
 
 

Article 

Motivated, Willing, and Able: Non-Cognitive Factors Influence 
Complex Problem Solving Performance beyond Cognitive 
Ability  

Abstract: Complex problem-solving (CPS) tasks have become an increasingly popular tool for un-
derstanding and assessing cognitive ability. These tasks have been repeatedly shown to be predic-
tors of academic and workplace success above and beyond traditional measures of general intelli-
gence and fluid intelligence. To date, there has been little exploration of the underlying mechanisms 
that drive this additional predictive utility. In this study, we examined the role of a variety of non-
cognitive personality and investment traits that could drive performance on CPS tasks. Adult par-
ticipants (n = 152) were recruited via M-Turk and completed a battery of personality and investment 
trait measures, a measure of general mental ability, and a 61-trial microworlds-style CPS task. Gen-
eralised linear mixed-effects models revealed a wide variety of personality and investment traits 
influenced task performance above and beyond general mental ability. Specifically, two clusters of 
traits emerged as important determinants of performance: one cluster that influenced the capacity 
to deal with the introduction of system randomness (Conscientiousness and Extraversion) and one 
cluster that influenced the capacity to deal with the introduction of system delays (NFC, Learning 
Goal Orientation, and Intellect). These findings suggest that CPS tasks do capture more than just 
general mental ability and may be good predictors of academic and workplace success because they 
tap into both cognitive ability and the motivation and willingness to engage in cognitive exploration 
and mental effort. 

Keywords: complex problem solving; microworlds; personality; investment traits; within-individ-
ual variability; performance trajectories 
 

1. Introduction 
In the last two decades, complex problem-solving (CPS) tasks have become an in-

creasingly popular form of cognitive assessment (Lotz et al., 2016; Wüstenberg et al., 2012). 
CPS tasks are purported to represent the capacity to analyse and solve novel problems, a 
critical skill for educational and occupational success (Lotz et al., 2016; Stadler et al., 2019). 
In CPS tasks, the respondent must learn to control a system with at least one input and at 
least one output over an extended series of trials (Dörner & Funke, 2017; Funke, 2010). 
These systems are often embedded in realistic contexts, for example, inventory manage-
ment for business professionals (Birney et al., 2018), playing handball for children and ad-
olescents (Lotz et al., 2016), or in more constrained contexts such as 3-input/3-output deter-
ministic systems (Beckmann et al., 2017; Burns & Vollmeyer, 2002). Knowledge of the rela-
tionships between inputs and outputs must be elicited through exploration, then the par-
ticipant must apply this knowledge to control the system (Dörner & Funke, 2017; Funke, 
2010). CPS tasks were thus, in addition to understanding problem-solving processes, de-
signed to reflect the extended, dynamic, and technological problem-solving challenges that 
people encounter at school, university, and the workplace (Beckmann et al., 2017; Funke, 
2001; Rigas & Brehmer, 1999). 

A significant point of contention within the field of CPS research is whether CPS 
tasks capture cognitive or non-cognitive processes beyond those captured by tests of gen-
eral intelligence (g) or the related broad ability, fluid intelligence (Gf) (Greiff & Neubert, 
2014; Lotz et al., 2016; Stadler et al., 2015; Wüstenberg et al., 2012). Theoretically, the design 
and demands of CPS tasks are intended to reflect the kind of intelligence required to suc-
ceed in everyday life (Dörner & Funke, 2017; Funke, 2010), as opposed to common tests of 
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g or Gf used in assessment and selection, which are often conceptually and visually differ-
ent to the situations people encounter day-to-day (Dörner & Funke, 2017; Funke, 2010). 
The majority of research to date supports this assertion, as CPS performance explains vari-
ation beyond both g and Gf in academic performance (Greiff et al., 2015; Greiff et al., 2012; 
Kretzschmar et al., 2016; Lotz et al., 2016; Sonnleitner et al., 2013; Wüstenberg et al., 2012) 
and supervisor-rated workplace performance (Danner et al., 2011).  

If CPS tasks explain more variation in practical outcomes than tests of general or 
broad cognitive ability, this implies that CPS tasks may capture multiple cognitive and/or 
non-cognitive processes. But what are these processes? Answering this question is vital for 
the accurate interpretation and use of results from CPS tasks. Previous studies have largely 
examined how cognitive and non-cognitive processes affect overall performance; few 
studies have examined how these factors dynamically influence performance throughout 
the task (an exception being Birney et al., 2018, who found mixed evidence for the role of 
non-cognitive factors in CPS performance). Therefore, the purpose of this study is to begin 
developing a process-driven account of CPS task performance. Specifically, we focus on 
how non-cognitive processes are invoked during a challenging and confusing CPS task. 
We leverage generalised linear mixed-effects modelling techniques to understand how 
these processes differentially influence performance as the task becomes more challenging 
and as people gain more experience. 
CPS Task Demands on Cognitive and Non-Cognitive Capacities 

Early CPS tasks were complex, dynamic, and highly realistic microworld simulations 
that often contained hundreds of variables to be controlled (Dörner & Funke, 2017; Funke, 
2010). Dörner (1986, as cited in Funke, 2010) conceived the term ‘operative intelligence’ to 
reflect CPS task performance being multiply determined by “… strategic processes like 
flexibility, foresight, circumspection, or systematic behaviour” (Funke, 2010, p. 135). Mod-
ern microworlds simulations remain complex, dynamic, and realistic, but often contain 
fewer variables (Birney et al., 2018; Gonzalez et al., 2005; Wood et al., 2009). Dörner (1986, 
as cited in Funke, 2010) proposed that microworld simulations demanded four concurrent 
processes: 1) acquiring knowledge of the system and developing a mental model that inte-
grates this knowledge, 2) decomposing goals into attainable steps and balancing compet-
ing goals, 3) forward planning and decision making, and 4) self-management of task-in-
duced affect. We note two interesting aspects of this account that are particularly relevant 
to the current study. Firstly, CPS tasks require two phases of cognitive control: learning 
how the system works (process 1), then applying this learning to achieve goals (processes 
2-4). Secondly, the complexity and duration of CPS tasks invokes substantial metacogni-
tive demands to manage competing goals, plan future steps, and self-monitor and regulate 
(processes 2-4). Successful control of a CPS task thus also requires the engagement of non-
cognitive processes. 

Performance on challenging cognitive tasks has different relations with intelligence 
and personality depending on the situation in which the task is completed; such intelli-
gence-personality-performance relations are outlined in detail by von Stumm et al. (2011). 
Strong situations encompass maximal performance environments in which people exert 
significant cognitive effort to perform their best. In strong situations, cognitive test perfor-
mance is strongly related to intelligence but weakly related to personality. In contrast, in 
weak situations cognitive test performance is strongly related to personality but weakly 
related to intelligence. When the stakes are lower and the task is longer, such as perform-
ing typical workplace duties, successful task performance is most heavily influenced by 
personality and motivational dispositions that dictate the amount of discretionary cogni-
tive effort invested in the task. 

CPS tasks tend to require extended time periods of cognitive effort – like the kind of 
tasks typically demanded in education and the workplace (Beckmann et al., 2017; Funke, 
2001; Rigas & Brehmer, 1999) – and thus are more comparable to weak situations than 
strong situations. Consequently, we could expect CPS task performance to be driven by 
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both cognitive and non-cognitive processes, such as personality, metacognition, or motiva-
tion. Furthermore, the relationship between cognitive and non-cognitive factors, and CPS 
task performance may change in strength and direction at different phases of the task, as 
people gain more experience with the system within phases, but also as the task becomes 
more or less challenging from one phase to the next. As significant cognitive effort cannot 
be sustained for an extended period of time by many people, non-cognitive factors may 
become the stronger influence on performance in later phases particularly if they are more 
challenging. This is also consistent with the early work of Ackerman (1987, 1988), who 
demonstrated changes in the importance of different individual differences factors as task 
knowledge is acquired and expertise develops.  

Given that CPS tasks explain variation in real world outcomes beyond traditional 
intelligence measures, successful performance on CPS tasks may be sensitive to non-cogni-
tive processes—in addition to general mental ability—that drive success on temporally 
extended and dynamic cognitive challenges. We investigate two related yet differentiable 
groups of non-cognitive traits that could be responsible for this additional variation in 
practical outcomes: intellectual investment traits and personality traits. 

