by a cosmological constant, as discussed in

various circumstances [34–39].

5 Horizons of spacetime in f(R) gravity

Evet horizon can be calculated when metric function (4.4) vanishes, i.e, g(r) = 0. This

gives the following equation :

Λr3 − 3βr2 − 3r + 6M = 0 (5.1)
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Real positive roots of this equation gives the position of the event horizon. Interestingly

computation shows that among the three different roots of eq. (5.1), only one are real

positive root which gives us the radius of the horizon of static black hole in f(R) gravity.

The real positive roots is :

r =
β

Λ
− 2

1
3 (−9β2 − 9Λ)

3Λ
(
P +

√
4(−9β2 − 9Λ)3 + P 2

) 1
3

+

(
P +

√
4(−9β2 − 9Λ)3 + P 2

) 1
3

32
1
3 Λ

(5.2)

where P = 54β3 + 81βΛ− 162MΛ2.

Figure 1 depicts the profile of metric function g(r) versus radial coordinate r for three

different values of the parameter β and Λ. Figure 1(a) is for changing cosmological

constant Λ but fixed real constant β = 1 while the figure 1(b) is for varying real constant

β by taking the constant value of Λ = 1.

Λ = 0.5, β = 1

Λ = 0.7, β = 1

Λ = 0.9, β = 1

0 2 4 6 8

0

50

100

r

g
(r
)

(a)

Λ = 1, β = 3

Λ = 1, β = 4

Λ = 1, β = 5

0 5 10 15
-600

-400

-200

0

200

400

600

800

r

g
(r
)

(b)

Figure 1. In 1(a), the behavior of g(r) versus r by changing Λ for a fixed β = 1. In 1(b), the

behavior of g(r) with respect to r by changing β for a fixed Λ = 1 and .

6 Relativistic theory : energy and angular momentum

For circular orbit the energy and relativistic conserved angular momentum are respectively

Ec =

√
r(1− 2M

r
+ βr − 1

3
Λr2)√

r − 3M + 1
2
βr2

(6.1)

and

Lc =

√
r
√

6M + 3βr2 − 2Λr3

√
6
√
r − 3M + 1

2
βr2

(6.2)

– 8 –

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2022                   doi:10.20944/preprints202207.0343.v1

https://doi.org/10.20944/preprints202207.0343.v1


It is evident that both Ec and Lc depends on various parameters like real constant β,

cosmological constant Λ, radial coordinate r and mass (M) of the black hole. In figure

2(a) the variation of relativistic angular momentum Lc with respect to changing r and β

for a fixed Λ and in figure 2(b), the variation of relativistic angular momentum Lc with

respect to changing r and Λ for a fixed β, has been depicted. However, in figure 3(a),

the variation of energy Ec with respect to changing r and β for a fixed Λ and in figure

3(b), the variation of energy Ec with respect to changing r and Λ for a fixed β, has been

plotted.

(a) (b)

Figure 2. In 2(a), the variation of relativistic angular momentum Lc with respect to changing

r and β for a fixed Λ = 1. In 2(b), the variation of relativistic angular momentum Lc with

respect to changing r and Λ for a fixed β = 1. Here, M = 1.

Now, relativistic specific angular momentum lc(=
Lc

Ec
) can be written as

lc =

√
r
√

6M + 3βr2 − 2Λr3√
6(1− 2M

r
+ βr − 1

3
Λr2)

(6.3)

Effective potential Veff takes the following form :

Veff =

√√√√(1− 2M

r
+ βr − 1

3
Λr2

)(
1 +

h2

r2

)
(6.4)

The nature of Veff versus r by changing h, Λ and β has plotted in figure 4
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(a) (b)

Figure 3. In 3(a), the variation of energy Ec with respect to changing r and β for a fixed Λ =

1. In 3(b), the variation of energy Ec with respect to changing r and Λ for a fixed β = 1. Here,

M = 1.

h = 4.98, Λ = 0.0018

h = 4.26, Λ = 0.0013

h = 3.48, Λ = 0.008

h = 2.43, Λ = 0

0 5 10 15

1.5

2.0

2.5

3.0

3.5

4.0

r

V
e
ff

(a)

h = 9.8, � = -0.5

h = 5.8, � = -0.01

h = 4.5, � = -0.02

h = 3, � = -0.0004

0 5 10 15

0

2

4

6

8

r

V
e
ff

(b)

Figure 4. In 4(a) and 4(b), The behavior of Veff with respect to r by varying h, Λ but

constant β = 1. Here, M = 1.

7 Pseudo-Newtonian theory : potential, energy and angular

momentum

PNP and effective potentials are

ψ =
−6M + 3βr2 − Λr3

2
(

3r − 6 + 3βr2 − Λr3
) (7.1)
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and

Veff = ψ +
l2

r2
=

−6M + 3βr2 − Λr3

2
(

3r − 6 + 3βr2 − Λr3
) +

l2

r2
(7.2)

The graph of PNP ψ for variation of both r and β with Λ = 1 is presented in figure 5(a).

In figure 5(b), variation of PNP ψ for variation of both r and Λ with β = 1 has plotted.

Moreover figure 6 depicts the dependence of PNP for different values of β (left figure)

and Λ (right figure). Figure 5(a) shows that PNP will be decreases when real constant β

will takes higher values while from figure 5(b) it is clear that PNP will be increases for

increasing values of cosmological constant Λ.

(a) (b)

Figure 5. In 5(a), the variation of PNP ψ with respect to changing r and β for a fixed Λ =

1. In 5(b), the variation of PNP ψ with respect to changing r and Λ for a fixed β = 1. Here, M

= 1.

