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Abstract: Exposure to extreme heat is a known risk factor that is associated with increased heat-

related illness (HRI) outcomes. The relevance of heat wave definitions could change across the 

health conditions and geographies due to the heterogenous climate profile. This study compared 

the sensitivity of 28 heat wave definitions associated with HRI emergency department visits over 

five summer seasons (2011-2016), stratified by two physiographic regions (Coastal and Piedmont) 

in North Carolina. The HRI rate ratios associated with heat waves were estimated using the gener-

alized linear regression framework assuming a negative binomial distribution. We compared the 

Akaike Information Criterion (AIC) values across the heat wave definitions to identify an optimal 

heat wave definition. In the Coastal region, heat wave definition based on daily maximum temper-

ature with a threshold >90th percentile for two or more consecutive days had the optimal model fit. 

In the Piedmont region, heat wave definition based on the daily minimum temperature with a 

threshold value >90th percentile for two or more consecutive days was optimal. Additionally, we 

observed that the optimal heat wave definitions from this study captured moderate and frequent 

heat episodes than the national weather service (NWS) heat products that worked best for extreme 

heat episodes. This study compared the HRI morbidity risk associated with epidemiologic-based 

heat wave definitions and with NWS heat products. Our findings could be used for public health 

education and suggest recalibrating NWS heat products. 
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1. Introduction 

A heat wave is often described as an acute episode of one or more consecutive days 

with temperatures or heat indices exceeding a threshold value [1]. However, there is no 

standard definition to identify heat waves [2]. Heat waves are typically classified using a 

synoptic (e.g., air mass, temperature-humidity index), physiologic (e.g., Environmental 

Stress Index, Wet Bulb Global Temperature), or epidemiologic approach [3]. Hajat et al. 

(2010) reported that epidemiologic-based algorithms (temperature-mortality relationship) 

identified the days with higher heat-related mortality. 

Heat waves are associated with an increased risk of HRI outcomes [4]. In the United 

States (US), roughly 700 heat-related deaths per year are attributable to ambient temper-

ature exposure [5]. The frequency and intensity of heat waves have been on the rise since 

the industrial revolution and are likely to increase in the future due to climate change [6, 

7]. In Philadelphia, heat-related risk communication, along with the NWS warnings, 

played a crucial role in minimizing up to 3 heat-related deaths per day that are associated 

with extreme heat exposure [8, 9]. In the US, public health departments rely on heat 
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products (e.g., excessive heat watch, heat advisory, and excessive heat warning) from the 

local National Weather Service Weather Forecast Office (NWS-WFO) to communicate 

heat-health risks. According to Weinberger et al. (2018), the NWS heat products moder-

ately reduced the impact of extreme heat on human health, but the human health risk 

associated with ambient temperature is not a resolved issue [10]. 

Despite the early heat warnings, the average annual percentage of HRI emergency 

department visits in North Carolina has increased by 19% over the past decade [11, 12]. 

The rise in HRI risk could be due to population vulnerabilities (age, economic status, and 

occupation) and higher thresholds for temperature and humidity set by NWS for issuing 

heat alerts [13]. Multiple researchers attempted to characterize human health risks associ-

ated with heat wave definitions [3, 14-17]. Epidemiologic studies evaluating the associa-

tion between outdoor temperature exposure (e.g., heat waves or ambient temperature) 

and human health are generally focused on extreme events, where the human health out-

come is typically measured as cause-specific or all-cause mortality [17, 18]. A meta-analy-

sis on the heat wave definition evaluation studies summarized that the studies included 

in this review generalized the warnings to a larger geographic area, such as a state or a 

group of states [17]. Generalizing heat warning systems over larger geography may not 

be ideal due to heterogeneity in exposures, population vulnerability, and exposure-out-

come associations [19]. Physiographic or sub-regional scale heat warning systems that ac-

count for meteorological heterogeneity and specific to health conditions were found to 

play a role in minimizing the human health risks associated with heat waves [8, 16, 20, 

21].  

