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Abstract: An adaptive deep neural network is used in an inverse system identification setting to
approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by
copying to the latter the weights and architecture of the converging deep neural network. This
deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to
outperform adaptive filtering techniques and algorithms normally used in adaptive control,
especially when the plant is nonlinear. The deeper the controller the better the inverse function
approximation, provided that the nonlinear plant have an inverse and that this inverse can be
approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control
scheme. The DL-based AIC system is robust to parameter change of the nonlinear plant in that,
under such change, the plant output reassumes the value of the reference signal considerably
faster than with the adaptive filter counterpart of the deep neural network. Settling times and rise
times of the step response are shown to improve in the DL-based AIC system.

Keywords: deep neural network; deep learning controller; nonlinear plant; adaptive inverse
control; robust control; autoencoder; computational complexity; sensor control.

1. Introduction

Efficient control of nonlinear dynamic systems has been dealt with extensively in the
literature. As a control problem, the essence is to make the nonlinear system output
track a reference trajectory. Many approaches require accurate knowledge of the
nonlinear plant in order to linearize the plant dynamics around an operating point such
as in gain scheduling [1]. Others require an accurate dynamic inversion of the plant such
as feedback linearization methods [2]. These methods require that a considerably
accurate model or inverse model of the plant exist, in addition to their computational
complexity. Adaptive control is the logical solution to the unknown plant control
problem [3-5]. An adaptive filter uses its input and a desired response to modify its
internal parameters such that a function of the error between its actual and desired
output is minimum. Just as adaptive control of linear plants requires adaptive filtering
techniques; adaptive control of nonlinear plants requires nonlinear adaptive filtering

methods which are generally achieved by using neural networks [6].
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Precisely, adaptive inverse control (AIC) will be considered in the present work as it is
particularly simple to implement. AIC was first devised by Widrow and Walach [7] as a
result of approaching the discipline of adaptive control from the point of view of
adaptive signal processing. The basic scheme for linear systems is shown in Figure 1,
in which an adaptive transversal filter approximates the inverse of the unknown plant
when connected with the latter in an inverse modeling setting [3]. This adaptive filter is
copied to form the controller in the figure. During normal operation, the plant output
will track the reference signal which is input to the controller, the output of which is the
driving signal to the plant. The delay z™* makes up for possible internal delay in the
plant. The control aim is to guarantee that the reference signal can be tracked accurately
with minimum delay. Ideally, the cascade of controller and plant forms a
unit-magnitude transfer function enabling the plant output to be an exact but delayed
version of the reference in case of no noise and/or disturbance. The plant must be stable
and minimum phase for its inverse to be stable. Methods exist for controlling plant noise
and disturbance [6, 7] without compromising the control of plant dynamics. As these
two control procedures are conveniently separable, these methods will not be

considered further in the present work whose focus is on nonlinear adaptive control

strategies.
4

Controller

C f clk) Adapti

opy o aptive

Unknown
Inverse —i Plant Inverse
Model Model
u(k)
.....................h........... XXX XX XX
Copy Weights
Py 9 ey C (k): Plant Output

Figure 1. Adaptive inverse model control of an unknown plant [3].

It is important to note that this is feed-forward control since no feedback is employed
except the feedback inherent in the adaptive algorithm. This adaptive algorithm could
be, for example, the least mean square (LMS) algorithm [3] for the linear adaptive
control case. When the plant is nonlinear, a nonlinear adaptive filter is needed that can
be realized by a neural network. The adaptive algorithm would then be the

back-propagation (BP) algorithm, for example [8]. The updating of the adaptive inverse
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model in Figure 1 enables real time control (RTC) to continuously track any parameter
change in the plant, resulting in robustness to parameter change. Otherwise, a
non-adaptive neural inverse model control system would be very sensitive to parameter
changes [9]. As hinted at in [10], RTC can also handle time-varying or predicted
parameter change via triggered (possibly periodically) actions to activate updating. This
procedure could markedly reduce the computational burden required in continuous
updating or tracking.