Now, we obtain pseudo-Newtonian angular momentum as following :

lc =

√
r
√

6M + 3βr2 − 2Λr3√
6(1− 2M

r
+ βr − 1

3
Λr2)

(7.3)

Figure 7(a) shows the variation of lc for the variation of both r and β with fixed Λ and

Figure 7(b) shows the variation of lc for the variation of both r and Λ with fixed β.

Also a comparative plot of Lc(from eq.(6.2)) and lc(from eq.(7.3)) has been depicted in

figure 8(a), 8(b), 8(c) and 8(d) for two different values of β but fixed Λ (top pannel)

and two different values of Λ but fixed β (bottom panel). This graphs tellus us that the

angular momentum curve for Pseudo-Newtonian theory takes same form as the angular

momentum curve in general relativistic theory.
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β = 1

β = 2

β = 3

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

r

ψ

(a)

Λ = 0.1

Λ = 0.3

Λ = 0.5

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

r

ψ

(b)

Figure 6. In 5(a), the variation of PNP ψ with respect to r for changing β for a fixed Λ = 1.

In 5(b), the variation of PNP ψ with respect to r for changing Λ for a fixed β = 1. Here, M =

1.

(a) (b)

Figure 7. In 7(a), the variation of lc with respect to r and β for fixed Λ = 1. In 7(b), the

variation of lc with respect to r and Λ for fixed β = 1. Here, M = 1.

and

ec =
9

2

(
−Mr + 1

2
βr3 − 2

3
Λr4 + 4M2 − 4Mβr2 − 4

3
MΛr3 + β2r4 − 2

3
Λβr5 + 1

9
Λ2r6

)
(

3r − 6M + 3βr2 − Λr3
)2

(7.4)
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Figure 8. In 8(a) and 8(b), the variation of Lc and lc with respect to r for changing β = 1, 2

but fixed Λ = 1. In 8(c) and 8(d), the variation of Lc and lc with respect to r for changing

Λ = 0.3, 0.5 but fixed β = 1. Here, M = 1.

The marginally stable circular orbits can be calculated from the positive root of the

following equation :

9Λβr5 + (24Λ− 9β2)r4 − (27β + 90MΛ)r3 + 108Mβr2 − 18Mr + 108M2 = 0 (7.5)

We obtain stable circular orbit for the condition :

9Λβr5 + (24Λ− 9β2)r4 − (27β + 90MΛ)r3 + 108Mβr2 − 18Mr + 108M2 > 0 (7.6)

8 Conclusion

Now we summarize our work here. In this paper, we presented a general formulation of

the trajectory of massive particle around a static and spherically symmetric black hole
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in four-dimensional space time. We also discussed the classification of the trajectories of

massive particles by considering the possible zeros (positive) of the following function :

P (r) = E2 − f(r)
(

1 +
h2

r2

)
the function f(r) is different for different black holes. Once we know about f(r) then we

can estimate the possible trajectories of massive particles around that particular black

hole. Effective potential, trajectory of massive particle at equatorial plane, condition for

turning point and circular orbit has been presented for the black hole in general framework.

In addition to this, we compared Pseudo-Newtonian Potential (PNP) with the effective

potential. We outline spacetime structure in f(R) gravity and have noticed that horizon

function of this black hole gives one positive root. To get a deeper insight, we plot horizon

function with respect to radial coordinate r. We calculate energy and angular momentum

in relativistic treatments. Here, we found that the energy and angular momentum depends

on many parameters like real constant, cosmological constant, radial coordinate and mass

of the black hole. We have done a graphical analysis to check the dependency of energy

and angular momentum on these parameters. We also determined the effective potential

for this black hole and make a graphical analysis.

Within the context of Pseudo-Newtonian theory, we calculate Pseudo-Newtonian Po-

tential (PNP), angular momentum and energy. Here also we found that PNP, energy

and angular momentum depends on various parameters like real constant, cosmological

constant, radial coordinate and mass of the black hole. We have provided a graphical

analysis of energy and angular momentum in this framework also. The graph of PNP

for different values of β and Λ shows that PNP will be decreases when real constant β

will takes higher values and also it will be increases for increasing values of cosmological

constant Λ. More importantly, we have done a comparative plot of relativistic angular

momentum Lc and Pesudo-Newtonian angular momentum lc for different values of real

constant and cosmological constant. These graphs illustrates that, in both the GR treat-

ment and PNP treatment, the angular momentum curve takes same form and these plots

justify the PNP theory. We also noticed that marginally stable circular orbit depends on

the parameters like real constant, cosmological constant, radial coordinate and mass of

the black hole. More interestingly, the general formulation of standard general gravity

theory has applied very well to a black hole solution in f(R) gravity.

It is important to note that the analysis of the trajectory can also be applicable for

black hole in higher dimension. As an example the metric for a N-dimensionalblack hole

can be wrriten in the following form :

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

N−2 (8.1)
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where dΩ2
N−2 define the metric on unit N-2 sphere, given by

dΩ2
1 = dφ

and

dΩ2
j+1 = dθ2j + Sin2θjdΩ2

j , j ≥ 1

here the motion of any test particle (massive or photon) should be restricted to the equato-

rial plane (θj = π
2
, j ≥ 1) because of the spherical symmetry of the space-time. Therefore,

for future work, an extension of the above approach for non-spherical black hole case

(especially axi-symmetric) would be interesting.

Data availibility

Data sharing is not applicable to this article, as no data sets were generated or analyzed

during the current study.
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