This study assessed the association between frequent and moderate heat waves and 

HRI emergencies in North Carolina physiographic regions. The objective of this study is 

to compare the statistical model performance of heat wave definitions and assess their 

association with HRI emergency visits in North Carolina. Additionally, we aim to com-

pare the heat wave definition with the best model performance from our study with the 

NWS extreme heat alerts. 

2. Materials and Methods 

This study is focused on five summer seasons (May 01 – September 30) from 2011 to 

2016 among the three physiographic regions (Coastal, Piedmont & Mountain) in North 

Carolina. The year 2013 was excluded in this study due to data availability constraints. 

2.1. Data 

2.1.1. Heat metrics 

Daily mean, minimum, and maximum temperatures were obtained from the Global 

Historical Climate Network – Daily (GHCN-D) database [7, 22]. Dew point data was ob-

tained from the Parameter-elevation Regression on Independent Slopes Model (PRISM) 

database [23]. The station-based temperature measurements and gridded dew point data 

were aggregated by physiographic regions. The daily maximum apparent temperature 

and relative humidity were estimated using daily maximum temperature and dew point 

using heat.index.function and dewpoint.to.humidity functions available from 

the weathermetrics package in R [24]. 

2.1.2. Heat Wave definitions 

Twenty-eight heat wave definitions (Table 1) associated with human health out-

comes were adopted from the existing literature and were included in this study [14, 15, 

25, 26]. These heat wave definitions were classified based on four factors: 1) a heat metric 

(daily mean, minimum, maximum, and apparent temperatures), 2) duration (number of 

days), 3) threshold type (relative/absolute), and 4) threshold intensity. Among the two 

threshold types, relative threshold-based definitions account for cumulative heat expo-

sure (2+ or 3+ consecutive days), and definitions based on absolute threshold are based on 

single heat day exposure. The heat wave definitions based on daily temperature as metric 

and a relative threshold were classified using four percentile values (99, 98, 95, 90) as 
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threshold intensity. The percentile threshold values were calculated using historical ob-

servations over the summer season from 1895-2016. The definitions based on the apparent 

temperature as metric and a relative threshold were classified using three percentile 

threshold values (95, 90, 85) as threshold intensity.  

Among the 28 heat wave definitions (HW_01 to HW_28) included in this study, 24 

are based on relative threshold values, and four heat wave definitions are based on the 

absolute threshold value. Three of the 27 heat wave definitions using relative threshold 

values were based on maximum apparent temperature as the heat metric. The remaining 

24 heat wave definitions were based on the daily mean (HW_01-HW_08), maximum 

(HW_09-HW_16), and minimum (HW_18-HW_25) temperature values as the heat metric. 

Additionally, one heat wave definition using absolute threshold value is based on daily 

maximum temperature as the heat metric (Table 1). Using the 28 heat wave definitions, 

we categorized the summer days during the study period as heat waves and non-heat 

wave days using a binary variable to indicate heat waves. 

2.1.3. National Weather Service – Heat products 

The heat products released by the NWS during the study period were retrieved from 

the Iowa Environmental Mesonet [27]. During the study period, the NWS heat products 

(heat advisories and excessive heat warnings) were released by the three NWS-WFOs 

(ILM-Wilmington; MHX-Newport/Morehead city; and RAH-Raleigh) located in North 

Carolina were included in this study. The WFOs ILM and MHX cover most of the Coastal 

region, and RAH covers the Piedmont region [28]. Among the three WFOs, heat products 

released by the ILM and MHX follow the NWS procedural directive. The RAH WFO is 

the only center in North Carolina that collaborated with health partners to revise the heat 

products[29]. The heat products from RAH are based on local conditions such as maxi-

mum temperature, sunlight, nighttime temperature, heterogeneity between rural and ur-

ban temperatures, and knowledge from historical weather conditions [29]. The heat prod-

ucts used in the three WFOs in North Carolina are based on the following criteria. A heat 

advisory is released during the days when the daytime heat index value is between 100-

105°F [30]. An excessive heat warning is released if the daytime heat index forecast value 

is between 105-110°F [30]. 

