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Abstract: In this review, we trace the evolution of the quantum spin-wave theory treating
non-collinear spin configurations. Non-collinear spin configurations are consequences of the
frustration created by competing interactions. They include simple chiral magnets due to competing
nearest-neighbor (NN) and next-NN interactions and systems with geometry frustration such as the
triangular antiferromagnet and the Kagomé lattice. We review here spin-wave results of such
systems and also systems with the Dzyaloshinskii-Moriya interaction. Accent is put on these
non-collinear ground states which have to be calculated before applying any spin-wave theory
to determine the spectrum of the elementary excitations from the ground states. We mostly show
results from a self-consistent Green’function theory to calculate the spin-wave spectrum and the layer
magnetizations at finite T in two and three dimensions as well as in thin films with surface effects.
Some new unpublished results are also included. Analytical details and the validity of the method
are shown and discussed.

Keywords: Quantum Spin-Wave Theory; Frustrated Spin Systems ; Non-Collinear Spin
Configurations; Dzyaloshinskii-Moriya Interaction; Phase Transition; Green’s Function Theory;
Monte Carlo Simulation

1. Introduction

In a solid the interaction between its constituent atoms or molecules gives rise to elementary
excitations from its ground state (GS) when the temperature increases from zero. One has examples
of elementary excitations due to atom-atom interaction known as phonons or due to spin-spin
interaction known as magnons. Note that magnons are spin waves (SW) when they are quantized.
Elementary excitations are defined also for interaction between charge densities in plasma, or for
electric dipole-dipole interaction in ferroelectrics, among others. Elementary excitations are thus
collective motions which dominate the low-temperature behaviors of solids in general.

For a given system, there are several ways to calculate the energy of elementary excitations from
classical treatments to quantum ones. Since those collective motions are waves, its energy depends on
the wave vector k. The k-dependent energy is often called the SW spectrum for spin systems. Note
that though the calculation of the SW spectrum is often for periodic crystalline structures, it can also
be performed for symmetry-reduced systems such as in thin films or in semi-infinite solids in which
the translation symmetry is broken by the presence of a surface.

In this review we focus on the SW excitations in magnetically ordered systems. The history began
with ferromagnets and antiferromagnets with collinear spin GSs, parallel or antiparallel configurations
in the early 50’s. Most of the works on the SW used either the classical method or the quantum
Holstein-Primakoff transformation. The Green’s function (GF) technique has also been introduced in a
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pioneer paper of Zubarev [1]. The first application of this method to thin films has been done [2]. Note
that unlike the SW theory, the GF can treat the SW up to higher temperatures. We will come back to
this point later.

Let us recall some important breakthroughs in the study of in non-collinear spin configurations.
The first discovery of the helical spin configuration has been published in 1959 [3,4]. Some attempts to
treat this non-collinear case have been done in the 70’s and 80’s. Let us cite two noticeable works on
this subject in Refs. [5,6]. In these works, a local system of spin coordinates have been introduced in
the way that each spin lies on its quantization axis. One can therefore use the commutation relations
between spin deviation operators. These works took into account magnon-magnon interactions by
expanding the Hamiltonian up to three-operator terms at temperature T = 0 [5] or up to four-operator
terms at low T [6]. Nevertheless, since these works used the Holstein-Primakoff method, the case
of higher T cannot be dealt with. In Ref. [7], the GF method has been employed for the first time to
calculate the SW spectrum in a frustrated system where the GS spin configuration is non collinear.
Using the SW spectrum, the local order parameter, the specific heat, ... were calculated. Since this
work, we have applied the GF method to a variety of systems where the GS is non collinear. In this
review, we will recall results of some of these published works.

Let us comment on the frustration which is the origin of the non-collinear GS. The frustration is
caused by either the competing interactions in the system or a geometry frustration as in the triangular
lattice with only the antiferromagnetic interaction between the nearest neighbors (NN) (see Ref. [8]).
The frustration causes high GS degeneracy, and in the case of XY and Heisenberg spins the GS is non
collinear making the calculation of the SW spectrum harder. A number of examples will be shown in
this review paper.

In addition to competing interactions, the Dzyaloshinskii-Moriya (DM) interaction [9,10] is also
the origin of non-collinear spin configurations in spin systems. While the Heisenberg model between
two spins is written as −JijSi · Sj giving rise to two collinear spins in the GS, the DM interaction is
written as Dij ·Si×Sj giving rise to two perpendicular spins. The DM model was historically proposed
to explain the weak ferromagnetism which was observed in Mn compounds [11]. However, the DM
interaction goes beyond the weak magnetism since it was discoververed in various materials, in
particular at the interface of a multilayer [12–16]. Although in this review we do not show the effect of
the DM interaction in a magnetic field which gives rise to topological spin swirls known as skyrmions,
we should mention a few of the important works given in Refs. [17–20]. Skyrmions are among the
most studied subjects at the time being due to their potental applications in spinelectronics.[22] We
refer the reader to the rich biography given in our recent papers in Refs. [23,24].

Since this paper is a review on the method and the results of published works on SW in
non-collinear GS spin configurations, it is important to recall the method and show main results
of some typical cases. We would like to emphasize that on the GF technique, to our knowledge
there are no authors other than us working with this method. Therefore, the works mentioned in
the references of this paper are our works published over the last 25 years. The aim of this review is
two-fold. First we show technical details of the GF method by selecting a number of subjects which are
of current interest in research: helimagnets, systems including a DM interaction, surface effects in thin
films. Second, we show that these systems possess many striking features due to the frustration.

This paper is organized as follows. In section 2, we express the Hamiltonian in a general
non-collinear GS and define the local system of spin coordinates. Here, we also present the
determination of the GS and the formulation of the self-consistent GF method and the calculation
of the SW spectrum and layer magnetizations at finite temperature (T). We show in section 3 the
numerical results obtained from the GF. Section 4 shows interesting examples using various kinds of
interaction including the DM interaction in a variety of systems from two dimensions, to thin films and
superlattices. Section 5 treats a case where the DM interaction competes with the antiferromagnetic
interaction in the frustrated antiferromagnetic triangular lattice. Section 6 presents the surface effect in
a thin film where its surface is frustrated. Concluding remarks are given in section 7.
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2. Hamiltonian of a Chiral Magnet - Local Coordinates

Chiral order in helimagnets has been subject of recent extensive investigations. In Ref. [25], the
magnetic surface phase of thin helimagnetic films has been studied. In Ref. [26] exotic magnetic
structures in ultrathin helimagnetic holmium films have been investigated. In Refs. [27,28] chiral
modulation and reorientation effects in MnSi thin films have been theoretically studied. In these works,
the chiral structures have been considered at T = 0, but not the SW even at T = 0. The main difficulty
was due to the non-collinear, non-uniform spin configurations. We have shown that this was possible
using the GFs generalized for such spin configurations given in Ref. [7]

To demonstrate the method, let us follow Ref. [29]: we consider the body-centered tetragonal
(bct) lattice with Heisenberg spins interacting with each other via J1 the interaction between nearest
neighbors (NN) and J2 the interaction between the next NN (NNN) only in the c-direction (see Fig.1).

Figure 1. Interactions J1 (thin solid lines) between NN and J2 between NNN along the c axis in a bct
lattice.

We consider the simplest model of helimagnet given by the following Hamiltonian

H = −J1 ∑
i,j

Si · Sj − J2 ∑
i,k

Si · Sk (1)

where Si is a quantum spin of magnitude 1/2, the first sum is performed over all NN pairs and the
second sum over pairs on the c-axis (cf. Fig. 1).

In the case of an infinite crystal, the chiral state occurs when J1 is ferromagnetic and J2 is
antiferromagnetic and |J2|/J1 is larger than a critical value, as will be shown below.

Let us suppose that the energy of a spin EC in a chiral configuration when the angle between two
NN spin in the adjacent planes is θ, one has (omitting the factor S2)

E = −8J1 cos θ − 2J2 cos(2θ) (2)

The lowest-energy state corresponds to

dE
dθ

= 0

→ 8J1 sin θ + 4 sin(2θ) = 0

8J1 sin θ(1 +
J2

J1
cosθ) = 0 (3)

There are two solutions, sin θ = 0 and cos θ = − J1
J2

The first solution corresponds to the ferromagnetic

state, and the second solution exists if − J1
J2
≤ 1 which corresponds to the chiral state.
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For a thin helimagnetic film, the angles between spins in the adjacent layers are not the same due
to the surface. We can use the method of energy minimization for each layer, then we have a set of
coupled equations to solve (see Ref. [29]). Figure 2 displays an example of the angle distribution across
the film thickness Nz.

c axis

Figure 2. (a) Chiral structure along the c-axis for an infinite crystal, in the case θ = 2π/3, namely
J2/J1 = −2; (b) Cosinus of α1 = θ1 − θ2, ..., α7 = θ7 − θ8 across the film for several values J2/J1 =

−1.2,−1.4,−1.6,−1.8,−2 (from top) with Nz = 8: ai stands for θi − θi+1 and x indicates the film layer
i where the angle ai with the layer (i + 1) is shown. See text for comments.

