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Abstract: Machine learning (ML) is a subdivision of artificial intelligence in which the machine 

learns from machine-readable data and information. It uses data, learns the pattern and predicts the 

new outcomes. Its popularity is growing because it helps to understand the trend and provides a 

solution that can be either a model or a product. Applications of ML algorithms have increased 

drastically in G.I.S. and remote sensing in recent years. It has a broad range of applications, from 

developing energy-based models to assessing soil liquefaction to creating a relation between air 

quality and mortality. Here, in this paper, we discuss the most popular supervised ML models (clas-

sification and regression) in G.I.S. and remote sensing. The motivation for writing this paper is that 

ML models produce higher accuracy than traditional parametric classifiers, especially for complex 

data with many predictor variables. This paper provides a general overview of some popular su-

pervised non-parametric ML models that can be used in most of the G.I.S. and remote sensing-based 

projects. We discuss classification (Naïve Bayes (NB), Support Vector Machine (SVM), Random For-

est (RF), Decision Trees (DT)) and regression models (Random Forest (RF), Support Vector Machine 

(SVM), Linear and Non-Linear) here. Therefore, the article can be a guide to those interested in using 

ML models in their G.I.S. and remote sensing-based projects. 

Keywords: machine learning; artificial intelligence; pattern; models; classification; regression; GIS; 

remote sensing 

 

1. Introduction 

Machine learning (ML) is a subdivision of artificial intelligence in which the machine 

learns from machine-readable data and information(Verma & Verma, 2021). It uses data, 

learns the pattern and predicts the new outcomes(Maxwell, Warner, & Fang, 2018). Its 

popularity is growing because it helps to understand the trend and provides a solution 

that can be either a model or a product. There are four types of machine learning ap-

proaches: supervised, unsupervised, semi-supervised and reinforcement learning(Sarker, 

2021).In supervised learning, the labelled training data is provided; in unsupervised learn-

ing, unlabeled training data is provided (Sarker, 2021). The semi-supervised learning ap-

proach is a hybrid of both supervised and unsupervised learning where mostly labelled 

information is provided for the training (Sidey-Gibbons & Sidey-Gibbons, 2019). How-

ever, the model is free to figure out the trend in the data on its own. In reinforcement 

learning, the agent learns from trial and error to make decisions and cope with the inter-

active environment [4]. A ML project consists of several steps and each step should be 

planned carefully (Figure 1).  
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Figure 1. Machine learning workflow. 

Applications of machine learning algorithms have increased drastically in G.I.S. and 

remote sensing in recent years (C. Xu & Jackson, 2019). It has a broad range of applications, 

from developing energy-based models to assessing soil liquefaction to creating a relation 

between air quality and mortality(Greener, Kandathil, Moffat, & Jones, 2022). Other ex-

amples include qualitative and quantitative evaluation of satellite imagery sensor data  

for regional and urban scale air quality(Avand & Moradi, 2021), support vector machine 

approach for longitudinal dispersion coefficients in natural streams(Bahari, Ahmad, & 

Aboobaider, 2014), crisis management (Yu, 2017), disaster, linear programming for irriga-

tion scheduling(Sun & Zhu, 2019), global climate change and weather forecast (Ise, Oba, 

& AI, 2019), the status of land cover classification accuracy assessment (J. Wang, Bretz, 

Dewan, & Delavar, 2022), air pollutants and sources associated with health effects (Verma 

& Verma, 2021), settlement detection(Assarkhaniki, Sabri, & Rajabifard, 2021)features 

such as roads/highways and ditch segments extraction (Avand & Moradi, 2021), identify 

crops' diseases and their yield estimation, building vegetation indices, natural disaster 

response, and disease outbreak response(Hossain, Zarin, Sahriar, Haque, & Chemistry of 

the Earth, 2022). In addition, researchers/users are benefitted from the publicly available 

remote sensing datasets using which they can develop, test and run their ML models for 

their research(Das, 2020). Most of the remote sensing datasets are global and unbiased(Pa-

lacios Salinas, Baratchi, Rijn, & Vollrath, 2021).This further simplifies the workflow in 

building accurate ML models in this domain(Odebiri, Odindi, Mutanga, & 

Geoinformation, 2021).Furthermore, remote sensing-based research is not halted due to 

natural disasters or unexpected accidents(Das, 2020).  