We extracted the start and end dates and County information from the Iowa Envi-

ronmental Mesonet heat product archives. The County information was aggregated to the 

North Carolina physiographic region scale to match the spatial resolution of the health 

data included in this study. The NWS heat products were represented using a binary var-

iable (NWS_HW) to identify the days with NWS alerts on a daily scale by physiographic 

region. 

2.1.4. Heat-related illness 

Daily HRI-related emergency department visit data were obtained as an aggregate 

count per day per physiographic region from the North Carolina Disease Event Tracking 

and Epidemiologic Collection Tool (NC DETECT) surveillance program maintained by 

the North Carolina Division of Public Health (NC DPH) [31]. Heat-related illnesses were 

defined using ICD-9 CM codes with E992/E900.0/E900.0/E900; ICD-10 CM codes within 

T67/X30/X32; and various keywords from the chief compliant/triage notes [31, 32]. The 

days with HRI emergency department visits fewer than five were censored, amounting to 

28.81% (219) of observations from the Coastal and 28.94% (220) in the Piedmont region. 

The days with censored HRI emergency visits in the Coastal and Piedmont regions were 

imputed by the median value of 3 visits per day. The Mountain region was excluded from 

the analysis as 50.13% of the data was censored due to low HRI emergencies. 

2.2. Statistical analysis 

The sensitivity of 28 heat wave definitions was compared using the Akaike Infor-

mation Criterion (AIC) value corresponding to the model fit [33, 34] evaluating the HRI 

morbidity rate associated with heatwaves included in this study. AIC is a metric that is a 

balance between model accuracy and penalty due to complexity, commonly used to 
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measure the optimal model fit (equation 1) [35]. Smaller the AIC value (close to -∞) rep-

resent an optimal fit [36]. 

𝐴𝐼𝐶 = 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑡 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 … (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

The HRI rate ratios corresponding to the 28 heat wave definitions included in this 

study were estimated using the Generalized Linear Model (GLM) and assuming negative 

binomial distribution to account for outcome overdispersion. To compare the HRI risk 

across physiographic regions, the regression model was adjusted for population density 

by using the 2010 decennial population by region as an offset term [37]. To estimate the 

direct effect of heat wave definitions, the statistical models using heat wave definitions 

based on temperature as a heat metric were adjusted for relative humidity, and NWS heat 

wave alert days were added as covariates to adjust for potential confounding effects and 

effect modification. Similarly, the statistical models with heat wave definitions using 

apparent temperature as a heat metric were adjusted for NWS heat alerts. Additionally, 

to account for temporal autocorrelation, we adjusted the statistical models mentioned 

above for the day of the week (weekday/weekend (binary)), month (factor), and year 

(factor) (Figure 1 and equation 2). In equation 2., HW is a binary variable that represents 

heat wave definitions, RH represents relative humidity, NWS-HW represents NWS heat 

wave alerts, and TS represents the time series variables (day of week, month, and year). 

𝑙𝑜𝑔 (
𝐸(𝐻𝑅𝐼 𝑐𝑜𝑢𝑛𝑡)

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) = 𝛽0  +  𝛽𝐻𝑊  +  𝛽𝑅𝐻  +  𝛽𝑁𝑊𝑆_𝐻𝑊  +  𝛽𝑇𝑆 +  … (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2)  

We processed 28 statistical models stratified by physiographic region to obtain the 

rate ratio (RR) and 95% confidence intervals. The sensitivity of heat wave definitions was 

evaluated by comparing the AIC values across heat wave definitions by physiographic 

region that were generated from the GLM output. The statistical model with the lowest 

AIC value among the 28 heat wave definitions was considered the optimal heat wave 

definition. We then compared the overlap between the days considered as heat waves 

from this study and the NWS heat products using the Chi-Square test [38]. The analysis 

was conducted using R version 4.0.3 and MASS package version 7.3 [39].  

