
Fractal Research for the Production of High-Strength Materials

Seoryeong Choi
Chunsang middle school, Ulsan, Republic of Korea

Eunsung Jekal∗
Jekal’s Laboratory, 471, Munsu-ro, Nam-gu, Ulsan, Republic of Korea

(Dated: July 17, 2022)

SiC ceramics are excellent materials applied at high temperatures because of their light weight, 
excellent high temperature strength, and high thermal shock resistance. For better engineering 
properties, we made SiC with fractal lattices. Stress-strain behavior and modulus changes from 
room temperature to 1,250oC were analyzed using LAMMPS S/W, a molecular dynamics program. 
As a result of this study, it was confirmed t hat t he modulus o f e lasticity o f S iC c rystals changed 
in the range of about 475 GPa to 425 GPa as it increased from room temperature to 1,250 oC, 
The stress-displacement characteristics of SiC crystals, which could not be measured at a high 
temperature of 1,000 oC or higher, could be ensured.
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I. INTRODUCTION

A fractal is a geometric shape in which some small
pieces are similar to the whole[1]. This characteris-
tic is called self-similarity, in other words, a geometric
structure with self-similarity is called a fractal structure.
The word was first coined by Benoit Mandelbrot, and
is derived from the Latin adjective fractus, meaning to
be fragmented[2–5]. Fractal structures are found not
only in natural objects, but also in mathematical analy-
sis, ecological calculations, and motion models appearing
in topological space, and are fundamental structures of
nature[6–8]. You can even find rules that govern behind
the scenes seemingly erratic and chaotic phenomena. The
science of complexity is a science that studies the com-
plexity of irregular nature that science has not under-
stood so far and finds the hidden order therein, and an
order that can be expressed as a fractal appears in the
chaos theory representing the science of complexity[9–
12].

FIG. 1. Example structure of fractal.
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Fractal geometry is a branch of mathematics that stud-
ies the properties of fractals. This also applies to science,
engineering, and computer art. Fractal structures are
also frequently found in nature, such as clouds, moun-
tains, lightning, turbulence, shorelines and tree branches.
Fractals are often used for practical purposes, and can be
used to represent very irregular objects in the real world.
Fractal techniques are used in many fields of science as
well as technically in image compression[13–15].

Fractals found in nature are easy to find.

A. Fractal Example (Nature)

1. Lightning

Lightning discharges in the same way as a staircase
over and over again. Since the route is complicatedly
determined by various conditions such as humidity, at-
mospheric pressure, and temperature, it has a meander-
ing shape rather than a straight line. Although it looks
irregular, the overall shape and each branch form a sim-
ilar structure. That is, it has a fractal structure of self-
similarity[16, 17].

2. River Stream

The part and the whole of the river resemble each
other. The appearance of the Nile and the Han River are
similar overall, and the appearance of the river in any
region has a similar shape. The appearance of the tribu-
taries and the river as a whole is similar. A lot of rain cre-
ates many junctions in the mountains. Each of these be-
comes a small river, and the act of meeting a large stream
and extending into a small stream is repeated[18, 19].
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3. Tree

When a tree is divided into a large branch, various
branches are formed, and several small branches are also
divided from this small branch. Each tree has its own
fractal dimension. The fractal shape of these trees serves
to evenly distribute the transport of water and nutrients
throughout the tree[20, 21].

4. Coral

As colonies grow outward through agglomeration, ma-
terial is continuously deposited on the outwardly growing
surface. It has a fractal dimension in a principle similar
to that of a tree root[22–24].

5. Clouds

A very uniform fractal, about 1.35 dimensions for cu-
mulus clouds. A cloud created by a random conden-
sation process takes on the form of a fractal as the
generated water droplets attract the surrounding water
droplets[25, 26].

6. Romanesco Broccoli

When grown, Romanesco broccoli develops a thorn-
like appearance, with one part of the thorn showing the
same self-similarity to the whole[27, 28].

7. Lizard sole

If you zoom in on the lizard’s sole, the surface of the
sole has a fractal structure, which increases friction[29].

8. Bismuth

Element number 83 is self-similar in the pattern of
atomic arrangement, and fractal structures can be easily
found in the outer space[30, 31].

9. Lung

The blood vessels in the lungs have a fractal struc-
ture and are said to be the most efficient for oxygen
exchange[32, 33].

