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Abstract: An adaptive deep neural network is used in an inverse system identification setting to 

approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by 

copying to the latter the weights and architecture of the converging deep neural network. This 

deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to 

outperform adaptive filtering techniques and algorithms normally used in adaptive control, 

especially when the plant is nonlinear. The deeper the controller the better the inverse function 

approximation, provided that the nonlinear plant have an inverse and that this inverse can be 

approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control 

scheme. The DL-based AIC system is robust to parameter change of the nonlinear plant in that, 

under such change, the plant output reassumes the value of the reference signal considerably 

faster than with the adaptive filter counterpart of the deep neural network. Settling times and rise 

times of the step response are shown to improve in the DL-based AIC system.  

 

Keywords: deep neural network; deep learning controller; nonlinear plant; adaptive inverse 

control; robust control; autoencoder; computational complexity; sensor control. 

 

1. Introduction 

Efficient control of nonlinear dynamic systems has been dealt with extensively in the 

literature. As a control problem, the essence is to make the nonlinear system output 

track a reference trajectory. Many approaches require accurate knowledge of the 

nonlinear plant in order to linearize the plant dynamics around an operating point such 

as in gain scheduling [1]. Others require an accurate dynamic inversion of the plant such 

as feedback linearization methods [2]. These methods require that a considerably 

accurate model or inverse model of the plant exist, in addition to their computational 

complexity. Adaptive control is the logical solution to the unknown plant control 

problem [3-5]. An adaptive filter uses its input and a desired response to modify its 

internal parameters such that a function of the error between its actual and desired 

output is minimum. Just as adaptive control of linear plants requires adaptive filtering 

techniques; adaptive control of nonlinear plants requires nonlinear adaptive filtering 

methods which are generally achieved by using neural networks [6].  
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Precisely, adaptive inverse control (AIC) will be considered in the present work as it is 

particularly simple to implement. AIC was first devised by Widrow and Walach [7] as a 

result of approaching the discipline of adaptive control from the point of view of 

adaptive signal processing.  The basic scheme for linear systems is shown in Figure 1, 

in which an adaptive transversal filter approximates the inverse of the unknown plant 

when connected with the latter in an inverse modeling setting [3]. This adaptive filter is 

copied to form the controller in the figure. During normal operation, the plant output 

will track the reference signal which is input to the controller, the output of which is the 

driving signal to the plant. The delay ��∆ makes up for possible internal delay in the 

plant. The control aim is to guarantee that the reference signal can be tracked accurately 

with minimum delay. Ideally, the cascade of controller and plant forms a 

unit-magnitude transfer function enabling the plant output to be an exact but delayed 

version of the reference in case of no noise and/or disturbance. The plant must be stable 

and minimum phase for its inverse to be stable. Methods exist for controlling plant noise 

and disturbance [6, 7] without compromising the control of plant dynamics. As these 

two control procedures are conveniently separable, these methods will not be 

considered further in the present work whose focus is on nonlinear adaptive control 

strategies.  
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Figure 1. Adaptive inverse model control of an unknown plant [3]. 

 

It is important to note that this is feed-forward control since no feedback is employed 

except the feedback inherent in the adaptive algorithm. This adaptive algorithm could 

be, for example, the least mean square (LMS) algorithm [3] for the linear adaptive 

control case. When the plant is nonlinear, a nonlinear adaptive filter is needed that can 

be realized by a neural network. The adaptive algorithm would then be the 

back-propagation (BP) algorithm, for example [8]. The updating of the adaptive inverse 
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model in Figure 1 enables real time control (RTC) to continuously track any parameter 

change in the plant, resulting in robustness to parameter change. Otherwise, a 

non-adaptive neural inverse model control system would be very sensitive to parameter 

changes [9]. As hinted at in [10], RTC can also handle time-varying or predicted 

parameter change via triggered (possibly periodically) actions to activate updating. This 

procedure could markedly reduce the computational burden required in continuous 

updating or tracking.  