3. Results 

3.1. Heat wave definition – Sensitivity 

Among the 28-heat metrics included in this study, the heat wave definition using 

maximum temperature had the best fit with HRI morbidity in the Coastal region and 

mean temperature for the Piedmont region. The heat wave definitions based on a moder-

ate (90th) percentile threshold for Coastal and Piedmont regions had an optimal model fit 

than the heat wave definitions based on extreme threshold (99th, 98th, and 95th percentile) 

values. 

In the Coastal region, the heat wave definition based on daily maximum temperature 

as a heat metric with a threshold value > 90th percentile for two or more consecutive days 

(HW_15) had the optimal model fit (lowest AIC value) to estimate the HRI morbidity 

compared to the heat wave definitions included in this study. We did not observe a similar 

result for the Piedmont region. In the Piedmont region, the heat wave definition based on 

daily mean temperature as a heat metric with a threshold value > 90th percentile for two 

or more consecutive days (HW_07) had the optimal model fit to estimate the HRI morbid-

ity. In the Coastal region, the heat wave definition HW_15 is associated with 2.75 (95% CI 

2.40-3.08) times higher HRI morbidity rate during heat wave days than the non-heat wave 

days. In the Piedmont region, the heat wave definition HW_07 is associated with a 2.72 

(95% CI 2.46-3.01) times higher HRI morbidity rate compared to the non-heat wave days 

(Figure 2). 

Using the HW_15 definition, 27% (190/704) of the days in the Coastal and using the 

HW_07 heat wave definition, 34% (241/719) of the days in the Piedmont region were 
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flagged as heat wave days during the study period (Table 2). There are an average of 6 

HRI ED visits per day in the Coastal region during the heat wave days based on HW_15 

and an average of 8 HRI ED visits per day during the heat wave days based on HW_07 in 

the Piedmont region (Table 2). The frequency of heat wave days in the Piedmont region 

using the HW_07 definition was 24% higher than in the Coastal region using the HW_15 

definition. About 72% of the heat wave days from the Coastal region matched with the 

Piedmont region. During the study period, we observed a lower number of heat wave 

days during the summer of 2014. The frequency of heat wave days was higher in July than 

in other summer months, based on the epidemiologic relationship-based heat wave defi-

nition (Coastal: HW_15; Piedmont: HW_07). 

3.2. Comparing epidemiologic-based heat wave definition and NWS heat products 

During the study period, NWS flagged 26 days in the Coastal and 18 days in the 

Piedmont regions as heat waves. The NWS heat wave days overlapped with the optimal 

heat wave definition identified in this study (HW_15 for Coastal and HW_07 for Pied-

mont). In the Coastal region, there were a significantly higher (6-times) number of heat 

wave days based on HW_15 than the NWS heat alerts (McNemar 2=158.15, df=1; P<0.05). 

Similarly, the Piedmont region had a significantly higher (13 times) number of heat waves 

based on HW_07 than the NWS heat alerts (McNemar 2=219.04, df=1, P<0.05) (Figure. 3). 

3.2. Figures, Tables, and Schemes 

Figure 1. Conceptualization of evaluating the direct effect of temperature or apparent temperature on HRI 

ED visits. We assumed that the association between temperature and HRI is mediated through NWS heat 

products. Additionally, relative humidity is influenced by temperature. To evaluate the association be-

tween heat wave definitions based on temperature and HRI, we adjusted for relative humidity and NWS 

heat products. We adjusted for NWS heat products while evaluating the association between heat wave 

definitions based on apparent temperature and HRI ED visits. 
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Figure 2. HRI rate ratio corresponding to heat wave definitions. The rate ratios and the corresponding 95% confidence 

intervals were generated using the generalized linear model (GLM), assuming a negative binomial distribution. The X-

axis represents distinct heat wave definitions, stratified by North Carolina physiographic regions, and grouped by met-

ric and threshold type. The Y-axis represents the HRI morbidity rate ratio, which could be interpreted as an increase/de-

crease in HRI morbidity rate during a heat wave day compared to a non-heat wave day. 
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Figure 3. Comparison of the effective heat wave definition with the NWS-Heat alerts. The X-axis represents daily 

temperature in degrees Celsius (Coastal: Maximum temperature & Piedmont: Minimum temperature). The Y-

axis represents the daily rate of heat-related illness morbidity per 100,000 population. Each dot represents an 

observation corresponding to daily temperature and the rate of HRI morbidity during the study period. Panel A 

represents the Coastal region, and panel B represents the Piedmont region. The dots in the scatter plot are color-

coded with three possible combinations: 1. Red: Categorized as heat wave day from our results (HW_15 or 

HW_07) and the NWS; 2. Blue: Categorized as heat wave day only based on our result; 3. Beige: Not flagged as a 

heat wave day from our results nor the NWS. 