In order to calculate the SW spectrum for systems of non-collinear spin configurations, let us
emphasize that the commutation relations between spin operators are established when the spin lies
on its quantization z. In the non-collinear cases, each spin has its own quantization axis. It is therefore
important to choose a quantization axis for each spin. We have to use the system of local coordinates
defined as follows. In the Hamiltonian, the spins are coupled two by two. Consider a pair Si and
Sj. As seen above, in the general case these spins make an angle θi,j = θj − θi determined by the
competing interactions in the systems. For quantum spins, in the course of calculation we need to use
the commutation relations between the spin operators Sz, S+, S−. As said above, these commutation
relations are derived from the assumption that the spin lies on its quantization axis z. We show in Fig.
3 the local coordinates assigned to spin Si and Sj. We write

Si = Sx
i ξ̂i + Sy

i η̂i + Sz
i ζ̂i (4)

Sj = Sx
j ξ̂ j + Sy

j η̂j + Sz
j ζ̂ j (5)

Expressing the axes of Sj in the frame of Si one has

ζ̂ j = cos θi,j ζ̂i + sin θi,j ξ̂i (6)

ξ̂ j = − sin θi,j ζ̂i + cos θi,j ξ̂i (7)

η̂j = η̂i (8)

so that

Sj = Sx
j (− sin θi,j ζ̂i + cos θi,j ξ̂i)

+Sy
j η̂i + Sz

j (cos θi,j ζ̂i + sin θi,j ξ̂i) (9)
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Figure 3. Spin Si lies along the ~ζ axis (its quantization axis), while spin Sj lies along its quantization
axis ~ζ ′ which makes an angle θ with the ~ζ axis. The axes ~ξ and ~ξ ′ are perpendicular respectively to ~ζ

and ~ζ ′. T he perpendicular axes η̂i and η̂j coincide with the~c axis, perpendicular to the basal plane of
the bct lattice.

Using Eq. (9) to express Sj in the (ξ̂i, η̂i, ζ̂i) coordinates, then calculating Si · Sj, we obtain the
following exchange Hamiltonian from (28):

He = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

) (
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θi,j + 1

) (
S+

i S−j + S−i S+
j

)
+

1
2

sin θi,j
(
S+

i + S−i
)

Sz
j −

1
2

sin θi,jSz
i

(
S+

j + S−j
)

+ cos θi,jSz
i Sz

j

}
(10)

This explicit Hamiltonian in terms of the angle between two NN spins is common for a non-collinear
spin configuration due to exchange interactions Ji,j. For other types of interactions such as the DM
interaction, the explicit Hamiltonian in terms of the angle will be different as seen in section 4.

We define the following GFs for the above Hamiltonian:

Gi,j(t, t′) = << S+
i (t); S−j (t

′) >>

= −iθ(t− t′) <
[
S+

i (t), S−j (t
′)
]
> (11)

Fi,j(t, t′) = << S−i (t); S−j (t
′) >>

= −iθ(t− t′) <
[
S−i (t), S−j (t

′)
]
> (12)

The equations of motion of these functions are

ih̄
d
dt

Gi,j
(
t, t′
)

=
〈[

S+
i (t) , S−j

(
t′
)]〉

δ
(
t− t′

)
−

〈〈[
H, S+

i (t)
]

; S−j
(
t′
)〉〉

, (13)

ih̄
d
dt

Fi,j
(
t, t′
)

=
〈[

S−i (t) , S−j
(
t′
)]〉

δ
(
t− t′

)
−

〈〈[
H, S−i (t)

]
; S−j

(
t′
)〉〉

, (14)
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where the spin operators and their commutation relations are given by

S±j = Sx
j ξ̂ j ± iSy

j η̂j[
S+

j , S−l
]

= 2Sz
j δj,l[

Sz
j , S±l

]
= ±S±j δj,l

Note that the equation of motion of the first function generates functions of the second type, and
vice-versa. Expanding the commutators in Eqs. (13)-(14), and using the Tyablikov decoupling scheme
[30] for higher-order functions, for example << Sz

i′S
+
i (t); S−j (t

′) >>'< Sz
i′ ><< S+

i (t); S−j (t
′) >>

etc., we have the following general equations for non-collinear magnets:

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
i′

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)]

+ 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Gi,j(t, t′)

(15)

ih̄
dFi,j(t, t′)

dt
= ∑

i′
Ji,i′ [< Sz

i > (cos θi,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Fi′ ,j(t, t′)

− 2 < Sz
i′ > cos θi,i′Fi,j(t, t′)]

− 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Fi,j(t, t′)

(16)
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Separating the sums on NN interactions and NNN interactions for the sake of clarity, one has

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
k′∈NN

Ji,k′ [< Sz
i > (cos θi,k′ − 1)×

× Fk′ ,j(t, t′)

+ < Sz
i > (cos θi,k′ + 1)Gk′ ,j(t, t′)

− 2 < Sz
k′ > cos θi,k′Gi,j(t, t′)]

+ 2 ∑
k′∈NN

Ii,k′ < Sz
k′ > cos θi,k′Gi,j(t, t′)

− ∑
i′∈NNN

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)] (17)

ih̄
dFk,j(t, t′)

dt
= ∑

i′∈NN
Jk,i′ [< Sz

k > (cos θk,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
k > (cos θk,i′ + 1)Fi′ ,j(t, t′)

− 2 < Sz
i′ > cos θk,i′Fk,j(t, t′)]

− 2 ∑
i′∈NN

Ik,i′ < Sz
i′ > cos θk,i′Fk,j(t, t′)

+ ∑
k′∈NNN

Jk,k′ [< Sz
k > (cos θk,k′ − 1)×

× Gk′ ,j(t, t′)

+ < Sz
k > (cos θk,k′ + 1)Fk′ ,j(t, t′)

− 2 < Sz
k′ > cos θk,k′Fk,j(t, t′)] (18)

For simplicity, we suppose in the following all NN interactions (Jk,k′ , Ik,k′) are equal to (J1, I1) and all
NNN interactions are equal to J2. In addition, in the film coordinates defined above, we denote the
Cartesian components of the spin position Ri by three indices (`i, mi, ni) in three directions x, y and z.

Since there is the translation invariance in the xy plane, the in-plane Fourier transforms of the
above equations are

Gi,j
(
t, t′
)

=
1
∆

∫ ∫
BZ

dkxy
1

2π

∫ +∞

−∞
dωe−iω(t−t′)

×gni ,nj

(
ω, kxy

)
eikxy ·(Ri−Rj), (19)

Fk,j
(
t, t′
)

=
1
∆

∫ ∫
BZ

dkxy
1

2π

∫ +∞

−∞
dωe−iω(t−t′)

× fnk ,nj

(
ω, kxy

)
eikxy ·(Rk−Rj), (20)

where ω is the SW frequency, kxy the wave-vector parallel to xy planes and Ri the position of Si. ni,
nj and nk indicate respectively the z-component indices of the layers where the sites Ri, Rj and Rk
belong to. The integral over kxy is performed in the first Brillouin zone (BZ) whose surface is ∆ in the
xy reciprocal plane. ni = 1 denotes the surface layer, ni = 2 the second layer etc.
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In the 3D case, the Fourier transformation of Eqs. (17)-(18) in three directions yields two coupled
equations which can be solved to obtain the SW dispersion relation in the absence of anisotropy:

h̄ω = ±
√

A2 − B2 (21)

where

A = J1 〈Sz〉 [cos θ + 1]Zγ + 2ZJ1 〈Sz〉 cos θ

+J2 〈Sz〉 [cos(2θ) + 1]Zc cos(kza)

+2Zc J2 〈Sz〉 cos(2θ)

B = J1 〈Sz〉 (cos θ − 1)Zγ

+J2 〈Sz〉 [cos(2θ)− 1]Zc cos(kza)

where Z = 8 (NN number), Zc = 2 (NNN number on the c-axis), γ =

cos(kxa/2) cos(kya/2) cos(kza/2) (a: lattice constant). We see that h̄ω is zero when A = ±B,
namely at kx = ky = kz = 0 (γ = 1) and at kz = 2θ along the helical axis. The case of ferromagnets
(antiferromagnets) with NN interaction only is recovered by putting cos θ = 1 (−1) [2].

In the case of a thin film, the in-plane Fourier transformation yields the following matrix equation

M (ω) h = u, (22)

where h and u are the column matrices which are defined as follows

h =



g1,n′

f1,n′
...

gn,n′

fn,n′
...

gNz ,n′

fNz ,n′


, u =



2
〈
Sz

1
〉

δ1,n′

0
...

2
〈

Sz
Nz

〉
δNz ,n′

0


, (23)

We take h̄ = 1 hereafter. Note that M (ω) is a square matrix of dimension (2Nz × 2Nz), given by Eq.
(24) where

An = −8J1(1 + d)
[ 〈

Sz
n+1
〉

cos θn,n+1

+
〈
Sz

n−1
〉

cos θn,n−1

]
− 2J2

[ 〈
Sz

n+2
〉

cos θn,n+2

+
〈
Sz

n−2
〉

cos θn,n−2

]
where n = 1, 2, ..., Nz, d = I1/J1, and

B±n = 4J1 〈Sz
n〉 (cos θn,n±1 + 1)γ

C±n = 4J1 〈Sz
n〉 (cos θn,n±1 − 1)γ

E±n = J2 〈Sz
n〉 (cos θn,n±2 − 1)

D±n = J2 〈Sz
n〉 (cos θn,n±2 + 1)
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M
(ω

)
=

           ω
+

A
1

0
B
+ 1

C
+ 1

D
+ 1

E
+ 1

0
0

0
0

0
0

0
ω
−

A
1
−

C
+ 1
−

B
+ 1
−

E
+ 1

−
D

+ 1
0

0
0

0
0

0
··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

D
− n

E
− n

B
− n

C
− n

ω
+

A
n

0
B
+ n

C
+ n

D
+ n

E
+ n

··
·

··
·

−
E
− n

−
D
− n
−

C
− n
−

B
− n

0
ω
−

A
n
−

C
+ n
−

B
+ n
−

E
+ n

−
D

+ n
··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

0
0

0
0

0
0

D
− N

z
E
− N

z
B
− N

z
C
− N

z
ω
+

A
N

z
0

0
0

0
0

0
0

−
E
− N

z
−

D
− N

z
−

C
− N

z
−

B
− N

z
0

ω
−

A
N

z

           
(2

4)
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where θn,n±1 is the angle between a spin in the layer n and its NN spins in layers n ± 1 etc. and

γ = cos
(

kxa
2

)
cos

(
kya
2

)
.

