

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Article

Deep Learning for Robust Adaptive Inverse Control of Non-

linear Dynamic Systems: Improved Settling Time with an Au-

toencoder

Nuha A. S. Alwan 1 and Zahir M. Hussain 2,*

1 College of Engineering, University of Baghdad, Baghdad 10017, Iraq; Email: n.alwan@ieee.org

2 School of Engineering, Edith Cowan University, Joondalup, WA 6027 Australia

* Correspondence: z.hussain@ecu.edu.au or zmhussain@ieee.org

Abstract: An adaptive deep neural network is used in an inverse system identification setting to

approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by

copying to the latter the weights and architecture of the converging deep neural network. This

deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to

outperform adaptive filtering techniques and algorithms normally used in adaptive control,

especially when the plant is nonlinear. The deeper the controller the better the inverse function

approximation, provided that the nonlinear plant have an inverse and that this inverse can be

approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control

scheme. The DL-based AIC system is robust to parameter change of the nonlinear plant in that,

under such change, the plant output reassumes the value of the reference signal considerably

faster than with the adaptive filter counterpart of the deep neural network. Settling times and rise

times of the step response are shown to improve in the DL-based AIC system.

Keywords: deep neural network; deep learning controller; nonlinear plant; adaptive inverse

control; robust control; autoencoder; computational complexity; sensor control.

1. Introduction

Efficient control of nonlinear dynamic systems has been dealt with extensively in the

literature. As a control problem, the essence is to make the nonlinear system output

track a reference trajectory. Many approaches require accurate knowledge of the

nonlinear plant in order to linearize the plant dynamics around an operating point such

as in gain scheduling [1]. Others require an accurate dynamic inversion of the plant such

as feedback linearization methods [2]. These methods require that a considerably

accurate model or inverse model of the plant exist, in addition to their computational

complexity. Adaptive control is the logical solution to the unknown plant control

problem [3-5]. An adaptive filter uses its input and a desired response to modify its

internal parameters such that a function of the error between its actual and desired

output is minimum. Just as adaptive control of linear plants requires adaptive filtering

techniques; adaptive control of nonlinear plants requires nonlinear adaptive filtering

methods which are generally achieved by using neural networks [6].

Citation: Alwan, N. A. S.; Hussain,

Z. M. Deep Learning for Robust

Adaptive Inverse Control of Non-

linear Dynamic Systems: Improved

Settling Time with an Autoencoder.

Academic Editor:

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright:

Sensors 2021, 21, x FOR PEER REVIEW 2 of 16

Precisely, adaptive inverse control (AIC) will be considered in the present work as it is

particularly simple to implement. AIC was first devised by Widrow and Walach [7] as a

result of approaching the discipline of adaptive control from the point of view of

adaptive signal processing. The basic scheme for linear systems is shown in Figure 1,

in which an adaptive transversal filter approximates the inverse of the unknown plant

when connected with the latter in an inverse modeling setting [3]. This adaptive filter is

copied to form the controller in the figure. During normal operation, the plant output

will track the reference signal which is input to the controller, the output of which is the

driving signal to the plant. The delay ��∆ makes up for possible internal delay in the

plant. The control aim is to guarantee that the reference signal can be tracked accurately

with minimum delay. Ideally, the cascade of controller and plant forms a

unit-magnitude transfer function enabling the plant output to be an exact but delayed

version of the reference in case of no noise and/or disturbance. The plant must be stable

and minimum phase for its inverse to be stable. Methods exist for controlling plant noise

and disturbance [6, 7] without compromising the control of plant dynamics. As these

two control procedures are conveniently separable, these methods will not be

considered further in the present work whose focus is on nonlinear adaptive control

strategies.

Adaptive
Inverse
Model

Unknown
Plant

Copy of
Inverse
Model

 - ∆
 z

Controller

Reference
Command

r (k) u (k)

c (k)

c (k): Plant Output

Ʃ

+

_

Error

Copy Weights

Figure 1. Adaptive inverse model control of an unknown plant [3].