B 

A 
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Table 1. Description of the heat wave definitions 

Defini-

tion 

Heat 

met-

ric 

Duration  

(No. of days) 

Thresh-

old type 

Threshold  

intensity 

Coastal Piedmont 

Thresh-

old (°C) 

HW 

days 
AIC 

Thresh-

old (°C) 

HW 

days 
AIC 

HW_01 

M
ea

n
 t

em
p

er
at

u
re

 

2+consecutive Relative >99th percentile 
29.16 

33 4475.7 28.40 29 4817.9 

HW_02 3+consecutive Relative >99th percentile 25 4480.7  21 4843.0 

HW_03 2+consecutive Relative >98th percentile 
28.57 

58 4362.9 27.66 61 4778.4 

HW_04 3+consecutive Relative >98th percentile 46 4396.7  49 4796.9 

HW_05 2+consecutive Relative >95th percentile 
27.65 

105 4287.3 26.70 136 4629.7 

HW_06 3+consecutive Relative >95th percentile 97 4293.5  118 4656.9 

HW_07 2+consecutive Relative >90th percentile 
26.65 

217 4216.2 25.63 241 4547.9 

HW_08 3+consecutive Relative >90th percentile 195 4211.8  227 4551.8 

HW_09 

M
ax

im
u

m
 t

em
p

er
at

u
re

 

2+consecutive Relative >99th percentile 
35.04 

22 4475.4 35.52 20 4842.6 

HW_10 3+consecutive Relative >99th percentile 16 4479.7  14 4852.4 

HW_11 2+consecutive Relative >98th percentile 
34.31 

38 4413.7 34.69 38 4799.8 

HW_12 3+consecutive Relative >98th percentile 30 4435.3  32 4813.2 

HW_13 2+consecutive Relative >95th percentile 
33.13 

98 4283.5 33.30 109 4665.9 

HW_14 3+consecutive Relative >95th percentile 80 4318.0  85 4716.0 

HW_15 2+consecutive Relative >90th percentile 
31.97 

190 4192.6 31.94 194 4583.4 

HW_16 3+consecutive Relative >90th percentile 168 4234.4  180 4615.9 

HW_17 1-day Absolute > 35°C 35.00 26 4423.1 35.00 34 4801 

HW_18 

M
in

im
u

m
 t

em
p

er
at

u
re

 2+consecutive Relative >99th percentile 
23.86 

29 4488.1 21.86 45 4810.3 

HW_19 3+consecutive Relative >99th percentile 25 4479.1  31 4831.9 

HW_20 2+consecutive Relative >98th percentile 
23.36 

56 4401.1 21.40 83 4783.6 

HW_21 3+consecutive Relative >98th percentile 46 4433.5  65 4799.5 

HW_22 2+consecutive Relative >95th percentile 
22.57 

108 4352.0 20.63 156 4722.0 

HW_23 3+consecutive Relative >95th percentile 94 4353.0  136 4722.6 

HW_24 2+consecutive Relative >90th percentile 
21.64 

223 4305.5 19.72 265 4670.3 

HW_25 3+consecutive Relative >90th percentile 199 4303.0  235 4693.7 

HW_26 

M
ax

im
u

m
 

ap
p

ar
en

t 

te
m

p
er

at
u

re
 

1-day Absolute >95th percentile 37.21 36 4254.0 35.26 27 4659.0 

HW_27 1-day Absolute >90th percentile 36.20 71 4319.9 35.92 58 4749.8 

HW_28 1-day Absolute >85th 35.47 106 4415.7 36.95 98 4799.1 

HW (Heat wave) days per Coastal and Piedmont region represent the cumulative number of days during the study period 

that are categorized as heat wave days corresponding to the heat wave definitions. 
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4. Discussion 