Solving det |M| = 0, we obtain the SW spectrum ω of the film for each value (kx, ky). There
are 2Nz eigen-values of ω corresponding to two opposite spin precessions as in antiferromagnets
(the dimension of det |M| is 2Nz × 2Nz). Note that the above equation depends on the values of
< Sz

n > (n = 1, ..., Nz). Even at temperature T = 0, these z-components are not equal to 1/2 because
we are dealing with a non-collinear system where fluctuations at T = 0 give rise to the so-called
zero-point spin contraction [31]. In addition, because of the film surfaces, the spin contractions are not
homogeneous as seen below. Therefore, the solution of det |M| = 0 should be obtained by iteration.

The solution for gn,n can be calculated. The reader is referred to Ref. [29] for details. Next, using
the spectral theorem [1] which relates 〈Sz

n〉 to the spin-spin correlation we obtain, after a somewhat
lengthy algebra (see [29]):

〈Sz
n〉 =

1
2
− 1

∆

∫ ∫
dkxdky

2Nz

∑
i=1

D2n−1(ωi)

eβωi − 1
(25)

where n = 1, ..., Nz, and

D2n−1
(
ωi
(
kxy
))

=
|M|2n−1

(
ωi
(
kxy
))

∏j 6=i
[
ωj
(
kxy
)
−ωi

(
kxy
)] . (26)

As < Sz
n > depends on the magnetizations of the neighboring layers via ωi(i = 1, ..., 2Nz), we should

solve by iteration the equations (2) written for all layers, namely for n = 1, ..., Nz, to obtain the
magnetizations of layers 1, 2, 3, ..., Nz at a given temperature T. Note that by symmetry, < Sz

1 >=<

Sz
Nz

>, < Sz
2 >=< Sz

Nz−1 >, < Sz
3 >=< Sz

Nz−2 >, and so on. Thus, only Nz/2 self-consistent layer
magnetizations are to be calculated. The value of the spin in the layer n at T = 0 is

〈Sz
n〉(T = 0) =

1
2
+

1
∆

∫ ∫
dkxdky

Nz

∑
i=1

D2n−1(ωi
(
kxy
)
) (27)

where the sum is done over only Nz negative values of ωi (because for positive of ωi , the Bose-Einstein
factor is equal to 0 at T = 0).

The transition temperature Tc can be calculated in a self-consistent manner by iteration, letting all
< Sz

n > tend to zero, namely ωi → 0.
We show in the following section, the numerical results using the above formulas.

3. Results for helimagnets obtained from the Green’s function method

In the following we take the ferromagnetic interaction between NN J1 = 1,. We consider the
helimagnetic case where the NNN interaction J2 is negative and |J2| > J1. The non-uniform GS spin
configuration across the film has been determined above for each value of p = J2/J1. Using the values
of θn,n±1 and θn,n±2 to calculate the matrix elements of |M|, then solving det |M| = 0 we find the
eigenvalues ωi(i = 1, ..., 2Nz) for each kxy with a input set of 〈Sz

n〉(n = 1, ..., Nz) at a given T. Using
Eq. (2) for n = 1, ..., Nz we calculate the output 〈Sz

n〉(n = 1, ..., Nz). Using this output set as input, we
calculate again 〈Sz

n〉(n = 1, ..., Nz) until the input and output are identical within a desired precision P.
Numerically, we use a Brillouin zone of 1002 wave-vector values, and we use the obtained values 〈Sz

n〉
at a given T as input for a neighboring T. At low T and up to ∼ 4

5 Tc, only a few iterations suffice to
get P ≤ 1%. Near Tc, several dozens of iteration are needed to get convergence. We show below our
results.
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3.1. Spectrum

We calculate the SW spectrum as described above for each a given J2/J1. The SW spectrum
depends on the temperature via the temperature-dependence of layer magnetizations. Let us show
in Fig. 4 the SW frequency ω versus kx = ky in the case of an 8-layer film where J2/J1 = −1.4 at two
temperatures T = 0.1 and T = 1.02 (in units of J1/kB = 1). Some remarks are in order:

(i) There are 8 positive and 8 negative modes corresponding two opposite spin precessions. Unlike
ferromagnets, SW in antiferromagnets and non collinear spin structures have opposite spin precessions
which describe the opposite circular motion of each sublattice spins [31]. The negative sign does not
mean SW negative energy, but it indicates just the precession contrary to the trigonometric sense,
(ii) Note that there are two degenerate acoustic surface branches lying at low energy on each side. This
degeneracy comes from the two symmetrical surfaces of the film. These surface modes propagate
parallel to the film surface but are damped from the surface inward,
(iii) As T increases, layer magnetizations decrease (see below), reducing therefore the SW energy as
seen in Fig. 4 (bottom),
(iv) If the spin magnitude S 6= 1/2, then the spectrum is shifted toward higher frequency since it is
proportional to S,
(v) Surface SW spectrum (and bulk SW) can be experimentally observed by inelastic neutron scattering
in ferromagnetic and antiferromagnetic films [32,33]. To our knowledge, such experiments have not
been performed for helimagnets.

Figure 4. (a) Spectrum E = h̄ω versus k ≡ kx = ky for J2/J1 = −1.4 at T = 0.1 and (b) T = 1.02, for
Nz = 8 and d = 0.1. The surface branches are indicated by s.

3.2. Spin contraction at T = 0 and transition temperature

In antiferromagnets, quantum fluctuations give rise to a contraction of the spin length at zero
temperature [31]. We will see here that a spin under a stronger antiferromagnetic interaction has a
stronger zero-point spin contraction. The spins near the surface serve for such a test. In the case of
the film considered above, spins in the first and in the second layers have only one antiferromagnetic
NNN while interior spins have two NNN, so the contraction at a given J2/J1 is expected to be stronger
for interior spins. This is verified with the results shown in Fig. 5. When |J2|/J1 increases, i.e. the
antiferromagnetic interaction becomes stronger, we observe stronger contractions. Note that the
contraction tends to zero when the spin configuration becomes ferromagnetic, namely J2 tends to -1.

3.3. Layer magnetizations

We show now two examples of the magnetization, layer by layer, from the film surface in Figs.
6 and 7, for the case where J2/J1 = −1.4 and -2 in a Nz = 8 film. Let us comment on the case
J2/J1 = −1.4:
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Figure 5. (Spin lengths of the first four layers at T = 0 for several values of p = J2/J1 with d = 0.1,
Nz = 8. As seen, all are contracted to values smaller than the spin magnitude 1/2. Black circles, void
circles, black squares and void squares are for first, second, third and fourth layers, respectively.

(i) the shown result is obtained with a convergence of 1%. For temperatures closer to the transition
temperature Tc, we have to lower the precision to a few percents which reduces the clarity because of
their close values (not shown).

(ii) the surface magnetization, which has a large value at T = 0 as seen in Fig. 5, crosses the
interior layer magnetizations at T ' 0.42 to become much smaller than interior magnetizations
at higher temperatures. This crossover phenomenon is due to the competition between quantum
fluctuations, which dominate low-T behavior, and the low-lying surface SW modes which strongly
diminish the surface magnetization at higher T. Note that the second-layer magnetization makes also
a crossover at T ' 1.3. Similar crossovers have been observed in quantum antiferromagnetic films [34]
and quantum superlattices [35].

Similar remarks can be also made for the case J2/J1 = −2.
Note that though the layer magnetizations are different at low temperatures, they will tend to

zero at a unique transition temperature as seen below. The reason is that as long as an interior layer
magnetization is not zero, it will act on the surface spins as an external field, preventing them to
become zero.

Figure 6. (a) Layer magnetizations as functions of T for J2/J1 = −1.4 with d = 0.1, Nz = 8, (b) Zoom
of the region at low T to show crossover. Black circles, blue void squares, magenta squares and red
void circles are for first, second, third and fourth layers, respectively. See text.

Note that the results shown above have been calculated with an in-plane anisotropy interaction
d = 0.1. The use of stronger d will enhance all the layer magnetizations and increase Tc.

To close this section on SW in helimagnetic bct thin films, we mention that a similar investigation
has been carried out in the case of helimagnetic films of simple cubic lattice where the surface spin
reconstruction and the surface SW have been shown. [36] We have also studied the frustrated bct
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Figure 7. (a) Layer magnetizations as functions of T for J2/J1 = −2 with d = 0.1, Nz = 8, (b) Zoom of
the region at low T to show crossover. Black circles, blue void squares, magenta squares and red void
circles are for first, second, third and fourth layers, respectively. See text.

Heisenberg helimagnet in which the SW spectrum of the non-collinear spin configuration has been
calculated.[37]

4. Dzyaloshinskii-Moriya interaction in thin films: model and ground state

We consider a thin film of simple cubic (SC) lattice of N layers stacked in the y direction
perpendicular to the film surface. The results for this system have been published in Ref. [38].
Hereafter, we review some of these important results. The Hamiltonian is given by

H = He +HDM (28)

He = −∑
〈i,j〉

Ji,jSi · Sj (29)

HDM = ∑
〈i,j〉

Di,j · Si × Sj (30)

where Ji,j and Di,j are the exchange and DM interactions, respectively, between two Heisenberg spins
Si and Sj of magnitude S = 1/2 occupying the lattice sites i and j.