In [6] and [11], AIC was successfully performed for linear and nonlinear systems using
shallow neural networks. It is known that any smooth function (linear or nonlinear) can
be approximated by a shallow neural network with a sufficient number of neurons in
the hidden layer. Using deeper networks with more than one hidden layer, however,
results in more efficient function approximation since deep neural networks with
standard architectures represent compositionality of functions [12]. Deep neural
networks with more than one hidden layer could not be trained successfully without the
deep learning (DL) techniques arrived at in the mid-2000s. These techniques include the
use of rectified linear units (ReLU) as activations functions, the use of the dropout
technique during training and the advent of efficient computing hardware such as
graphical processing units (GPU) [13].

In [9], AIC of nonlinear systems is implemented using a NN with two hidden layers and
sigmoidal activation functions. In contrast, the present work uses up to four hidden
layers with ReLU activation functions to avoid the vanishing gradient problem that
would otherwise occur if sigmoidal activation functions were used in deep NNs.

A similar problem is treated in [14] but with non-adaptive inverse control. Recently,
Lyapunov-based DL adaptive online control of nonlinear systems has been carried out
rather than AIC [15]. Specifically, a DL controller uses restricted Boltzmann machine
(RBM) to initialize the weight values and Lyapunov stability method to update a
two-hidden-layer NN controller connected to the nonlinear plant in a negative feedback
control loop. AIC, on the other hand, involves open loop control and is different from
the negative feedback control in [15].

The aim of the present work is to achieve simple yet robust adaptive control using deep
NNss as controllers with dynamics that are the inverse of those of the generally unknown
nonlinear plant. Since theory is still being developed to guide the analysis of control
systems with nonlinear plants, one of the main objectives of this work is to simply show
how nonlinear AIC using DL differs from its linear counterpart, when both are used to
control a nonlinear plant.

It will also be demonstrated that the deeper the NN controller is, the more robust the
control system is to parameter change.

The organization of the paper is as follows. Section 2 introduces general mathematical
models for nonlinear discrete-time plants. Section 3 explains deep neural networks and
their training by the BP algorithm. The DL-based AIC nonlinear control system is
illustrated and explained in Section 4, and simulation results are presented in Section 5.

Finally, Section 6 concludes the paper.
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2. Dynamic Nonlinear Discrete-Time Plants
Four models of discrete-time plants governed by nonlinear difference equations are
described in [16] and summarized below. The input and output of the plant are denoted
by u(k) and c(k) respectively, where k is the discrete time index. It is assumed that the
present output sample is dependent on n past outputs and m present and past inputs,
where m < n. Such a system is said to be dynamic, in contrast to a static or memory-less
system. In the following model equations, f(-) and g(-) are nonlinear functions and
o’s and ’s are constants.
Model I:
c(k) =Y aictk — i) + glulk),u(k — 1), ...,u(k —m+1)]
Model II:
c(k) = fle(k = 1),c(k = 2), ., c(k — )] + Tg* Bulk — i)
Model III:
c(k) = fle(k —1),c(k — 2),...,c(k —n)] + glulk),utk — 1), ..., u(k —m+ 1)]
Model IV:
c(k) = fle(k —1),c(k — 2), ..., c(k —n); u(k),ulk — 1), ..., u(k —m+ 1)]

M

The nonlinear plant functions f(-) and g(-) are assumed to be unknown when
adaptive inverse control of the plant is performed. It was found in [16] that Model II is
particularly suitable for control problems. If the nonlinear plant is
bounded-input-bounded-output (BIBO) stable, its model must also possess this property.
For Model ], this implies that the characteristic equation, comprising a polynomial in z of
degree n with os as the coefficients, must have all its roots inside the unit circle in the
z-plane. For the other models, the stability conditions are not so simple, and therefore,

they constitute an important research area.