This study compared the optimal model fit using AIC values across the 28 heat wave 

definitions. Additionally, compared the heat wave days flagged using the optimal defini-

tion identified from this study to the NWS heat products. We observed that the heat wave 

definition based on the maximum temperature (HW_15) had an optimal performance for 

the Coastal region and the mean temperature-based heat wave definition (HW_07) for the 

Piedmont region. The heat wave definitions mentioned above were associated with 2.75 

(95% CI 2.40-3.08) times higher rate of HRI morbidity in the Coastal region and 2.72 (95% 

CI 2.46-3.01) times higher HRI morbidity rate in Piedmont than the non-heat wave days. 

During the study period, our results suggest an excess of 33 heat wave days per summer 

season in the Coastal and 45 in the Piedmont region based on the heat wave definitions 

HW_15 for Coastal and HW_07 for Piedmont. During the summer, most days in July were 

flagged as vulnerable to heat-related emergencies while using the heat wave definitions 

from this study. 

Heterogeneity while evaluating the heat wave definitions across the US climate re-

gions or sub-regions was well established in the literature [15, 16, 21]. To address the me-

teorological heterogeneity within North Carolina, we evaluated the heat waves stratified 

Table 2. Frequency of heat wave days and HRI ED visits in North Caro-

lina physiographic regions 

  Month 

  May Jun Jul Aug Sep 

  a b a b a b a b a b 
20

11
 HW 3 1 21 14 22 25 10 15 0 0 

ED 65 37 309 334 225 417 195 302 0 0 

20
12

 HW 0 0 5 6 23 27 0 8 2 6 

ED 0 0 45 95 306 520 0 112 35 52 

20
14

 HW 0 0 6 7 7 11 0 5 5 6 

ED 0 0 101 141 103 149 0 55 68 92 

20
15

 HW 0 0 15 16 14 19 5 9 2 3 

ED 0 0 817 897 306 569 117 177 25 54 

20
16

 HW 0 0 5 8 24 26 19 24 2 5 

ED 0 0 80 204 721 950 366 499 30 106 

a-Coastal; b-Piedmont; HW- number of heat wave days using the definition from this 

study [Coastal: HW_15; Piedmont: HW_07] and excluding the days that overlapped with 

the heat wave days flagged by the NWS; ED-number of HRI emergency department vis-

its corresponding to the heat wave days. 
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by physiographic delineations with clustering the administrative boundaries into physio-

graphic regions. In North Carolina, there are two Weather Forecast Offices (WFOs) cov-

ering the Coastal region and a WFO covering the Piedmont region. The WFO covering the 

Piedmont region collaborated with the regional health partners to revise the heat thresh-

olds. The WFO that overlaps the Piedmont region considered revising its heat threshold 

based on the local conditions for optimization [29]. Independent WFOs setting heat prod-

uct thresholds at a sub-regional scale would be beneficial for the climate-related hetero-

geneity across the administrative boundaries. However, a study discussing the heat prod-

ucts across the US reported that the three WFOs across the Coastal and Piedmont regions 

follow the same threshold value and criteria to release heat products [40]. In contrast to 

the homogenous heat product thresholds across the physiographic regions, our results 

suggest heterogeneity of the heat wave definitions between the Coastal and Piedmont re-

gions.  