As in the previous section we consider the case where the in-plane and inter-plane exchange
interactions between NN are both ferromagnetic and denoted by J1 and J2, respectively. The DM
interaction is supposed to be between NN in the plane with a constant D. Due to the competition
between the exchange J term which favors the collinear configuration, and the DM term which favors
the perpendicular one, we expect that the spin Si makes an angle θi,j with its neighbor Sj. Therefore,
the quantization axis of Si is not the same as that of Sj. Let us use the transformation to the local
coordinates, Eqs. (4)-(9). We choose the vector Di,j perpendicular to the xz plane, namely

Di,j = Dei,jη̂i (31)

where ei,j =+1 (-1) if j > i (j < i) for NN on the ξ̂i or ζ̂i axis. Note that ej,i = −ei,j.
To determine the GS, the easiest way is to use the steepest descent method: we calculate the

local field acting on each spin from its neighbors and we align the spin in its local-field direction to
minimize its energy. Repeating this for all spins and iterating many times until the convergence is
reached with a desired precision (usually at the 6-th digit, namely at ' 10−6 per cents), we obtain the
lowest energy state of the system (see Ref. [39]). Note that we have used several thousands of different
initial conditions to check the convergence to a single GS for each set of parameters. Choosing Di,j
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lying perpendicular to the spin plane (i. e. xz plane) as indicated in Eq. (31), we determine the GS as a
function of D. An example is shown in Fig. 8 for D = −0.5 with J1 = J2 = 1.

Figure 8. The ground state is a planar configuration on the xz plane. The figure shows the case where
θ = π/6 (D = −0.577), J1 = J⊥ = 1 using the steepest descent method. The inset shows a zoom
around a spin with its nearest neighbors.

We see that each spin has the same angle with its four NN in the plane (angle between NN in
adjacent planes is zero). Let us show the relation between θ and J1: the energy of the spin Si is written
as

Ei = −4J1S2 cos θ − 2J2S2 + 4DS2 sin θ (32)

where θ = |θi,j| and care has been taken on the signs of sin θi,j and ei,j when counting NN, namely two
opposite NN have opposite signs. The minimization of Ei yields

dEi
dθ

= 0 ⇒ −D
J1

= tan θ ⇒ θ = arctan(−D
J1
) (33)

The value of θ for a given D
J1

is precisely what obtained by the steepest descent method.
In the present model, the DM interaction is supposed in the plane, so in the GS the angle between

in-plane NN is not zero. We show in Fig. 8 the relative orientation of the two NN spins in the plane.
The DM term of Eq. (30) can be rewritten as

Si × Sj = (−Sz
i Sy

j − Sy
i Sx

j sin θi,j + Sy
i Sz

j cos θi,j)ξ̂i

+(Sx
i Sx

j sin θi,j + Sz
i Sz

j sin θi,j)η̂i

+(Sx
i Sy

j − Sy
i Sz

j sin θi,j − Sy
i Sx

j cos θi,j)ζ̂i

(34)

Using Eq. (31), we have

HDM = ∑
〈i,j〉

Di,j · Si × Sj

= D ∑
〈i,j〉

(Sx
i Sx

j ei,j sin θi,j + Sz
i Sz

j ei,j sin θi,j)

=
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

(35)
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where we have replaced Sx = (S+ + S−)/2. Note that ei,j sin θi,j is always positive since for a NN on
the positive axis direction, ei,j = 1 and sin θi,j = sin θ where θ is positively defined, while for a NN on
the negative axis direction, ei,j = −1 and sin θi,j = sin(−θ) = − sin θ.

4.1. Self-consistent Green’s function method for the Dzyaloshinskii-Moriya system

Expressing the Hamiltonian in the local coordinates using Eqs. (4)-(9), we obtain

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

) (
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θi,j + 1

) (
S+

i S−j + S−i S+
j

)
+

1
2

sin θi,j
(
S+

i + S−i
)

Sz
j −

1
2

sin θi,jSz
i

(
S+

j + S−j
)

+ cos θi,jSz
i Sz

j

}

+
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

(36)

As said in the previous section, the spins lie in the xz planes, each on its quantization local z axis (Fig.
3).

Note that unlike the sinus term of the DM Hamiltonian, Eq. (35), the sinus terms ofHe, the 3rd
line of Eq. (36), are zero when summed up on opposite NN (no ei,j to compensate). The 3rd line
disappears therefore in the following.

At this stage it is very important to note that the standard commutation relations between
spin operators Sz and S± are defined with z as the spin quantization axis. In non-collinear spin
configurations, calculations of SW spectrum using commutation relations without paying attention to
this are wrong.

It is known that in two dimensions (2D) there is no long-range order at finite temperature
(T) for isotropic spin models with short-range interaction [40]. Thin films have small thickness,
therefore to stabilize the ordering at finite T it is useful to add an anisotropic interaction. We use the
following anisotropy between Si and Sj which stabilizes the angle determined above between their
local quantization axes Sz

i and Sz
j :

Ha = − ∑
<i,j>

Ii,jSz
i Sz

j cos θi,j (37)

where Ii,j(> 0) is supposed to be positive, small compared to J1, and limited to NN. Hereafter we
take Ii,j = I1 for NN pair in the xz plane, for simplicity. As it turns out, this anisotropy does not only
stabilize the ordering at finite T as discussed but, as seen below, it does also stabilize the SW spectrum
when D becomes large. The total Hamiltonian is finally given by

H = He +HDM +Ha (38)

We define the two double-time GF’s in the real space as in Eqs. (11)-(12) and we use the same
method as in that part. For the DM term, the commutation relations [H, S±i ] give rise to the following
term:

D ∑
l

sin θ[∓Sz
i (S

+
l + S−l ) +±2S±i Sz

l ] (39)
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which gives rise to the following type of GF’s:

<< Sz
i S±l ; S−j >>'< Sz

i ><< S±l ; S−j >> (40)

Note that we have replaced ei,j sin θi,j by sin θ where θ is positive. The above equation is thus related
to G and F functions. The Tyablikov decoupling scheme citeTyablikov neglects higher-order functions.

As in section 2, the in-plane Fourier transforms gn,n′ and fn,n′ of the G and F lead to the following
matrix equation

M (E) h = u, (41)

where M (E) is given by Eq. (42) below where E = h̄ω is the SW energy and the matrix elements are
given by

An = −J1[8 < Sz
n > cos θ(1 + dn)

−4 < Sz
n > γ(cos θ + 1)]

−2J2(< Sz
n−1 > + < Sz

n+1 >)

−8D sin θ < Sz
n > γ

+8D sin θ < Sz
n > (43)

Bn = 4J1 < Sz
n > γ(cos θ − 1)

−8D sin θ < Sz
n > γ (44)

Cn = 2J2 < Sz
n > (45)

where n = 1, 2, ..., N, dn = I1/J1, γ = (cos kxa + cos kza)/2, kx and kz denote the wave-vector
components in the xz planes, a the lattice constant. Note that (i) if n = 1 (surface layer) then there are
no n− 1 terms in the matrix coefficients, (ii) if n = N then there are no n + 1 terms. Besides, we have
distinguished the in-plane NN interaction J1 from the inter-plane NN one J⊥.

In the case of a thin film, the SW eigenvalues at a given wave vector~k = (kx, kz) are calculated by
diagonalizing the matrix (42).

The layer magnetization of the layer n at finite T is calculated as in the helimagnetic case shown in
the previous section. The value of the spin in the layer n at T = 0 is also outlined there. The transition
temperature Tc can be also calculated by the same method. Let us show in the following the results.

4.2. Two and three dimensions: spin-wave spectrum and magnetization

Consider just one single xz plane. The above matrix is reduced to two coupled equations

(E + An)gn,n′ + Bn fn,n′ = 2 < Sz
n > δ(n, n′)

−Bngn,n′ + (E− An) fn,n′ = 0 (46)

where An is given by (43) but without J⊥ term for the 2D case considered here. Coefficients Bn and Cn

are given by (44) and (45) with Cn = 0. The poles of the GF are the eigenvalues of the SW spectrum
which are given by the secular equation

(E + An)(E− An) + B2
n = 0

[E + An][E− An] + B2
n = 0

E2 − A2
n + B2

n = 0

E = ±
√
(An + Bn)(An − Bn) (47)

Several remarks are in order:
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(i) if θ = 0, we have Bn = 0 and the last three terms of An are zero. We recover then the
ferromagnetic SW dispersion relation

E = 2ZJ1 < Sz
n > (1− γ) (48)

where Z = 4 is the coordination number of the square lattice (taking dn = 0),
(ii) if θ = π, we have An = 8J1 < Sz

n >, Bn = −8J1 < Sz
n > γ. We recover then the

antiferromagnetic SW dispersion relation

E = 2ZJ1 < Sz
n >

√
1− γ2 (49)

(iii) in the presence of a DM interaction, we have 0 < cos θ < 1 (0 < θ < π/2). If dn = 0, the
quantity in the square root of Eq. (47) becomes negative at γ = 1 when θ is not zero. The SW spectrum
is not stable at the long-wavelength limit because the energy is not real. The anisotropy dn can remove
this instability if it is larger than a threshold value dc. We solve the equation (An + Bn)(An − Bn) = 0
to find dc. In Fig. 9 we show dc as a function of θ (in radian). As seen, dc increases from zero with
increasing θ.

Figure 9. Value dc at which E = 0 at γ = 1 (~k = 0) vs θ (in radian). Above this value, E is real. See text
for comments.

As said earlier, the necessity to include an anisotropy has a double purpose: it permits SW
excitations and stabilizes a long-range ordering at finite T in 2D systems.