It is important to note that this is feed-forward control since no feedback is employed

except the feedback inherent in the adaptive algorithm. This adaptive algorithm could

be, for example, the least mean square (LMS) algorithm [3] for the linear adaptive

control case. When the plant is nonlinear, a nonlinear adaptive filter is needed that can

be realized by a neural network. The adaptive algorithm would then be the

back-propagation (BP) algorithm, for example [8]. The updating of the adaptive inverse

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16

model in Figure 1 enables real time control (RTC) to continuously track any parameter

change in the plant, resulting in robustness to parameter change. Otherwise, a

non-adaptive neural inverse model control system would be very sensitive to parameter

changes [9]. As hinted at in [10], RTC can also handle time-varying or predicted

parameter change via triggered (possibly periodically) actions to activate updating. This

procedure could markedly reduce the computational burden required in continuous

updating or tracking.

In [6] and [11], AIC was successfully performed for linear and nonlinear systems using

shallow neural networks. It is known that any smooth function (linear or nonlinear) can

be approximated by a shallow neural network with a sufficient number of neurons in

the hidden layer. Using deeper networks with more than one hidden layer, however,

results in more efficient function approximation since deep neural networks with

standard architectures represent compositionality of functions [12]. Deep neural

networks with more than one hidden layer could not be trained successfully without the

deep learning (DL) techniques arrived at in the mid-2000s. These techniques include the

use of rectified linear units (ReLU) as activations functions, the use of the dropout

technique during training and the advent of efficient computing hardware such as

graphical processing units (GPU) [13].

In [9], AIC of nonlinear systems is implemented using a NN with two hidden layers and

sigmoidal activation functions. In contrast, the present work uses up to four hidden

layers with ReLU activation functions to avoid the vanishing gradient problem that

would otherwise occur if sigmoidal activation functions were used in deep NNs.

A similar problem is treated in [14] but with non-adaptive inverse control. Recently,

Lyapunov-based DL adaptive online control of nonlinear systems has been carried out

rather than AIC [15]. Specifically, a DL controller uses restricted Boltzmann machine

(RBM) to initialize the weight values and Lyapunov stability method to update a

two-hidden-layer NN controller connected to the nonlinear plant in a negative feedback

control loop. AIC, on the other hand, involves open loop control and is different from

the negative feedback control in [15].

The aim of the present work is to achieve simple yet robust adaptive control using deep

NNs as controllers with dynamics that are the inverse of those of the generally unknown

nonlinear plant. Since theory is still being developed to guide the analysis of control

systems with nonlinear plants, one of the main objectives of this work is to simply show

how nonlinear AIC using DL differs from its linear counterpart, when both are used to

control a nonlinear plant.

It will also be demonstrated that the deeper the NN controller is, the more robust the

control system is to parameter change.

The organization of the paper is as follows. Section 2 introduces general mathematical

models for nonlinear discrete-time plants. Section 3 explains deep neural networks and

their training by the BP algorithm. The DL-based AIC nonlinear control system is

illustrated and explained in Section 4, and simulation results are presented in Section 5.

Finally, Section 6 concludes the paper.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16

2. Dynamic Nonlinear Discrete-Time Plants

Four models of discrete-time plants governed by nonlinear difference equations are

described in [16] and summarized below. The input and output of the plant are denoted

by �(�) and �(�) respectively, where k is the discrete time index. It is assumed that the

present output sample is dependent on n past outputs and m present and past inputs,

where � ≤ �. Such a system is said to be dynamic, in contrast to a static or memory-less

system. In the following model equations, �(∙) and �(∙) are nonlinear functions and

α’s and β’s are constants.

Model I:

�(�) = ∑ ���(� − �) + �[�(�), �(� − 1), … , �(� − � + 1)]�
���

Model II:

�(�) = �[�(� − 1), �(� − 2), … , �(� − �)] + ∑ ���(� − �)���
���

Model III:

�(�) = �[�(� − 1), �(� − 2), … , �(� − �)] + �[�(�), �(� − 1), … , �(� − � + 1)]

Model IV:

�(�) = �[�(� − 1), �(� − 2), … . , �(� − �); �(�), �(� − 1), … , �(� − � + 1)]

(1)

The nonlinear plant functions �(∙) and �(∙) are assumed to be unknown when

adaptive inverse control of the plant is performed. It was found in [16] that Model II is

particularly suitable for control problems. If the nonlinear plant is

bounded-input-bounded-output (BIBO) stable, its model must also possess this property.

