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Abstract: Malaria comprises a spectrum of disease syndromes and the immune system is a major 
participant in malarial disease. This is particularly true in relation to the immune responses elicited 
against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. 
Mouse models of malaria are commonly used to dissect the immune mechanisms underlying dis-
ease. While no one mouse model of Plasmodium infection completely recapitulates all the features of 
malaria in humans, collectively the existing models are invaluable for defining the events that lead 
to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium 
infection that are available, and highlight some of the main contributions these models have made 
with regards to identifying immune mechanisms of parasite control and the immunopathogenesis 
of malaria.  
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1. The immune response to Plasmodium asexual blood stages dictates malarial disease 
Malaria is still a significant problem in the world with over 400,000 deaths resulting 

from 228 million cases in 2019, 85% of them concentrated in 20 countries on the African 
subcontinent [1]. The RTS,S MosquirixTM vaccine in children has limited efficacy [2, 3] but 
current efforts in improving this vaccine appear to be moving towards vaccine-mediated 
protection that is more durable [4]. Nonetheless, any further improvements in the devel-
opment of efficacious therapeutics and vaccines requires a better understanding of what 
constitutes an effective anti-malarial immune response. 

Malaria is caused by infection with parasites of the species Plasmodium, deposited 
into the dermis of the skin by female Anopheles mosquitos during probing for a blood meal. 
The sporozoites travel through the blood circulation, invading the liver to undergo several 
rounds of division in hepatocytes before releasing merozoites into the blood stream where 
parasites infect red blood cells (iRBCs) and replicate exponentially. Clinical symptoms of 
malaria are exclusively caused by the erythrocytic lifecycle of Plasmodium.  

The clinical manifestations of malaria are wide-ranging and include symptoms such 
as hypoglycemia, acidosis and anemia. Accumulation and sequestration of iRBCs on vas-
cular endothelial cells is associated with vascular activation which is known to underlie 
organ-specific pathologies such as cerebral malaria, acute lung injury, hepatomegaly and 
liver fibrosis [5] (Table 1). While sterile immunity to malaria generally does not occur, 
years of repeated exposure to the parasite in endemic regions facilitates the development 
of clinical immunity that can be characterized by reduced parasite load (anti-parasite im-
munity) and controlled inflammatory responses to iRBCs (clinical immunity). Malarial 
disease encompasses a spectrum of virulence which is influenced by a number of factors 
including genetic variation of both the host and parasite [6-8], the make-up of the intesti-
nal microbiome of the host [9] and environmental influences such transmission intensity 
or the presence of co-infections [10-12]. 

Mouse models are commonly used to study the immunology of erythrocytic malaria. 
Given the well-characterized range of different rodent Plasmodium species and strains, as 
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well as the plethora of mouse lines currently available to investigators, this article will 
outline some of the parasite-mouse combinations that are commonly used to study the 
different facets of blood stage malaria immunology. In addition, we will discuss novel 
models of rodent malaria that have not yet been fully harnessed to determine the environ-
mental and genetic contributions to generating immune responses to Plasmodium iRBCs. 

2. Utility of rodent Plasmodium species in the investigation of blood stage immunol-
ogy 

Human parasites cannot infect mice unless they are humanized [13, 14]. Whilst hu-
manized mouse models have some utility in the investigation of immune responses to P. 
falciparum in a controlled environment, several species of Plasmodium species exist that 
naturally infect rodents (Table 2). Isolated and cloned from Thamnomys thicket rats in the 
central African Region in the 1960s [15] they have been instrumental to the study of  the 
immununobiology of the erythrocytic stages of Plasmodium infection [16]. Although ap-
parently asymptomatic in their original hosts, infection of mice gives rise to a number of 
different phenotypes of infection, many of which mimic various states of disease found in 
human Plasmodium infection. Rodent Plasmodium parasites cannot infect humans making 
them tractable and non-hazardous models of malaria. However rodent Plasmodium para-
sites have some differences to human Plasmodium parasites (e.g differences in variant an-
tigen gene families such as the absence of PfEMP1) (summarized in Table 2). It is im-
portant to note that no one rodent Plasmodium species is able to replicate all features of 
human Plasmodium infection. Therefore, specificity in study focus in combination with the 
correct choice of model is a key aspect of research into blood stage malaria immunology 
using rodent models of malaria. 