B. Fractal Examples (Structures)

Fractals can be easily found even in the patterns of
high-strength structures.

1. Carbon nanotube

It is in the form of a tube by repeating the hexagonal
shape. It has very high strength and shows self-similarity.

FIG. 2. Illustration image of carbon nanotube.

2. Honeycomb

The honeycomb repeats the hexagonal shape to show
self-similarity, and due to its fractal structure, it is very
effective in terms of space utilization, strength, and sta-
bility.

C. Research Motivation

In nature, fractal structures can be easily found
in high-strength structures. The common point of
most structures using fractal structures is efficiency and
strength. As in the previous examples, the fractal struc-
ture of a tree branch is a structure that can produce the
optimal effect of transporting nutrients and water, and
the fractal structure of a honeycomb is a structure that
can produce the optimal effect in stability, strength, and
space utilization. In other words, the structure of a frac-
tal is the most effective and has high strength. There-
fore, by studying the modulus of elasticity, strength, and
stress-strain characteristics when the fractal structure is
applied to the structure of a new material, the question
of how effective the fractal structure will be in the struc-
ture of a new material was raised and this study was
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conducted. If the strength and elasticity of the fractal
structure are strong and it shows an excellent effect in
stress-strain, etc., the fractal structure can play a big
role in the structure of new materials.

II. MATHEMATICAL MODELING

A. Triangle

1. Symmetry

Since the triangle has a perfectly constant self-
similarity and the number of triangles is constantly in-
creasing based on the second largest triangle in the cen-
ter, the center of gravity becomes the center of gravity
of triangle ABC, and the center of gravity of this Sier-
pinski triangle Equal, that is, the center of gravity G is
((a+c+e)/3,(b+d+f)/3) when the corners are defined as
A(a,b), B(c,d) and C(e,f), respectively.

FIG. 3. An equilateral fractal triangle with symmetry.

2. Asymmetry

The center of gravity of the following triangle shown in
fig.3 is the center of gravityG1 of triangle A1B1C1, center
of gravity G2 of triangle A2B2C2, center of gravity G3 of
triangle A3B3C3... The center of gravity of all the centers
of gravity of each triangle up to the center of gravity G∞
of triangle A

∞
will be the center of gravity of the entire

triangle, and since all these centers of gravity are located
in one straight line, the midpoint of the straight line that
is the center of gravity of the straight line This will be
the center of gravity.

FIG. 4. An equilateral fractal triangle without symmetry. In
this case, smaller triangles appear only in C direction.

B. Hexagon

1. Symmetry

If the center of gravity (G) of each hexagon is treated as
a point and the center of gravity of all centers of gravity
is obtained, the total center of gravity of the hexagonal
model is obtained. That is, the center of gravity of the
hexagonal tongue at the center becomes the center of
gravity of the model.

FIG. 5. Symmetric honeycomb lattice with equilateral
hexagon.

2. Asymmetry

The center of gravity of this model can also be obtained
using the same method as above. First, find the centers of
gravity of each hexagon, then find the centers of gravity
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of the adjacent hexagons, and repeat this process to find
the center of gravity of each point When it comes out,
that is the center of gravity of this model.

FIG. 6. Fractal hexagon with broken symmetry. In this case,
there is no hexagon filled in certain parts.

C. Deformation process when force is applied to
the research model

1. Triangle

Symmetry, force downward
This is the process of change when the triangle is pressed
downward. To find the center of gravity like the pre-
vious front, you just need to set the coordinates of the
vertices of each angle, but the center of gravity of the
triangle before applying the force to the front is located
above the center of gravity after pressing. In other words,
every time you press the button, the center of gravity
moves downward like each point. Point A will gradually
go downwards and the two points B and C will spread
apart due to the downward force. Therefore, to find the
center of gravity, first set the midpoint of B C as the
origin on the coordinate plane. Then point A will be on
the y-axis and each B and C will be on the x-axis. If a
downward force is applied, the x-coordinate of point A
will be 0, and the y-coordinate will gradually decrease
from the starting point, and the absolute values of the
coordinates of points B and C will increase, respectively.
Using the formula to find the coordinates of the center of
gravity, the x-coordinate is 0 because the sum of the x-
coordinates of the point B and the point C is 0, the point
A is on the y-axis, so the y-coordinate is a point because
the point B and C are on the x-axis We only need to care
about the y-coordinate of A. The y-coordinate of point A
gets smaller as the force is applied, so in conclusion, the

center of gravity falls according to the amount of force
applied.