For Model I, this implies that the characteristic equation, comprising a polynomial in z of

degree n with α’s as the coefficients, must have all its roots inside the unit circle in the

z-plane. For the other models, the stability conditions are not so simple, and therefore,

they constitute an important research area.

3. Deep Neural Networks

Multi-layer neural networks (NN) can be regarded as nonlinear maps with their weights

as parameters [16]. They can thus be used as subsystems to constitute controllers for

nonlinear dynamical plants. In the present case, the NN or the controller models the

inverse of the plant dynamics as explained in the introduction and Figure 1. Dynamics

are introduced in the NN via tapped delay lines (TDL) at its input. A multi-layer NN

with more than one hidden layer is considered deep [13]. The weights are adapted to

minimize a function of the error between the NN output and the desired output

according to a training algorithm such as the BP algorithm which is based on steepest

descent. Training and convergence of NN’s are heavily dependent on initial conditions

of the weights, as well as on the nature of their input data. In this work, neural networks

will be denoted by the notation Ɲ(�,�):�:�:… where I is the number of input nodes, L is the

number of output nodes (or neurons), � is the number of neurons in the first hidden

layer, � is the number of neurons in the second hidden layer, and so on. A deep NN

with two hidden layers is illustrated in Figure 2. The NN in this figure generally

represents a multiple-input multiple-output (MIMO) system. The outputs of all hidden

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16

and output nodes are subjected to nonlinear activation functions. Only the output nodes

are permitted to have a linear or nonlinear activation function depending on the

application and the required range of the NN outputs. The output vector Y can be

expressed as:

 ��×� = �[��×� ����×� ����×� ��×� + ��×�� + ��×�� + ��×�] (2)

where � is the input vector, �, �, and � are the weight matrices of the first hidden,

second hidden and output layers respectively. �, �, � and � are the numbers of nodes of

the input, first hidden, second hidden and output layers respectively. �, � and � are

the corresponding biases. The activation functions in Equation 2 operate point-wise on

the respective vectors. The BP algorithm, which is based on gradient descent, is

summarized by the following set of equations with reference to Figure 2. It is assumed

that nonlinear activation functions are present in the hidden layers, whereas the output

nodes are linear.

Output
Layer

+ꞵ1

+ꞵ2

+B1

+B2

+BJ

Two
Hidden
Layers

Intput
Layer

x1

x2

xI +ꞵK

y1

y2

yL

w11

w21

wJ1

w12

w22

wJ2

w1I

w2I

wJI

h11 g11

h21

hK1 gL1

gLK

g1K

hKJ

h1J

h12

hK2

g12

gL2

I nodes J nodes K nodes L nodes

()  () () 

Non-Linear
Activation-1

(ReLU)

Non-Linear
Activation-2

(ReLU)

Output
Activation
(Linear)

Intput
Buffer

x1

x2

xI

Output
Signal

+b1

+b2

+bL

Figure 2. A generic diagram for a three-layer deep NN with two hidden layers.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16

��� ← ��� + ∆���, � = 1, ⋯ , �; � = 1, ⋯ , �.

where ∆��� = �(�� − ��)�� = �����

ℎ�� ← ℎ�� + ∆ℎ��, � = 1, ⋯ , �; � = 1, ⋯ , �.

where ∆ℎ�� = �����, with �� = [∑ ���� ��] ∙ Φ�(��) (3)

��� ← ��� + ∆��� , � = 1, ⋯ , �; � = 1, ⋯ , �.

where ∆��� = �����, with �� = �∑ ℎ��� ��� ∙ Φ�(��)

In Equations (3) above, � is the BP learning rate, the �’� are the correct outputs at the

output layer needed for supervised training, the �’� are the activation function inputs,

the �’� are the activation function outputs for output and hidden layers, the �’� are the

inputs to the input layer, and Φ�(∙) is the derivative of the nonlinear activation function

Φ(∙). In the present application, the training data, consisting of the correct outputs (�’�)

and inputs (�’�), would be values of the control signal �(�) and the plant output signal

�(�) respectively.

