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Abstract: The vulnerability of vegetation in the Middle East to meteorological conditions and cli-

mate change, especially those leading to drought, is high. Despite the importance of the Amu Darya 

and Kabul River Basins (ADB and KRB) as a region in which more than 15 million people live, and 

its vulnerability to global warming, only several studies addressed the issue of the linkage of mete-

orological parameters on vegetation for the eastern basins of Afghanistan. In this study, data from 

the Moderate Resolution Imaging Spectroradiometer (MODIS), Global Precipitation Measurement 

Mission (GPM), and Land Data Assimilation System (GLDAS) to examine the impact of meteoro-

logical parameters on vegetation for the eastern basins of Afghanistan for the period from 2000 to 

2021. The study utilized several indices, such as Precipitation Condition Index (PCI), Temperature 

Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Microwave Integrated Drought 

Index (MIDI). The relationships between meteorological quantities, drought conditions, and vege-

tation variations were examined by analyzing the anomalies and using regression methods. The 

results showed that the years 2000, 2001, and 2008 had the lowest vegetation coverage (VC) (56, 56, 

and 55% of the study area, respectively). On the other hand, the years 2010, 2013, 2016, and 2020 

had the highest VC (71, 71, 72, and 72% of the study area, respectively). The trend of the VC for the 

eastern basins of Afghanistan for the period from 2000 to 2021 was upward. High correlations be-

tween VC and soil moisture (R = 0.70, p = 0.0004), and precipitation (R = 0.5, p = 0.008) were found, 

whereas no significant correlation was found between VC and drought index MIDI. It was revealed 

that soil moisture, precipitation, land surface temperature, and area under meteorological drought 

conditions explained 45% of annual VC variability. 
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1. Introduction 

Abnormal climatic conditions related to climate change have been associated with 

the effects of human activities over the past few decades. They lead to numerous environ-

mental and ecological problems, such as air pollution, biodiversity loss, soil erosion, and 

vegetation degradation [1,2]. Therefore, the knowledge of how climate change affects dif-

ferent ecosystems has an important role in the protection and management of vegetation 

cover [3] 
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Vegetation occupies almost half of the planet and plays an important role in provid-

ing food, fiber, and fuel, supporting animal biodiversity, maintaining climate quality, and 

supporting ecological processes that preserve ecosystems and landscapes [4]. Vegetation 

is one of the important components of the terrestrial ecosystem, which plays an effective 

role in preventing desertification and also plays a key role in providing various ecosystem 

services to adapt and mitigate climate change [5,6]. Additionally, every change in vegeta-

tion affects the climate of the region, especially temperature and air quality, through its 

influence on net radiation, energy partitioning, conversion of precipitation to runoff, soil 

moisture, evaporation, and transpiration [7]. Since global climate change has become a 

major topic of discussion today, the relationship between vegetation and meteorological 

factors is of great importance in ecological studies [8].  

Remote sensing can continuously and systematically deliver information on the wa-

ter cycle and vegetation variations and therefore, remote sensing drought indicators can 

be used for spatial and temporal drought monitoring [9]. Remote sensing is of particular 

importance in applications requiring actual and constantly updated information. Due to 

various spectral ranges and data availability, the use of remote sensing data is one of the 

best ways to prepare vegetation maps [10]. 

The NDVI index has become one of the most popular and commonly used indicators 

to monitor vegetation due to its universality and simple mathematical formula [11-14]. 

According to Huang et al. [14], the number of articles using the NDVI index to monitor 

changes in vegetation increased from 795 in 1990, through 3361 in 2000, to 12,618 in 2010 

[15]. The NDVI index is widely used in studies related to vegetation classification, and 

soil erosion risk assessment, because soil erosion decreases with increasing vegetation 

cover [16]. By correlating NDVI data with the meteorological parameters using the long-

term time series for the specific study area it can be checked how climate change affects 

the growth of vegetation [17]. Also, such studies can be performed to check whether per-

sistent drought conditions occur in a given area and how they affect vegetation.  

The period of instability from dry weather conditions, which leads to water scarcity, 

is simply known as drought [18,19]. Drought is a very complex and not well-understood 

phenomenon. It causes social and environmental problems, and it leads to immeasurable 

economic losses [20]. Drought is a serious natural hazard, especially in regions with arid 

and semi-arid climates [18]. Compared to other natural phenomena, drought affects wider 

areas over a longer period, thus causing much more damage than other natural disasters 

such as floods and earthquakes [21]. The study of climate change and the identification of 

years of drought are valuable for the management of water resources and vegetation, es-

pecially in areas with dry spell occurrence [22].  