FIG. 7. Downward forced symmetric fractal triangle.

Symmetry, compression by applying force from both
sides
If the coordinate plane is set up in the same way as
before, point A is on the y-axis and point B and C
is on the x-axis. This time, since it was compressed
with the same force from both sides, the x-coordinate
of point A remains 0 and the y-coordinate increases, and
since the points B and C have been pulled to the ori-
gin by the same distance, the y-coordinate remains 0,
and the x-coordinate is their absolute value this will de-
crease If you find the coordinates of the center of gravity
with the formula for calculating the center of gravity,
the x-coordinate increases due to the increase in the x-
coordinate of point A, and the y-coordinate is 0. That
is, the center of gravity moves upwards on the y-axis.

FIG. 8. Both side forced symmetric fractal triangle.

Asymmetric, press with downward force
We will show the change in the center of gravity using the
method of finding the center of gravity of the asymmet-
ric triangle No. 2. Let g be the center of gravity before
applying the force, and let G be the center of gravity
after applying the force. This time, we will set the co-
ordinate plane with b2 as the origin. When a downward
force is applied and pressed, a1 descends downward along
the y-axis, and each of the remaining b and c coordinates
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lengthens sideways. Now, we will explain the change in
the center of gravity using the method of finding the cen-
ter of gravity. First, if the center of gravity of triangle A1
B1 C is G1, the coordinates of G1 will descend as force
is applied, and the X coordinate of C will increase. In
this way, the center of gravity appears to be shifted in a
diagonal direction in the lower right corner.
Asymmetric, press with force from both sides
If the center of gravity is changed using the method of
finding the center of gravity of the asymmetric triangle
No. 2, in this situation, the y coordinate of point A1
increases because force is applied and pressed from both
sides, and the absolute value of each x coordinate of B1
and C is also gradually increased. decreases A1 B1 C If
the center of gravity of the triangle is G1, the coordinates
of G1 rise upward as the force is applied, and the point
C moves to the left toward the origin. When looking at
the movement of the two points, the center of gravity
of the entire model shows a movement in the upper left
direction.

2. Hexagon

Symmetry, downward force
Set the center of the two vertices of the following model
as the origin, and set the coordinate plane so that the
center of gravity (red dot) is on the y-axis. Because the
model is pressed down, the overall height is lowered and
spreads to the sides. Since the center of gravity of the
following model coincides with the center of gravity of the
regular hexagon in the center, only the change process
of the center of gravity of the regular hexagon in the
center needs to be looked at. The center of gravity of a
regular hexagon is the center of gravity of an equilateral
triangle that connects the three adjacent vertices of the
hexagon by one square. Therefore, in order to examine
the change in the center of gravity of the angular shape
in the center, only the change in the inner equilateral
triangle is required. Therefore, it shows the same shape
as the change in the center of gravity of 1-1-1. As the
force is applied and pushed down, the center of gravity
goes down on the y-axis.

Symmetry, compression by applying force from both
sides
Set the center of the two vertices of the following model
as the origin and set the coordinate plane so that the
center of gravity (red point) is on the y-axis. Because it is
compressed by applying force from both sides, the overall
height is increased and the sides are contracted. Since the
center of gravity of the following model coincides with the
center of gravity of the regular hexagon in the center, only
the change process of the center of gravity of the regular
hexagon in the center needs to be looked at. The center
of gravity of a regular hexagon is the center of gravity of
an equilateral triangle that connects the three adjacent
vertices of the hexagon by one square. Therefore, in order
to examine the change in the center of gravity of the

FIG. 9. Downward forced symmetric fractal hexagon.

angular shape in the center, only the change in the inner
equilateral triangle is required. In this way, it shows the
same shape as the 1-1-2 change in the center of gravity.
As you apply force and compress it sideways, the center
of gravity continues to rise upwards on the y-axis.

FIG. 10. Side forced symmetric fractal hexagon.