Training deep neural networks is usually a difficult task due to different gradient

magnitudes in lower and higher layers, the curvature of the objective or error function

with its numerous local minima, and lack of acceptable generalization caused by the

large number of parameters to be updated. The following sub-section highlights the use

of NN autoencoders (AE) to pre-train deep NNs.

3.1. Deep Neural Network Initialization Using Autoencoders

Well-designed random weight initialization of a deep NN is crucial for proper

convergence during training and subsequent operation. Poorly initialized networks are

very difficult, if not impossible, to train. To initialize the deep NN weights, each layer

can be pre-trained separately using an auxiliary error function before the whole network

is trained by the usual methods such as stochastic gradient descent that employs

back-propagation for instance. This method of unsupervised pretraining of one layer at a

time prevents difficulties of full deep NN supervised training. The NN architecture

adopted to train each layer separately is called an autoencoder (AE). NN autoencoders

have their own inputs as correct outputs during training [17-19]. In this work, we will

use simple NN autoencoders that have only one hidden layer. To limit the ensuing

computational complexity, the present work will not consider deep AEs. The

procedure is as follows [19]: the NN initial weights are determined by first greedily

training a sequence of shallow AEs one layer at a time using unsupervised data. A

shallow AE consists of an encoder and a decoder. Only the encoder weights of the

trained AE are retained and considered to be the initial weight of that layer. The final

layer is trained using supervised data. Finally, the complete network is fine-tuned using

supervised data according to the back-propagation algorithm. AEs not only improve

system initialization, but also lead to better generalization and prevent overfitting [20,

21].

Classical momentum is another necessary technique to improve deep NN training. Even

well-initialized networks can perform poorly without momentum. This concept is

explained next.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

3.2. Training with Momentum

Stochastic gradient descent can be accelerated by iteratively accumulating a velocity

vector in the direction of reduction of the error function. If we call the velocity vector by

�, a weight update of Equations (3) will change from

��� ← ��� + ∆���

to:

� ← � � + ∆ ���

��� ← ��� + � (4)

where � is the momentum factor, and assuming zero initial value of �. The acceleration

of the gradient descent algorithm by using momentum does not come at the expense of

stability; contrary to acceleration by increasing the learning rate �. Setting � equal to

zero in Equations (4) reduces the equation to its original form. For convex objective

functions, the momentum-based method will outperform the SGD-based method

particularly in the transient stage of optimization, and is capable of accelerating

directions of low-curvature in the objective or error function [17].

4. DL-Based Adaptive Inverse Control of a Nonlinear Plant

Several assumptions are made to achieve satisfactory control of nonlinear plants. For

example, it is assumed that the nonlinear plant is BIBO stable. They are also assumed to

be non-minimum phase, meaning that they have stable inverses, and first of all, that

such inverses exist. Figure 3 shows a general block diagram of the AIC system for

controlling nonlinear plants using deep NNs.

 Deep NN
(Plant Inverse)

 -1
 P

Unknown
Nonlinear Plant

P

Copy of

 -1
 P

Controller

Reference
Command

r (k) u (k)

c (k)

c (k): Plant Output

Ʃ

+

_

Error

Copy Weights

 Figure 3. DL-based adaptive inverse control of a nonlinear plant.

As explained in Section 3, weight initialization of the deep NN is achieved with the aid

of pre-trained AEs. To train AEs before normal system operation, we need the

input-correct output training data of the deep NN. However, in the present application,

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

the correct output is not readily available due to the adaptive nature of this control

system. Rather, the correct output builds up gradually during online operation. A

solution to this problem is to use offline measurements as training data for the AEs, by

inputting training data to the unknown nonlinear system and measuring its output.