Afghanistan is a mountainous country with spatially and temporally varying ecolog-

ical conditions. Mountainous areas are prone to the effects of climate change, which in-

tensifies the pressure on natural and human systems [23]. Climate changes have caused 

short-term and long-term droughts that have severely affected Afghanistan's economy. 

According to the International Disaster Management Agency (IDD), droughts accounted 

for only 5 percent of natural disasters but affected about 30 percent of the population [24]. 

There are two main types of drought in Afghanistan: meteorological drought (usually ac-

companied by a lack of rainfall) and hydrological drought (usually associated with a lack 

of surface and groundwater flow, potentially originating in the wider river basin region) 

[25]. These issues may also be combined with land and crop management practices, lead-

ing to agricultural drought. Currently, Afghanistan is facing significant drought issues 

that have a direct impact on the livelihoods and the economy of the country [25,26].  

The vegetation in Afghanistan has been severely affected by human activities, climate 

change, and drought, which resulted in the naturally occurring vegetation preserved in-

tact only in a few high mountain areas and abnormally dry deserts [27]. Such a situation 

additionally contributes to Afghanistan's vulnerability to the effects of climate change 

[28]. In Afghanistan, the combined effects of climate change and four decades of civil war 

have destroyed vegetation and infrastructure, leading to the underdevelopment of the 

country. The high dependence of the majority of the country's people on small and large-
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scale agriculture means that due to the country's dry climate and the low adaptation ca-

pacity of farmers climate change creates major problems to deal with [29]. The arid and 

semi-arid climate of the eastern basins of Afghanistan implies that this area can be 

strongly affected by short and long-term fluctuations of meteorological parameters, which 

as a result will endanger human living conditions [30]. In Afghanistan, where a large part 

of the population is engaged in the agriculture sector, assessing the impacts of climate 

change and drought on vegetation is crucial for the implementation of sustainable agri-

cultural practices. This is especially important for different crops that are grown annually 

and seasonally, for example, wheat produced in the north, northeast, and eastern regions 

of the country [31]. 

 In Afghanistan, due to security problems and the lack of stations monitoring 

weather, not many studies have been performed on the correlation between meteorologi-

cal parameters and vegetation, and only a few research were done using remote sensing 

data [22,27,30,32]. Therefore, the investigation of the impact of weather and climate 

change on vegetation for proper management and ensuring the stability of vegetation, 

being of particular importance for the eastern basins of Afghanistan, is still required and 

expected. 

The presented study has been conducted to monitor the fluctuations of vegetation 

conditions and to assess their relationship with meteorological parameters and drought 

conditions in the period of 2000-2021 in the eastern basins of Afghanistan. The main ob-

jectives of this study were a) to determine the trend of vegetation changes between the 

years (2000-2021) in the eastern basin of Afghanistan, b) to analyze the past trends in 

drought from the perspective of meteorology, and c) to determine the relationship be-

tween vegetation, drought and meteorological parameters for the eastern basins of Af-

ghanistan. The results of this study can be used by governmental agencies, such as the 

Ministry of Agriculture, to identify dry and wet years, as well as to determine the trend 

of changes in meteorological parameters and vegetation for the period 2000-2021. 

2. Materials and Methods 

2.1. Study area 

The study has been performed for the eastern basins of Afghanistan, namely the Amu 

Darya Basin and the Kabul Basin, with a total area of 163,840 km2. The Amu Darya Basin, 

with an area of 90,692 km2, is bordered by Tajikistan from the north, and Pakistan from 

the southeast. The total annual water flowing through this basin is 82 billion m3, of which 

61% comes from Tajikistan, 30% from Afghanistan, and the remaining 9% from Uzbeki-

stan and Turkmenistan. Important Amu Darya tributaries include the Wakhan, Kokcha, 

Kunduz, Andarab, Khenjan, and Punjab rivers in Afghanistan. The population living in 

this basin was reported to be about 4.5 million people in 2015. According to the division 

of the Ministry of Energy and Water, it is divided into 7 sub-basins: Upper Five, Lower 

Five, Kokcheh, Taloqan, Upper Kunduz, Lower Kunduz, and Lower Amu [28,33]. 

The Kabul Basin, with an area of 72,843 km2 is located in the eastern part of Afghan-

istan and is part of the Indus River Basin, which is common between Afghanistan and 

Pakistan. A part of this basin includes the Kabul and Kunar river basins, with an area of 

53,832 km2. Kabul Basin is the second largest basin in Afghanistan after the Amu Darya 

and is divided into 13 sub-basins: Upper Panjshir, Lower Panjshir, Ghorband, Central Ka-

bul, Maidan, Logar, Laghman, Lower Kabul, Kunar, Parun, North, Khorram, and Gomel. 

The population living in this catchment area is estimated to be about 12.1 million in 2015 

[33-35].  
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Figure 1. The elevation map presenting the study area. 