In [6] and [11], AIC was successfully performed for linear and nonlinear systems using 

shallow neural networks. It is known that any smooth function (linear or nonlinear) can 

be approximated by a shallow neural network with a sufficient number of neurons in 

the hidden layer. Using deeper networks with more than one hidden layer, however, 

results in more efficient function approximation since deep neural networks with 

standard architectures represent compositionality of functions [12]. Deep neural 

networks with more than one hidden layer could not be trained successfully without the 

deep learning (DL) techniques arrived at in the mid-2000s. These techniques include the 

use of rectified linear units (ReLU) as activations functions, the use of the dropout 

technique during training and the advent of efficient computing hardware such as 

graphical processing units (GPU) [13]. 

In [9], AIC of nonlinear systems is implemented using a NN with two hidden layers and 

sigmoidal activation functions. In contrast, the present work uses up to four hidden 

layers with ReLU activation functions to avoid the vanishing gradient problem that 

would otherwise occur if sigmoidal activation functions were used in deep NNs.  

A similar problem is treated in [14] but with non-adaptive inverse control. Recently, 

Lyapunov-based DL adaptive online control of nonlinear systems has been carried out 

rather than AIC [15]. Specifically, a DL controller uses restricted Boltzmann machine 

(RBM) to initialize the weight values and Lyapunov stability method to update a 

two-hidden-layer NN controller connected to the nonlinear plant in a negative feedback 

control loop. AIC, on the other hand, involves open loop control and is different from 

the negative feedback control in [15].  

The aim of the present work is to achieve simple yet robust adaptive control using deep 

NNs as controllers with dynamics that are the inverse of those of the generally unknown 

nonlinear plant.  Since theory is still being developed to guide the analysis of control 

systems with nonlinear plants, one of the main objectives of this work is to simply show 

how nonlinear AIC using DL differs from its linear counterpart, when both are used to 

control a nonlinear plant.  

It will also be demonstrated that the deeper the NN controller is, the more robust the 

control system is to parameter change.  

The organization of the paper is as follows. Section 2 introduces general mathematical 

models for nonlinear discrete-time plants. Section 3 explains deep neural networks and 

their training by the BP algorithm. The DL-based AIC nonlinear control system is 

illustrated and explained in Section 4, and simulation results are presented in Section 5. 

Finally, Section 6 concludes the paper.  
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2. Dynamic Nonlinear Discrete-Time Plants 

Four models of discrete-time plants governed by nonlinear difference equations are 

described in [16] and summarized below. The input and output of the plant are denoted 

by �(�) and �(�) respectively, where k is the discrete time index. It is assumed that the 

present output sample is dependent on n past outputs and m present and past inputs, 

where � ≤ �. Such a system is said to be dynamic, in contrast to a static or memory-less 

system. In the following model equations, �(∙) and �(∙) are nonlinear functions and 

α’s and β’s are constants.   

Model I: 

�(�) = ∑ ���(� − �) + �[�(�), �(� − 1), … , �(� − � + 1)]�
���   

Model II: 

�(�) = �[�(� − 1), �(� − 2), … , �(� − �)] + ∑ ���(� − �)���
���   

Model III: 

�(�) = �[�(� − 1), �(� − 2), … , �(� − �)] +  �[�(�), �(� − 1), … , �(� − � + 1)] 

Model IV: 

�(�) = �[�(� − 1), �(� − 2), … . , �(� − �);  �(�), �(� − 1), … , �(� − � + 1)] 

(1) 

 

The nonlinear plant functions  �(∙)  and �(∙)  are assumed to be unknown when 

adaptive inverse control of the plant is performed. It was found in [16] that Model II is 

particularly suitable for control problems. If the nonlinear plant is 

bounded-input-bounded-output (BIBO) stable, its model must also possess this property. 

For Model I, this implies that the characteristic equation, comprising a polynomial in z of 

degree n with α’s as the coefficients, must have all its roots inside the unit circle in the 

z-plane. For the other models, the stability conditions are not so simple, and therefore, 

they constitute an important research area.  