Mice have been instrumental in elucidating the workings of the human immune sys-
tem [17]. Nonetheless, there are fundamental differences between the physiology of mice 
and humans such as differences in splenic architecture between human (sinusoidal) and 
mouse (non-sinusoidal) that would alter the direction of blood flow and possibly the tim-
ing or mechanisms by which iRBCs induce splenic immune responses [18, 19]. There is 
also a different balance of leukocyte subsets [20]. Despite these differences, the main fea-
tures of the immune response to Plasmodium iRBCs (Figure 1) are largely replicated with 
a strong type 1 inflammatory response characterized by interferon-γ (IFN-γ) producing 
CD4 T cells and the production of anti-parasite antibodies. Mouse models of Plasmodium 
infection provide a tractable and highly informative model to define how the immune 
system operates in human Plasmodium infection, in turn providing critical evidence of im-
mune mechanisms in malaria that simply cannot be obtained in humans. Advancements 
in both rodent genetic engineering technology [21, 22] and the ability to create transgenic 
rodent Plasmodium parasites [23, 24] (Table 3) has facilitated dissection of immune re-
sponses to Plasmodium infection with unprecedented precision. As such, mouse models of 
blood stage Plasmodium infection are a key tool in understanding the immune responses 
driving Plasmodium parasite control and pathogenesis of malaria. 

Selection of a mouse host and parasite species to study immune responses to blood 
stage Plasmodium infection is dependent on the question being asked (Table 4). Some 
mouse- parasite combinations are lethal from around 7 days post-infection whereas others 
resolve to become a sub-patent infection that can only be detected by molecular methods 
and, in some cases, can be completely cleared.  When selecting which combination to use 
it is important to determine whether the major goal of any study is to decipher anti-para-
site immune responses, clinical immunity, or a combination of both. Other considerations 
may involve the existence of comparative literature or the existence of databases from “big 
data” sets available online (Table 5) that can be mined a priori to identify candidate mole-
cules of importance. 

3. Genetic control of the immune responses to Plasmodium infection 
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Population-wide genetic diversity and its effect on Plasmodium infection is evident in 
human populations. This can be clearly seen with hemoglobinopathy gene polymor-
phisms such as sickle cell, thalassemia or glucose-6-phosphate dehydrogenase (G6PD) 
[25-29] which offer resistance to infection of RBCs by Plasmodium and reduced clinical se-
verity when infection does occur. Associations have been found with MHC haplotype [30, 
31] with varying results [32], and polymorphisms in immune genes and the promoters 
controlling their expression have been associated with malarial disease severity. For ex-
ample allele variants [33] and promoter polymorphisms [34, 35] controlling the expression 
of the inflammatory cytokine tumor necrosis factor-α (TNF-α) have been associated with 
the propensity to develop cerebral malaria [34, 35] and anemia [34, 36].  

There is now an increasing number of publications using genome wide associate 
studies (GWAS) for malaria [37-40]. These studies have found associations of polymor-
phisms encoding erythrocyte calcium pump (ATP2B4) and an endothelial junction protein 
(MARVELD3) with severe malaria [39], and linkages to genes on chromosome 6q21.3 and 
possibly 19p13.12 to the development of uncomplicated (mild) malaria [41]. Linkages to 
asymptomatic malaria have been found on chromosome 5q31[41]. Collectively this data 
suggests that the development of immune responses during Plasmodium infection is, in 
part, genetically controlled. In support of this notion, the Fulani tribe of western Africa 
who are generally more resistant to the clinical effects of Plasmodium infection have allelic 
variants of FcγRIIα [42], interleukin (IL)-10 [43] and IL-4 [44] not present in the more sus-
ceptible sympatric Dogon tribe [45, 46]. It is thought that these variants allow the Fulani 
to mount a robust and protective immune response to Plasmodium that is characterized by 
early production of pro-inflammatory cytokines like IFN-γ [47]. 