2.2. Data 

In the present study, the vegetation coverage variability for the eastern basins of Af-

ghanistan was investigated for the period 2000-2021, and the impact of such factors as 

land surface temperature (LST), precipitation, soil moisture, and drought on vegetation 

coverage was assessed using regression methods. The summary of the sources of the re-

mote sensing data used in this study is provided in Table 1, while the flowchart of data 

processing is presented in Figure 2. All satellite-born statistics of the surfaces belong to 

the bright days (hours) only. 

Table 1. Remote sensing data used in this study. 

No Data Source Spatial 

resolution 

Temporal 

resolution 

File Format 

1 

Normalized Difference 

Vegetation Index 

(MOD13Q1) 

MODIS packages 

in GEE 
250 m 16 days Geo tif 

2 

MODIS Land Surface 

Temperature 

(MOD11A2) 

MODIS packages 

in GEE 
1 km 8 days Geo tif 

3 
Global Precipitation 

Measurement (GPM) 

GPM packages in 

GEE 

0.1° arc 

degree 
30 minutes Geo tif 

4 

Global Land Data Assim-

ilation System (GLDAS) 

soil moisture 

(in soil layer of 0–10 cm ) 

GLDAS packages 

in GEE 
1° 3 hours NC file 
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Figure 2. Flowchart of the data processing. 

2.2.1. Normalized Difference Vegetation Index (NDVI) data 

The Normalized Difference Vegetation Index (NDVI) is one of the most important 

and widely used vegetation indicators and its application in satellite assessment for global 

vegetation monitoring has been well proven in the two last decades [36-38]. It is com-

monly used as a detector of surrounding greenness areas and in epidemiological studies 

to investigate the health effects of green space in urban environments [39]. The NDVI is 

the index that is less affected by factors such as topography and brightness than other 

vegetation indices and it indicates the level of photosynthetic activity of the vegetation 

[40,41]: 

���� =
���������

���������
, (1)

where Rred and Rnir represent surface reflectance averaged over visible (RED) (λ ~ 0.65 

μm) and near-infrared (NIR) (λ ~ 0.85 μm) regions of the spectrum [15,42]. The range of 

NDVI values is between -1 and 1, with the vegetation having NDVI between 0.2-1.0, while 

the values lesser than 0.2 indicate areas without vegetation cover, usually barren, or with 

rock, snow, water, or ice [27,43,44]. 

In this study, the time-series of the NDVI 16-Day L3 Global 250 m from MOD13Q1 

MODIS product [45] for a period from January 2000 to December 2021 (22 years, 528 im-

ages in total) have been downloaded using the Google Earth Engine (GEE) platform. The 

data was converted to the spatial resolution of 1 km using the bicubic method. 

To obtain the yearly values of the NDVI the data were averaged as: 

Yearly NDVI =
� �����

��

���

��
, (2) 

where i is consecutively numbering the timely ordered images from a specific year. Based 

on the NDVI, vegetation coverage was calculated as the area with any type of vegetation 

by summation of the number of the pixels with NDVI > 0.2 and multiplying their number 

by the area of one pixel. 

2.2.2. Land Surface Temperature (LST) data 
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In the study, the time-series of the LSTDay-8Day-1km from MOD11A2 MODIS prod-

uct with a spatial resolution of 1 km and temporal resolution of 8 days data was used. The 

data from 2000 to 2021 (22 years, 1056 images in total) were downloaded using the Google 

Earth Engine (GEE) platform and then averaged to yearly values using: 

Yearly LST=
� ����

��

���

��
, (3) 

2.2.3. Precipitation data 

The precipitation was derived from the Global Precipitation Measurement (GPM) 

product. It is an international satellite mission to provide next-generation observations of 

precipitation and snow worldwide every three hours [46]. The GPM data were obtained 

using the Google Earth Engine (GEE) platform and then averaged to yearly values. 

2.2.4. Soil moisture data 

The purpose of the Global Land Data Assimilation System (GLDAS) was to employ 

a source of data for the assessment of the environmental and food security in developing 

countries, such as Afghanistan, that do not have access to terrestrial data [47,48]. The over-

all goal of the GLDAS model was to drive multiple offline LSMs and integrate large 

amounts of observation-based data, to be implemented globally with high resolution. 

GLDAS offers a product with a spatial resolution of 0.25° and 1° and a temporal resolution 

of 3 hourly. The data is available from January 1948 up to the present [49]. In this study, 

the Global Land Data Assimilation System (GLDAS) data was used to obtain information 

on the soil moisture from a depth of 0-10 cm. To match the same spatial resolution as for 

the other data, the bicubic method has been used to re-sample the soil moisture data to a 

1km grid. The GLDAS dataset was accessed using the GEE.  