Intellectual Investment Traits 
Intellectual investment traits are stable individual differences in one’s propensity to 

engage in cognitively challenging activities (von Stumm & Ackerman, 2013; von Stumm et 
al., 2011). Ackerman (1996) proposed that these traits causally influence the development 
of adult cognitive abilities by facilitating the transition from intelligence-as-process to in-
telligence-as-knowledge via two pathways. First, intellectual investment traits motivate 
individuals to proactively seek out opportunities for cognitive challenge throughout their 
development. Second, these traits predispose individuals to invest more effort in cognitive 
challenges when they are encountered. 

We may expect these traits to influence CPS performance in a number of ways. For 
instance, by virtue of being motivated to seek cognitive challenges, people high in these 
traits will have more experience and skills in problem-solving, which will confer baseline 
performance improvements. They are also more likely to be driven to engage with and 
master CPS tasks as an intellectual activity in and of itself, and thus perform better as a 
result. People high in intellectual investment traits may also be more adept at self- and 
task-monitoring, which would facilitate more efficient and effective acquisition of task 
rules and control performance, particularly in high complexity phases of the task. 

The literature reveals small relationships between CPS performance and several intel-
lectual investment traits. These include Goal Orientation (Birney et al., 2018; Cripps et al., 
2016; Vollmeyer & Rheinberg, 1999), Implicit Theories of Ability (Birney et al., 2018; Cripps 
et al., 2016), Cognitive Reflection (Hundertmark et al., 2015), and Need for Cognition 
(NFC) (Rudolph et al., 2018). Only two of these studies found that the traits significantly 
influenced CPS performance when controlling for g or Gf. Performance Goal Orientation 
had a positive effect on performance in less complex CPS task variants in Birney et al. 
(2018). In Hundertmark et al. (2015), Cognitive Reflection was a stronger predictor of over-
all CPS performance than g but this effect was reduced in more complex variants of the 
task. 

In the current study, we examine the influence of three intellectual investment traits: 
NFC (Cacioppo & Petty, 1982), Goal Orientation (VandeWalle, 1997), and Intellect (Mussel, 
2013). Need for Cognition is a prototypical investment trait, representing an individual’s 
motivation to seek out and engage in cognitively challenging activities (Cacioppo & Petty, 
1982). Goal Orientation represents an individual’s preference for striving for various types 
of goals (VandeWalle, 1997). It is segmented into Learning Goal Orientation, the prefer-
ence for goals that develop deep learning and mastery of skills and knowledge, and Per-
formance Goal Orientation, the preference for goals that lead to (or allow for) performance 
comparisons against some standard (VandeWalle, 1997). Performance Goal Orientation is 
further segmented into Performance-Prove and Performance-Avoid orientations to reflect 
the motivation for striving towards a standard, to prove themselves by being favourably 
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appraised, versus avoiding negative appraisals, respectively (VandeWalle, 1997). Intellect, 
as conceptualised by Mussel (2013), is theoretically similar to NFC in that it captures an 
individual’s willingness to engage in challenging mental activities but provides theoreti-
cally interesting measurement features. In Mussel’s (2013) theory, Intellect is segmented 
into two processes and three operations. The Intellect processes are Seek (seeking out op-
portunities for intellectual engagement) and Conquer (conquering intellectual opportuni-
ties during the task). The Intellect operations reflect three different domains of intellectual 
engagement: Thinking (related to Gf), Learning (related to crystallised intelligence (Gc)), 
and Creating (related to creativity). Intellect is thus a useful non-cognitive construct that 
may be related to important processes that are relevant to CPS.  

Personality 
 While some personality traits are considered intellectual investment traits, particu-
larly the Intellect aspect of Openness/Intellect, we could theoretically expect CPS perfor-
mance to be related to other traits as well. Nevertheless, evidence for the relationship be-
tween personality and CPS performance is sparse. In a study by Greiff and Neubert (2014) 
in an adolescent sample, correlations between CPS performance and personality were 
small but significant; there were small negative relationships between Conscientiousness 
(β = -.10 for both knowledge acquisition and knowledge application performance), Neurot-
icism (β = -.12 for knowledge acquisition and β = -.14 knowledge application), Agreeable-
ness (β = -.21 for knowledge acquisition and β = -.18 knowledge application). There were 
no relationships with Extraversion or Openness to Experience, although the authors noted 
the poor internal reliability of the scale in their sample. In another study on adult manage-
ment professionals attending a training course, there were no significant relationships 
with any measured personality trait (Birney et al., 2018). 

Although this suggests relations between personality and performance may be small, 
we still consider it pertinent to re-investigate these associations. Both of the aforemen-
tioned studies examined higher trait-level personality associations only. In the current 
study, however, we leverage a facet-level measure of the Five Factor Model, the Big Five 
Inventory-2 (BFI-2), which segments each personality trait into three facets (Soto & John, 
2017). Within each trait, facets can be differentially related to different outcomes and be-
haviours (Soto & John, 2017), thus domain-level analysis can provide more nuanced un-
derstanding of personality-performance relations. Furthermore, in the current study we 
examine a broader adult sample drawn from the community, rather than a restricted range 
as in previous studies, thus we expect more variation in self-reported personality and in-
vestment traits. 
The present study 

The present study aims to develop a process account of CPS performance. We re-
analyse a data set that was partially analysed in Study 5 of Fayn et al. (2019). We focus on 
the influence of personality and intellectual investment traits on a CPS microworlds task 
designed to be challenging, confusing, and complex. Specifically, we are interested in how 
these traits differentially affect performance trajectories over time. This analysis is enabled 
by generalised linear mixed-effects modelling, which allows us to identify and compare 
performance trajectories on our task as a function of cognitive and non-cognitive traits, 
and task complexity levels. This study makes three key novel contributions. 
The first novel contribution of this study is the use of generalised linear mixed-effects 
modelling to understand how cognitive and non-cognitive factors influence both overall 
task performance and item-to-item performance trajectories (Birney et al., 2019). CPS tasks 
require extended engagement and capture one’s capacity to both learn and control a com-
plex and dynamic problem (Dörner & Funke, 2017; Funke, 2010). This means that tradi-
tional statistical analysis methods using aggregate or mean scores are limited in their ca-
pacity to provide an explanatory account of CPS performance (Birney et al., 2019). CPS 
tasks are better suited to item-to-item statistical analysis methods that allow us to under-
stand performance trajectories throughout the task. This type of analysis enables us to de-
velop a nuanced process-driven account of how individuals monitor and control a CPS 
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microworld, and how non-cognitive factors influence differences in performance trajecto-
ries. We examine this relationship across the three stages of the task, each of increasing 
complexity. 

Second, we extend upon previous findings by examining how lower-level personal-
ity trait facets dynamically influence performance in a broad adult sample. While one pre-
vious study has applied generalised linear mixed-effects modelling to examine the influ-
ence of cognitive and non-cognitive factors on CPS performance, we note that this study 
used a range-restricted sample of adults in management roles and examined facet-level 
personality traits (Birney et al., 2018). We use a personality measure that allows us to ex-
amine facet-levels, which is critical as different facets can have quite different relationships 
with cognitive performance and cognitive challenge-seeking behaviours (Soto & John, 
2017).  

Finally, the CPS microworld task used has been modified to include a dynamic 
within-block manipulation of complexity. Previous studies (Birney et al., 2018) have ma-
nipulated complexity across blocks. This addition of dynamic change in complexity while 
problem-solving adds demand for a sensitivity to feedback (i.e., a change in an input-out-
put contingency), as well as tolerance to potential confusion that this generates. 
Aims and Hypotheses 
 In this study, we aim to better understand the way people manage complex, and po-
tentially confusing, microworlds CPS tasks. We do this by eliciting the role of non-cogni-
tive variables on people’s capacity to deal with the task as they gain more experience with 
it but also as it becomes more complex. Based on the literature reviewed, we have two sets 
of hypotheses about the influence of cognitive and non-cognitive variables on performance 
– the first based on stage performance-levels (i.e., stage means), and the second on stage 
performance trajectories (ie., stage slopes).  