Here, in this paper, we discuss the most popular supervised ML models (classifica-

tion and regression) in G.I.S. and remote sensing. The motivation for writing this paper is 

that machine learning models produce higher accuracy than traditional parametric 
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classifiers, especially for complex data with many predictor variables(Das, Ghosh, 

Chowdary, Mitra, & Rijal, 2022). Therefore, the article can be a guide to those interested 

in using ML models in their G.I.S. and remote sensing based projects (Zerrouki, Harrou, 

Sun, & Hocini, 2019). This paper provides a general overview of 4 supervised non-para-

metric ML models that can be used in most of the G.I.S. and remote sensing based projects. 

We discuss classification ( Naïve Bayes (NB), Support Vector Machine (SVM), Random 

Forest (RF), Decision Trees (DT)) and regression models (Random Forest (RF), Support 

Vector Machine (SVM), Linear, Count and Poisson) here. Binomial and multiclass classi-

fication models are more common in G.I.S. and remote sensing-based projects.(Avand & 

Moradi, 2021).If the classification has two classes, the classifier is known as binomial; if 

there are more than two classes, the category is multiclass.  

 

Figure 2. Data engineering in G.I.S. world. 

1.1. Supervised machine learning models in G.I.S. and remote sensing 

1.1.1. Naïve Bayes Algorithms 

These supervised models are the easiest to build,  less complex and can be applied 

to massive datasets.(Liu et al., 2017) It is fast. However, Naïve  Bayes classification can-

not be used for continuous numerical values(Sitthi, Nagai, Dailey, & Ninsawat, 2016). It 

ignores noise, hence might lead to inaccurate predictions.(Tien Bui et al., 2018).There are 

three types of Naïve Bayes: Gaussian, Multinomial, Bernoulli . Gaussian assumes the dis-

tribution to be normal.(Chen, Hu, Hua, & Zhao, 2021).Multinomial for discrete counts and 

Bernoulli for binary outcomes.(Mitchell, 2005) .These classifiers are efficient for multiclass 

predictions.(El-Magd & Ahmed, 2022). These models can be best utilized in making best 

management practices models (B.M.P.s), habitat suitability models, weather prediction.  

1.1.2. Random Forest Classifier 

It's a supervised classification model that can be applied to classification and regres-

sion models(Belgiu, Drăguţ, & sensing, 2016). It is a collection of decision trees and pre-

dicts the results based on the multiple models/sub-models.(Pal, 2005).Therefore it is also 

known as the ensemble classifier.(Piramanayagam, Schwartzkopf, Koehler, & Saber, 

2016).R.F. works on the bagging principle while making models, which means it makes 

different models based on the subset of training sample data, and the outcome is based 

on the majority/average of the sub-models.(Berhane et al., 2018). Multiple studies suggest 

that the number of trees generally does not significantly impact the resulting R.F. classifi-

cation accuracy, as long as the number is sufficiently large enough(Kulkarni & Lowe, 

2016).This is because when the number of trees in the classifier is small, the prediction 

Attributes 
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accuracy increases as additional trees are added. Still, the accuracy tends to plateau with 

a large number of trees.(Chan, Huang, Defries, & Sensing, 2001; Chan & Paelinckx, 2008; 

Pal, 2005; Rodriguez-Galiano et al., 2012). Some common examples of the projects that can 

be solved using R.F. algorithm include: land use land cover classification(Thapa, Prasai, 

& Indrawati Municipality, 2022), feature extraction such as ditch segments, roads, settle-

ments, or objects of interest, object detection such as tree species, vehicle, species identifi-

cation such as tigers, elephants, bird species, insects, habitat classification(R. Prasai, 2021; 

R. J. N. Prasai, 2021)  and modelling related projects such as flood-prone/drought(R. 

Prasai, 2022a, 2022b), core habitat, classify soil types, diseases, weeds, climate and 

weather-related model(Dahal & Prasai, 2022; R. Prasai, 2021, 2022a, 2022b, 2022c; R. Prasai 

et al., 2021; R. J. C. W. Prasai, Energy, & Engineering, 2022; R. J. N. Prasai, 2021; Thapa et 

al., 2022) and their forecasting. 