Figure 10 shows the SW spectrum calculated from Eq. (47) for θ = 0.2 and 0.6 (radian). The
spectrum is symmetric for positive and negative wave vectors and for left and right precessions. Note
that for small θ (i. e. small D) E is proportional to k2 at low k (cf. 10a), as in ferromagnets. However, as θ

increases, we observe that E becomes linear in k as seen in Fig. 10b. This is similar to antiferromagnets.
The change of behavior is progressive with increasing θ, we do not observe a sudden transition from
k2 to k behavior. This feature is also observed in three dimensions (3D) and in thin films as seen below.

As said earlier, thanks to the existence of the anisotropy d, we can observe a long-range ordering
at finite T in 2D. We show in Fig. 11 the magnetization M (≡< Sz >) calculated by Eq. (83) for one
layer using in each case the limit value dc. It is interesting to observe that M depends strongly on θ: at
high T the larger θ the stronger M. However, at T = 0 the spin length is smaller for larger θ due to
the so-called spin contraction [31] calculated by Eq. (27). As a consequence there is a cross-over des
magnetizations at low T as shown in Fig. 11b. The spin length at T = 0 is shown in Fig. 12 for several
θ.
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Figure 10. Spin-wave spectrum E(k) versus k ≡ kx = kz for (a) θ = 0.2 and (b) θ = 0.6 in two
dimensions. Positive and negative branches correspond to right and left precessions. See text for
comments.

Figure 11. (a) Layer magnetizations M versus temperature T for a monolayer (2D) θ = 0.1 (radian),
θ = 0.3, θ = 0.4, θ = 0.6 (void magenta squares, blue filled squares, green void circles and filled black
circles, respectively), (b) Zoom to highlight the cross-over of magnetizations at low T. See text for
comments.

Figure 12. Spin length at temperature T = 0 for a monolayer (2D) versus θ (radian).

Let us study the 3D case. The crystal is periodic in three direction. We can use the Fourier
transformation in the y direction, namely gn±1 = gne±ikya and fn±1 = fne±ikya. The matrix (23) is
reduced to two coupled equations of g and f functions, omitting index n,

(E + A′)g + B f = 2 < Sz >

−Bg + (E− A′) f = 0 (50)
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where

A′ = −J1[8 < Sz > cos θ(1 + d)

−4 < Sz > γ(cos θ + 1)]

−4J2 < Sz >

+4J2 < Sz > cos(kya)

−8D sin θ < Sz > γ

+8D sin θ < Sz > (51)

B = 4J1 < Sz > γ(cos θ − 1)

−8D sin θ < Sz > γ (52)

The spectrum is given by

E = ±
√
(A′ + B)(A′ − B) (53)

If cos θ = 1 (ferromagnetic), one has B = 0. By regrouping the Fourier transforms in three directions,
one obtains the 3D ferromagnetic dispersion relation E = 2Z < Sz > (1− γ2) where γ = [cos(kxa) +
cos(kya) + cos(kza)]/3 and Z = 6, coordination number of the simple cubic lattice. Unlike the 2D
case where the angle is inside the plane so that the antiferromagnetic case can be recovered by setting
cos θ = −1 as seen above, one cannot use the above formula to find the antiferromagnetic case because
in the 3D formulation it was supposed a ferromagnetic coupling between planes, namely there is no
angle between adjacent planes in the formulation.

The same consideration as in the 2D case treated above shows that the threshold value dc is the
same for a given θ. This is rather obvious because the DM interaction operates in the plane making an
angle θ between spins in the plane, therefore its effects act on SW in each plane, not in the y direction
perpendicular to the "DM planes". Using Eq. (53), we have calculated the 3D spectrum. This is shown
in Fig. 13 for a small and a large value of θ. As in the 2D case, we observe E ∝ k when k→ 0 for large
θ. As mentioned, main properties of the system are dominated by the in-plane DM behavior.

Figure 13. Spin-wave spectrum E(k) versus k ≡ kx = kz for θ = 0.1 (red crosses) and θ = 0.6 (blue
circles) in three dimensions. Note the linear-k behavior at low k for the large value of θ. See text for
comments.

Figure 14 displays the magnetization M versus T for several values of θ. As in the 2D case, when
θ is not zero, the spins have a contraction at T = 0: the stronger θ the stronger contraction. This
generates a magnetization cross-over at low T shown in Fig. 14b. The spin length at T = 0 versus θ is
shown in Fig. 14c. Note that the spin contraction in 3D is smaller than in 2D. This is expected since
quantum fluctuations are stronger at lower dimensions.
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Figure 14. (a) Magnetization M versus temperature T for a 3D crystal θ = 0.1 (radian), θ = 0.3,
θ = 0.4, θ = 0.6 (void magenta squares, blue filled squares, green void circles and filled black circles,
respectively), (b) Zoom to show the cross-over of magnetizations at low T for different θ, inset shows
S0 versus θ. See text for comments.

4.3. The case of a thin film: spin-wave spectrum, layer magnetizations

Depending on θ, we have to use a value for dn larger or equal to dc given in Fig. 9 to avoid
imaginary SW energies at long wave-length. There are 2N energy values half of them are positive and
the other half negative: Ei (i = 1, ..., 2N). Note that for thin films with more than one layer, the value
of dc calculated for the 2D case remains valid.

We show in Fig. 15 the SW spectrum for a film of 8 layers with J1 = J⊥ = 1 for weak and strong
D (small and large θ). As in the 2D and 2D cases, for strong D, E is proportional to k (cf. Fig. 15b). It is
noted that this behavior concerns only the first mode. the upper modes remain in k2.

Figure 15. Spin-wave spectrum E(k) versus k ≡ kx = kz for a thin film of 8 layers: (a) θ = 0.2 (in
radian) (b) θ = 0.6, using dc for each case. Positive and negative branches correspond to right and left
precessions. Note the linear-k behavior at low k. See text for comments.

Figure 16 shows the layer magnetizations of the first four layers in a 8-layer film (the other half is
symmetric) for several values of θ. In each case, we see that the surface layer magnetization is smallest.
This is the effect of the lack of neighbors for surface spins [2].

When θ becomes large, the contraction of the spin length at T = 0 is stronger. This is shown in
Fig. 16c.

The effects of the surface exchange and the film thickness have been shown in Ref. [38].
To close this section, let us mention our work [41] on the DM interaction in magneto-ferroelectric

superlattices where the SW in the magnetic layer have been calculated. We have also studied the
stability of skyrmions at finite T in that work and in Refs. [42,43].
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Figure 16. Layer magnetizations M versus temperature T for a thin film of 8 layers: (a) θ = 0.6 (radian),
(b) θ = 0.2, (c) S0 versus θ.

5. Effect of Dzyaloshinskii-Moriya interaction in a frustrated antiferromagnetic triangular lattice

The results of this section are not yet published [44]. We will not present this model in details. We
show the Hamiltonian, the GS and the SW spectrum.

5.1. Model and Ground State

We consider a triangular lattice where the lattice site i is occupied by a Heisenberg spin Si of
magnitude 1. We suppose that Di,j is a vector perpendicular to the xy plane and is given by [45,46]

Di,j ∝ riO × rOj ∝ rij × R (54)

where riO = rO − ri and rOj = rj − rO, rij = rj − ri. rO is the position of non-magnetic ion (oxygen)
and ri the position of the spin Si etc. These vectors are defined in Fig. 17a in the particular case where
the displacements are in the xy plane. We have therefore Di,j perpendicular to the xy plane in this case.

Figure 17. (a) D vector along the z direction perpendicular to the xy plane. See the definition of the D
vector in the text, (b) In-plane Dij vector chosen along the direction connecting spin Si to spin Sj in the
xy plane.

Note however that if the atom displacements are in 3D space, Di,j can be in any direction. In this
paper, we consider also the case where Di,j lies in the xy plane as shown in Fig. 17b where Di,j is taken
along the vector connecting spin Si to spin Sj.

Note that from Eq. (54) one has
Dj,i = −Di,j (55)
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In the case of perpendicular Di,j, let us define ui,j as the unit vector on the z axis. From Eqs.
(54)-(55) one writes

Di,j = Dui,j (56)

Dj,i = Duj,i = −Dui,j (57)

where D represents the DM interaction strength.
In the case of in-plane Di,j, we define Di,j as

Di,j = D(rj − ri)/|rj − ri| = Drij (58)

where D is a constant and rij denotes the unit vector along rj − ri. The case of in-plane Di,j on the
frustrated triangular lattice (see Fig. 17b) has been recently studied since this case gives rise to a
beautiful skyrmion crystal composed of three interpenetrating sublattice skyrmions in a perpendicular
applied magnetic field.[44,47,48] A description of this case is however out of the purpose of this review.

5.2. Ground State with a Perpendicular D in Zero Field

The Hamiltonian is given by

H = −J ∑
〈ij〉

Si · Sj − D ∑
〈ij〉

ui,j · Si × Sj

−H ∑
i

Sz
i (59)

where Si is a classical Heisenberg spin of magnitude 1 occupying the lattice site i. The first sum runs
over all spin nearest-neighbor (NN) pairs with an antiferromagnetic exchange interaction J (J < 0),
while the second sum is performed over all DM interactions between NN. H is the magnitude of a
magnetic field applied along the z direction perpendicular to the lattice xy plane.