3. Deep Neural Networks

Multi-layer neural networks (NN) can be regarded as nonlinear maps with their weights
as parameters [16]. They can thus be used as subsystems to constitute controllers for
nonlinear dynamical plants. In the present case, the NN or the controller models the
inverse of the plant dynamics as explained in the introduction and Figure 1. Dynamics
are introduced in the NN via tapped delay lines (TDL) at its input. A multi-layer NN
with more than one hidden layer is considered deep [13]. The weights are adapted to
minimize a function of the error between the NN output and the desired output
according to a training algorithm such as the BP algorithm which is based on steepest
descent. Training and convergence of NN'’s are heavily dependent on initial conditions
of the weights, as well as on the nature of their input data. In this work, neural networks
will be denoted by the notation Njp),.x... where [ is the number of input nodes, L is the
number of output nodes (or neurons), / is the number of neurons in the first hidden
layer, K is the number of neurons in the second hidden layer, and so on. A deep NN
with two hidden layers is illustrated in Figure 2. The NN in this figure generally
represents a multiple-input multiple-output (MIMO) system. The outputs of all hidden
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and output nodes are subjected to nonlinear activation functions. Only the output nodes
are permitted to have a linear or nonlinear activation function depending on the
application and the required range of the NN outputs. The output vector Y can be

expressed as:
Yix1 = W[Mpxx q){HKX] ‘p(W]xl Xix1 + B]xl) + ﬁkx1} + bryal )

where X is the input vector, W, H, and M are the weight matrices of the first hidden,
second hidden and output layers respectively. I,/,K and L are the numbers of nodes of
the input, first hidden, second hidden and output layers respectively. B, and b are
the corresponding biases. The activation functions in Equation 2 operate point-wise on
the respective vectors. The BP algorithm, which is based on gradient descent, is
summarized by the following set of equations with reference to Figure 2. It is assumed
that nonlinear activation functions are present in the hidden layers, whereas the output

nodes are linear.
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Figure 2. A generic diagram for a three-layer deep NN with two hidden layers.
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G < e+ BAgw, 1=1,,L; k=1, K.

where Agy = a(d; — y)yr = ab;yx

hkj «— hk]‘l' Ahkj' k=1,,K, ]=1,,]

where Ahk] = a(Skyj, with 6}{ = [Zl ik 51] . (D'(vk) (3)
Wji «— W]L+ AWji' ]:1,,], lzl,,l

where AWN = a6jxi, with 5] = [Zk hk] 6k] . CD’(U])

In Equations (3) above, a is the BP learning rate, the d’s are the correct outputs at the
output layer needed for supervised training, the v’s are the activation function inputs,
the y’s are the activation function outputs for output and hidden layers, the x’s are the
inputs to the input layer, and @’(-) is the derivative of the nonlinear activation function
®(-). In the present application, the training data, consisting of the correct outputs (d’s)
and inputs (x’s), would be values of the control signal u(k) and the plant output signal
c(k) respectively.

Training deep neural networks is usually a difficult task due to different gradient
magnitudes in lower and higher layers, the curvature of the objective or error function
with its numerous local minima, and lack of acceptable generalization caused by the
large number of parameters to be updated. The following sub-section highlights the use

of NN autoencoders (AE) to pre-train deep NNs.

3.1. Deep Neural Network Initialization Using Autoencoders

Well-designed random weight initialization of a deep NN is crucial for proper
convergence during training and subsequent operation. Poorly initialized networks are
very difficult, if not impossible, to train. To initialize the deep NN weights, each layer
can be pre-trained separately using an auxiliary error function before the whole network
is trained by the usual methods such as stochastic gradient descent that employs
back-propagation for instance. This method of unsupervised pretraining of one layer at a
time prevents difficulties of full deep NN supervised training. The NN architecture
adopted to train each layer separately is called an autoencoder (AE). NN autoencoders
have their own inputs as correct outputs during training [17-19]. In this work, we will
use simple NN autoencoders that have only one hidden layer. To limit the ensuing
computational complexity, the present work will not consider deep AEs. The
procedure is as follows [19]: the NN initial weights are determined by first greedily
training a sequence of shallow AEs one layer at a time using unsupervised data. A
shallow AE consists of an encoder and a decoder. Only the encoder weights of the
trained AE are retained and considered to be the initial weight of that layer. The final
layer is trained using supervised data. Finally, the complete network is fine-tuned using
supervised data according to the back-propagation algorithm. AEs not only improve
system initialization, but also lead to better generalization and prevent overfitting [20,
21].