1.1.3. Support vector machine  

It's an ML model that can be applied to classification and regression problems(Moun-

trakis, Im, Ogole, & Sensing, 2011).It fits the data based on a distinct line known as a hy-

perplane(Sheykhmousa et al., 2020). As the model is easy to build and robust to outliers, 

it is widely used in the G.I.S. and remote sensing domains(Cavallaro, Willsch, Willsch, 

Michielsen, & Riedel, 2020). Building a support vector ML model requires the use to spec-

ify the kernel type(Waske, Benediktsson, & Sveinsson, 2009). Some popular kernels in re-

mote sensing are polynomial kernels and the radial basis function (RBF) kernel(C. Huang, 

Davis, & Townshend, 2002). Classification of satellite based imagery, detection of features 

like roads, wetlands, grasslands, can be solved using SVM models. 

1.1.4. Linear regression 

These models are the most popular research models in G.I.S. and remote sensing 

(Sudalaimuthu & Sudalayandi, 2019).Linear regression helps to identify and evaluate the 

relationship between two or more factors/covariates when we leverage the power of space 

in our analysis using the distance features, for example, the influence of distance to water 

in habitat selection.(Mansouri, Feizi, Jafari Rad, & Arian, 2018). This ML model helps to 

address the questions like:    

 Is there a linear relationship between diameter at breast height and crown diameter 

of trees? 

 What demographic factors contribute to the use of high rates of public transport? 

 What factors contribute to the high spread of COVID in geographical regions? 

 What is the relation between environmental factors and the cyanobacteria popula-

tion?  

 What variables affect gender-specific leadership? 

 What is the relation between climate change and migration? 

There are 3 types of linear regression commonly used in GIS and remote sensing 

based projects. They are Continuous (Gaussian), Logistic and Poisson distribution. The 

distribution should be normal(Susiluoto, Spantini, Haario, Härkönen, & Marzouk, 2020) 

for the Gaussian distribution linear regression. It is also called continuous because the 

dependent variable can take a wide range of values such as temperature, rainfall, and tree 

diameter(Avand & Moradi, 2021).If the dependent variable is not normally distributed, 

we can change it to binary values using reclassify function(Shi, Li, & Zhao, 2020). Binary 

is also known as logistic regression models, which builds models with only two outputs:- 

pass/fail, presence/absence.(Ghosh et al., 2022). We use count/Poisson regression models 

if the dependent variables are the counts/number of occurrences of an event.(Graff et al., 

2020). 

The dependent variable cannot be negative or decimal values(Graff et al., 2020). 

These models are generally used for species distribution models and understanding event 

patterns.  
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1.1.5. Non-linear regression 

The regression in which the predictor and response variable has a non-linear rela-

tionship is known as non-linear regression(Liang et al., 2022). Since most relationships in 

G.I.S. and remote sensing are non-linear, it is widely used in this sector(Adsuara et al., 

2019). Due to its flexibility, a wide variety of models can be built using these models(Hsieh, 

2020).For example, study the crops and soil processes, study the real estate price and im-

migration relation, study the relation between diameter and  canopy cover. 

1.2. Methods to improve the accuracy of the ML models 

1.2.1. Feature engineering 

Feature engineering is most prevalent in predictive models(Paulson et al., 2022). It is 

the process of filtering the most logical and influential variables/covariates in the models 

from the less important/influential variables, in ML terms, it is known as feature reduc-

tion(Sarith Divakar, Sudheep Elayidom, & Rajesh, 2022).It requires domain knowledge 

and understanding of the requirements of the projects(Paulson et al., 2022).Researchers 

run exploratory data analyses to observe the relationship between different variables/co-

variates and extract only the best variables to make an ML model(Song, Yang, Dai, Yuan, 

& Engineering, 2020). 