In the absence of J, unlike the bipartite square lattice where one can arrange the NN spins to
be perpendicular with each order in the xy plane, the triangular lattice cannot fully satisfy the DM
interaction for each bond, namely with the perpendicular spins at the ends. For this particular case
of interest, we can analytically calculate the GS spin configuration as shown in the following. One
considers a triangular plaquette with three spins numbered as 1, 2 and 3 embedded in the lattice. For
convenience, in a hexagonal (or triangular) lattice, we define the three sublattices as follows: consider
the up-pointing triangles (there are 3 in a hexagon, see the blue triangles in Fig. 18), for the first triangle
one numbers in the counter-clockwise sense 1, 2, 3 then one does it for the other two up-pointing
triangles of the hexagon, one sees that each lattice site belongs to a sublattice. The DM energy of a
plaquette is written as

Hp = −2D[u1,2 · S1 × S2 + u2,3 · S2 × S3 + u3,1 · S3 × S1]

= −2D[sin θ1,2 + sin θ2,3 + sin θ3,1] (60)

where the factor 2 of the D term takes into account the opposite neighbors outside the plaquette, and
where θ1,2 = θ2 − θ1 is the oriented angle between S1 and S2, etc. Note that the u vectors are in the
same direction because we follow the counter-clockwise tour on the plaquette.
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The minimization of Hp yields

dHp

dθ1
= 0 = −2D[− cos(θ2 − θ1) + cos(θ1 − θ3)] (61)

dHp

dθ2
= 0 = −2D[cos(θ2 − θ1)− cos(θ3 − θ2)] (62)

dHp

dθ3
= 0 = −2D[cos(θ3 − θ2)− cos(θ1 − θ3)] (63)

The solutions for the above equations are

θ1,2 = θ3,1 so that θ3,2 = θ3,1 + θ1,2 = 2θ1,2 (64)

θ2,3 = θ1,2 so that θ1,3 = θ1,2 + θ2,3 = 2θ2,3 (65)

θ3,1 = θ2,3 so that θ2,1 = θ2,3 + θ3,1 = 2θ3,1 (66)

Note that the second and third lines can be obtained by the circular permutation of the indices 1,2 and
3 using the first line. These three equations, Eqs. (64)-(66), should be solved. There are more than one
solution. We have from Eq. (61) cos(θ1,2) = cos(θ3,1). Using Eq. (66) one obtains

cos(2θ3,1) = cos(θ3,1) → 2 cos2(θ3,1)− cos(θ3,1)− 1 = 0 (67)

This second-degree equation gives cos(θ3,1) = 1±
√

1+8
4 . Only minus solution is acceptable so that

θ3,1 = θ2,3 = π/6. From Eq. (66), one has θ2,1 = π/3. This is one solution given by Eq. (68) below.
Note that we have taken one of them, Eq. (66), to obtain explicit solutions for the three angles given in
Eq. (68). We can do the same calculation starting with Eqs. (64)-(65) to get explicit solutions given in
Eqs. (69)-(70). We note that when we make a circular permutation of the indices of Eq. (68) we get
Eq. (69), and a circular permutation of Eq. (69) gives Eq. (70). One summarizes the three degenerate
solutions below

θ3,1 = θ2,3 = π/6, θ2,1 = π/3 (68)

θ1,2 = θ3,1 = π/6, θ3,2 = π/3 (69)

θ2,3 = θ1,2 = π/6, θ1,3 = π/3 (70)

We show in Fig. 18 the spin orientations of the solution (68). The GS energy is obtained by replacing
the angles into Eq. (60). For the three solutions, one gets the energy of the plaquette

Hp = −3D
√

3 (71)

We have three degenerate GSs.
Note that this solution can be numerically obtained by the steepest descent method described

above. The result is shown in Fig. 19 for the full lattice. We see in the zoom that the spin configuration
on a plaquette is what obtained analytically, with a global spin rotation as explained in the caption of
Fig. 18.

As said above, to use the steepest-descent method, we consider a triangular lattice of lateral
dimension L. The total number of sites N is given by N = L× L. To avoid the finite size effect, we
have to find the size limit beyond which the GS does not depend on the lattice size. This is found for
L ≥ 100. Most of calculations have been performed for L = 100.

5.3. Ground State with both perpendicular D and J in Zero Field- Spin Waves

When both J and perpendicular D are present, a compromise is established between these
competing interactions. In zero field, the GS shows non-collinear but periodic in-plane spin
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Figure 18. Perpendicular Di,j: Ground-state spin configuration with only Dzyaloshinskii-Moriya
interaction on the triangular lattice (J = 0) is analytically determined. One angle is 120 degrees,
the other two are 60 degrees. Note that the choice of the 120-degree angle in this figure is along the
horizontal spin pair. This configuration is one GS, the other two GSs have the 120-degree angles on
respectively the two diagonal spin pairs. Note also that the spin configuration is invariant under the
global spin rotation in the xy plane. For convenience, the spins are decomposed into three sublattices
numbered 1, 2 and 3. See text for explanation.

configurations. The planar spin configuration is easily understood: when D is perpendicular and
without J, the spins are in the plane. When J is antiferromagnetic without D, the spins are also in
the plane and form a 120-degree structure. When D and J exist together the angles between NN’s
change but they still in the plane in order to keep both D and J interactions as low as possible. An
example is shown in Fig. 20 where one sees that the GS is planar and characterized by two angles
θ = 102 degrees and one angle β = 156 degrees formed by three spins on a triangle plaquette. Note
that there are three degenerate states where β is chosen for the pair (1,2) (Fig. 20a) or the pair (2,3) or
the pair (3,1). Changing the value of D will change the angle values. Changing the sign of D results in
a change of the sense of the chirality, but not the angle values.

In the case of perpendicular Di,j in zero-field, as shown above we find the GS on a hexagon of
the lattice is defined by four identical angles β and two angles θ as shown in Fig. 20. The values of β

and θ depend on the value of D. We take J = −1 (antiferromagnetic) hereafter. For D = 0.5 we have
β = 156 degrees and θ = 102 degrees. For D = 0.4 we obtain β = 108 degrees and θ = 144 degrees,
using N = 60× 60.

The periodicity of the GS allows us to calculate the SW spectrum in the following.
The model for the calculation of the SW spectrum uses quantum Heisenberg spins of magnitude

1/2, it is given by

H = −J ∑
〈i,j〉

Si · Sj − D ∑
〈i,j〉

ui,j · Si × Sj − I ∑
〈i,j〉

Sz
i Sz

j cos θij (72)

where θij is the angle between Si and Sj and the last term is an extremely small anisotropy added to
stabilize the SW when the wavelength k tends to zero [31,40]. Note that ui,j points up and down along
the z axis for respective two opposite neighbors.
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Figure 19. Perpendicular Di,j: (a) Ground-state spin configuration with only Dzyaloshinskii-Moriya
interaction on the triangular lattice (J = 0) obtained numerically by the steepest descent method, (b) a
zoom on a hexagonal cell, this is exactly what obtained analytically shown in Fig. 18 with a global spin
rotation in the xy plane: the angle of the horizontal pair (1,2) is 120 degrees, those of (2,3) and (3,1) are
equal to 60 degrees.

Figure 20. Perpendicular Di,j with antiferromagnetic J: (a) Ground-state spin configuration in zero
field for D = 0.5, J = −1 where the angles in a hexagon are shown in (b) with β = 156 degrees for the
pair (1,2) on the horizontal axis and θ = 102 degrees for the pairs (2,3) and (3,1) on the diagonals. Note
that there are two other degenerate states where β is chosen for the pair (2,3) or (3,1)..

As before, in order to calculate the SW spectrum for systems of non-collinear spin configurations,
we have to use the system of local coordinates. The Hamiltonian becomes
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H =− J ∑
〈i,j〉

1
4
(S+

i S+
j + S−i S−j )(cos θij − 1) +

1
4
(S+

i S−j + S−i S+
j )(cos θij + 1)

+
1
2

Sz
j sin θij(S+

i + S−i )− 1
2

sin θijSz
i (S

+
J + S−j ) + Sz

i Sz
j cos θij

− D ∑
〈i,j〉

Sz
i Sz

j sin θi,j +
1
4

sin θi,j(S+
i S+

j + S+
i S−j + S−i S+

j ) +
1
2

cos θi,j(Sz
i (S

+
j + S−j )− Sz

j (S
+
i + S−i ))

− I ∑
〈i,j〉

Sz
i Sz

j cos θi,j

We define the two GFs by Eqs. (11)-(12) and use the equations of motion of these functions
(13)-(14), we obtain

ih̄
dGi,j(t− t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)− J ∑
〈l〉

< Sz
i > Fl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Gl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Gi,j(t− t′)

+ D ∑
〈l〉

2 sin θi,l < Sz
i > Fl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

− 2I ∑
〈l〉

cos θi,l < Sz
i > Fl,j(t− t′)

ih̄
dFi,j(t− t′)

dt
= J ∑

〈l〉
< Sz

i > Gl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Fl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Fi,j(t− t′)

− D ∑
〈l〉

2 sin θi,l < Sz
i > Gl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

+ 2I ∑
〈l〉

cos θi,l < Sz
i > Gl,j(t− t′)

Note that < Sz
i > is the average of the spin i on its local quantization axis in the local-coordinates

system (see Ref. [38]). We use now the time Fourier transforms of the G and F, we get

h̄ωgi,j = 2µiδi,j − J ∑
〈l〉

µi fl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µigl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l gi,j

− D ∑
〈l〉

2 sin θi,lµl gi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

+ 2I ∑
〈l〉

µl cos θi,l gi,j

(73)

and
h̄ω fi,j = J ∑

〈l〉
µigl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µi fl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l fi,j

+ D ∑
〈l〉

2 sin θi,lµl fi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

− 2I ∑
〈l〉

µl cos θi,l fi,j

(74)
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where µi ≡< Sz
i >, k is the wave vector in the reciprocal lattice of the triangular lattice, and ω the SW

frequency. Note that the index z in Sz
i is not referred to the real space direction z, but to the quantization

axis of the spin Si. At this stage, we have to replace θi,j by either β or θ according on the GS spin
configuration given above (see Fig. 20).