3. Deep Neural Networks 

Multi-layer neural networks (NN) can be regarded as nonlinear maps with their weights 

as parameters [16]. They can thus be used as subsystems to constitute controllers for 

nonlinear dynamical plants. In the present case, the NN or the controller models the 

inverse of the plant dynamics as explained in the introduction and Figure 1. Dynamics 

are introduced in the NN via tapped delay lines (TDL) at its input. A multi-layer NN 

with more than one hidden layer is considered deep [13]. The weights are adapted to 

minimize a function of the error between the NN output and the desired output 

according to a training algorithm such as the BP algorithm which is based on steepest 

descent. Training and convergence of NN’s are heavily dependent on initial conditions 

of the weights, as well as on the nature of their input data. In this work, neural networks 

will be denoted by the notation Ɲ(�,�):�:�:… where I is the number of input nodes, L is the 

number of output nodes (or neurons), � is the number of neurons in the first hidden 

layer, � is the number of neurons in the second hidden layer, and so on. A deep NN 

with two hidden layers is illustrated in Figure 2. The NN in this figure generally 

represents a multiple-input multiple-output (MIMO) system. The outputs of all hidden 
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and output nodes are subjected to nonlinear activation functions. Only the output nodes 

are permitted to have a linear or nonlinear activation function depending on the 

application and the required range of the NN outputs. The output vector Y can be 

expressed as: 

 

 ��×� =  �[��×� ����×� ����×� ��×� +  ��×�� + ��×�� + ��×�]     (2) 

 

where � is the input vector, �, �, and � are the weight matrices of the first hidden, 

second hidden and output layers respectively. �, �, � and � are the numbers of nodes of 

the input, first hidden, second hidden and output layers respectively. �, � and � are 

the corresponding biases. The activation functions in Equation 2 operate point-wise on 

the respective vectors. The BP algorithm, which is based on gradient descent, is 

summarized by the following set of equations with reference to Figure 2. It is assumed 

that nonlinear activation functions are present in the hidden layers, whereas the output 

nodes are linear.  
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Figure 2. A generic diagram for a three-layer deep NN with two hidden layers. 
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���  ←  ��� +  ∆���,   � = 1, ⋯ , �;   � = 1, ⋯ , �. 

where ∆��� = �(�� − ��)�� = �����   

ℎ��  ←  ℎ�� + ∆ℎ��,   � = 1, ⋯ , �;   � = 1, ⋯ , �. 

where ∆ℎ�� = �����, with  �� = [∑ ���� ��] ∙ Φ�(��)                               (3) 

���  ←  ��� + ∆��� ,   � = 1, ⋯ , �;   � = 1, ⋯ , �. 

where ∆��� = �����, with  �� = �∑ ℎ��� ��� ∙ Φ�(��)                                

 

In Equations (3) above, � is the BP learning rate, the �’� are the correct outputs at the 

output layer needed for supervised training, the �’� are the activation function inputs, 

the �’� are the activation function outputs for output and hidden layers, the �’� are the 

inputs to the input layer, and Φ�(∙) is the derivative of the nonlinear activation function 

Φ(∙). In the present application, the training data, consisting of the correct outputs (�’�) 

and inputs (�’�), would be values of the control signal �(�) and the plant output signal 

�(�) respectively. 

Training deep neural networks is usually a difficult task due to different gradient 

magnitudes in lower and higher layers, the curvature of the objective or error function 

with its numerous local minima, and lack of acceptable generalization caused by the 

large number of parameters to be updated. The following sub-section highlights the use 

of NN autoencoders (AE) to pre-train deep NNs.  

3.1. Deep Neural Network Initialization Using Autoencoders 

Well-designed random weight initialization of a deep NN is crucial for proper 

convergence during training and subsequent operation. Poorly initialized networks are 

very difficult, if not impossible, to train. To initialize the deep NN weights, each layer 

can be pre-trained separately using an auxiliary error function before the whole network 

is trained by the usual methods such as stochastic gradient descent that employs 

back-propagation for instance. This method of unsupervised pretraining of one layer at a 

time prevents difficulties of full deep NN supervised training. The NN architecture 

adopted to train each layer separately is called an autoencoder (AE). NN autoencoders 

have their own inputs as correct outputs during training [17-19]. In this work, we will 

use simple NN autoencoders that have only one hidden layer.  To limit the ensuing 

computational complexity, the present work will not consider deep AEs.  The 

procedure is as follows [19]: the NN initial weights are determined by first greedily 

training a sequence of shallow AEs one layer at a time using unsupervised data. A 

shallow AE consists of an encoder and a decoder. Only the encoder weights of the 

trained AE are retained and considered to be the initial weight of that layer. The final 

layer is trained using supervised data. Finally, the complete network is fine-tuned using 

supervised data according to the back-propagation algorithm. AEs not only improve 

system initialization, but also lead to better generalization and prevent overfitting [20, 

21].  