In mice Plasmodium infections are also genetically controlled [48-51]. Between-strain 
genetic diversity can explain the variation in disease severity in Mus musculus infected 
with any of the rodent Plasmodium lines. For example, it is widely accepted that C57BL/6 
mice are susceptible to P. berghei ANKA (PbA) infection succumbing to neurological man-
ifestations of infection that resemble cerebral malaria, whereas BALB/c or DBA/2J are 
more resistant and survive significantly longer dying much later from hyperparasitemia 
[50]. Linkage studies of P. chabaudi-AS-infected crossed lines of inbred, recombinant in-
bred and congenic inbred lines of mice has led to the identification of several gene regions 
termed Char (Chabaudi resistance) regions (reviewed in [52] and [53]) which include im-
mune-associated genes such as tumor necrosis factor (TNF) and lymphotoxin-α (LT-α) 
amongst others demonstrating the importance of immunogenetics in the outcome of P. 
chabaudi infection in mice. 

The majority of studies elucidating immune responses to the erythrocytic stage of 
Plasmodium infection are undertaken in genetically uniform inbred mouse strains, many 
using mice with C57BL/6 and BALB/c backgrounds (Table 2). Whilst beneficial by virtue 
of uniform background genetics and MHC haplotype, such mice will not inform on the 
immunogenetic basis of disease severity. Although necessary with respect to studies in-
corporating genetically modified mouse lines, collectively such studies may bias our un-
derstanding of infection immunology due to their highly selected life histories in labora-
tory settings [54]. Many of these inbred strains have skewed immune responses, such as 
the Th1 skew in the C57BL/6 mice or Th2 skewed response in the BALB/c mice [55], which 
have been exploited to understand genetic influences on the differential immune re-
sponses mounted to Plasmodium parasites and the severity of infection [49]. As such, it is 
important to be cognizant of this limitation of mouse models when interpreting data that 
has been collected. 

 

Several studies have endeavored to use outbred mouse lines, with Swiss Webster 
mice commonly used. Nonetheless, such mice have inbreeding coefficients of ~0.48[56] 
which is rather removed from humans which are ~0.01-0.08[57, 58]. New endeavors to 
generate mouse resources which are more aligned with human diversity include wild-
derived specific pathogen free (SPF) mice [59], or the Collaborative Cross (CC) mice [60-
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63] and Diversity Outbred (DO) mice [61, 64, 65]. These colonies allow assessments of the 
variation of immune responses to Plasmodium infections that may be more akin to humans. 
Given that all of these under-utilized mouse colonies are SPF, they have the advantage of 
assessing genetic diversity on anti-Plasmodium immune responses in the absence of con-
tributing environmental factors. 

4. Modelling the influence of environmental factors on immune responses to Plasmo-
dium infection 

Genetic diversity in immune responsiveness has been studied in wild-captured mice. 
However responses in such mice are confounded by environmental factors [66] which in-
cludes differences in microbiota [67], a community of microorganisms including bacteria, 
fungi, viruses and protozoans that colonize a number of external facing environments of 
humans such as the respiratory tract, gastrointestinal tract and skin. Studies in humans 
and mice have shown that gut microbiota is associated with the level of malarial disease 
in those living in malaria-endemic areas [68-70]. This has also been shown in mice [9, 71], 
specifically with respect to modulating germinal center reactions [71], even within the 
spleen [72]. This is relevant in the selection of mouse vendor given clear evidence that the 
severity of erythrocytic Plasmodium infection in genetically similar mice obtained from 
different vendors was significantly altered in response owing to the differences in gut mi-
crobiome [9]. 