Hypothesis Set 1: Performance-Level Effects  
Our first set of hypotheses addresses how cognitive ability and non-cognitive traits 

influence mean differences between task complexity stages1. First, we expect a complexity-
by-general mental ability (GMA) effect – that is, mean stage performance will decline con-
comitant with increases in task complexity, but that those with higher GMA will be less 
impacted (Hypothesis 1). Second, we hypothesise that several intellectual investment traits 
and personality facets and domains will lessen the mean performance decrease as stage 
complexity increases and that these effects will persist above and beyond GMA. These 
non-cognitive traits are all associated with motivation to explore, engage with, and master 
novel cognitive tasks. We expect mean stage performance for those higher in NFC and 
Learning Goal Orientation will decline less substantially as stage complexity increases be-
cause these traits are likely to facilitate curiosity, exploration, and learning of this novel 
and challenging system (Hypotheses 2A and 2B). We also expect the same effect for those 
high in Intellect, the Intellect-Conquer process, and the Intellect-Learning and Intellect-
Thinking operations for the same reasons (Hypothesis 2C). Finally, we hypothesise that 
those higher in Open-Mindedness and its Intellectual Curiosity and Creative Imagination 
domains (Hypothesis 3A), and Conscientiousness and its Productiveness domain (Hy-
pothesis 3B) will demonstrate smaller performance declines over time for the same rea-
sons. Finally, and separately to the hypotheses above, we expect mean performance for 
those higher in Negative Emotionality and its Emotional Volatility and Anxiety domains 
(Hypothesis 3C) to decline more dramatically over time than those lower in these traits 

                                                           
1 In our analyses, mean performance represents average performance where trial number is equal to zero. As trial 
number is centred overall and within stages of the task in our analysis, in practical terms, mean performance refers to 
average performance at the midpoint of the task or stage. When examining contrasts between stages, mean performance 
differences represent the difference in estimated penalty score at the midpoint of one stage relative to the estimated 
penalty score at the midpoint of the contrasted stage. 
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because they are likely to find this challenging and uncertain cognitive task more difficult 
to manage.  

Hypothesis Set 2: Performance-Trajectories Effects 
Our second set of hypotheses addresses how cognitive ability and non-cognitive 

traits influence the differences in within-stage performance trajectories between complex-
ity stages. Within-stage performance trajectories provide an indication of how people’s 
performance changes throughout the stage and, by extension, how well they learn to con-
trol the microworlds system at a given stage. First, we expect a complexity-by-general 
mental ability (GMA) effect such that within-stage trajectories will be steeper concomitant 
with increases in task complexity as people find the task more challenging to learn to con-
trol, but that the trajectories of those with higher GMA will be less impacted as complexity 
increases (Hypothesis 4). We expect several non-cognitive traits to influence slopes above 
and beyond GMA. We hypothesise that those high in NFC and Learning Goal Orientation 
will exhibit shallower slopes with increasing complexity as they will learn to control com-
plexity increases more effectively than those lower in NFC and Learning Goal Orientation 
(Hypotheses 5A and 5B). We expect the same effects for those high in Intellect, specifically 
the Intellect-Conquer process and the Intellect-Learning and Intellect-Thinking operations 
(Hypotheses 5C), for those high in Open-Mindedness and its Intellectual Curiosity and 
Creative Imagination domains (Hypothesis 6A), and Conscientiousness and its Produc-
tiveness domain (Hypothesis 6B). Finally, we expect that performance trajectory slopes for 
people high in Negative Emotionality and its Emotional Volatility and Anxiety domains 
will be steeper as complexity increases, as these traits will have a negative influence on the 
capacity to learn to control these confusing and challenging complexity increases (Hypoth-
esis 6C) (Soto & John, 2017). 

We make no specific hypotheses about Agreeableness and Extraversion but will con-
duct exploratory analysis of these and other trait and domain-level mean and slope associ-
ations. 

2. Materials and Methods 
Participants 
 Participants were recruited as part of a larger study via M-Turk (n = 252) (see Fayn 

et al. (2019) for further details). Participants were paid $10 USD for their participation, 
around an hour of time. All participants reported living in the USA and had completed at 
least 100 approved M-Turk studies with a 95% approval rating or above. Nineteen partic-
ipants were excluded for one of the following reasons: failing attention checks (n = 7), 
failing the practice task (n = 5), or non-serious attempts on one or more tasks in the study 
(n = 7). This left a final sample of n = 233 participants (nMale = 117, nFemale = 115, nUnspecified = 
1). The average age of participants in the final sample was 34.99 years (SD = 10.03). 

Materials 
 CPS Microworld 
 The CPS task was a microworld simulation based on the inventory management sim-

ulation used in Birney et al. (2018). The broad design of Birney et al.’s (2018) task was 
maintained, however, complexity manipulations were introduced in one block rather than 
across blocks, and the context was adapted for a general audience. Participants were told 
that they had been put in charge of successfully managing the ecosystem of an island, and 
to do so, had to maintain the number of species on the island at 100 species. To achieve 
this goal, each trial they were asked to make a decision to introduce new species or relo-
cate species back to the mainland. This decision was made by entering a positive number 
(introduce species) or negative number (relocate species) into the box and observing the 
subsequent effects on the number of species. This is illustrated in Figure 1. 
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Figure 1. Microworld Simulation Interface After Decisions 

 
Participants were also informed that the system was volatile and that the relationship 

between decisions and outcomes could change throughout the course of the task. Two 
aspects of the microworld were manipulated to increase the complexity of the task – out-
flows and delays. Outflows were the loss of species that occurred at each trial independent 
of the participants’ decision and could be fixed and constant (e.g. 20 species lost per trial) 
or random (e.g. random number between 10-30 species lost per trial). Delays were the trial 
lag between decisions being made and decisions taking effect. In this simulation, partici-
pants experienced three variants of outflow/delay manipulations that demarcate the three 
stages within the single block of the task: 

• Stage 1 – low complexity: From trials 1-23 there was a constant outflow. In trials 
1-11 the constant outflow was 10 species per trial, and in trials 12-23 the constant 
outflow was 20 species per trial.  

• Stage 2 – medium complexity: From trials 24-42 there was a random outflow of 
between 10 and 30 species per trial (average of 20 species).  

• Stage 3 – high complexity: From trials 43-61 there was a random outflow of be-
tween 10 and 30 species per trial and a delay of two trials between decisions be-
ing made and decisions taking effect.  

Based on the results from Birney et al. (2018), we expected that these three stages of 
the task would be of increasing complexity for participants but that this increase would 
not necessarily be linear in its effect on performance. 

 The task also included two “mass extinction events” on trials 6 and 42, where 50 
species were lost on a single trial. These extinction events were included to replicate the 
dynamic and complex nature of real-world complex systems that can spontaneously 
change. The second extinction event on trial 42 also encouraged participants to notice the 
change in the delay rule; without the extinction event, the participant could theoretically 
have maintained the same strategy from the second stage.  
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 Participants were also asked to report on their emotional state before the mi-
croworlds task began, every three trials during the task, and at the conclusion of this task, 
however, this data was not used for the purposes of this study. 

 Intellectual Investment Trait Measures 
NFC. NFC was assessed using the 18-item scale developed by Cacioppo and Petty 

(1982) and had excellent Cronbach’s α reliability of α = 0.95. 
Goal Orientation. Goal Orientation was assessed using the 16-item scale developed 

by VandeWalle (1997). The overall goal orientation scale had acceptable Cronbach’s α re-
liability of α = 0.75. The 6-item Learning sub-scale had excellent Cronbach’s α reliability 
of α = 0.92, the 5-item Performance-Avoid sub-scale had excellent Cronbach’s α reliability 
of α = 0.91, and the 5-item Performance-Prove sub-scale had acceptable Cronbach’s α re-
liability of α = 0.76. 

Intellect. Intellect was assessed using the 24-item item scale developed by Mussel 
(2013) and had excellent Cronbach’s α reliability of α = 0.98. The reliability for all facets of 
the Intellect scale was also excellent (Intellect Seek α = 0.96; Intellect Conquer α = 0.96; 
Intellect Think α = 0.95; Intellect Learn α = 0.94; Intellect Create α = 0.94). 