2.3. Methods 

2.3.1. Vegetation Condition Index (VCI) 

Since 2014, Kenya’s National Drought Management Authority (NDMA) uses the veg-

etation condition index (VCI) as the basis for providing disaster contingency funds to 

counties in drought conditions [50]. VCI is a normalized pixel-based NDVI to separate 

long-term ecosystem changes from short-term climate-related NDVI fluctuations and to 

reflect relative changes in vegetation conditions from very poor to optimal [51,52]. VCI 

compares the current time vegetation with the minimum long-term NDVI and shows how 

close the current time step is to the long-term minimum NDVI, taking into account the 

difference between the maximum (indicating the best conditions of vegetative growth) 

and minimum values (indicating the worst conditions of vegetative growth), which reflect 

somehow the conditions of the local vegetation [53]. The range of VCI is between 0 and 1, 

with smaller VCI values indicating worse vegetation growth conditions and, at the same 

time, higher degrees of drought. Based on the literature regarding aridity classification 

standards, VCI lower than 0.5 indicates drought conditions [54, 55]. VCI is defined as: 

VCI =
NDVI� − NDVI���

NDVI��� − NDVI���

 (4) 

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes 

the current time step.                                                                                                                   

2.3.2. Temperature Condition Index (TCI) 

The Temperature Condition Index (TCI) is one of the indicators of drought, which 

assumes that the occurrence of drought phenomenon reduces soil moisture and creates 

thermal stress on the surface of the earth, which results in the monthly LST in the year of 

drought greater than for the same month in normal years [52]. It is calculated as: 

TCI =
LST� − LST���

LST��� − LST���

 (5) 
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where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes 

the current time step.                                                                                                                   

2.3.3. Precipitation Condition Index (PCI) 

Precipitation Condition Index (PCI) was used to evaluate the variation of precipita-

tion and drought conditions from GPM DATA [56,57]. It is defined as: 

PCI =
P� − P���

P��� − P���

 (6) 

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes 

the current time step.                                                                                                                   

2.3.4. Soil Moisture Condition Index (SMCI) 

Soil moisture data (GLDAS) was used to drive the soil moisture condition index 

(SMCI) as: 

SMCI =
SM� − SM���

SM��� − SM���
 (7) 

where 'min' and 'max' are multiyear maximum and minimum, respectively, and 'i' denotes 

the current time step.                                                                                                                   

2.3.5. Microwave Integrated Drought Index (MIDI) 

Microwave Integrated Drought Index (MIDI) integrates the PCI, TCI, and SMCI in-

dices with flexible weights α, β, and γ:  

���� = ���� + �SMCI + γTCI (8) 

where α+β+γ=1. In this study, based on the literature recommendations, in which the best 

correlation with the short-term SPI was obtained [58,59], weights α=0.5, β=0.3, and γ=0.2 

were used. The range of MIDI values is between 0 and 1, where the value between 0 to 0.1 

indicates extreme drought conditions, the value in the range from 0.11 to 0.2 indicates 

severe drought conditions, from 0.21 to 0.3 - moderate drought conditions, from 0.31 to 

0.4 - low drought conditions and from 0.41 to 1.0 indicates that area under consideration 

is not experiencing drought. 

2.3.6. Z-score calculation 

Z-score, also known as the standardized anomaly, informs how large the deviations 

of the quantity under consideration are. The Z-score is calculated using the formula [60]: 

Zij =
�����

���
, (9) 

where i represents the assessed period and j stands for the time scale, Xij is an analyzed 

parameter in a given year, U represents the mean value for the analyzed statistical period, 

whereas σij indicates the standard deviation. Positive values of the standardized anomaly 

indicate that the values under consideration are larger than the mean, the negative values 

of the standardized anomaly indicate that the values are smaller than the mean, and the 

values >|2| indicate that the result is abnormal [61]. 

3. Results 

3.1. Analysis of VC variations 

Figure 3 shows the average intra-year vegetation coverage of the eastern basins in 

Afghanistan throughout the study period. The VC had a slightly decreasing trend from 

the first of January (~12% of study area covered in vegetation, 19,662 km2) until the 2 Feb-

ruary (~11% of study area covered in vegetation, 18,063 km2). From 2 February to 25 March 

vegetation coverage increased from ~2% to 46% of the study area (75,635 km2). Then, from 

25 March, it decreased from 46% to 13% of the study area on 19 December (about 20679 

km2). The vegetation cover increase was very high from 25 March to 26 June, same as the 
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decrease from 26 June to 17 November, whereas between 17 November and 19 December, 

it was relatively slow. From the above results, we can conclude that the peak of VC in the 

eastern basins of Afghanistan is observed in May and June. 