As in the previous sections, writing the above equations under a matrix form, we have

M (h̄ω) h = C, (75)

where M (h̄ω) is a square matrix of dimension 2× 2, h and C are the column matrices which are
defined as follows

h =

(
gi,j
fi,j

)
, C =

(
2
〈
Sz

i
〉

δi,j
0

)
, (76)

and the matrix M (h̄ω) is given by

M (h̄ω) =

(
h̄ω + A B
−B h̄ω− A

)
The nontrivial solution of g and f imposes the following secular equation:

0 =

(
h̄ω + A B
−B h̄ω− A

)
(77)

where

A = −J(8µi cos β(1 + I) + 4µi cos θ(1 + I)− 4µiγ(cos β + 1)− 2µiα(cos θ + 1))

− D(4µi sin βγ + 2µi sin θα) + D(8µi sin β + 4µi sin θ)
(78)

B = J(4µiγ(cos β− 1) + 2µiα(cos θ − 1))− D(4γµi sin β + 2µiα sin θ) (79)

where the sum on the two NN on the x axis (see Fig. 20b) is

∑
l

e−ik·(Ri−Rl) = 2 cos(kx) ≡ 2α (80)

and the sum on the four NN on the oblique directions of the hexagon (see Fig. 20b) is

∑
l

e−ik·(Ri−Rl) = 4 cos(kx/2) cos(
√

3ky/2) ≡ 4γ (81)

Solving Eq. (77) for each given (kx, ky) one obtains the SW frequency ω(kx, ky):

(h̄ω)2 = A2 − B2 → h̄ω = ±
√

A2 − B2 (82)

Plotting ω(kx, ky) in the space (kx, ky) one obtains the full SW spectrum.
The spin length 〈Sz

i 〉 (for all i, by symmetry) is given by (see technical details in Ref. [31]):

〈Sz〉 ≡ 〈Sz
i 〉 =

1
2
− 1

∆

∫ ∫
dkxdkz

2

∑
i=1

Q(Ei)

eEi/kBT − 1
(83)

where Ei(i = 1, 2) = ±
√

A2 − B2 are the two solutions given above, and Q(Ei) is the determinant
(cofactor) obtained by replacing the first column of M by C at Ei.

The spin length 〈Sz〉 at a given T is calculated self-consistently by following the method given in
Ref. [31,38].

Let us show the SW spectrum ω (taking h̄ = 1) for the case of J = −1 and D = 0.5 in Fig. 21
versus ky with kx = 0 (Fig. 21a) and versus kx for ky = 0 (Fig. 21b). In order to see the effect of
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the DM interaction alone we take the anisotropy I = 0. One observes here that for a range of small
wave-vectors the SW frequency is imaginary. The SW corresponding to these modes do not propagate
in the system. Why do we have this case here? The answer is that when the NN make a large angle
(perpendicular NN, for example), one cannot define a wave vector in that direction. Physically, when k
is small the B coefficient is larger than A in Eq. (82) giving rise to imaginary ω. Note that the anisotropy
I is contained in A so that increasing I for small k will result in A > B making ω real.
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Figure 21. (a) Spin-wave spectrum versus ky with kx = 0 at T = 0 for I = 0, (b) Spin-wave spectrum
versus kx with ky = 0 at T = 0 for I = 0. The magenta curves show the real frequency, while the green
ones show the imaginary frequency. See text for comments. Parameters: D = 0.5, J = −1, H = 0 where
θ = 102 degrees and β = 156 degrees (see the spin configuration shown in Fig. 20), h̄ = 1.

We show now in Fig. 22a the spectrum along the axis kx = ky at T = 0 for I = 0. Again here the
frequency is imaginary for small k, as in the previous figure. The spin length < Sz > along the local
quantization axis is shown in Fig. 22b. Several remarks are in order: i) At T = 0, the spin length is not
equal to 1/2 as in ferromagnets because of the zero-point spin contraction due to antiferromagnetic
interactions (see Ref. [31]), its length is ' 0.40, quite small; ii) the magnetic ordering is destroyed at
T ' 1.2.

To close the present section, we note that in the case of perpendicular D considered above, we did
not observe skyrmion textures when applying a perpendicular magnetic field: all spin configurations
are no more planar, making the calculation of the SW spectrum more difficult. This problem is left for
a future investigation.

6. Other systems of non-collinear ground-state spin configurations: frustrated surface in stacked
triangular thin films

In this section, we study by the GF method effects of a frustrated surface on the properties of thin
films made of stacked triangular layers of atoms bearing quantum Heisenberg spins. We suppose that
the in-plane surface interaction Js can be antiferromagnetic or ferromagnetic while all other interactions
are ferromagnetic. We show that the GS spin configuration is non collinear when Js is lower than
a critical value Jc

s . The film surfaces are then frustrated. In the frustrated case, there are two phase
transitions related to disorderings of surface and interior layers. The GF results agree qualitatively
with Monte Carlo simulation using the classical spins (see the original paper in Ref. ).
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Figure 22. (a) Spin-wave spectrum versus kx = ky at T = 0 for I = 0. The magenta curves show the
real frequency, while the green ones show the imaginary frequency. See text for comments, (b) The spin
length Sz versus temperature T (kB = 1). Parameters: D = 0.5, J = −1, H = 0 where θ = 102 degrees
and β = 156 degrees (see the spin configuration shown in Fig. 20).

In this section we review some ot the results given in the original paper Ref. [39], emphasizing
the SW calculation and the important results. The Hamiltonian is given by

H = −∑
〈i,j〉

Ji,jSi · Sj − ∑
<i,j>

Ii,jSz
i Sz

j (84)

where Si is the Heisenberg spin at the lattice site i, ∑〈i,j〉 indicates the sum over the NN spin pairs Si
and Sj. The last term, which will be taken to be very small, is needed to make the film with a finite
thickness to have a phase transition at a finite temperature in the case where all exchange interactions
Ji,j are ferromagnetic. This guarantees the existence of a phase transition at finite temperature, since
it is known that a strictly two-dimensional system with an isotropic non-Ising spin model (XY or
Heisenberg model) does not have long-range ordering at finite temperature.[40]

Interaction between two NN surface spins is equal to Js. Interaction between layers and interaction
between NN in interior layers are supposed to be ferromagnetic and all equal to J = 1 for simplicity.
The two surfaces of the film are frustrated if Js is antiferromagnetic (Js < 0).

6.1. Ground state

For Js > 0 (ferromagnetic interaction), the magnetic GS is ferromagnetic. However, when Js is
negative the surface spins are frustrated. If the surface is deconnected with the beneath layer, the
surface spins form the famous 120-degree structure because of the antiferromagnetic interaction on the
surface plane. Now when we turn on the ferromagnetic interaction with the second layer, there is a
competition between the non collinear surface ordering and the ferromagnetic ordering due to the
ferromagnetic interaction with the interior spins.

We first determine the GS configuration for I = Is = 0.1 by using the steepest descent method :
starting from a random spin configuration, we calculate the magnetic local field at each site and align
the spin of the site in its local field. In doing so for all spins and repeat until the convergence is reached,
we obtain in general the GS configuration, without metastable states in the present model. The result
shows that when Js is negative and smaller than a critical value Jc

s the magnetic GS is obtained from
pulling out the planar 120◦ spin structure along the z axis by an angle β. The three spins on a triangle
on the surface form thus an ’umbrella’ with an angle α between them and an angle β between a surface
spin and its beneath neighbor (see Fig. 23). This non planar structure is due to the interaction of the
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spins on the beneath layer, just like an external applied field applied in the z direction. Of course, when
Js is larger than Jc

s one has the collinear ferromagnetic GS as expected: the frustration is not strong
enough to resist the ferromagnetic interaction from the beneath layer.

Figure 23. Non collinear surface spin configuration. Angles between spins on layer 1 are all equal
(noted α), while angles between vertical spins are β.

We show in Fig. 24 cos(α) and cos(β) as functions of Js. The critical value Jc
s is found between

-0.18 and -0.19. This value can be calculated analytically by assuming the ’umbrella structure’. For
GS analysis, it suffices to consider just a cell shown in Fig.23. This is justified by the numerical
determination discussed above. Furthermore, we consider as a single solution all configurations
obtained from each other by any global spin rotation.

Figure 24. Ground state determined by cos(α) (diamonds) and cos(β) (crosses) as functions of Js.
Critical value of Jc

s is shown by the arrow.
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Let us consider the full Hamiltonian (84). For simplicity, the interaction inside the surface layer
is set equal Js (−1 ≤ Js ≤ 1) and all others are set equal to J > 0. Also, we suppose that Ii,j = Is for
spins on the surfaces with the same sign as Js and all other Ii,j are equal to I > 0 for the inside spins
including interaction between a surface spin and the spin on the beneath layer.