The results from our study overlapped with the observations from a previous study 

that compared the sensitivity of heat wave definitions across San Diego climate zones, 

using heat-related hospitalizations as an outcome [21]. McElroy et al. (2020) reported us-

ing daily maximum temperature above 90th percentile (29.11°C) in a day as a criterion for 

heat wave definitions in the Coastal region to be most efficient, using heat-related hospi-

talizations as an outcome. In this study, we observed that the heat wave definition based 

on daily maximum temperature above 90th percentile (31.97°C) for two or more days had 

an optimal fit with HRI morbidity in the Coastal region. Additionally, we observed that 

the heat wave definition based on daily mean temperature was optimal for the Piedmont 

region. In contrast, McElroy et al. (2020) reported that heat wave definitions based on daily 

maximum and the minimum temperature had the most impact in the Inland and Desert 

regions of San Diego. The major difference between our findings and McElroy et al. (2020) 

is focused on the duration criterion for defining heat waves. We observed that the heat 

wave definitions using two or more days as a duration criterion had an optimal fit, com-

pared to McElroy et al. (2020) reported absolute thresholds were most efficient. 

Early heat health warning systems play a crucial role in systematically minimizing 

the risks associated with outdoor temperature exposure [8]. Multiple studies attempted 

to characterize a gold standard heat wave definition, where most of these studies com-

pared the sensitivity of the heat wave definitions in the context of mortality [14, 15, 17]. 

Vaidyanathan et al. (2016) evaluated the sensitivity of several heat wave definitions and 

their association with heat-related deaths by comparing the effect estimates (extreme heat 

effect). Similarly, Anderson and Bell (2009) evaluated the sensitivity of heat wave defini-

tions based on the percent increase in relative risk associated with heat-related mortality. 

McElroy et al. (2020) evaluated heat waves by climate zones, using the attributable risk 

associated with heat-related hospitalizations. These studies assessed the optimal heat 

wave definition by comparing the effect estimates/relative or attributable risks associated 

with health outcomes. We compared and identified an optimal heat wave definition per 

North Carolina physiographic regions using the model fit metric – lowest AIC value 

(model fit) instead of the effect estimates (strength of association). 

Using AIC as a metric, we compared 28 heat wave definitions and identified a heat 

wave definition with an optimal model fit. The heat wave definition (HW_15) using daily 

maximum temperature with a percentile value > 90th percentile for two or more consecu-

tive days had an optimal fit for the Coastal region. Similarly, using daily mean tempera-

ture with a threshold value > 90th percentile for two or more consecutive days was optimal 

for the Piedmont region compared to the heat wave definitions included in this study. 

During the study period, 27% of the summer days in the Coastal and 34% in the Piedmont 

region were flagged as vulnerable to HRI emergencies by our definition. In contrast, the 

NWS released heat products during ~2.5% of the summer days. During the study period, 

there were an average of 783 (6 per day) HRI emergency visits per summer season during 

the days flagged as vulnerable based on the HW_15 definition in the Coastal region and 

1,152 (8 per day) HRI emergencies per summer season in the Piedmont region during the 

days flagged as vulnerable to heat-related emergencies using the HW_07 definition. 
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Abasilim and Friedman (2021) reported about 16 heat-related hospitalizations per day 

during the summer days without NWS excess heat warnings in Illinois [41]. 

Our results could be influenced by the interaction between vulnerability factors and 

risk perception. Additionally, our results are subjective to a variety of unmeasured biases 

driven by human vulnerabilities such as co-existing medical conditions, occupational vul-

nerabilities, demographics (age, gender, race, education, urbanicity), and socioeconomic 

factors (wealth, employment, housing) that were identified to exacerbate the risk of heat-

related illnesses [42-48]. Additionally, our results could be influenced by effect modifiers 

such as human behavioral factors that include knowledge on heat risk sensitivity, external 

locus of control, and emotional and cognitive factors that heavily alter the risk perception 

of heat warnings [49-51]. Further studies evaluating heat wave definitions using mixed 

methods by considering quantitative information from human vulnerability characteris-

tics and qualitative information from heat risk perception could strengthen the heat health 

risk ascertainment. 

5. Conclusions 

Our results showed heterogeneity of the optimal heat wave definitions among the 

Coastal and Piedmont regions in North Carolina. Additionally, the threshold values asso-

ciated with the optimal heat wave definitions were smaller compared to the NWS thresh-

olds for the North Carolina physiographic regions. Our results suggest recalibrating the 

heat wave definitions used by the NWS WFOs in North Carolina. 
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