III. METHOD

The ceramic material is relatively light, hard, and has
excellent strength at a high temperature compared to
other materials such as metal, and has excellent abra-
sion and corrosion resistance, so it is widely used as a
core material for parts used at high temperatures, such
as cutting tools, high temperature parts, and gas tur-
bine engine parts. Representative structural ceramic
materials include various oxide-based materials such as
Al2O3 and ZrO2 and non-oxide-based materials such as
SiC, Si3N4, B4C, AlN, and TiC. A ceramic component
material used at a high temperature requires mechani-
cal properties such as strength, elastic modulus, stress-
deformation characteristics, etc. in a temperature en-
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FIG. 11. Strain algorithms within the LAMMPS program.

vironment used together with thermal properties such
as thermal conductivity, specific heat, thermal expan-
sion coefficient, etc. Generally, a method of measuring
the modulus of elasticity of a material includes a direct
method such as a tensile test and a 3-point or 4-point
bending test.

In addition, with the development of high speed and
large capacity of computers, computer simulation re-
search has been actively conducted to analyze the micro-
scopic behavior of atomic levels of materials using molec-
ular dynamics and first principles, and research is being
conducted to analyze the properties of materials, such as
modulus of elasticity. If it is possible to predict the me-
chanical properties according to the temperature of the
ceramic material using this, it will be of great help in the
design of the ceramic part material for high temperature
and the development

This study attempted to analyze the stress-
displacement behavior and elastic modulus of SiC
fractal crystals, which are high-temperature structural
materials at various temperatures, using molecular
dynamics. To this end, SiC crystals are modeled using
Tersoff potential, and 1,2504oC from room temperature
using LAMMPS S/W, a high molecular dynamics
program. By analyzing the stress-displacement charac-
teristics up to this point, we tried to analyze the change
in elastic modulus according to temperature.

FIG. 12. Unite cell structure of SiC crystal.

A. Interatomic bonding potential of SiC crystals

The unit cell structure of the SiC crystal is shown in
Figure 1. Here, the Si atom is located at each corner and
face center in the lattice, and the C atom is located at
the center of the tetrahedron based on the Si atom. In
addition, atoms inside the SiC crystal may be arranged
in the form of CC-C, C-C-Si, C-Si-Si, Si-Si-Si, C-Si-C, Si-
C-Si, etc., and potential energy acting between adjacent
atomic arrays is required.
Tersoff developed potential energy that simulates the

interatomic bonds of SiC crystals using classical inter-
atomic potential. The Tersoff potential has been suc-
cessfully used in the study of various related materials
as a proposed potential to simulate bonds between el-
ements with tetravalent covalent bonds of carbon, sili-
con, and germanium. Tersoff described the interaction
of atoms as a potential energy function using the empir-
ical bond-order concept. The agglomeration energy (E)
of the object is described as follows Equation (1).

E = ΣiEi =
1

2
Σi ̸=jVij (1)

IV. RESULTS AND DISCUSSIONS

Before looking at the results and the contents of the
discussion, I will briefly predict the results by looking at
the experimental images from Figures 4 to 8. The differ-
ence between the strength of symmetry and the strength
of asymmetry resulted in that the symmetric model was
more powerful than the asymmetric model. Figures 4 to 8
show the deformation process of a symmetrical triangle
and a symmetrical hexagonal shape among the models
that modeled the SiC crystal with a fractal model. First,
Figure 4 is a picture showing the deformation process at
the beginning of applying force to a symmetrical trian-
gle. When you look at the picture, you can find that
the shape of the model breaking in a diagonal shape is
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FIG. 13. The MD simulation procedure for the elastic con-
stant of the SiC crystal.

FIG. 14. Deformed shapes of the SiC crystal simulated with
MD at 1000oC: before and after applied 0.15 strain.

relatively stable and regular. However, looking at the ex-
perimental image of the LAMMPS program in Figure 5,
the changes to (a) (b) (c) are quite regular and stable, but
since (c) most decisions have been broken in an instant,
unlike the way they have been broken. On the other
hand, looking at the experimental images of the sym-
metrical hexagonal LAMMPS program, all of them (a)
to (h) show relatively regular changes that are destroyed
after converging to stable constant values. Therefore, it
showed a regular appearance to the end rather than a
triangular model. This can be predicted as the first ev-
idence that a symmetrical hexagon is more powerful in
terms of stress/change and strength than a symmetrical
triangle. When looking at the graph model in Figure
7, the same results as before are derived. However, the
stress change graph of Young’s Modulus in Figure 8 yields
slightly different results in the front tube. (a)In , the
symmetrical triangle is examined in (b) for the changes
in the symmetrical hexagon. However, when the temper-
ature was raised to 900K in part (a), it could be seen
that it was broken after holding it a little, but in part
(b), it was broken relatively faster than in (a) when it
was raised to 900K. In addition, overall (a) showed su-