Personality  
Personality was assessed using the 60-item Big Five Inventory-2 (BFI-2) (Soto & John, 

2017). The BFI-2 is a freely available measure of the Five Factor Model of personality with 
high internal consistency and test-retest reliability (Soto & John, 2017). The BFI-2 assesses 
five personality trait domains and fifteen facets – three per domain. Each domain has one 
facet that most strongly loads on the domain factor: Extraversion-Sociability, Agreeable-
ness-Compassion, Conscientiousness-Organisation, Negative Emotionality-Anxiety/Fear, 
and Open Mindedness-Intellectual Curiosity. All domains had good to excellent 
Cronbach’s α reliability (Extraversion α = 0.92; Agreeableness α = 0.88; Conscientiousness 
α = 0.92; Negative Emotionality α = 0.94; Open-Mindedness α = 0.91). All facets had good 
to excellent Cronbach’s α reliability (Extraversion: Sociability α = 0.92; Extraversion: As-
sertiveness α = 0.87; Extraversion: Energy Level α = 0.82; Agreeableness: Compassion α = 
0.81; Agreeableness: Respectfulness α = 0.78; Agreeableness: Trust α = 0.81; Conscientious-
ness: Organisation α = 0.87; Conscientiousness: Productiveness α = 0.88; Conscientious-
ness: Responsibility α = 0.78; Negative Emotionality: Anxiety α = 0.85; Negative Emotion-
ality: Depression α = 0.90; Negative Emotionality: Emotional Volatility α = 0.89; Open-
Mindedness: Intellectual Curiosity α = 0.82; Open-Mindedness: Aesthetic Sensitivity α = 
0.86; Open-Mindedness: Creative Imagination α = 0.83). 

General Mental Ability (GMA) 
GMA was assessed using a 16-item version of the International Cognitive Ability Re-

source (ICAR) (Condon & Revelle, 2014). The ICAR is an open-access cognitive ability 
assessment that is strongly correlated with longer and more complex measures of GMA 
(r=.81 with full-scale IQ and r=.94 with a CFA-derived latent g factor in Young & Keith, 
2020). This version of the ICAR included four items each for verbal reasoning, letter-num-
ber series, matrix reasoning, and 3D object rotation. ICAR score was derived as the total 
sum score of all correct items. The full ICAR had acceptable Cronbach’s α reliability of α 
= 0.75.  

Procedure 
 Participants provided consent to participate and then completed the NFC and Intel-

lect scales, and the BFI-2. Then, they were given detailed instructions on the microworld 
and were asked to answer three questions about the instructions to ensure they had read 
and understood the requirements. All three questions had to be answered correctly to 
advance to the microworld. Participants were given three attempts to answer all three 
questions correctly. Following this, participants were given a practice block of 10 mi-
croworld trials. The practice block followed the easiest rule variant – a constant outflow 
of 5 species per trial. Halfway through the practice block, participants were informed of 
this rule and told to continue the final 5 practice trials applying this rule. Following the 
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practice block, participants completed the 61-trial microworld task, the Goal Orientation 
scale, and the ICAR in that order, and then given a debrief.  

 
3. Results 
Preliminary Analyses 

For each trial participants received a penalty score, which was calculated as the de-
viation between the number of species after their decision was made and the ideal number 
of species (100). All scores for intellectual investment traits, personality traits, and cogni-
tive ability were transformed to z-scores. Analysis was conducted using SPSS v26.0 
(IBMCorp, 2019) and R version 3.6.2 (R Core Team, 2019). Generalized linear mixed-effects 
models (GLMM) were estimated using the R package lme4 (Bates et al., 2015). For all 
GLMM we treated penalty scores as a count variable modelled using a negative binomial 
distribution. This decision was made because penalty scores could take positive, integer 
values only thus penalty score is a discrete rather than continuous variable. Furthermore, 
analysis of the dispersion statistics showed that variance in penalty score was substan-
tially greater than the mean penalty score, overall and for each stage of the task, violating 
the assumptions of the poisson distribution (roughly equal variance and mean for the de-
pendent variable) but fitting with the assumptions of the negative binomial distribution. 
For the remaining of the paper, all variables are demarcated as such using italicised font. 
Descriptive Statistics 
 Correlations between mean penalty score overall and at each stage of the task with 
domain level variables are reported in Table 1 (the full matrix of domain inter-correlations 
is contained in the Supplementary Materials). Only Learning Goal Orientation and NFC 
were significantly related to overall mean penalty score. As expected, there was some ev-
idence for a change in the nature of the performance correlations across the three stages. 
Conscientiousness was positively related to performance in the first two stages but nega-
tively related in the final stage. Moreover, the associations between performance and NFC 
and Learning Goal Orientation emerged only in the final and most complex stage of the 
task. The association between performance and GMA declined in magnitude from the first 
to the second stage, and was not significant in the final high complexity stage.  
 At the facet level and across all stages, the associations that emerged were few in 
number and small in size (see Table 2, full inter-correlation matrix is in the Supplementary 
Materials). Patterns of substantive interest are, however, apparent. For instance, Extraver-
sion facets tended to have positive correlations in Stages 1 and 2 but negative or zero cor-
relations in the last stage. A number of the Intellect facets were also significant predictors 
for performance, but only in the final high complexity stage. Finally, for Conscientiousness, 
the  Organisation facet predicts worse performance only in the low complexity stage 
whereas the Productiveness facet predicts better performance only in the high complexity 
stage; we note that these effects are in the opposite direction. Thus, consistent with the 
trait-level factors, there is some limited evidence for a change in the nature and direction 
of performance correlations across stages as complexity increases. 
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Table 1. Domain Correlations with Mean Penalty Score Overall and by Stage Complexity 

 Overall Stage 1 Low  Stage 2 Medium  Stage 3 High  

GMA -.055 -.308 -.199 .066 

Open-Mindedness (O) -.025 .092 -.011 -.049 

Conscientiousness (C) -.066 .175 .159 -.178 

Extraversion (E) -.094 .065 -.004 -.048 

Agreeableness (A) -.030 .126 .086 -.120 

Negative Emotionality (N) .108 -.013 -.001 .115 

NFC -.156 -.008 -.009 -.157 

Intellect -.109 .028 .010 -.122 

Learning Goal Orientation (LGO) -.184 -.051 -.026 -.171 

Performance-Prove Goal Orientation (PGO) -.078 -.065 .056 -.074 

Performance-Avoid Goal Orientation (AGO) .084 -.047 .006 .099 

Correlations in bold are significant at ⍺ = .05. Stage 1 = trials 1 to 23; Stage 2 = trials 24 to 42; Stage 3 = trials 43-61. 
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Table 2. Facet Correlations with Mean Penalty Score Overall and by Stage Complexity 