The spins are numbered as in Fig. 23: S1, S2 and S3 are the spins in the surface layer (first layer),
S′1, S′2 and S′3 are the spins in the internal layer (second layer). The Hamiltonian for the cell is written
as

Hp = −6 [Js (S1 · S2 + S2 · S3 + S3 · S1)

+Is (Sz
1Sz

2 + Sz
2Sz

3 + Sz
3Sz

1)

+ J
(
S′1 · S′2 + S′2 · S′3 + S′3 · S′1

)
+I
(
S′z1 S′z2 + S′z2 S′z3 + S′z3 S′z1

)]
− 2J

(
S1 · S′1 + S2 · S′2 + S3 · S′3

)
−2I

(
Sz

1S′z1 + S′z2 S′z2 + Sz
3S′z3

)
, (85)

We decompose now each spin into two components: an xy component, which is a vector, and a z
component Si = (S‖i , Sz

i ). Only surface spins have xy vector components. The angle between these
xy components of NN surface spins is γi,j which is in fact the projection of α defined above on the xy
plane. By symmetry, we have

γ1,2 = 0, γ2,3 =
2π

3
, γ3,1 =

4π

3
. (86)

The angles βi and β′i of the spin Si and S′i with the z axis are by symmetry{
β1 = β2 = β3 = β,
β′1 = β′2 = β′3 = 0,

The total energy of the cell (85), with Si = S′i =
1
2 , can be rewritten as

Hp = −9(J + I)
2

− 3(J + I)
2

cos β− 9(Js + Is)

2
cos2 β

+
9Js

4
sin2 β. (87)

By a variational method, the minimum of the cell energy corresponds to

∂Hp

∂β
=

(
27
2

Js + 9Is

)
cos β sin β +

3
2
(J + I) sin β = 0 (88)

We have
cos β = − J + I

9Js + 6Is
. (89)

For given values of Is and I, we see that the solution (89) exists for Js ≤ Jc
s where the critical value

Jc
s is determined by −1 ≤ cos β ≤ 1. For I = −Is = 0.1, Jc

s ≈ −0.1889J in excellent agreement with the
numerical results obtained from the steepest-descent method.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2022                   doi:10.20944/preprints202207.0268.v1

https://doi.org/10.20944/preprints202207.0268.v1


33

Now, using the GF method for such a film in the way described in the previous sections, we
obtain the full Hamiltonian (84) in the local framework:

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θij − 1

) (
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θij + 1

) (
S+

i S−j + S−i S+
j

)
+

1
2

sin θij
(
S+

i + S−i
)

Sz
j −

1
2

sin θijSz
i

(
S+

j + S−j
)

+ cos θijSz
i Sz

j

}
− ∑

<i,j>
Ii,jSz

i Sz
j (90)

where cos
(
θij
)

is the angle between two NN spins. We define the two coupled GF, and we write
their equations of motions in the real space. Taking the Tyablikov’s decoupling scheme to reduce
higher-order GFs, and then using the Fourier transform in the xy plane we arrive at a matrix equation
as in the previous section with the matrix M is defined as

M (ω) =



A+
1 B1 D+

1 D−1 · · ·

−B1 A−1 −D−1 −D+
1

...
... · · · · · · · · ·

...
... C+

Nz
C−Nz

A+
Nz

BNz

· · · −C−Nz
−C+

Nz
−BNz A−Nz


, (91)

where

A±n = ω±
[1

2
Jn 〈Sz

n〉 (Zγ) (cos θn + 1)

− Jn 〈Sz
n〉 Z cos θn − Jn,n+1

〈
Sz

n+1
〉

cos θn,n+1

− Jn,n−1
〈
Sz

n−1
〉

cos θn,n−1 − ZIn 〈Sz
n〉

− In,n+1
〈
Sz

n+1
〉
− In,n−1

〈
Sz

n−1
〉 ]

, (92)

Bn =
1
2

Jn 〈Sz
n〉 (cos θn − 1) (Zγ) , (93)

C±n =
1
2

Jn,n−1 〈Sz
n〉 (cos θn,n−1 ± 1) , (94)

D±n =
1
2

Jn,n+1 〈Sz
n〉 (cos θn,n+1 ± 1) , (95)

in which, Z = 6 is the number of in-plane NN, θn,n±1 the angle between two NN spins belonging to
the layers n and n± 1, θn the angle between two in-plane NN in the layer n, and

γ =
[
2 cos (kxa) + 4 cos

(
kya/2

)
cos

(
kya
√

3/2
)]

/Z.

Here, for compactness we have used the following notations:
i) Jn and In are the in-plane interactions. In the present model Jn is equal to Js for the two surface

layers and equal to J for the interior layers. All In are set to be I.
ii) Jn,n±1 and In,n±1 are the interactions between a spin in the nth layer and its neighbor in the

(n± 1)th layer. Of course, Jn,n−1 = In,n−1=0 if n = 1, Jn,n+1 = In,n+1=0 if n = Nz.
Solving det|M| = 0, we obtain the SW spectrum ω of the present system.
For numerical calculation, we used I = 0.1J with J = 1. For positive Js, we take Is = 0.1 and for

negative Js, we use Is = −0.1. A size of 803 points in the first Brillouin zone is used for numerical
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integration. We start the self-consistent calculation from T = 0 with a small step for temperature
5× 10−3 or 10−1 (in units of J/kB). The convergence precision has been fixed at the fourth figure of
the values obtained for the layer magnetizations.

6.2. Phase transition and phase diagram of the quantum case

We first show an example where Js = −0.5 in Fig. 25. As seen, the surface-layer magnetization is
much smaller than the second-layer one. In addition there is a strong spin contraction at T = 0 for the
surface layer. This is due to the antiferromagnetic nature of the in-plane surface interaction Js. One
sees that the surface becomes disordered at a temperature T1 ' 0.2557 while the second layer remains
ordered up to T2 ' 1.522. Therefore, the system is partially disordered for temperatures between T1

and T2. This result is very interesting because it confirms again the existence of the partial disorder
in quantum spin systems observed earlier in bulk frustrated quantum spin systems.[50,51] Note that
between T1 and T2, the ordering of the second layer acts as an external field on the first layer, inducing
therefore a small value of its magnetization.

Figure 25. First two layer-magnetizations obtained by the Green function technique vs. T for Js =

−0.5 with I = −Is = 0.1. The surface-layer magnetization (lower curve) is much smaller than the
second-layer one. See text for comments.

We show in Fig. 26 the phase diagram in the space (Js, T). Phase I denotes the surface canted-spin
state, phase II indicates the ordered state, and phase III is the paramagnetic phase. Note that the
surface transition does not exist separately for Js ≥ Jc

s .

6.3. Monte Carlo results

In this paragraph, we show the results obtained by MC simulations with the Hamiltonian 28 but
the spins are the classical Heisenberg model of magnitude S = 1. This is to compare with the quantum
case shown above.

The film sizes are N × N × Nz where Nz is the number of layers (film thickness). We use here
N = 24, 36, 48, 60 and Nz = 4 as in the quantum case presented above. Periodic boundary conditions
are used in the XY planes. The equilibrating time is about 106 MC steps per spin and the averaging
time is 2× 106 MC steps per spin. J = 1 is taken as unit of energy in the following.

In Fig. 27 we show a frustrated case where Js = −0.5. The surface layer in this case becomes
disordered at a temperature much lower than that for the second layer. Note that the surface
magnetization is not saturated to 1 at T = 0. This is because the surface spins make an angle
with the z axis so their z component is less than 1 in the GS.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2022                   doi:10.20944/preprints202207.0268.v1

https://doi.org/10.20944/preprints202207.0268.v1


35

Figure 26. Phase diagram in the space (Js, T) for the quantum Heisenberg model with Nz = 4,
I = |Is| = 0.1. See text for the description of phases I to III.

Figure 27. Magnetizations of layer 1 (circles) and layer 2 (diamonds) versus temperature T in unit of
J/kB for Js = −0.5 with I = −Is = 0.1.

Figure 28 shows the phase diagram obtained in the space (Js, T). It is interesting to note that this
phase diagram resembles remarkably to that obtained for the quantum counterpart model shown in
Fig. 26. The difference in the values of the transition temperatures is due to the quantum and classical
spins.

To close this review, we should mention a few works works where SW in the regime of
non-collinear spin configurations have been studied: the frustration effects in antiferromagnetic
face-centered cubic Heisenberg films have been studied in Ref. [49], a frustrated ferrimagnet in Ref.
[50] and a quantum frustrated spin system in Ref. [51]. These results are not reviewed here to limit the
paper’s length. We refer the reader to those works for details.

7. Concluding remarks

As said in the Introduction, the self-consistent Green’s function theory is the only one which allows
to calculate the SW dispersion relation in the case of non-collinear spin configurations, in 2D and 3D as
well as in thin films. The non-collinear spin configurations are due to the competition between different
kinds of exchange interaction, to the geometry frustration, to the competition between ferromagnetic
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Figure 28. Phase diagram in the space (Js, T) for the classical Heisenberg model with Nz = 4, I = |Is| =
0.1. Phases I to III have the same meanings as those in Fig. 26 .

and/or antiferromagnetic interactions and the Dzyaloshinskii-Moriya interaction. We have shown
that in the absence of an applied magnetic field, the GS spin configuration is non collinear but periodic
in space. We have in most cases analytically calculated them. We have checked them by using the
numerical steepest-descent method which consists in minimizing the local energy iteratively. The
agreement between the analytical method and the numerical energy minimization is excellent. The
determination of the GS is necessary because we need them to calculate the SW spectrum: SW are
elementary excitations of the GS when T increases.

The double-fold purpose of this review is to show the method and the interest of its results. We
have reviewed a selected number of works according to their interest of the community: helimagnets,
materials with the Dzyaloshinskii-Moriya interaction, and the surface effects in thin magnetic films.
The Dzyaloshinskii-Moriya interaction gives rise not only a chiral order but also the formation of
skyrmions in an applied magnetic field. The surface effects in helimagnets and in films with a frustrated
surface give rise to the reconstruction of surface spin structure and many striking features due to
quantum fluctuations at low T such as the zero-point spin contraction and the magnetization crossover).
We have also seen above the surface becomes disordered at a low T while the bulk remains ordered up
to a high T. This coexistence of bulk order and surface disorder in a temperature region is also found
in several frustrated systems [8].

To conclude, we say that the Green’s function theory for non-collinear spin systems is laborious,
but it is worth to use it to get results with clear physical mechanisms lying behind observed phenomena
in frustrated spin systems.
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