FIG. 15. The process of changing a symmetrical triangle when
a downward force is applied with LAMMPS simulation

periority over (b) in all aspects. Stress-strain properties
and modulus of elasticity were analyzed while changing
the temperature of SiC crystals from room temperature
to 1,500oC, and the results were shown in Figure. It is
shown from 4 to Fig. 8. First, when the SiC crystal has
triangular symmetry, the shape is deformed by the ap-
plication of the compression displacement at 1,000oC is
shown in Fig. Fig. 4(a) shows the SiC crystal thermally
stabilized at 1,000oC, and Fig. 4(b) shows the deformed
shape by applying the compression displacement of 0.15.
In particular, when a high compressive stress was applied
at a temperature of 1,100oC or higher, it was confirmed
that some outermost specific atoms of the SiC crystal sig-
nificantly deviated from the unit lattice position. This is
the thermal vibration of the atoms that are active at high
temperatures It is believed that some outermost atoms
have deviated from the unit lattice position due to the
combined high displacement energy applied. Therefore,
the stress-displacement characteristics of SiC crystals are
calculated by calculating the average stress of the inter-
nal unit lattice with only the members, except for atoms
that deviate from the unit lattice position to improve
the accuracy of the analysis The modulus of elasticity
was analyzed.

Figure shows the result of analyzing the stress-
displacement characteristics of SiC crystals with trian-
gular symmetry at 1,000oC temperature using molecular
dynamics. It is shown in 5. In the case of SiC crystals, the
stress increases linearly as the total energy increases as
the gap between atoms approaches due to the compres-
sion displacement. And when a compression displace-
ment of 0.2 or more was applied, the entire stress was
destroyed after converging to a certain value. In addition,
even if the crystal temperature increases to 500oC, SiC
crystals exhibit stress-displacement characteristics simi-
lar to room temperature. However, if the temperature of
the crystal increases by more than 1,000 oC, the SiC crys-
tal will exhibit an inflection point similar to the elastic-
plastic limit of yielding stress at a displacement of about
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FIG. 16. The process of changing a symmetrical hexagon
when a downward force is applied with LAMMPS simulation

0.1. This result is completely different from the result
that ceramics such as SiC, which are known so far, are
destroyed after elastic deformation, but it is judged that
additional analysis is needed to suggest that SiC crystals
may also undergo plastic deformation at high tempera-
tures.

Changes in the modulus of elasticity of crystals with
broken symmetry were also investigated from the stress-
displacement characteristics of SiC with triangular sym-
metry interpreted using molecular dynamics. The mod-
ulus of elasticity of SiC crystals with broken symmetry
is shown It was found that it was about 475 GPa at
room temperature, and decreased to about 425 GPa as
the temperature increased to 1,250oC.

V. CONCLUSION

SiC ceramics are excellent materials applied at high
temperatures because of their light weight, excellent high
temperature strength, and high thermal shock resistance.
Data on stress-strain characteristics and modulus of elas-
ticity depending on temperature are required to design a
ceramic for a high temperature structure, but it is very
difficult to measure them. This study attempted to an-
alyze the elastic modulus characteristics of SiC crystals
at various temperatures using molecular dynamics. To
this end, SiC crystals were modeled to apply Tersoff po-
tential between constituent atoms, and stress-strain be-
havior and modulus changes from room temperature to

1,250oC were analyzed using LAMMPS S/W, a molecu-
lar dynamics program. As a result of this study, it was
confirmed that the modulus of elasticity of SiC crystals
changed in the range of about 475 GPa to 425 GPa as
it increased from room temperature to 1,250 oC, The
stress-displacement characteristics of SiC crystals, which

FIG. 17. The process of changing a symmetrical hexagon
when a shear strain force is applied with LAMMPS program.

could not be measured at a high temperature of 1,000 oC
or higher, could be ensured.
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