 
 Overall Stage 1 Low  Stage 2 Medium  Stage 3 High  

O - Aesthetic Sensitivity (O-AesSens) .021 .110 .021 -.013 

O - Intellectual Curiosity (O-IntCur) -.029 .026 -.062 -.025 

O - Creative Imagination (O-CreImag) -.063 .094 .006 -.092 

C - Organisation (C-Org) .021 .144 .116 -.041 

C - Productiveness (C-Prod) -.121 .114 .098 -.176 

C - Responsibility (C-Resp) -.078 .066 .001 -.099 

E - Sociability (E-Soc) -.101 .171 .173 -.186 

E - Assertiveness (E-Asrt) -.107 .112 .136 -.169 

E - Energy Level (E-EnLev) -.028 .167 .094 -.094 

A - Compassion (A-Comp) -.012 .089 .000 -.037 

A - Respectfulness (A-Resp) -.064 -.003 -.029 -.059 

A - Trust (A-Tr) -.054 .029 -.008 -.062 

N - Anxiety (N-Anx) .095 -.022 -.008 .106 

N - Depression (N-Dep) .088 -.041 -.039 .110 

N - Emotional Volatility (N-EmVol) .111 .032 .050 .096 

Intellect - Seek (Int-Sk) -.128 .007 .000 -.134 

Intellect - Conquer (Int-Cq) -.082 .048 .021 -.102 

Intellect - Think (Int-Tk) -.089 .004 .002 -.094 

Intellect - Learn (Int-Lrn) -.098 .019 -.008 -.105 

Intellect - Create (Int-Crt) -.127 .056 .033 -.154 

Intellect - SeekThink (Int-SkTk) -.093 -.031 -.016 -.085 

Intellect - SeekLearn (Int-SkLrn) -.111 -.009 -.040 -.104 

Intellect - SeekCreate (Int-SkCrt) -.154 .054 .046 -.184 

Intellect - ConquerThink (Int-CqTk) -.078 .042 .022 -.097 

Intellect - ConquerLearn (Int-CqLrn) -.076 .044 .023 -.095 

Intellect - ConquerCreate (Int-CqCrt) -.084 .052 .015 -.104 

Correlations in bold are significant at ⍺ = .05. Stage 1 = trials 1 to 23; Stage 2 = trials 24 to 42; Stage 3 = trials 43-61. 
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Analyses Overview 
 For the GLMM analyses, we report incidence rate ratios (IRR) and 95% confidence 
intervals for the IRR to three decimal places. The IRR reflects the expected factor change 
in the dependent variable, penalty score, for a one standard deviation increase in the in-
dependent variable, non-cognitive trait score (because the non-cognitive variables have 
been standardised). Trial number was mean-centred (1) over all 61 trials and (2) within 
stages, which we refer to as total-trial and stage-trial, respectively. Stage was coded as three 
levels, each representing a different rule complexity—low, medium, and high—as out-
lined in the methods. We created two orthogonal effect-coded complexity contrasts to 
model how non-cognitive variables differentially influenced participants’ capacity to deal 
with these complexity changes across stages: (1) medium-demand complexity contrast effect 
(Stage 1 versus Stage 2, representing the capacity to manage low complexity versus me-
dium complexity), and (2) high-demand complexity contrast effect (Stage 1 and 2 on aver-
age versus Stage 3, representing the capacity to manage low and medium complexity ver-
sus high complexity). We ran one model testing the influence of GMA on performance, 
then ran a series of additional models examining the role of each non-cognitive trait (at 
the domain and facet levels) on performance (with and without GMA). In each non-cog-
nitive moderation model, we examine four output coefficients: 

1. The two-way interaction between the non-cognitive variable and the medium-de-
mand complexity contrast. This is a test of whether mean performance differs 
between the low and medium complexity stages as a function of the non-cogni-
tive variable and is linked to Hypothesis Set 1. 

2. The two-way interaction between the non-cognitive variable and the high-demand 
complexity contrast. This is a test of whether mean performance differs between 
the low and medium complexity stages and the high complexity stage as a func-
tion of the non-cognitive variable and is linked to Hypothesis Set 1.  

3. The three-way interaction between the non-cognitive variable, the medium-com-
plexity contrast, and stage-trial number. This is a test of the strength and direction 
of differences in within-stage performance trajectory slopes between the low and 
medium complexity stages as a function of non-cognitive traits and is linked to 
Hypothesis Set 2.  

4. The three-way interaction between the non-cognitive variable, the high-complex-
ity contrast, and stage-trial number. This is a test of the strength and direction of 
differences in within-stage performance trajectory slopes between the low and 
medium complexity stages and the high complexity stage as a function of non-
cognitive traits and is linked to Hypothesis Set 2.  

These complexity contrasts provided additional information on which to base our conclu-
sions rather than relying on correlational analyses alone. Full specifications of the models 
run can be found in the supplementary materials. 
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Overall Findings 
To begin, the raw penalty score data is plot by trial number in Figure 2(a). We ran a 

basic model on this data (as described above) testing whether mean performance differed 
by stage complexity (see Model 1, supplementary materials). As expected, there was a 
significant medium-demand complexity effect (IRR = 1.149, 95% CI = 1.101 – 1.200, p < .001), 
and high-demand complexity effect (IRR = 8.134, 95% CI = 7.837 – 8.442, p < .001). Mean 
penalty score was 1.149 times higher in the medium complexity stage than the low com-
plexity stage, suggesting participants found random outflows more challenging to man-
age than constant outflows. Mean penalty score in the high complexity stage was 8.134 
times higher than the low and medium complexity stages on average, suggesting partici-
pants found delays substantially more challenging to manage than no delays. There was 
also a high-demand complexity effect on performance trajectory slopes (IRR = 1.052, 95% 
CI = 1.045 – 1.058, p < .001). Specifically, the penalty score trajectory under high complexity 
was 1.052 times steeper than the average penalty score trajectory under low and medium 
complexity conditions, suggesting delays impeded people’s capacity to learn rules and 
control the system. There was no medium-demand complexity effect on performance trajec-
tory slopes, suggesting the introduction of random outflows did not affect people’s capac-
ity to learn rules and control the system. Therefore, as hypothesised and in line with Bir-
ney et al. (2018), increases in complexity throughout the task were related to performance 
decreases (increased penalty score). The results from this model are illustrated in Figure 
2b, which shows that average penalty score increased somewhat exponentially through-
out the task. 
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Figure 2. Plots of (a) Raw and Smoothed, (b) GLMM Modelled Penalty Scores Over Time (Model 
1). Note: Stage transitions are demarcated by black dashed lines. Mass extinction events are de-
marcated by grey dashed lines. Trial number has been centred for the GLMM plot and preserved 
in this figure to appropriately represent the underlying model. 
 
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2022                   doi:10.20944/preprints202207.0246.v1

https://doi.org/10.20944/preprints202207.0246.v1


 15 of 29 
 

 

General Mental Ability 
Model 2 tested the interaction between GMA and total-trial number on overall per-

formance, which is represented in Figure 3. The main effect for GMA was statistically sig-
nificant as expected. Those of higher GMA tended to have lower penalty scores (IRR = 
0.884, 95% CI = 0.842 – 0.928, p < .001). Model 3 tested interactions between GMA, the 
complexity contrasts, and stage-trial number to understand how GMA differentially in-
fluenced performance in different stages. First, GMA was associated with significant mean 
performance differences for the medium-demand complexity contrast (IRR = 1.152, 95% CI 
= 1.103 – 1.202, p < .001) and high-demand complexity contrast (IRR = 1.241, 95% CI = 1.196 
– 1.288, p < .001). Both effects were in the opposite direction to the main effect of GMA on 
performance in Model 2. Second, there were significant interactions effects of GMA on 
performance trajectory slopes for the medium-demand complexity contrast (IRR = 1.021, 
95% CI = 1.014 – 1.029, p < .001) and high-demand complexity contrast (IRR = 1.009, 95% CI 
= 1.003 – 1.016, p = .006). Taken together with the mean performance findings, this implies 
that the influence of GMA on performance changed throughout the task. Indeed, as illus-
trated in Figure 3, GMA did not seem to differentially predict trajectories in the first stage 
but did in the second and third stages. In the medium complexity stage, trajectories by 
GMA level narrowed over time and in the high complexity stage, trajectories by GMA 
level crossed over time. This suggests that all else equal, those high in GMA were not 
necessarily better equipped to deal with complexity increases over time, despite perform-
ing better overall in the first stage. Therefore, Hypothesis 1 and Hypothesis 4 were not 
supported. 

A series of separate analyses examining the additional predictive utility of each of 
the non-cognitive variables as covariates to Model 3 did not statistically improve model 
fit. 
 
 

 
Figure 3. Performance Trajectory by GMA Scores (Mean ± 1.5 SD) from Model 2. Note: Stage 
transitions are demarcated by black dashed lines. Mass extinction events are demarcated by grey 
dashed lines. Trial number has been centred and preserved in this figure to appropriately represent 
the underlying model. 
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Non-Cognitive Moderation Effects 
 To investigate the influence of non-cognitive traits on performance trajectories, the 
intellectual investment and personality traits were standardised, and the stage and trial 
variables were effect coded as described above. Model 4 represents the specification of the 
generic interaction analysis. This was run for each non-cognitive trait moderator sepa-
rately. The reason for analysing the traits separately, rather than in one combined analysis, 
is two-fold. First and foremost, we are interested in overall effect of a moderator condi-
tional (or not) on GMA. We are not concerned here with whether the moderator effects 
hold conditional on the range of other traits we have assessed. Second, the effect sizes 
reported for moderators are small and additional covariates would serve to reduce statis-
tical power. We also recognise many separate analyses are likely to raise questions about 
Type 1 error rates. As outlined by Birney et al. (2017), the multi-level approach used is 
distinctly advantageous in this regard (Gelman et al., 2012) compared to OLS regression 
(Brunner & Austin, 2009). It uses a partial pooling process (often referred to as “shrink-
age”) that serves to shift parameter estimates and their associated standard errors toward 
mean coefficients in the complete data. This processes has the desirable effect of shrinking 
coefficients that are estimated with small accuracy more so than those estimated with 
higher accuracy (Hox, 2010), thus intervals for comparisons are more likely to include zero 
(Gelman et al., 2012). 