Since the deep NN is meant to inverse-model the nonlinear system or plant, the

measured plant output is used as input training data to the NN, and the chosen input

data will constitute the NN correct output. All this is done offline and the NN is thereby

pre-trained using AEs.

It will be shown that the reference command signal is well tracked for this adaptive

system rendering it robust to parameter variations, especially when the NN is deep

enough. If a parameter of the nonlinear plant changes causing a fall (rise) in the plant

output, the adaptive process compensates for this fall (rise) causing the control signal to

increase (decrease) to re-attain the original plant output that tracks the reference. The

plant parameter change could be abrupt due, for example, to failure of actuators or

sensors [22, 23]. Soft faults such as actuator or sensor biases are also frequently

encountered in industry [23]. If the above system is a temperature control system as in [9]

for instance, and if the internal fan actuator abruptly changes speed to a higher value

due to soft faults or failures, the temperature will drop and so will the plant output

voltage. The control signal will then increase such that the system adaptively returns to

its original state, and the faulty speed change of the fan has no effect on the tracking

performance. Such abrupt parameter variation will be simulated and discussed in the

following section on results, as they are more challenging than slowly-varying

parameter changes as far as tracking in adaptive control systems is concerned.

5. Simulation Results

Simulations are carried out in MATLAB (academic licenses 30904939 and 40635944). The

suggested nonlinear AIC system of Figure 3 is simulated and the results presented. The

deep NN controller is then compared to a linear controller to show the difference in

performance. The nonlinear plant to be controlled is governed by the nonlinear

difference equation given below in accordance with Model II of Equation 1.

�(�) = �[�(� − 1), �(� − 2)] + �(�) (5)

where the nonlinear function �(∙) is substituted for as follows:

�(�) =
�(���) ∙ �(���)

�� ��(���)
+ �(�) (6)

Nonlinear plants of this form were introduced in the literature by Narendra and

Parthasarathy [16]. The reference signal is taken as a square wave spanning 1000

samples. The NN used is Ɲ(�,�):�:�:�:� indicating four hidden layers, each having five

nodes with ReLU activation functions, one linear output node and an input TDL length

of 4. The BP learning rate is α=0.02. BP minimizes the quadratic cost function. As in

Sensors 2021, 21, x FOR PEER REVIEW 9 of 16

Figure 3, the controller is a copy of the approximate inverse plant model achieved by the

adaptive neural network. Figure 4 shows the square reference and plant output signals.

Figure 5 shows the corresponding control signal. It is clear that with each step change,

the NN re-adapts allowing the plant output to track the reference command signal

which is applied as input to the controller. The response to the step changes is oscillatory

with overshoot as shown. Apart from the adaptation region near the step changes, the

plant output and reference signals are indistinguishable from each other. Figures 6 and 7

show the reference and plant output signals and the control signal respectively, when an

abrupt plant parameter change occurs at the 600th sample. The parameter change is

assumed to render the following plant equation:

�(�) =
�(���) ∙ �(���)

���∗�(���)� + �(�) (7)

A unity parameter in the denominator has been increased to 4. This sudden change will

cause an abrupt but temporary decrease in the plant output and an increase in the

control signal at the 600th sample, as is clear from Figures 6 and 7. The settling time

needed after parameter change is 18 time samples only. The settling time is taken as the

time needed for the plant output to reach and stay within 2% of its final value. The

parameter changes have little effect on the tracking performance; they are rapidly

compensated for.

A further parameter change could result in the following plant equation:

�(�) =
�(���) ∙ �(���)

��� ∙ �(���)� + 2 ∙ �(�) (8)

The above parameter change, when effected abruptly, will cause an abrupt but

temporary increase in plant output and, therefore, a decrease in the control voltage at

the 600th sample as in Figures 8 and 9. Again, the change is compensated and good

tracking is obtained.

To further demonstrate the benefit of using DL, we operate the same nonlinear control

system (Figure 3) but using an adaptive FIR filter in place of the deep NN. The adaptive

FIR filter uses a four-tap TDL which is the same TDL length used in the deep NN. The

results are illustrated by Figures 10 and 11. The parameter change at the 600th sample is

in accordance with Equation (7). The settling time is 58 time samples when using an

LMS learning rate of 0.02 as in the BP training of the deep NN. This settling time is

considerably higher than that obtained with DL, a result that is to be anticipated because

of the linear structure of the inverse model after convergence. The linearity implies the

presence of structural errors in modeling (or inverse modeling) the nonlinear system [24].