 

Figure 3. The average intra-year vegetation coverage of the eastern basins in Afghanistan during 

2000-2021. 

Figure 4 presents the relationship between annual vegetation coverage and the an-

nual mean of the area affected by drought conditions for the eastern basins of Afghanistan 

during the studied period (2000-2021). The annual mean of the area affected by drought 

conditions was calculated using the percentage range value of the VCI index. If the value 

was between 0 and 50% it indicated that the area (pixel) under consideration had bad 

vegetation growth conditions and was affected by drought conditions (DAV), whereas 

values from 50.1 to 100% indicated good vegetation growth conditions, and that the area 

was not affected by drought conditions (NDAV). It is worth mentioning here that DAV 

can take larger values than VC because for the calculation of the area the values of NDVI 

< 0.2 (barren land, rocks, buildup areas) are also taken into account. The maximum VC 

was observed for 2005, 2010, 2013, 2016 and 2020 (70%, 71%, 71%, 72% and 72 % of the 

study area, with 113,894, 116,570, 116,718, 117,821 and 118,389 km2, respectively), while 

for 2000, 2001, and 2008 the minimum VC was recorded (56, 56, and 55% of the study area, 

with 91,747, 91,847, and 90,576 km2, respectively). The maximum DAV was observed in 

2000 and 2001 (87 and 89% of the study area, 142,638 and 146,195 km2, respectively), 

whereas the minimum DAV was recorded in 2010, 2012, and 2020 (81, 82, and 82% of the 

study area, with 133,221, 134,110, and 134016 km2, respectively). The relationship between 

VC and DAV assessed with the use of the linear regression model was significant at the 

95% confidence level (R=0.78, p-value<0.05). 

 

Figure 4. The average annual vegetation coverage (black bars) and average annual area affected by 

drought conditions (red line) of the eastern basins in Afghanistan during 2000-2021. 
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Figure 5. The maps of annual means of NDVI for the eastern basins of Afghanistan for the years 

with the lowest (2000 and 2008) and the highest (2016 and 2020) vegetation coverage from the stud-

ied period (2000-2021). 

Figure 5 shows the maps of vegetation coverage in the eastern basins of Afghanistan 

Afghanistan for the years with the lowest (2000 and 2008) and the highest (2016 and 2020) 

vegetation coverage. Better vegetated areas were observed in the northern and northeast-

ern areas of ADB and the eastern and southeastern areas of the KRB, whereas in the east-

ern, southeastern, and southwestern areas of the ADB, and the western and southwestern 

areas of the KRB vegetation occupied a much smaller area. 

3.2. Annual variations of MIDI 

In Figure 6 the maps of the spatial variations of MIDI in the eastern basins of Afghan-

istan are presented separately for each year from the studied period (2000-2021), whereas 

in Figure 7 the same information is aggregated into a column plot for better comparison 

of temporal changes. In 2000, which can be recognized as the year affected by extreme and 

severe drought to the highest degree among the years analyzed, most of the studied area 

(32%, 51,968 km2) was affected by severe drought conditions. Severe drought affected 

most of the southwestern and western areas of the KRB, and the northwestern and west-

ern areas of the ADB in the Kunduz sub-basin, while the extreme drought conditions were 

affecting some parts of the KRB in the Gomal sub-basin only (~1% of the study area, 1218 

km2). For most of the central and northeastern areas of these two basins (20% of the study 

area, 34,121 km2), no drought conditions were observed. In 2001, most of the southwest 

and west areas of KBR, and northwest of ADB were affected by moderate drought (33% 

of the study area, 54,596 km2). In 2002, areas without drought, mild drought, and moder-

ate drought almost have the same size (27, 29, and 29% of the studied area, 44,778, 48,098, 

and 47,449 km2, respectively), and severe drought had affected very few areas of the 

southwest KRB (6% of the study area, 9829 km2). In 2003, most of the central areas had no 

drought conditions (39% of the study area, 63,928 km2), however, some areas in the south-

west of KRB and the northeast of the ADB had been affected by moderate drought (26% 

of the study area, 42,272 km2). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2022                   doi:10.20944/preprints202207.0257.v1

https://doi.org/10.20944/preprints202207.0257.v1


 

 

 

 

 

Figure 6. The maps of the spatial variations of meteorological drought expressed by the annual Mi-

crowave Integrated Drought Index in the eastern basins of Afghanistan for each year from the study 

period (2000-2021). 
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Figure 7. The temporal variations of meteorological drought expressed by the annual Microwave 

Integrated Drought Index in the eastern basins of Afghanistan during 2000-2021. 

In 2004, most of the northern, northeastern, and central areas of the basins experi-

enced no droughts conditions (35% of the study area, 56,889 km2), in turn, the southwest 

areas of the KRB had been affected by severe drought (15% of the study area, 24,850 km2). 