Analyses were run first without (Model 4A) and then with GMA (Model 4B) to test 
whether the effects of intellectual investment or personality traits remained when GMA 
was controlled for. We first report the domain-level results and then review the facet-level 
results, which are summarised across Figures 4 – 7. Figure 4a contains the domain-level 
two-way interaction effects between each non-cognitive trait and the medium-demand con-
trast, and Figure 4b with the high-demand contrast. Figure 5 contains the domain-level 
three-way interaction effects from the same model, but also includes within-stage trial 
order as a variable (i.e., the effects test the strength and direction of (1) between-stage 
differences in (2) performance trajectories as a function of (3) non-cognitive traits). Figure 
5a reports these effects for the medium-demand contrast, and Figure 5b the high-demand 
contrast. Analogously, Figures 6a and 6b contains the two-way interactions, and Figures 
7a and 7b contains the three-way interactions for the facet-level moderators for both com-
plexity contrasts. 
Domain Level Effects: In Hypothesis Set 1, we hypothesised that NFC (Hypothesis 2A), 
Learning Goal Orientation (Hypothesis 2B), Intellect (Hypothesis 2C), Open-Mindedness (Hy-
pothesis 3A), Conscientiousness (Hypothesis 3B), and Negative Emotionality (Hypothesis 3B) 
would be the strongest trait drivers of mean performance differences between stages. Fig-
ure 4 shows that, for most domains, the relationship between non-cognitive traits and 
mean performance differed between the complexity stages. Five of the ten domains—Per-
form-Prove Goal Orientation, Agreeableness, Conscientiousness, Extraversion, and Open-Mind-
edness—were associated with medium-demand contrast effects, and the inclusion of GMA 
did not alter the statistical significance of these effects. All ten domains except Perform-
Prove Goal Orientation were associated with high-demand contrast effects, which all re-
mained significant when controlling for GMA. Our hypotheses were therefore supported 
for Open-Mindedness (Hypothesis 3A) and Conscientiousness (Hypothesis 3B), which were 
associated with both medium-demand and high-demand mean performance differences. Our 
hypotheses were partially supported for NFC (Hypothesis 2A), Learning Goal Orientation 
(Hypothesis 2B), Intellect (Hypothesis 2C), and Negative Emotionality (Hypothesis 3C), 
which were associated with mean performance differences but only for the high-demand 
contrast. 

Few of the hypothesised trajectory slope effects from Hypothesis Set 2 were sup-
ported, as shown in Figure 5. We hypothesised that those high in NFC (Hypothesis 5A), 
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Learning Goal Orientation (Hypothesis 5B), Intellect (Hypothesis 5C), Open-Mindedness (Hy-
pothesis 6A), and Conscientiousness (Hypothesis 6B) would better manage complexity in-
creases over time, however, we only found mixed evidence to support Hypotheses 5C and 
6B. Higher Intellect seemed to confer benefits in managing the high-demand complexity 
shift when controlling for GMA. High Conscientiousness also seemed to confer benefits in 
managing the medium-demand complexity shift controlling for GMA. We also hypothesised 
that high Negative Emotionality would be associated with sharper performance decreases 
(i.e., steeped performance trajectories) as complexity increased (Hypothesis 6C) but the 
evidence for this hypothesis was also mixed. High Negative Emotionality did tend to exac-
erbate the high-demand complexity shift, but this effect did not persist when controlling for 
GMA. 

In addition, we uncovered several unexpected domain level effects in our explora-
tory analysis. High Extraversion was associated with improved capacity to manage the 
medium-demand complexity shift, which persisted when controlling for GMA. High Perfor-
mance-Prove Goal Orientation had the same effect on the capacity to manage the high-de-
mand complexity shift, which remained when controlling for GMA. Figures 8 and 9 illus-
trate how these mean performance and slope differences manifest in performance trajec-
tories for two example domains: Conscientiousness and Extraversion (controlling for GMA)2. 

 

                                                           

2 For illustrative purposes, Figures 8 and 9 are representations of analyses that included total-trial number 

and the respective moderator, controlling for GMA. The respective R models are: 

Figure 8: Penalty = ICAR.z  + trial.c*Conscientiousness.c + (1|ID);  

Figure 9: Penalty = ICAR.z  + trial.c*Extraversion.c + (1|ID) 
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Figure 4. Mean performance by domain interaction effects for a) medium-demand and b) high-
demand complexity contrasts. Note: Blue bars indicate relations from Model 4a; Red bars indicate 
relations from Model 4b. The variable key is provided in Table 2. Variables with asterisks (*) are 
those for which we made specific hypotheses. 
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Figure 5. Performance trajectory slopes by domain interaction effects for a) medium-demand and 
b) high-demand complexity contrasts. Note: Blue bars indicate relations from Model 4a; Red bars 
indicate relations from Model 4b. The variable key is provided in Table 2. Variables with asterisks 
(*) are those for which we made specific hypotheses. 
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Figure 6. Mean performance by facet interactions for a) medium-demand and b) high-demand 
complexity contrasts. Note: Blue bars indicate relations from Model 4a; Red bars indicate relations 
from Model 4b. The variable key is provided in Table 2. Variables with asterisks (*) are those for 
which we made specific hypotheses. 
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Figure 7. Performance trajectory slopes by facet interactions for a) medium-demand and b) high-
demand complexity contrasts. Note: Blue bars indicate relations from Model 4a; Red bars indicate 
relations from Model 4b. The variable key is provided in Table 2. Variables with asterisks (*) are 
those for which we made specific hypotheses. 
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Figure 8. Performance trajectory by Conscientiousness (controlling for GMA). Note: Stage tran-
sitions are demarcated by black dashed lines. Mass extinction events are demarcated by grey dashed 
lines. Trial number has been centred and preserved in this figure to appropriately represent the 
underlying model. 
 

 
Figure 9. Performance trajectory by Extraversion (controlling for GMA). Note: Stage transitions 
are demarcated by black dashed lines. Mass extinction events are demarcated by grey dashed lines. 
Trial number has been centred and preserved in this figure to appropriately represent the underly-
ing model. 
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Facet Level Effects: Figure 6a demonstrates that 11 of the 26 facets were associated with 
medium-demand mean performance differences, however, only nine of these effects re-
mained statistically significant after controlling for GMA. Figure 6b shows that 22 of the 
26 facets were associated with high-demand mean performance differences, however, only 
21 of these effects remained statistically significant after controlling for GMA. Figure 7a 
contains the facet level slope effects; five of the 26 traits were associated with medium-
demand slope differences and a further five of the 26 were associated with high-demand 
slope differences (Figure 7b). Given the number of facet level effects, we first focus on 
those we made specific hypotheses about, and then others of theoretical and statistical 
significance. Furthermore, we note that the Intellect facets were all highly correlated with 
each other (r = .79-.97) and therefore the extent to which they offer unique substantive 
information in explaining variation in performance is low. We include the variables in our 
analyses as they were planned from the outset but advocate caution in interpreting the 
results for these variables as a result. 

We hypothesised that those high in Intellect Conquer process and Intellect Learning 
operation (Hypothesis 2C), Open-Mindedness: Intellectual Curiosity and Creative Imagination 
(Hypothesis 3A), and Conscientiousness: Productiveness (Hypothesis 3B) would deal better 
with complexity increases, above and beyond GMA. Hypothesis 3A was supported for 
medium-demand mean performance differences. Hypotheses 2C and 3B were supported for 
high-demand mean performance differences. Hypothesis 3A was partially supported for 
high-demand mean performance differences, with only Open-Mindedness: Creative Imagina-
tion being associated with high-demand mean performance differences. We also hypothe-
sised that those with low Negative Emotionality: Emotional Volatility and Anxiety would be 
better equipped to manage complexity increases (Hypothesis 3C). This hypothesis was 
only supported for one facet, Negative Emotionality: Anxiety, for the high-demand mean per-
formance difference. 