Classical momentum is another necessary technique to improve deep NN training. Even
well-initialized networks can perform poorly without momentum. This concept is

explained next.
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3.2. Training with Momentum

Stochastic gradient descent can be accelerated by iteratively accumulating a velocity
vector in the direction of reduction of the error function. If we call the velocity vector by
v, a weight update of Equations (3) will change from

wy < wy + Awy

to:

Ve uv+ Awy

Wji — le' + v (4)

where p is the momentum factor, and assuming zero initial value of v. The acceleration
of the gradient descent algorithm by using momentum does not come at the expense of
stability; contrary to acceleration by increasing the learning rate . Setting u equal to
zero in Equations (4) reduces the equation to its original form. For convex objective
functions, the momentum-based method will outperform the SGD-based method
particularly in the transient stage of optimization, and is capable of accelerating

directions of low-curvature in the objective or error function [17].

4. DL-Based Adaptive Inverse Control of a Nonlinear Plant

Several assumptions are made to achieve satisfactory control of nonlinear plants. For
example, it is assumed that the nonlinear plant is BIBO stable. They are also assumed to
be non-minimum phase, meaning that they have stable inverses, and first of all, that
such inverses exist. Figure 3 shows a general block diagram of the AIC system for

controlling nonlinear plants using deep NNs.

Controller
Reference
Command Unknown c(k) Deep NN
Nonlinear Plant (Plant Inverse)

u (k) P p’!

(i S -

Copy Weights
- C (k'): Plant Output

Figure 3. DL-based adaptive inverse control of a nonlinear plant.

As explained in Section 3, weight initialization of the deep NN is achieved with the aid
of pre-trained AEs. To train AEs before normal system operation, we need the

input-correct output training data of the deep NN. However, in the present application,
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the correct output is not readily available due to the adaptive nature of this control
system. Rather, the correct output builds up gradually during online operation. A
solution to this problem is to use offline measurements as training data for the AEs, by
inputting training data to the unknown nonlinear system and measuring its output.
Since the deep NN is meant to inverse-model the nonlinear system or plant, the
measured plant output is used as input training data to the NN, and the chosen input
data will constitute the NN correct output. All this is done offline and the NN is thereby
pre-trained using AEs.

It will be shown that the reference command signal is well tracked for this adaptive
system rendering it robust to parameter variations, especially when the NN is deep
enough. If a parameter of the nonlinear plant changes causing a fall (rise) in the plant
output, the adaptive process compensates for this fall (rise) causing the control signal to
increase (decrease) to re-attain the original plant output that tracks the reference. The
plant parameter change could be abrupt due, for example, to failure of actuators or
sensors [22, 23]. Soft faults such as actuator or sensor biases are also frequently
encountered in industry [23]. If the above system is a temperature control system as in [9]
for instance, and if the internal fan actuator abruptly changes speed to a higher value
due to soft faults or failures, the temperature will drop and so will the plant output
voltage. The control signal will then increase such that the system adaptively returns to
its original state, and the faulty speed change of the fan has no effect on the tracking
performance. Such abrupt parameter variation will be simulated and discussed in the
following section on results, as they are more challenging than slowly-varying

parameter changes as far as tracking in adaptive control systems is concerned.

5. Simulation Results

Simulations are carried out in MATLAB (academic licenses 30904939 and 40635944). The
suggested nonlinear AIC system of Figure 3 is simulated and the results presented. The
deep NN controller is then compared to a linear controller to show the difference in
performance. The nonlinear plant to be controlled is governed by the nonlinear

difference equation given below in accordance with Model II of Equation 1.

c(k) = fle(k = 1), c(k = 2)] + u(k) ©)

where the nonlinear function f(+) is substituted for as follows:

c(k—1) - c(k—-2)
1+ c3(k-1)

c(k) = + u(k) (6)