2009 was one of the years least affected by the effects of extreme, severe, and moderate 

drought conditions from the studied period, and also had the highest area that hadn’t 

experienced drought (55% of the study area, 90,785 km2). Only some areas in the northeast 

and northwest of the ADB and the southwest of the KRB had been affected by mild, mod-

erate, and severe drought (32, 7, and 2% of the study area, 52,499, 11,948, and 2474 km2, 

respectively). In 2011, most of the central northeast, and southeast areas of the basin were 

under mild drought conditions (39% of the study area, 63,939 km2), and the northwest 

areas of the ADB and the southwest areas of the KRB were under moderate drought (39% 

of the study area, 64,043 km2). In 2016, most of the northwestern and southwestern areas 

of the study area and some southern areas of the ADB were affected by moderate drought 

(35% of the study area, 57,937 km2), and most of the central and southwestern areas of the 

study area hadn’t experienced drought (25% of the study area, 42,253 km2). 2019 and 2020 

were the second and the third year of the studied period with the highest area that hadn’t 

experienced drought. In 2019, 51% of the study area (83,682 km2) was under no drought 

conditions, except for some areas in the southwest of the KRB and the east of the ADB, 

which were affected by mild and moderate drought (12% and 40% of the study area, 

20,650 and 65,654 km2, respectively). In 2020 only some areas in the southwest of the KRB 

and the south of the ADB were affected by mild and moderate drought (30% and 17% of 

the study area, 48,654 and 27,409 km2, respectively), while 48% of the study area (79,342 

km2) was without drought conditions. From the temporal changes of meteorological 

drought in the eastern Basin of Afghanistan during the study period shown in Figure 7, it 

results that the areas affected by extreme, severe, and moderate droughts had a down-

ward trend, whereas the trends for the areas affected by mild drought, and with no 

drought conditions were upwards. 
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Figure 8. The annual anomalies of vegetation coverage, precipitation, soil moisture, LST, and MIDI 

for the eastern basins of Afghanistan during 2000-2021. 

3.3. Correlation of VC with other variables 

Figure 8 shows the annual anomalies of VC, precipitation, soil moisture, LST, and 

MIDI for the eastern basins of Afghanistan during 2000-2021. 2000, 2001, 2016, 2017, 2018, 

and 2021 were the years with the highest LST (22.3, 18.6, 18.8, 18, 18, and 18.4℃ on aver-

age, respectively) during the study period. In turn, 2012, 2019, and 2020 had the lowest 

LSTs (15.2, 16.2, 16.6℃, respectively). 2009, 2012, 2013, 2014, and 215 had the highest pre-

cipitation (525, 569, 574, 590, and 675 mm, respectively) during the study period, whereas 

2000, 2001, 2017, and 2021 had the lowest precipitation (211, 217, 330 and 269 mm, respec-

tively). For 2005, 2009, 2012, 2015, and 2019 the highest soil moisture was recorded (23, 22, 

24, and 23.4 m3m-3, respectively) during the study period, and conversely, for 2001, 2002, 

2008, and 2021 the lowest soil moisture was observed (17, 18, 19.4 and 18.6 m3m-3, respec-

tively). 2000, 2001, 2004 and 2008 had the lowest vegetation coverage (91,747, 91,847, 

98,750, and 90,576 km2, respectively), while 2005, 2010, 2013, 2016 and 2020 were the green-

est years with the highest vegetation coverage (113,894, 116,570, 116,718, and 118840 km2, 

respectively). Meteorological drought conditions calculated with the use of MIDI indi-

cated that in 2000, 2001, 2010, 2011, and 2021 the most area had been affected by meteor-

ological drought (133,049, 133,554, 145,906, 146,870, and 135,398 km2, respectively). In 

turn, in 2005, 2009, 2019 and 2020 the smallest area was affected by drought (91,950, 76,475, 

83,511, and 87,939 km2, respectively). In 2005, precipitation was close to the normal value 

(precipitation Z-score was close to 0), LST and MIDI were below normal value, but the 

soil moisture and vegetation cover were above the normal value. Almost the same can be 

observed for 2020, in which the precipitation, MIDI, and LST were below the normal 

value, but the soil moisture and vegetation coverage were above the normal value. It 

strongly suggests that soil moisture was one of the key parameters controlling the LST 

and had the highest impact on the variations in the vegetation coverage. The decrease in 

the annual mean LST for the eastern basins of Afghanistan in the studied period was -

0.06℃, while an increase in the annual mean precipitation was 6.9 mm yearly. Annual 

mean soil moisture also had an increasing trend, whereas the area with meteorological 

drought had a decreasing trend during the study period. 
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Figure 9. The scatter plots of the time series presenting the relationships between vegetation cover-

age and precipitation, soil moisture, LST, and MIDI for the eastern basins of Afghanistan during 

2000-2021. 