Inbred mice that are removed from an SPF environment and have been exposed to 
natural environments (“re-wilded mice”) are found to have a different immune landscape 
specifically modulated by the microbiota [67, 73]. Recent work has studied the role of ge-
netic diversity in Plasmodium immune responses in the context of environmental expo-
sures through co-housing specific pathogen free (SPF) mice with mice obtained from pet 
shops that were not SPF (so-called “dirty mice”) [74]. Influencing the environmental ex-
posure of mice in this way induced a less susceptible phenotype to P. berghei ANKA in-
fections but did not alter immune responses sufficiently to fully protect all mice [74]. How-
ever, it should be noted that mice obtained from pet shops are highly inbred and do not 
recapitulate the genetic diversity conferred by wild-derived, CC or DO mice described 
above. 

In addition to the microbiota, there are other environmental factors that collectively 
can influence the immune responses to Plasmodium iRBCs that are hard to consistently 
replicate in laboratory mice. These include the alteration of the immune landscape of hu-
mans by prior and current co-infections including the influence of immune responses to 
existing liver stage Plasmodium parasites [75]. However there has been some success in 
modelling co-infection scenarios in mice and measuring how immune responses to Plas-
modium are influenced when co-infections are present (for examples see [76, 77]). In addi-
tion, there are likely effects of the human biting rate (HBR) which would alter amounts of 
mosquito saliva exposure[78-80] which can influence Plasmodium infection in mice [81] 
and possibly influence the entomological inoculation rate (EIR) which may be associated 
with an varying number and/or multiplicity of Plasmodium infection in an individual  
[82]. Without use of mouse models of blood stage infection where each aspect can be dis-
sected individually, it would be virtually impossible to determine the relative influence 
each of these environmental factors has on immune responses mounted to blood stage 
Plasmodium infection. 

 

5. Mechanisms of anti-parasite immunity: what have we learnt about control of iRBCs 
from mouse models of Plasmodium infection? 

Successful control of intraerythrocytic Plasmodium parasites requires a robust cellular 
and humoral immune response that generates broadly-reactive antibodies. Rodent ma-
laria models of Plasmodium erythrocytic infection have been instrumental in revealing 
some of the mechanisms governing the cellular immune responses to Plasmodium blood 
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stage parasites, as well as spatial information related to immune responses generated in 
different organs where Plasmodium iRBCs sequester. It is challenging to obtain this level 
of information from human infections where the main available source for immune anal-
ysis is the peripheral blood. Here we discuss some of the main findings from use of rodent 
models of Plasmodium blood stage infection. 

5.1. Invasion blocking is a key mechanism of anti-parasite antibodies for the control of iRBCs 
The importance of humoral immunity in host defense against Plasmodium infection 

was first demonstrated in rhesus monkeys [83] and later in P. falciparum-infected children 
[84, 85] when passive transfer of immune sera limited parasite growth and symptoms as-
sociated with the disease. These observations formed the basis of the hypothesis that there 
is a requirement for sustained antibody production in the control of Plasmodium blood 
stage of infection where the clinical manifestations of the disease occur. 

The possible effector functions of these antibodies have been elucidated with careful 
in vitro culture studies. These range from recognition and uptake of iRBCs by phagocytes 
[86-88], blocking of parasite adhesion and invasion [89], to inhibition of parasite growth 
[90]. The targets of these antibodies are numerous and involve proteins expressed on the 
surface of merozoite required for RBC invasion such as merozoite surface protein 1 (MSP-
1) or apical membrane antigen 1 (AMA) [91, 92] as well as variant surface antigens such 
as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1) [93]. Positive corre-
lations between the breadth, as well as magnitude, of the antibody response and success-
ful control of iRBCs [91, 92, 94] provide further evidence of the importance of the humoral 
response in controlling Plasmodium iRBCs. 