Nonlinear plants of this form were introduced in the literature by Narendra and
Parthasarathy [16]. The reference signal is taken as a square wave spanning 1000
samples. The NN used is N4 1):5:5.55 indicating four hidden layers, each having five
nodes with ReLU activation functions, one linear output node and an input TDL length

of 4. The BP learning rate is a=0.02. BP minimizes the quadratic cost function. As in
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Figure 3, the controller is a copy of the approximate inverse plant model achieved by the
adaptive neural network. Figure 4 shows the square reference and plant output signals.
Figure 5 shows the corresponding control signal. It is clear that with each step change,
the NN re-adapts allowing the plant output to track the reference command signal
which is applied as input to the controller. The response to the step changes is oscillatory
with overshoot as shown. Apart from the adaptation region near the step changes, the
plant output and reference signals are indistinguishable from each other. Figures 6 and 7
show the reference and plant output signals and the control signal respectively, when an
abrupt plant parameter change occurs at the 600t sample. The parameter change is
assumed to render the following plant equation:

c(k—1) - c(k-2)
1+4xc(k—1)3

c(k) = + u(k) (7)

A unity parameter in the denominator has been increased to 4. This sudden change will
cause an abrupt but temporary decrease in the plant output and an increase in the
control signal at the 600t sample, as is clear from Figures 6 and 7. The settling time
needed after parameter change is 18 time samples only. The settling time is taken as the
time needed for the plant output to reach and stay within 2% of its final value. The
parameter changes have little effect on the tracking performance; they are rapidly
compensated for.

A further parameter change could result in the following plant equation:

c(k—1) - c(k—-2)
1+4 - c(k-1)3

c(k) = +2 - uk) (8)

The above parameter change, when effected abruptly, will cause an abrupt but
temporary increase in plant output and, therefore, a decrease in the control voltage at
the 600t sample as in Figures 8 and 9. Again, the change is compensated and good
tracking is obtained.

To further demonstrate the benefit of using DL, we operate the same nonlinear control
system (Figure 3) but using an adaptive FIR filter in place of the deep NN. The adaptive
FIR filter uses a four-tap TDL which is the same TDL length used in the deep NN. The
results are illustrated by Figures 10 and 11. The parameter change at the 600t sample is
in accordance with Equation (7). The settling time is 58 time samples when using an
LMS learning rate of 0.02 as in the BP training of the deep NN. This settling time is
considerably higher than that obtained with DL, a result that is to be anticipated because
of the linear structure of the inverse model after convergence. The linearity implies the
presence of structural errors in modeling (or inverse modeling) the nonlinear system [24].
The advantage of using DL comes at the expense of some additional computational
complexity. The number of multiplications needed with DL is O{N?} with N denoting
the average number of nodes per layer, whereas that needed with the adaptive filter is
O{N} only.

NN training methods based on gradient descent may cause the solution to converge to a
local rather than the global minimum. As a first step, and for each comparison between

systems or between plant parameter variations, initial conditions for the weight values
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were adjusted to yield the best performance expected from the nonlinear system when a
specific scenario is to be compared with others. This is done by trial and error to

discover the general trend or behavior which shortly becomes manifest.

T T T T T T T T T
L = = = +the plant output c(k) _
12 5 .
a the reference signal r(k)
i :I
n ]
1 » i
|
|
g 08 r 7
5}
o
c
So6t ) ]
3 ' ]
1, ]
04 F : 1 ] J
] N
Y 7
0.2 b
0 1 1 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800 900 1000
time instant, k

12 F the control signal | |

control signal u(k)

0 1 L 1 1 L 1 L 1 L

100 200 300 400 500 600 700 800 900 1000
time instant, k

Figure 5: Control signal corresponding to Figure 4.
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Figure 6: Reference and plant output with a parameter change at the 600" sample according to Equation (7), using N(4,1):5:5:5:5-
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Figure 7: Control signal corresponding to Figure 6.

It is worth noting that the compensating change in control voltage upon parameter
change, demonstrated by Figures 7, 9, and 11, can be used in control applications such as
temperature measurement using thermoresistive sensors [25]. The integration of sensors
in control and automation draws on several sensor functions that are featured in sensor
networks, fault tolerant control, intelligent sensors, robot sensing, etc. [26].