Figure 9 and Table 2 show the relationship between the annual mean of the vegeta-

tion cover and assessed meteorological parameters, such as precipitation, soil moisture, 

drought-affected area calculated on the base of MIDI (MIDI area), and LST for the studied 

period. A positive relationship was observed for VC and precipitation, and VC and soil 

moisture, whereas a negative relationship was seen for VC and LST, and VC and MIDI 

area. It was found that the relationships between VC and precipitation, VC and soil mois-

ture, and VC and LST were significant (R=0.64, p=0.008; R=0.73, p=0.0004; and R=0.57, 

p=0.04, respectively), whereas the relationship between VC and MIDI area was not signif-

icant (R=0.36, p=0.126) at the 95% confidence level. 

Table 2. The correlation (R) and determination (R2) coefficients and p-value for relationships be-

tween annual vegetation coverage and precipitation, soil moisture, LST, and MIDI for the eastern 

basins of Afghanistan during 2000-2021 calculated using the linear regression method. 

 R R2 p-value 

Vegetation coverage – 

Precipitation 
0.64* 0.41 0.008 

Vegetation coverage – 

Soil moisture 
0.73* 0.53 0.0004 

Vegetation coverage – 

LST 
0.57* 0.33 0.04 

Vegetation coverage – 

MIDI area 
0.36 0.13 0.126 

* denotes that the correlation was significant (p-value = 0.05). 

Table 3. The yearly multiple regression relationships between vegetation coverage, precipitation, 

soil moisture (SM), and LST for the eastern basins of Afghanistan during 2000-2021. 
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Model of 

vegetation 

coverage 

R 

(regression 

coefficient) 

R2 

(determination 

coefficient) 

Multiple regression equations 

yearly 0.74 0.45 

VCyearly = 5.17 – 0.00029∙Precipitationyearly + 

0.352∙SMyearly – 0.137∙LSTyearly + 

0.066∙MIDIyearly 

For the variations of VC, the multiple regression equations taking into account the 

relationships between VC, precipitation, soil moisture, LST, and MIDI area for the eastern 

basins of Afghanistan during 2000-2021 were calculated for the yearly values (Table 3). 

These equations allow estimating the projected value of VC. The obtained multiple regres-

sion and determination coefficients indicate that precipitation, soil moisture, and LST ex-

plained about 45% of the yearly VC variations.  

4. Discussion 

While Afghanistan’s natural ecosystems have already been destroyed during the 

country’s many years of civil wars, unsustainable management, and over-exploitation, 

literature reports indicate that Afghanistan will face a wide range of new and increased 

climate risks. The worst adverse effects of climate change on Afghanistan are related to 

drought, including these leading to desertification and land degradation. Drought is esti-

mated to be the norm by 2030, not a periodic event [62]. Currently, Afghanistan is facing 

significant drought issues that have a direct impact on livelihoods and the economy. The 

drought that occurred in 2011 has pushed millions of people into food insecurity and pov-

erty [63]. Although few studies have determined the impact of drought events, there is 

still a need to assess its impact on various aspects, like vegetation coverage dynamic, es-

pecially for longer periods.  

In this study, the relationship between vegetation coverage dynamic and meteoro-

logical parameters (precipitation, soil moisture, and LST) and meteorological drought 

conditions was assessed for the eastern basins of Afghanistan for the period 2000-2021. 

Despite the climate changes that are occurring in Afghanistan [27], the average annual 

vegetation coverage increased in the eastern basins of Afghanistan in the study period. A 

significant increase in VC from 2000 to 2003 was observed, after that, from 2005 to 2008, a 

slight decrease happened. 2008 had the minimum VC (55% of the study area), and since 

2009, VC had increased (except for 2011) since 2016. Although a decreasing trend was 

observed from 2016 until 2018, after that, from 2018 to the end of the assessed period, there 

was a slight upward trend in the vegetation coverage. A strong and significant correlation 

between the annual mean of VC and the area affected by drought conditions expressed 

with the use of VCI (VCI =< 50%, R=0.78, p=0.000014) was found. Obtained results were in 

line with other research made for the whole Afghanistan territory [27], in which it was 

found that the vegetation coverage was increasing in the period 2001-2018. The authors 

found that the correlation between NDVI and VCI was high, whereas the correlation be-

tween NDVI and LST was low. Additionally, it was stated that in 2000 and 2008 the lowest 

vegetation coverage was observed, while in 2010 and 2016 the highest vegetation coverage 

was recorded. 