The advantage of using DL comes at the expense of some additional computational

complexity. The number of multiplications needed with DL is �{��} with � denoting

the average number of nodes per layer, whereas that needed with the adaptive filter is

�{�} only.

NN training methods based on gradient descent may cause the solution to converge to a

local rather than the global minimum. As a first step, and for each comparison between

systems or between plant parameter variations, initial conditions for the weight values

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

were adjusted to yield the best performance expected from the nonlinear system when a

specific scenario is to be compared with others. This is done by trial and error to

discover the general trend or behavior which shortly becomes manifest.

Figure 4: Reference and plant output of the AIC system with Ɲ(�,�):�:�:�:�.

Figure 5: Control signal corresponding to Figure 4.

r(
k)

 a
n
d
 c

(k
)

co
n
tr

o
l s

ig
n
a
l u

(k
)

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

Figure 6: Reference and plant output with a parameter change at the 600th sample according to Equation (7), using Ɲ(�,�):�:�:�:�.

Figure 7: Control signal corresponding to Figure 6.

It is worth noting that the compensating change in control voltage upon parameter

change, demonstrated by Figures 7, 9, and 11, can be used in control applications such as

temperature measurement using thermoresistive sensors [25]. The integration of sensors

in control and automation draws on several sensor functions that are featured in sensor

networks, fault tolerant control, intelligent sensors, robot sensing, etc. [26].

In the temperature measurement application in [25], however, the thermoresistive

sensor itself is the nonlinear plant whose process variable (temperature) is to be

controlled and fixed to a reference value enabling the measurement of the surrounding

r(
k)

 a
n

d
 c

(k
)

c
o
n
tr

o
l s

ig
n
a
l u

(k
)

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

temperature. The resistance of such a sensor depends on temperature, thereby changing

the electrical signal associated with it, which is fed back and compared with the

reference. To measure the surrounding temperature, the role of feedback control is to

keep the sensor temperature constant and equal to a reference temperature despite the

temperature change in the surroundings. Therefore, the resulting variation or change in

the control voltage is used to measure the surrounding temperature. The DL-based AIC

control system of Figure 3 can be a suitable substitute for the feedback control used in

this sensor control problem of temperature measurement; the justifications are ease of

implementation and avoidance of techniques used with nonlinear plant control such as

feedback linearization.

Figure 8: Reference and plant output with a parameter change at the 600th sample according to Equation (8), using Ɲ(�,�):�:�:�:�.

Figure 9: Control signal corresponding to Figure 8.

r(
k
)

a
n

d
 c

(k
)

co
n

tr
o

l s
ig

n
a

l u
(k

)

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

Figure 10. Reference and plant output with a parameter change at the 600th sample, using adaptive filter as the inverse model of the

nonlinear plant.

Figure 11: Control signal corresponding to Figure 10.

Table 1 shows the dependence of the settling time after parameter change, in time

samples, on the number of hidden layers without and with AE initialization. In AE

training, it is common practice to employ BP that minimizes the quadratic cost function,

using ReLU activations in the nodes [20]. As explained in Section 4, offline

measurements to train the AEs are obtained by measuring input and output of the

nonlinear plant. The input to the plant will constitute the correct output, and therefore it

can be chosen to resemble the control signal obtained in Figure 5. It can simply be

chosen as a square wave (free of transients) with step values comparable to those of the

r(
k
)

a
n

d
 c

(k
)

co
n

tr
o

l s
ig

n
a

l u
(k

)

Sensors 2021, 21, x FOR PEER REVIEW 14 of 16

figure. Then, the measured plant output will constitute the input training data of the

AEs.