Classical momentum is another necessary technique to improve deep NN training. Even 

well-initialized networks can perform poorly without momentum. This concept is 

explained next.  
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3.2. Training with Momentum 

Stochastic gradient descent can be accelerated by iteratively accumulating a velocity 

vector in the direction of reduction of the error function. If we call the velocity vector by 

�, a weight update of Equations (3) will change from  

 

���  ←  ��� + ∆���         

to: 

� ←  � � + ∆ ���        

��� ←  ��� + �           (4) 

 

where � is the momentum factor, and assuming zero initial value of �. The acceleration 

of the gradient descent algorithm by using momentum does not come at the expense of 

stability; contrary to acceleration by increasing the learning rate �. Setting � equal to 

zero in Equations (4) reduces the equation to its original form. For convex objective 

functions, the momentum-based method will outperform the SGD-based method 

particularly in the transient stage of optimization, and is capable of accelerating 

directions of low-curvature in the objective or error function [17]. 

4. DL-Based Adaptive Inverse Control of a Nonlinear Plant 

Several assumptions are made to achieve satisfactory control of nonlinear plants. For 

example, it is assumed that the nonlinear plant is BIBO stable. They are also assumed to 

be non-minimum phase, meaning that they have stable inverses, and first of all, that 

such inverses exist. Figure 3 shows a general block diagram of the AIC system for 

controlling nonlinear plants using deep NNs. 
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   Figure 3. DL-based adaptive inverse control of a nonlinear plant. 

 

As explained in Section 3, weight initialization of the deep NN is achieved with the aid 

of pre-trained AEs. To train AEs before normal system operation, we need the 

input-correct output training data of the deep NN. However, in the present application, 
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the correct output is not readily available due to the adaptive nature of this control 

system. Rather, the correct output builds up gradually during online operation. A 

solution to this problem is to use offline measurements as training data for the AEs, by 

inputting training data to the unknown nonlinear system and measuring its output. 

Since the deep NN is meant to inverse-model the nonlinear system or plant, the 

measured plant output is used as input training data to the NN, and the chosen input 

data will constitute the NN correct output. All this is done offline and the NN is thereby 

pre-trained using AEs.  

It will be shown that the reference command signal is well tracked for this adaptive 

system rendering it robust to parameter variations, especially when the NN is deep 

enough. If a parameter of the nonlinear plant changes causing a fall (rise) in the plant 

output, the adaptive process compensates for this fall (rise) causing the control signal to 

increase (decrease) to re-attain the original plant output that tracks the reference. The 

plant parameter change could be abrupt due, for example, to failure of actuators or 

sensors [22, 23]. Soft faults such as actuator or sensor biases are also frequently 

encountered in industry [23]. If the above system is a temperature control system as in [9] 

for instance, and if the internal fan actuator abruptly changes speed to a higher value 

due to soft faults or failures, the temperature will drop and so will the plant output 

voltage. The control signal will then increase such that the system adaptively returns to 

its original state, and the faulty speed change of the fan has no effect on the tracking 

performance. Such abrupt parameter variation will be simulated and discussed in the 

following section on results, as they are more challenging than slowly-varying 

parameter changes as far as tracking in adaptive control systems is concerned.   

 

5. Simulation Results 

Simulations are carried out in MATLAB (academic licenses 30904939 and 40635944). The 

suggested nonlinear AIC system of Figure 3 is simulated and the results presented. The 

deep NN controller is then compared to a linear controller to show the difference in 

performance. The nonlinear plant to be controlled is governed by the nonlinear 

difference equation given below in accordance with Model II of Equation 1.  

 

�(�) = �[�(� − 1), �(� − 2)] + �(�)      (5) 

 

where the nonlinear function �(∙) is substituted for as follows: 

�(�) =
�(���) ∙ �(���)

�� ��(���)
+ �(�)        (6) 

 

Nonlinear plants of this form were introduced in the literature by Narendra and 

Parthasarathy [16]. The reference signal is taken as a square wave spanning 1000 

samples. The NN used is Ɲ(�,�):�:�:�:� indicating four hidden layers, each having five 

nodes with ReLU activation functions, one linear output node and an input TDL length 

of 4. The BP learning rate is α=0.02. BP minimizes the quadratic cost function. As in 
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Figure 3, the controller is a copy of the approximate inverse plant model achieved by the 

adaptive neural network. Figure 4 shows the square reference and plant output signals. 