The relative contributions of these mechanisms to parasite control are hard to assign 
in humans; mouse models of infection have been instrumental in identifying the im-
portance of invasion blocking as a key mechanism of iRBC control in vivo.  Studies using 
FcγR-/- mice which are deficient in the FcγR used by phagocytes to detect IgG-opsonized 
iRBCs demonstrate that IgG-dependent phagocytosis is not a key mechanism of control 
of iRBCs, at least in the avirulent P. yoelii XNL model [95]. This conclusion is supported 
by a recent study whereby in vivo tracking of a single generation of labeled iRBCs of either 
P. chabaudi or P. yoelii adoptively transferred into mice demonstrated that parasite-specific 
IgG does not affect the rate at which iRBC are cleared, but rather it limits the progression 
of the iRBC to a new RBC by blocking invasion [89]. This is not a surprising finding when 
most IgG was reactive to merozoites found within schizonts, the terminal stage of iRBCs 
prior to release of merozoites that will infect new RBCs. The observation that infection of 
mice with P. yoelii XNL line becomes lethal in a B cell deficient host [12, 96] does not dif-
ferentiate a role of IgG from other isotypes. There is a growing appreciation for the role of 
IgM in control of iRBCs and IgM may play a role in antibody dependent phagocytosis 
through the Fcµ receptor, although this receptor is expressed only on B cells in mice [97]. 
It is also possible that complement-mediated lysis of opsonized iRBCs could role a role in 
parasite control as shown in P. falciparum infections [98, 99] although the effects of com-
plement depletion has been shown to be minimal in the P. chabaudi AS mouse model [100]. 

It is important to note that antibodies do not appear to be an absolute requirement to 
control all species of Plasmodium infection in mice. It has been shown that, unlike in P. 
yoelii XNL infections, B cell deficient mice infected with P. chabaudi are able to control 
acute infection in via antibody-independent mechanisms [96, 101].  Depletion of γδ T 
cells in B cell deficient mice following P. chabaudi AS infection led to exacerbated para-
sitemia, indicating a more critical role for γδ T cells in cell mediated immune response 
against P. chabaudi [102]. Thus, mouse models of Plasmodium infection indicate that some 
immune mechanisms of iRBC control may be differentially important for different species 
or clones of Plasmodium. 

5.2. Memory B cells to Plasmodium blood stage infection can develop and control secondary 
infection 
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Humoral immune responses against malaria develop slowly, inefficiently and wane 
over time in the absence of reinfection [103-105]. Antibodies are derived from antibody-
secreting cells (ASCs) (also called plasma cells) that are generated from a specialized com-
partment called the germinal center (GC) in secondary lymphoid tissue [106]. Memory B 
cells and long-lived plasma cells (LLPC) offering protection against re-challenge infec-
tions are also thought to develop in the GC after infection. Given that secondary lymphoid 
tissue is not readily accessible for study in Plasmodium-infected humans, mouse Plasmo-
dium infections have allowed dissection of cellular responses in malaria. The investigation 
of B cell responses to blood stage Plasmodium have typically utilized both P. chabaudi AS 
and P. yoelii XNL. Despite differences in the importance of antibodies for iRBC control 
between these species, the cellular mechanisms underlying B cell responses to Plasmodium 
blood stage parasites appear similar regardless of which species was used to initiate in-
fection [107-109]. 

The cellular basis underpinning the lack of efficacious long-lived humoral responses 
to Plasmodium in those living in endemic areas is still incompletely understood. Following 
infection with P. chabaudi, memory B cells and plasma cells specific for MSP1 were still 
detectable over eight months post-primary infection [110, 111]. Upon secondary infection 
with homologous parasite, a more rapid production of IgG2c, IgG2b and IgG1 isotypes 
were observed [110] indicating recall responses were active and functional.  In addition 
to IgG+ memory B cells, individuals in malaria endemic areas have IgM+ memory B cells 
with somatically hypermutated B cell receptors suggestive of affinity maturation[112].  
IgM antibodies from these cells had high invasion blocking capability against P. falciparum 
in vitro suggesting that they may play a key role in controlling iRBCs. Indeed, the signifi-
cance of these findings can be seen in the P. chabaudi mouse model of malaria where IgM+ 
B cells were the dominant MBCs expanding on challenge infections leading to the early 
protection against re-infections[111]. One of the key mechanisms underpinning an im-
paired memory B cell response may be related to apoptosis induced by blood stage infec-
tions. Infection of MSP-1 vaccinated BALB/c mice infected with the lethal P. yoelii YM 
strain led to ablation of memory B cells and LLPCs, including those that developed to 
prior vaccination with MSP-1 or unrelated antigens [113]. Therefore, it could be concluded 
that, although memory B cells and LLPCs can develop to blood stage infection, more lethal 
Plasmodium infections may have a deleterious effect on these cell subsets via induction of 
apoptosis, albeit by an unknown mechanism.  Much remains to be investigated regard-
ing the longevity of memory B cell and LLPC response to Plasmodium blood stage infec-
tion.  