1.2.2. Boosting 

Boosting is a method used in machine learning to reduce errors in predictive data 

analysis(Schapire & classification, 2003).Data scientists train machine learning software, 

called machine learning models, on labelled data to make guesses about unlabeled 

data(Mayr, Binder, Gefeller, & Schmid, 2014).A single machine learning model might 

make prediction errors depending on the accuracy of the training dataset(Jafarzadeh, 

Mahdianpari, Gill, Mohammadimanesh, & Homayouni, 2021).For example, if a cat-iden-

tifying model has been trained only on images of white cats, it may occasionally misiden-

tify a black cat. Boosting tries to overcome this issue by training multiple models sequen-

tially to improve the accuracy of the overall system. Boosting improves machine models' 

predictive accuracy and performance by converting multiple weak learners into a single 

robust learning model. Machine learning models can be vulnerable learners or strong 

learners: 

1.2.3. Hyperparameter optimization 

Hyperparameter tuning depends on several factors: sample size, classifier/regression 

models used,and model type.(Audebert, Le Saux, Lefèvre, & magazine, 2019; S. Xu, Zhao, 

Wang, & Shi, 2022; Yang & Shami, 2020) It's an additional step to improve the accuracy 

and performance of the model(Pannakkong, Thiwa-Anont, Singthong, Parthanadee, & 

Buddhakulsomsiri, 2022). For example, selection of the best polynomial features in linear 

regression models, number of trees in a random forest, number of layers and neurons in 

a neural network, maximum depth in decision trees, and learning rate for gradient de-

scent(Pannakkong et al., 2022). Some common hyper parameter tuning techniques are 

grid search, randomized search, Bayesian optimization, sequential model-based optimi-

zation, and genetic algorithms (Yang & Shami, 2020). 

1.3. Overfitting and Underfitting in ML models 

Overfitting occurs when the model learns the noise and unwanted details in the 

learning data, which negatively impacts predicting the new data(Gu et al., 

2016).Underfitting refers to a model that neither models the training data nor generalizes 

to new data(Bashir, Montañez, Sehra, Segura, & Lauw, 2020; Guyon & Yao, 1999; Jabbar, 

Khan, & Devices, 2015; Van der Aalst et al., 2010).In comparing classifiers, we emphasize 

that more than just overall accuracy should be considered; the user's and producer's ac-

curacies for individual classes should also be considered(Alnaim, Sun, & Tong, 2022). This 
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is particularly true if the mapping focuses on rare classes (i.e. classes of limited extent in 

the image data). Rare classes tend to have little effect on the overall accuracy but may 

nevertheless be vital in determining the usefulness of the classification(Bogner, Seo, 

Rohner, & Reineking, 2018).However, if it is not feasible to test a variety of classifiers, 

SVM and R.F. generally appear to be reliable classification methods(Bogner et al., 2018). 

Some common approaches to reduce overfitting and underfitting of ML models are to use 

cross entropy, cross validation, early stopping and regularization approach. 

1.3.1. Cross-Entropy and Cross-Validation: 

Entropy is a measurable physical quality most usually linked with disorder, unpre-

dictability, or uncertainty(E.-W. Huang et al., 2022).The smallest average encoding size 

per transmission with which a source can efficiently convey a message to a destination 

without losing any data is defined as entropy(Janik, 2019).The difference between two 

probability distributions for a given random variable or set of occurrences is measured by 

cross-entropy.(Brochet, Lapuyade-Lahorgue, Bougleux, Salaün, & Ruan, 2021; Gordon-

Rodriguez, Loaiza-Ganem, Pleiss, & Cunningham, 2020; Pacheco, Ali, & Trappenberg, 