Figure 5 shows the corresponding control signal. It is clear that with each step change, 

the NN re-adapts allowing the plant output to track the reference command signal 

which is applied as input to the controller. The response to the step changes is oscillatory 

with overshoot as shown. Apart from the adaptation region near the step changes, the 

plant output and reference signals are indistinguishable from each other. Figures 6 and 7 

show the reference and plant output signals and the control signal respectively, when an 

abrupt plant parameter change occurs at the 600th sample. The parameter change is 

assumed to render the following plant equation: 

�(�) =
�(���) ∙ �(���)

���∗�(���)� + �(�)        (7) 

A unity parameter in the denominator has been increased to 4. This sudden change will 

cause an abrupt but temporary decrease in the plant output and an increase in the 

control signal at the 600th sample, as is clear from Figures 6 and 7. The settling time 

needed after parameter change is 18 time samples only. The settling time is taken as the 

time needed for the plant output to reach and stay within 2% of its final value. The 

parameter changes have little effect on the tracking performance; they are rapidly 

compensated for.  

A further parameter change could result in the following plant equation: 

�(�) =
�(���) ∙ �(���)

��� ∙ �(���)� + 2 ∙  �(�)       (8) 

The above parameter change, when effected abruptly, will cause an abrupt but 

temporary increase in plant output and, therefore, a decrease in the control voltage at 

the 600th sample as in Figures 8 and 9. Again, the change is compensated and good 

tracking is obtained.   

To further demonstrate the benefit of using DL, we operate the same nonlinear control 

system (Figure 3) but using an adaptive FIR filter in place of the deep NN. The adaptive 

FIR filter uses a four-tap TDL which is the same TDL length used in the deep NN. The 

results are illustrated by Figures 10 and 11. The parameter change at the 600th sample is 

in accordance with Equation (7). The settling time is 58 time samples when using an 

LMS learning rate of 0.02 as in the BP training of the deep NN. This settling time is 

considerably higher than that obtained with DL, a result that is to be anticipated because 

of the linear structure of the inverse model after convergence. The linearity implies the 

presence of structural errors in modeling (or inverse modeling) the nonlinear system [24]. 

The advantage of using DL comes at the expense of some additional computational 

complexity. The number of multiplications needed with DL is �{��} with � denoting 

the average number of nodes per layer, whereas that needed with the adaptive filter is 

�{�} only.  

NN training methods based on gradient descent may cause the solution to converge to a 

local rather than the global minimum. As a first step, and for each comparison between 

systems or between plant parameter variations, initial conditions for the weight values 
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were adjusted to yield the best performance expected from the nonlinear system when a 

specific scenario is to be compared with others. This is done by trial and error to 

discover the general trend or behavior which shortly becomes manifest.  

 

 
Figure 4: Reference and plant output of the AIC system with Ɲ(�,�):�:�:�:�. 

 

 

Figure 5: Control signal corresponding to Figure 4.  
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Figure 6: Reference and plant output with a parameter change at the 600th sample according to Equation (7), using Ɲ(�,�):�:�:�:�. 

 

 

Figure 7: Control signal corresponding to Figure 6.  

 

It is worth noting that the compensating change in control voltage upon parameter 

change, demonstrated by Figures 7, 9, and 11, can be used in control applications such as 

temperature measurement using thermoresistive sensors [25]. The integration of sensors 

in control and automation draws on several sensor functions that are featured in sensor 

networks, fault tolerant control, intelligent sensors, robot sensing, etc. [26]. 

In the temperature measurement application in [25], however, the thermoresistive 

sensor itself is the nonlinear plant whose process variable (temperature) is to be 

controlled and fixed to a reference value enabling the measurement of the surrounding 

r(
k)

 a
n

d
 c

(k
)

c
o
n
tr

o
l s

ig
n
a
l u

(k
)



Sensors 2021, 21, x FOR PEER REVIEW 12 of 16 
 

 

temperature. The resistance of such a sensor depends on temperature, thereby changing 

the electrical signal associated with it, which is fed back and compared with the 

reference. To measure the surrounding temperature, the role of feedback control is to 

keep the sensor temperature constant and equal to a reference temperature despite the 

temperature change in the surroundings. Therefore, the resulting variation or change in 

the control voltage is used to measure the surrounding temperature. The DL-based AIC 

control system of Figure 3 can be a suitable substitute for the feedback control used in 

this sensor control problem of temperature measurement; the justifications are ease of 

implementation and avoidance of techniques used with nonlinear plant control such as 

feedback linearization.  