In reference to Table 1, without AE, two and three hidden layers show similar

performances that are intermediate between the case of four hidden layers and that of

the adaptive linear filter. When AEs are used for initializing the deep NN, better results

are obtained regarding settling time as can be seen from Table 1. This improvement is

due to proper weight initialization which speeds up training by guaranteeing first that

the stochastic gradient solution is close to a suitable local minimum. The symbol αae is

used to denote the AE learning rate.

Table 2 demonstrates the benefit of using a momentum factor μ on the rise time of the

step response after parameter change. The rise time of a step response is defined as the

time needed for the response to rise from 10% to 90% of the final value. It is found that

training with a momentum factor reduces the rise time but increases the settling time

without causing instability.

For control systems with underdamped step response (which is often encountered in

this work), the rise time is sometimes defined as the time required by the response to

reach the final value during its first cycle of oscillation. The smaller rise time due to

using momentum is clear from the Table 2. This is important in control applications; if

the rise time is too long, the system may be operating with the process variable below

the optimum for too long. This may have consequences depending on the particular

control application. For example, the consequence could be failure to apply sufficient

braking force quickly enough.

6. Conclusions

In this work, DL-based adaptive inverse control of nonlinear dynamic systems is

achieved. Simulations indicate efficient online (tracking) control. It is evidently possible

to generate a control signal that ensures reliable inverse modeling and control of a

nonlinear plant with unknown dynamics using a deep neural network to learn the

inverse model. The resulting adaptive control system is robust to parameter changes.

Settling times and rise times of the step response after parameter change are shown to

improve even further when using autoencoder initialization of the neural network

weights, and including momentum in the cost function minimization by

backpropagation. The deeper the NN that learns the inverse model, the more

accentuated the robustness of the adaptive control system to parameter change.

Author Contributions: The authors contributed equally to this work.

Funding: This project was partially funded by Edith Cowan University via the ASPIRE Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All types of data were generated using mathematical equations.

Acknowledgments: The authors thank Edith Cowan University for supporting this project.

Conflicts of Interest: The authors declare that no conflict of interest is associated with this work.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 16

Table 1: Settling time after nonlinear-plant parameter change [Equation (7)] versus number of deep NN hidden layers, and settling

time when using a linear FIR adaptive filter. α=0.02, αae=0.1, μ=0.

Type of controller

Settling time

(in number of sample intervals)

Without AE

initialization

With AE

initialization

Deep NN

Ɲ(�,�):�:�:�:� (4 hidden layers) 18 10

Ɲ(�,�):�:�:� (3 hidden layers) 25 13

Ɲ(�,�):�:� (2 hidden layers) 25 17

Linear FIR adaptive filter 58

Table 2: Momentum effect on settling time and rise time after nonlinear-plant parameter change [Equation (7)] versus number of

deep NN hidden layers, and when using a linear FIR adaptive filter. α=0.02, αae=0.1, different momentum factor values (μ). AE is

used for initialization.

Type of controller

Settling time

(in number of sample

intervals)

Rise time

(in number of sample

intervals)

μ=0 μ=0.4 μ=0 μ=0.4

Deep NN

Ɲ(�,�):�:�:�:� (4 hidden layers) 10 18 9 7

Ɲ(�,�):�:�:� (3 hidden layers) 13 30 12 9

Ɲ(�,�):�:� (2 hidden layers) 17 30 15 11

Linear FIR adaptive filter 58 50

References:

1. W. J. Rugh and J. S. Shamma, “A survey of research on gain scheduling”, Automatica 36, 2000, pp. 1401-1425.

2. H. J. Marquez, Nonlinear Control Systems: Analysis and Design, Wiley Interscience, 1st Edition, 2008.

3. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.

4. N. T. Nguyen, Model-Reference Adaptive Control, a Primer. 2018, Springer, Cham, Switzerland.

5. P. Ioannou and B. Fidan, Adaptive Control Tutorial. 2006, SIAM, Philadelphia, USA.

6. G. L. Plett, “Adaptive inverse control of linear and nonlinear systems using dynamic neural networks”, IEEE Transactions

on Neural Networks, vol. 14, no. 2, 2003, pp. 360-376.