2019; Ruby & Yendapalli, 2020; Z. Z. Wang & Goh, 2022). As a loss function, cross-entropy 

is extensively employed in ML(Juszczuk et al., 2021).Each example has a known class label 

with a probability of 1.0, whereas all other labels have a probability of 0.0 in classifica-

tion(Ho & Wookey, 2019). In this case, the model determines the probability that a given 

example corresponds to each class label(Singh, 2013)..Cross-entropy can then be used to 

calculate the difference between two probability distributions.(Gordon-Rodriguez et al., 

2020) 

1.3.2. Cross-Validation 

Cross-validation is a technique in which we train our model using the subset of the 

dataset and then evaluate it using the complementary subset of the dataset(Tougui, Jilbab, 

& El Mhamdi, 2021). It is useful when there is a limited amount of data available(Battula 

& Technology, 2021). An example of cross-validation is K-fold cross-validation(Learn, 

2022). The data is divided into K parts, where 1 part is used as a validation dataset and 

the other remaining as a training dataset(Phinzi, Abriha, & Szabó, 2021). And this process 

is repeated K times to reduce the biases and produce an effective model(A. Ramezan, A. 

Warner, & E. Maxwell, 2019).  

1.3.3. Early Stopping and Regularization 

Early stopping and regularization are other techniques used to reduce the overfitting 

of the data(J. J. U. h. m. c. e.-s.-t.-a.-n.-n.-m. Brownlee, 2018). The early stopping technique 

stops the training on ML models once the ML model's performance starts dropping and 

then increasing(Behnke & Guo, 2021).The regularization technique can be applied in mul-

tiple ways. Their examples are L1, L2, and Dropout regularization(Alem & Kumar, 2022) 

1.4. Model performance calculation 

1.4.1. Confusion matrix (Popular for classification models) 

A confusion matrix, also known as an error matrix, is used for classification mod-

els(Piscini, Carboni, Del Frate, & Grainger, 2014). These matrices help in evaluating, mon-

itoring and managing models(Jeong, Ko, Shin, & Yeom, 2022). From these matrices, we 

can develop metrices like accuracy, precision, recall, specificity, and F1 score(Jeong et al., 

2022). When we create a confusion matrix, positive observation is known as Positives (P) 

(Weaver, Moore, Reith, McKee, & Lunga, 2018),negative observation is known as Nega-

tive(N) ((Weaver et al., 2018)),an outcome where the model correctly predicts the positive 

class is called True Positives (T.P.). In this outcome, the model correctly predicts the neg-

ative classes are, known as True Negatives (T.N.). The model incorrectly predicts the pos-

itive class when negative, also called a type 1 error are False Positive (F.P.)[(Bosman, Liotta, 

Iacca, & Wörtche, 2013)An outcome where the model incorrectly predicts the negative class 
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when it is positive also called a type 2 error, is known as a False Negative (F.N.)(Bosman 

et al., 2013). We should learn about the accuracy, precision, recall, specificity, F1 score to 

read and interpret the output of the confusion matrix.  

 Accuracy 

Accuracy can be calculated by using the following formula  

 

 Precision 

Precision can be calculated by using the following formula 

 

 Recall 

Recall, also known as the sensitivity, hit rate, or the true positive rate (T.P.R.) (Alakus, 

Turkoglu, & Fractals, 2020) answers the question, "What proportion of actual positives 

were identified correctly?" 

 

 Specificity 

Specificity, also known as the true negative rate (TNR), measures the proportion of 

actual negatives that are correctly identified as such.(Erickson & Kitamura, 2021). It is the 

opposite of recall. 

 

 F1 score 

The F1 score measures a test's accuracy — it is the harmonic mean of precision and 

recall.(Chicco & Jurman, 2020) 

It can have a maximum score of 1 (perfect precision and recall) and a minimum of 0. 