In general, the area with meteorological drought conditions (MIDI =< 0.4) had a de-

creasing trend in the study period. The area decreased from 2000 to 2005, and then it in-

creased from 2005 to 2007. Similarly, from 2010 to 2020 a downward trend was observed 

for the area with meteorological drought conditions. The areas under extreme, severe, and 

moderate meteorological drought were decreasing, while the area with mild drought con-

ditions was increasing during the study period. Most areas were affected by moderate 

and mild droughts. These results were in line with the other research made for the Kabul 

river basin [64], in which it was stated that 2000 and 2004 were the years with the worst 
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meteorological drought conditions from the period from 2000 to 2018 and that the trend 

of meteorological drought changes in KRB was downward. During the studied period 

most of the northwest, southwest and some eastern areas of the eastern basins in Afghan-

istan had been influenced by drought. The highest value of the area under meteorological 

drought was observed in 2000, 2001, 2007, 2010, 2011, and 2021 (81, 82, 85, 90, and 83% of 

the study area affected by drought, respectively). 

Observed variations in annual VC were related to the changes in meteorological pa-

rameters. For example, in 2000 and 2021 annual VC was below normal value, simultane-

ously with annual precipitation, and soil moisture, whereas LST was above the normal 

value. In 2015 and 2019, annual VC was above normal value, simultaneously with annual 

precipitation, and soil moisture, whereas annual LST was below the normal value.  Ob-

tained results indicated that the correlation between VC and precipitation was positive 

and significant (R=0.64, p=0.008), and the total annual precipitation had an upward trend 

during the study period. The correlation between VC and soil moisture was positive and 

significant (R=0.73, p=0.0004), and the annual mean soil moisture had an upward trend 

during the study period. The correlation between VC and LST was also positive and sig-

nificant (R=0.57, p=0.04), and the annual mean LST was decreasing during the study pe-

riod. The correlation between VC and metrological drought was not significant (R=0.36, 

p=0.126) at a 95% confidence level. Obtained results are somewhat in line with the other 

research made for Kabul River Basin in Afghanistan [65], in which the vegetation coverage 

dynamics and its relation to atmospheric patterns were investigated. It was found that the 

vegetation dynamics in KRB was impacted by both precipitation and LST, however, the 

magnitude of this impact depended on the season. During the winter LST had a greater 

impact on VC variation than precipitation, and conversely, in summer, precipitation im-

pacted vegetation to a higher degree than LST. In another study, the vegetation dynamics 

and its relationship with climatological factors for Caspian Sea watersheds in Iran was 

analyzed [66]. It was found that the correlations of vegetation coverage with ET and LST 

in winter were positive and significant (R = 0.46 and 0.55, p-value = 0.05, respectively), 

while the correlation with the precipitation was not significant. In the spring, the correla-

tion between VC and precipitation was positive and significant (R = 0.55, p-value = 0.05), 

but the impact of LST on the vegetation coverage was negligible when the precipitation 

was abnormally high. In the summer, the correlation between VC and LST was negative 

and significant (R = –0.45, p-value = 0.05). 

5. Conclusions 

In the present study, the impact of meteorological parameters and meteorological 

drought on the vegetation coverage in the eastern basins of Afghanistan has been investi-

gated using remote sensing data. It was found that soil moisture had a high impact on VC, 

and the LST impacted VC to the slightest extent from the studied meteorological param-

eters. The relationship between VC and the area under meteorological drought was insig-

nificant. The correlations between VC and precipitation, soil moisture, and LST were pos-

itive and significant (R=0.64, p=0.008, R=0.73, p=0.0004, R=0.57, p=0.04, respectively). It 

was revealed that precipitation, soil moisture, LST, and area under meteorological 

drought conditions explained about 45% of the yearly VC variation in the eastern basins 

of Afghanistan. 

 The results of this research indicated that the changes in the vegetation coverage in 

the eastern basins of Afghanistan during 2000-2021 had an upward trend. VC increased 

slightly from 2000 to 2005 and decreased slightly from 2005 to 2008, with 2008 being the 

year with the least vegetation during the studied period. From 2008 to 2021, VC generally 

increased, however, a slight downward trend was observed between 2016 and 2018. An-

nual mean LST had a downward trend, whereas total annual precipitation had an upward 

trend during the study period. In most parts of Afghanistan, the vegetation depends on 

the winter rain, however, in the south winter rains are often irregular. Rainfall increases 

to the north and east resulting in better vegetation conditions in these parts. The eastern 
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parts additionally receive some monsoon rains in summer [67]. Annual mean soil mois-

ture had an upward trend, and the areas under extreme, severe, and moderate meteoro-

logical drought conditions were declining during the studied period. In turn, the areas 

with mild meteorological drought conditions had an upward trend in the study period. 
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