7. B. Widrow and E. Walach, Adaptive Inverse Control, a Signal Processing Approach. 2008 IEEE, John Wiley and Sons, Inc.,

Hoboken, New Jersey.

8. D. Rumelhart, G. Hinton and R. Williams. Learning representations by back-propagating errors. Nature 1986, 323, 533–

536.

9. R. Hedjar, “Online adaptive control of nonlinear plants using neural networks with application to temperature control

system”, Journal of King Saud University-Computer and Information Sciences, vol. 19, 2007, pp. 75-94.

10. N. A. S. Alwan and Z. M. Hussain, “Deep learning control for digital feedback systems: improved performance with ro-

bustness against parameter change”, Electronics, 10. 11, 2021, p. 1245.

11. J. L. Calvo-Rolle, O. Fontenla-Romero, B. Perez-Sanchez and B. Guijarro-Berdinas, « Adaptive inverse control using an

online learning algorithm for neural networks », Informatica, vol. 25, no. 3, 2014, pp. 401-414.

12. H. Mhaskar, Q. Liaou and T. Poggio, “When and why are deep networks better than shallow ones?”, Proceedings of the

31st AAAI Conference on Artificial Intelligence (AAAI-17), vol. 31, no. 1, Feb 18, 2017.

13. P. Kim, MATLAB Deep Learning, 2017, Springer.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 16

14. R. J. Rajesh, R. Preethi, P. Mehata and B. Jaganatha-Pandian, “Artificial neural network based inverse model control of a

nonlinear process”. In 2015 International Conference on Computer, Communication and Control (IC4), 2015, Sep 10, IEEE,

pp. 1-6.

15. A. M. Zaki, A. M. El-Nagar, M. El-Bardini and F. A. S. Soliman, « Deep learning controller for nonlinear system based on

Lyapunov stability criterion”, Neural Computing and Applications, vol. 33, no. 5, 2021, pp. 1515-1531.

16. K. S. Narendra and K. Parthasarathy “Identification and control of dynamical systems using neural networks”, IEEE

Transactions on Neural Networks, vol. 1, no. 1, March, 1990.

17. I. Sutskever, J. Martens, G. Dahl and G. Hinton, “On the importance of initialization and momentum in deep learning”,

International Conference on Machine Learning, 26 May 2013, pp. 1139-1147, PMLR.

18. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT, 2016.

19. Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, “Greedy layer-wise training of deep networks”, In Advances in

Neural Information Processing Systems, 2007.

20. M. F. Ferreira, R. Camacho and L. F. Teixeira, “Using autoencoders as a weight initialization method on deep neural net-

works for disease detection”, BMC Medical Informatics and Decision Making, vol. 20, no. 5, August, 2020, pp. 1-8.

21. D. Erhan, A. Courville, Y. Bengio and P. Vincent, “Why does unsupervised pre-training help deep learning?” In Proceed-

ings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference

Proceedings, 2010, pp. 201-208.

22. K. S. Narendra, J. Balakrishnan and M. K. Ciliz, “Adaptation and learning using multiple models, switching and tuning”,

IEEE Control System Magazine, vol. 15, no. 3, 1995, pp. 37-51.

23. A. P. Deshpande, S. C. Patwardhan and S. S. Narasimhan, “Intelligent state estimation for fault tolerant nonlinear predic-

tive control”, Journal of Process Control, vol. 19, no. 2, 2009, pp. 187-204.

24. J. Schoukens and L. Ljung, “Non-linear system identification: a user-oriented roadmap”, IEEE Control System Magazine,

vol. 39, no. 6, 2019, pp. 28-99.

25. M. A. Moreira, A. Oliviera, C. E. T. Dorea, P. R. Barros and J. S. de Rocha Neto, “Sensor characterization and control of

measurement systems based on thermoresistive sensors via feedback linearization”, Advances in Measurement Systems,

M. K. Sharma (Ed.), IntechOpen, 2010.

26. R. Morales-Herrera, A. Fernandez Caballero, J. A. Somolinos and H. Sira-Ramirez, “Integration of sensors in control and

automation systems”, Editorial, Journal of Sensors, 2017.