Overall, it measures the preciseness and robustness of your model.(Goutte & Gaussier, 

2005) 

 

 Receiver operator characteristic curve 

Receiver operator characteristic (R.O.C.) analysis is a quantitative method for deter-

mining a binary classification based on a threshold (cut-off) value usually calculated from 

continuous data.(Carter, Pan, Rai, & Galandiuk, 2016; Mbizvo & Larner, 2021; Søreide, 

2009). Plotting the true positive rate (T.P.R.) against the false positive rate (F.P.R.) at vari-

ous threshold levels yields the R.O.C. curve(J. J. M. l. m. Brownlee, 2018).Sensitivity, recall, 

and the chance of detection are all terms used to describe the true-positive rate.(LeDell, 

Petersen, & van der Laan, 2015; Statnikov, Aliferis, Hardin, & Guyon, 2013).The likelihood 

of a false alarm is also known as the false-positive rate, and it can be computed as (1- 

specificity). It's also known as a plot of the power as a function of the decision rule's Type 

I Error (when the performance is calculated from just a sample of the population, it can be 
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thought of as estimators of these quantities). As a result, the R.O.C. curve represents sen-

sitivity or recall as a function of fall-out. 

1.4.1. For regression models: 

Classifying the accuracy of the regression models is a little different than the classifi-

cation models because, in regression models, we are not only concerned with the model 

predicting right or wrong but also how accurately the models have predicted the actual 

value(Goldstein, 2005).For example, when we use regression models to forecast the tem-

perature, if the model gives the value as 43 C and the actual value is 43.5 C, the model is 

better and vice versa.(Haack & Rafter, 2010). We measure the accuracy of the regression 

models using explained variance and mean squared error  

 Explained variance 

Explained variance is the amount of variation in the original dataset that our model 

can explain(Estrella, Gilerson, Foster, & Groetsch, 2021; Goldstein, 2005). 

 Mean squared error 

It is the average of the squared differences between the predicted and actual output.. 

R2 coefficient represents the proportion of variance in the outcome that our model can 

predict based on its features (Mittlböck & Schemper, 1996). 

1.5. Factors to consider while selecting the ML models in GIS and remote sensing based projects 

 No rule of thumb 

 Experiment with multiple classifiers 

 Hyper tuning parameters for the accuracy 

 Use random forest classifiers for the weak datasets and Decision tress when simple 

and fast models are needed 

 The default value for the number of trees in R.F. can be 500; for kernel size in SVM, 

it can be polynomial kernels and radial basis kernels 

 Visualize the relationships between the input and predictors to evaluate their rela-

tionship and find if there is any band that can help in predicting things better 

 Normalize the rare classes/imbalanced datasets 

 Computation time also depends on user-defined parameters, classifier chosen, sam-

ple size 

 If parameters cannot be tuned, R.F. should be used, setting the number of trees to 500 

to provide  

 Balance the datasets/data normalization. The classes with few samples/rare classes 

can be affected 

 Computational complexities of different ML models which is the amount of re-

sources to run a ML model.  

N=number of training examples, m=number of features, n’=number of support vec-

tors, k=number of neighbors, k’= number of trees (Majeed, 2019) 

Table 1. Computational complexity of discussed ML models. 

S.N. Model Train time complexity Test time complexity Space complexity 

1 Linear regression O(n*m^2 + m^3) O(m)  O(m) 

2 Logistic regression O(n*m) O(m) O(m) 

3. 
Support Vector 

Machine 
O(n^2) O(n’*m) O(n*m) 

4. Decision tree O(n*log(n)*m O(m) O(depth of tree) 

5. Random forest O(k’ *n*log(n)*m O(m*k’) O(k’*depth of tree) 

6. Naïve Bayes O(n*m) O(m) O(c*m) 
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2. Conclusion 

In recent years, ML models are increasingly being used in GIS and remote sensing 

based projects. ML models helps in solving GIS and remote sensing problems by identi-

fying the underlying patterns, for example satellite based image classification, detection 

of features likes roads, wetlands, grasslands, image segmentation. We discuss few popu-

lar ML models and methods of their application in GIS and remote sensing based projects 

here. Researchers can use this paper as a reference while starting a ML based project. 

There are other ML models which can be learnt easily after learning above discussed mod-

els. 

Conflicts of Interest: The authors declare no conflict of interest. 
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