We also hypothesised that those high in Intellect Conquer process and Intellect Learn-
ing operation (Hypothesis 5C), Open-Mindedness: Intellectual Curiosity and Creative Imagi-
nation (Hypothesis 5A), and Conscientiousness: Productiveness (Hypothesis 5B) would deal 
better with complexity increases as indicated by shallow performance trajectory slopes. 
Figure 7 contains the facet level slope effects and shows that the only hypothesis sup-
ported was Hypothesis 5B, Conscientiousness: Productiveness, which conferred perfor-
mance benefits in managing the medium-demand and high-demand shifts, controlling for 
GMA. We also hypothesised that those with low Negative Emotionality: Emotional Volatility 
and Anxiety would be better equipped to manage complexity increases (Hypothesis and 
6C). This effect was supported for both facets but only for the high-demand complexity. 
 Echoing the domain level results, we also observed some consistent and unexpected 
effects of various facets on the capacity to manage complexity changes. In addition to Con-
scientiousness: Productiveness, both high Conscientiousness: Organisation and high Conscien-
tiousness: Responsibility conferred mean performance and shallow learning slope benefits 
in managing the medium-demand shift, which persisted when controlling for GMA. These 
variables did not, however, have the same effect for the high-demand complexity shift for 
either mean performance or slope differences. As may be expected from the domain level 
findings, the extraversion facets had a significant effect on both complexity changes. 
Higher Extraversion: Sociability and Extraversion: Energy Level facilitated improved man-
agement of the medium-demand complexity shift (mean performance and slopes) when 
controlling for GMA. Also, higher Extraversion: Sociability and Extraversion: Assertiveness 
Level facilitated improved management of the high-demand complexity shift (mean perfor-
mance and slopes) when controlling for GMA. Several unexpected facets of intellect also 
emerged as predictors of capacity to deal with the high-demand complexity shift (mean 
performance and slopes). Those with higher scores on the Intellect-Seek process and the 
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Intellect-Create domain were better equipped to deal with the high-demand complexity 
change, as well as three crossovers (SeekThink, SeekCreate, ConquerCreate). 
 

4. Discussion 
The current study aimed to develop a preliminary process account of CPS task per-

formance by examining how non-cognitive factors influence performance trajectories on 
a microworlds CPS task above and beyond GMA. This aim was motivated by previous 
findings (e.g., Danner et al., 2011; Greiff et al., 2015; Greiff et al., 2012; Kretzschmar et al., 
2016; Lotz et al., 2016; Sonnleitner et al., 2013; Wüstenberg et al., 2012), which have con-
sistently found that CPS task performance explains variation in practical outcomes such 
as educational and workplace success beyond the variation explained by g or Gf. Our task, 
a CPS microworlds task, was designed to present participants with one block of trials seg-
mented into three stages, each of increasing complexity to manage. Participants were not 
directly instructed how the task would change but instead needed to be sensitive to 
changes in the feedback interface as the task progressed – similar to how one would solve 
novel problems in a dynamic real-world environment. In line with the established rela-
tionships between intelligence, personality, and performance, we hypothesised that both 
GMA and specific non-cognitive capacities would have differential relationships with task 
performance as the task became more complex. We also hypothesised that certain intel-
lectual investment and personality traits would influence mean performance and perfor-
mance trajectories above and beyond GMA by motivating participants to engage with and 
deeply understand the microworld system. In summary, our findings support our broad 
hypothesis that CPS tasks capture both cognitive and non-cognitive capacities, however, 
our hypotheses on the changing role of specific abilities throughout the task were not all 
unambiguously supported. 

Firstly, we found evidence for a complexity-GMA effect but not always in the ex-
pected direction. While we hypothesised that those higher in GMA would be less im-
pacted by increases in task complexity, we found mixed evidence for this effect; high 
GMA conferred performance advantages initially but this was attenuated over time such 
that GMA did not confer performance benefits in the final and most challenging stage. 
GMA is a strong predictor of performance in high-pressure cognitive situations but a 
weaker predictor of performance in typical cognitive situations (von Stumm et al., 2011). 
Our CPS microworlds task was designed to reflect a more typical cognitive performance 
situation as it required participants to engage with and control a complex system over 61 
trials; for most participants, this was intended to take around half an hour of continuous 
cognitive engagement. As it is difficult to sustain maximal performance for this period of 
time, it follows that this may be one reason as to why GMA became less predictive of 
performance over time. 

Conversely, we found evidence to support our hypotheses that non-cognitive capac-
ities would predict performance in the CPS microworlds task above and beyond a general 
mental ability factor. Most of the intellectual investment and personality traits we meas-
ured accounted for mean performance differences between stages when controlling for 
GMA, suggesting a broad role for non-cognitive factors in driving CPS microworlds per-
formance. Further, examining how these traits influenced within-stage performance tra-
jectories allowed us to understand how these traits facilitated learning and mastery of the 
task as it became more complex over time. Fewer factors facilitated this capacity to learn 
and master complexity increases on our microworlds task than were associated with mean 
performance differences.  

We hypothesised that several personality and investment trait domains would aid 
both mean performance, and learning and mastery of rule changes—NFC, Learning Goal 
Orientation, Intellect, Open-Mindedness, and Conscientiousness—and that Negative 
Emotionality would hinder learning and mastery of rule changes. Our hypotheses were 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2022                   doi:10.20944/preprints202207.0246.v1

https://doi.org/10.20944/preprints202207.0246.v1


 25 of 29 
 

 

supported for Open-Mindedness and Conscientiousness, which conferred mean perfor-
mance benefits for the medium- and high-demand effects, and partially supported for NFC, 
Learning Goal Orientation, and Intellect, which conferred mean performance benefits for 
the high-demand effect only. Our hypotheses were also supported for mean performance 
impairments for those high in Negative Emotionality for both effects. When we examined 
the role of these traits on influencing performance trajectories, the only hypotheses sup-
ported were for Intellect (high-demand effect) and Conscientiousness (medium-demand ef-
fect). Nonetheless, both Extraversion (medium-demand effect) and Performance-Prove Goal 
Orientation (high-demand effect) emerged as unexpected yet significant factors that aided 
learning and mastery of rule changes. At the trait facet level, we hypothesised that the 
Intellect-Conquer process, the Intellect-Learning and Intellect-Thinking operations, Open-
Mindedness: Intellectual Curiosity and Creative Imagination, and Conscientiousness: 
Productiveness would also facilitate rule learning as complexity increased, and that the 
Emotional Volatility and Anxiety domains of Negative Emotionality would hinder rule 
learning as complexity increased. Of our facet-level hypotheses, only that for Conscien-
tiousness: Productiveness (high-demand effect) was supported. Nevertheless, a number of 
other facets emerged as significant predictors of performance, specifically Conscientious-
ness: Organisation and Conscientiousness: Responsibility (medium-demand effects), Extra-
version: Sociability and Extraversion: Energy Level (medium-demand effects), Extraversion: 
Sociability and Extraversion: Assertiveness Level (high-demand effects), Intellect Seek and 
Create (high-demand effects). 

Interestingly, our findings suggest two distinct clusters of non-cognitive capacities 
that influence the ability to manage dynamic complexity changes in our microworlds task. 
These clusters stem from their role in either the medium-demand effect or the high-demand 
effect. The medium-demand effect represents the capacity to manage the shift from fixed to 
variable outflow of species from the island. Both mean performance and the strength and 
direction of performance trajectories differed between the low and medium complexity 
stages depending on an individual’s level of Conscientiousness and its Organisation and 
Responsibility facets (both in the same direction). Specifically, a crossover effect in the 
performance trajectories was observed such that Conscientiousness (and Organisation 
and Responsibility) did not differentiate between performance trajectories in the first and 
easiest stage, however, those with low Conscientiousness displayed more rapid increases 
in penalty scores (i.e., slower rule learning and mastery) with the move from low to me-
dium complexity than those high in Conscientiousness. This was illustrated in Figure 8. 
Both mean performance and the strength and direction of performance trajectories also 
differed between the low and medium complexity stages depending on individuals’ level 
of Extraversion and its Energy Levels and Sociability facets; with both facet effects in the 
same direction but of differing strengths. For Extraversion as a trait and for both facets, 
there were no differences in the slope of performance trajectories by Extraversion level in 
the low complexity stage, but crossover effects were observed in the medium complexity 
stage. Those of lower Extraversion (and facets) displayed sharper increases in penalty 
score (i.e., slower rule learning and mastery) than those of higher Extraversion (and facets) 
with the move from low to medium complexity. This was illustrated in Figure 9. 