 
Figure 8: Reference and plant output with a parameter change at the 600th sample according to Equation (8), using Ɲ(�,�):�:�:�:�. 

 

 
Figure 9: Control signal corresponding to Figure 8.  
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Figure 10. Reference and plant output with a parameter change at the 600th sample, using adaptive filter as the inverse model of the 

nonlinear plant. 

 
Figure 11: Control signal corresponding to Figure 10.  
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figure. Then, the measured plant output will constitute the input training data of the 

AEs. 

In reference to Table 1, without AE, two and three hidden layers show similar 

performances that are intermediate between the case of four hidden layers and that of 

the adaptive linear filter. When AEs are used for initializing the deep NN, better results 

are obtained regarding settling time as can be seen from Table 1. This improvement is 

due to proper weight initialization which speeds up training by guaranteeing first that 

the stochastic gradient solution is close to a suitable local minimum. The symbol αae is 

used to denote the AE learning rate. 

Table 2 demonstrates the benefit of using a momentum factor μ on the rise time of the 

step response after parameter change. The rise time of a step response is defined as the 

time needed for the response to rise from 10% to 90% of the final value. It is found that 

training with a momentum factor reduces the rise time but increases the settling time 

without causing instability.  

For control systems with underdamped step response (which is often encountered in 

this work), the rise time is sometimes defined as the time required by the response to 

reach the final value during its first cycle of oscillation. The smaller rise time due to 

using momentum is clear from the Table 2. This is important in control applications; if 

the rise time is too long, the system may be operating with the process variable below 

the optimum for too long. This may have consequences depending on the particular 

control application. For example, the consequence could be failure to apply sufficient 

braking force quickly enough.  

6. Conclusions 

In this work, DL-based adaptive inverse control of nonlinear dynamic systems is 

achieved. Simulations indicate efficient online (tracking) control. It is evidently possible 

to generate a control signal that ensures reliable inverse modeling and control of a 

nonlinear plant with unknown dynamics using a deep neural network to learn the 

inverse model. The resulting adaptive control system is robust to parameter changes. 

Settling times and rise times of the step response after parameter change are shown to 

improve even further when using autoencoder initialization of the neural network 

weights, and including momentum in the cost function minimization by 

backpropagation. The deeper the NN that learns the inverse model, the more 

accentuated the robustness of the adaptive control system to parameter change. 
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Table 1: Settling time after nonlinear-plant parameter change [Equation (7)] versus number of deep NN hidden layers, and settling 

time when using a linear FIR adaptive filter. α=0.02, αae=0.1, μ=0.  

 

Type of controller 

Settling time  

(in number of sample intervals) 

Without AE 

initialization 

With AE 

initialization 

 

Deep NN 

Ɲ(�,�):�:�:�:� (4 hidden layers) 18 10 

Ɲ(�,�):�:�:� (3 hidden layers) 25 13 

Ɲ(�,�):�:� (2 hidden layers) 25 17 

Linear FIR adaptive filter 58 

 

 

Table 2: Momentum effect on settling time and rise time after nonlinear-plant parameter change [Equation (7)] versus number of 

deep NN hidden layers, and when using a linear FIR adaptive filter. α=0.02, αae=0.1, different momentum factor values (μ). AE is 

used for initialization.  

 

Type of controller 

Settling time  

(in number of sample 

intervals) 

Rise time  

(in number of sample 

intervals) 

μ=0 μ=0.4 μ=0 μ=0.4 

 

Deep NN 

Ɲ(�,�):�:�:�:� (4 hidden layers) 10 18 9 7 

Ɲ(�,�):�:�:� (3 hidden layers) 13 30 12 9 

Ɲ(�,�):�:� (2 hidden layers) 17 30 15 11 

Linear FIR adaptive filter 58 50 
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