In the temperature measurement application in [25], however, the thermoresistive
sensor itself is the nonlinear plant whose process variable (temperature) is to be

controlled and fixed to a reference value enabling the measurement of the surrounding
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temperature. The resistance of such a sensor depends on temperature, thereby changing
the electrical signal associated with it, which is fed back and compared with the
reference. To measure the surrounding temperature, the role of feedback control is to
keep the sensor temperature constant and equal to a reference temperature despite the
temperature change in the surroundings. Therefore, the resulting variation or change in
the control voltage is used to measure the surrounding temperature. The DL-based AIC
control system of Figure 3 can be a suitable substitute for the feedback control used in
this sensor control problem of temperature measurement; the justifications are ease of
implementation and avoidance of techniques used with nonlinear plant control such as

feedback linearization.
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Figure 9: Control signal corresponding to Figure 8.
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Figure 11: Control signal corresponding to Figure 10.

Table 1 shows the dependence of the settling time after parameter change, in time
samples, on the number of hidden layers without and with AE initialization. In AE
training, it is common practice to employ BP that minimizes the quadratic cost function,
using ReLU activations in the nodes [20]. As explained in Section 4, offline
measurements to train the AEs are obtained by measuring input and output of the
nonlinear plant. The input to the plant will constitute the correct output, and therefore it
can be chosen to resemble the control signal obtained in Figure 5. It can simply be

chosen as a square wave (free of transients) with step values comparable to those of the
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figure. Then, the measured plant output will constitute the input training data of the
AEs.

In reference to Table 1, without AE, two and three hidden layers show similar
performances that are intermediate between the case of four hidden layers and that of
the adaptive linear filter. When AEs are used for initializing the deep NN, better results
are obtained regarding settling time as can be seen from Table 1. This improvement is
due to proper weight initialization which speeds up training by guaranteeing first that
the stochastic gradient solution is close to a suitable local minimum. The symbol aacis
used to denote the AE learning rate.

Table 2 demonstrates the benefit of using a momentum factor p on the rise time of the
step response after parameter change. The rise time of a step response is defined as the
time needed for the response to rise from 10% to 90% of the final value. It is found that
training with a momentum factor reduces the rise time but increases the settling time
without causing instability.

For control systems with underdamped step response (which is often encountered in
this work), the rise time is sometimes defined as the time required by the response to
reach the final value during its first cycle of oscillation. The smaller rise time due to
using momentum is clear from the Table 2. This is important in control applications; if
the rise time is too long, the system may be operating with the process variable below
the optimum for too long. This may have consequences depending on the particular
control application. For example, the consequence could be failure to apply sufficient

braking force quickly enough.

6. Conclusions

In this work, DL-based adaptive inverse control of nonlinear dynamic systems is
achieved. Simulations indicate efficient online (tracking) control. It is evidently possible
to generate a control signal that ensures reliable inverse modeling and control of a
nonlinear plant with unknown dynamics using a deep neural network to learn the
inverse model. The resulting adaptive control system is robust to parameter changes.
Settling times and rise times of the step response after parameter change are shown to
improve even further when using autoencoder initialization of the neural network
weights, and including momentum in the cost function minimization by
backpropagation. The deeper the NN that learns the inverse model, the more

accentuated the robustness of the adaptive control system to parameter change.
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Table 1: Settling time after nonlinear-plant parameter change [Equation (7)] versus number of deep NN hidden layers, and settling

time when using a linear FIR adaptive filter. a=0.02, xae=0.1, p=0.

Settling time
Type of controller (in number of sample intervals)
Without AE With AE
initialization initialization
N@1)s:5:55 (4 hidden layers) 18 10
Deep NN N@,1):5:5:5 (3 hidden layers) 25 13
Ne,1):5:;5 (2 hidden layers) 25 17
Linear FIR adaptive filter 58

Table 2: Momentum effect on settling time and rise time after nonlinear-plant parameter change [Equation (7)] versus number of

deep NN hidden layers, and when using a linear FIR adaptive filter. a=0.02, aa=0.1, different momentum factor values (p). AE is

used for initialization.

Settling time Rise time
Type of controller (in number of sample (in number of sample
intervals) intervals)
u=0 u=0.4 u=0 u=0.4
N@1):5:5:5:5 (4 hidden layers) 10 18 9
Deep NN N@1)s:5:5 (3 hidden layers) 13 30 12 9
Ne,1)5:5 (2 hidden layers) 17 30 15 11
Linear FIR adaptive filter 58 50
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