Taken together, this suggests that those with high Conscientiousness and high Extra-
version tended to manage the medium-demand complexity increase better than their low 
trait counterparts. This may stem from the possibility that high levels of both traits facili-
tate cognitive exploration. In this task, the only rule that can be precisely deduced is the 
fixed outflow rules in the first stage. In the second stage, shifting to variable outflow, par-
ticipants are unlikely to deduce the specific nature of the rule (i.e. random outflow be-
tween 10 and 30 per trial) and even if they did, the random nature of species loss from the 
ecosystem would mean it would be impossible to perform “perfectly” (i.e. get a penalty 
score of 0 on each trial). Nevertheless, controlled cognitive exploration may facilitate the 
acquisition of an optimal control strategy. For example, keeping input to around 20 spe-
cies per trial should theoretically control the system relatively well. This kind of controlled 
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cognitive exploration is characteristic of those high in Conscientiousness—who are organ-
ised and systematic, and have a tendency toward reliable and steady behaviours (Soto & 
John, 2017)—and of those high in Extraversion—who tend to display more exploratory 
behaviours on challenging cognitive tasks (Greiff et al., 2019). 

A different cluster of traits was associated with the capacity to manage the high-de-
mand shift on our CPS microworlds task. These traits thematically represent a shift from 
controlled cognitive exploration to more creative exploration: NFC, Learning Goal Orien-
tation, and Intellect. Furthermore, they also capture the capacity and tendency to perform 
in cognitive situations that can be emotionally taxing, indicated by the roles of Perform-
Prove Goal Orientation and Neuroticism: Emotional Volatility and Anxiety. The shift to 
high complexity introduces decision delays to the microworld system, that is, a lag be-
tween decisions being made and taking effect that requires participants to consider how 
their actions have impacted the current state and will impact upon future trials. Combined 
with variable outflow, this again means it is not practically possible to perform perfectly. 
There is an added cognitive load of firstly needing to recognise there is a delay, secondly 
needing to quantify the extent of the delay, and thirdly needing to synthesise the infor-
mation provided to make appropriately informed decisions. High creative exploration 
traits may facilitate more rapid acquisition of the presence of a delay by encouraging be-
haviours of seeking and trying new control strategies, and examining and implementing 
the feedback provided in the system interface (i.e., distance from goal) more rapidly. In-
deed, this is reflected in our results, where NFC, Learning Goal Orientation, and Intellect 
were associated with high-demand mean performance differences. Furthermore, Intellect 
and both the Seek process and Create domain were associated with high-demand perfor-
mance trajectory effects such those higher in these traits had shallower penalty score tra-
jectories (i.e., they learned to control the system more rapidly). As noted in the results, we 
interpret the Intellect facet results with caution, however, the trait Intellect result remains 
interpretable. 

Moreover, the shift from no delay to delay is likely to create uncertainty and confu-
sion. This increased demand on cognitive resources may create stress on participants 
meaning that an individual’s susceptibility to stress and capacity to manage it may be-
come a determinant of performance in this final and challenging stage of the task. This 
added load may create performance anxiety, thus the buffering effect of low Emotional 
Volatility and Anxiety, as well as Performance-Prove Goal Orientation – which is consist-
ently related to Neuroticism (McCabe et al., 2013). This is supported by our findings, in 
which Neuroticism facets Emotional Volatility and Anxiety were both not associated with 
performance trajectory differences for the medium-demand shift were associated with per-
formance trajectory differences for the high-demand shift; penalty scores for those high in 
Emotional Volatility and Anxiety accumulated at a faster rate than those low in these trait 
facets suggesting these trait facets impeded rapid rule learning and mastery. This may be 
compounded by the fact that implicit feedback is available to participants in the form of 
their penalty score on the display, so they are readily able to see how they are performing 
on the task. As a result, those high in Performance-Prove Goal Orientation who are moti-
vated by outperforming others to prove their own ability (VandeWalle, 1997), may be 
more motivated to discover the new delay rule and implement an effective control strat-
egy to manage it. In addition, those high in Emotional Volatility and Anxiety are more 
sensitive to negative feedback (Hirsh & Inzlicht, 2008), further affecting their performance 
and leading to a sharper increase in penalty score over time. 

We pre-emptively make comment on the size of the effects we have uncovered here. 
What is notable from the graphs in Figures 4 to 7 is that the size of between-stage differ-
ences in the relationship between the non-cognitive trait and performance (Figures 4 and 
6) is much larger than the size of the strength and direction of between-stage differences 
in performance trajectories as a function of non-cognitive traits (Figures 5 and 7). Our CPS 
microworlds task was around 30 minutes long and was designed to represent a typical 
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performance task demanding extended engagement with a cognitive challenge (i.e., par-
ticipants needed to engage consistently for the full 30 minutes to successfully control the 
system). This short burst of cognitive engagement is similar to a typical performance sce-
nario, for example, completing a task at school, university, or work. Small effects, such as 
those found in our study, can have large ramifications in the real world (Götz et al., 2022). 
Small bursts of cognitive engagement accumulate over time to create a typical pattern of 
performance for an individual. Extrapolating our findings to a day, week, or even a 
month, could show that non-cognitive traits are an extremely strong predictor of typical 
performance in complex and challenging real-world environments. 

Strengths, Limitations, and Future Directions 
 A key strength of our study was the use of GLMM, which allows us to understand 

how non-cognitive traits influence overall performance differences between stages but 
also how these traits dynamically influence performance trajectories within and between 
stages. This analysis has allowed us to draw conclusions based on more robust underlying 
analysis than, for example, comparing mean performance or correlations between stages. 
Furthermore, our use of a large participant pool means we had substantial range in mi-
croworlds task performance, as well as a large range of GMA and self-reported non-cog-
nitive traits. This makes our research somewhat more generalisable than that which uses 
restricted samples (e.g. only university students or upper level business managers). 

Future studies could extend upon our findings by examining how non-cognitive 
traits influence performance on other types of CPS tasks. For example, another common 
form of CPS task uses multiple inputs and outputs (Beckmann et al., 2017) and it would 
be prudent to examine whether our findings generalise to systems with a different struc-
ture of input and output variables. We also only examined the role of single traits due to 
the complexity of our modelling. Future studies could examine how non-cognitive capac-
ities interactively affect performance using more complex analytical techniques to fully 
elucidate the role of different non-cognitive traits on CPS performance. 
5. Conclusions 

Our aim was to begin to develop a process-driven account of CPS task perfor-
mance. Motivated by the desire to understand what factors influence CPS task perfor-
mance above and beyond g, our findings suggest that CPS microworlds demand a wide 
variety of non-cognitive personality and investment traits. Our results also imply that 
distinct clusters of traits may differentially drive performance for different levels of task 
complexity – one cluster that facilitates the capacity to manage system randomness and 
one cluster that facilitates the capacity to manage system delays. These results go some 
way to explaining why CPS tasks explain variation in practical outcomes beyond g; these 
tasks appear to demand both cognitive ability and an individual’s motivation to engage, 
explore, and voluntarily exert cognitive effort in the face of challenges. We have also 
demonstrated that the use of generalized linear mixed-effects models is an effective way 
to build and test process-driven accounts of the factors that influence how individuals 
monitor feedback and control performance in CPS contexts. By introducing considera-
tion of lower, facet-level intellectual investment and personality traits, we have further 
contributed to the extant literature by generating novel insights into potential important 
mechanisms underlying successful management of CPS task environments. Our results 
complement the extant body of literature on the predictive utility of CPS tasks for educa-
tional and workplace attainment by beginning to develop a process account of CPS task 
performance; it appears that CPS tasks may be better predictors of academic and work-
place success than traditional measures of g or Gf because they demand not just cogni-
tive ability but also the motivation and willingness to engage with and deeply under-
stand cognitive challenges.  
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