5.3. Development of functional anti-Plasmodium blood stage GC responses in the face of IFN-γ 
While there is evidence of GCs formation in human malaria, there are some indica-

tions that GC reactions might not be optimal during human Plasmodium infection [114]. 
Mouse models have been instrumental in demonstrating that fully functional GCs can 
develop in a primary blood stage Plasmodium infection leading to protective B cell re-
sponses.  In GCs follicular helper T (Tfh) cells, interact with B cells and help push differ-
entiation of B cells into plasma cells (short-lived and long-lived) and memory B cells [106]. 
The P. yoelii mouse model of infection has been used to show that B cells are the primary 
cell type expanding Tfh[115]. However upon expansion, IL-21, one of the major Tfh-de-
rived cytokines, has been shown to be important in the development of robust and dura-
ble class-switched B cell responses following blood stage infection with P. chabaudi AS and 
P. yoelii XNL [107]. Disruption of IL-21-derived signals on B cells led to a diminished level 
of Plasmodium-specific antibodies and increased parasitemia which was correlated with a 
deficiency in the development of plasma cells and memory B cells [107]. Furthermore, Tfh-
deficient CD4CrexBcl6fl animals or SAP-/- deficient animals were unable to clear chronic 
infection with P. chabaudi AS [116] demonstrating that, although the establishment of 
chronic infection appears to be antibody-independent, antibodies are critical for control 
of chronic infection.  
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During Plasmodium infection GCs form in the context of innate-derived inflammatory 
responses as well as during responses to existing Plasmodium infections, particularly in 
higher transmission areas where simultaneous multiclonal infection is common[10, 11]. 
Mouse models of Plasmodium infection have demonstrated that B cell priming of Tfh cells 
in the spleen after blood-stage Plasmodium infection is dampened by type 1 interferon via 
down regulation of T-cell expressed ICOS and interruption of ICOS-ICOSR signaling be-
tween GC Tfh and GC B cells, respectively [117]. The interaction between ICOS-ICOSR is 
critical for Tfh development against blood stage Plasmodium infection in mice [118] and 
negatively regulated by PD-L1 and LAG-3 [119].  IL-6 also plays a role in Tfh differenti-
ation in blood stage Plasmodium infection, albeit IL-6R signaling appears to be more im-
portant for plasma cell development [120].  

A key feature of the immune response in Plasmodium-infected individuals is the in-
duction of a strong production of pro-inflammatory cytokines, with IFN-γ a defining cy-
tokine. P. falciparum-induced IFN-γ in human infection has been shown to drive the ex-
pansion of exhausted, atypical memory B cells [121] which appear to have reduced func-
tionality. Atypical B cells have been shown to develop in the P. chabaudi AS model of Plas-
modium infection [122]. Specifically, these appear to correlate with development of LLPCs 
[123] suggesting a potential protective role in chronic infection.  

Although there is evidence that IFN-γ both supports [124, 125] or impairs GC B cell 
responses [126-128] in mouse models of Plasmodium infection, the effects are likely contex-
tual. T-bet intrinsic expression on B cells, induced by signaling from the IFN-γR is needed 
for IgG2c isotype class switching during Plasmodium blood stage infection and also en-
hances affinity maturation [125]. This IFN-γ likely comes from IL-21 / IFN-γ expressing 
Tfh (Tfh1) [129]. Although first described in the periphery of P. falciparum-infected indi-
viduals [130], rodent models of malaria have been instrumental in demonstrating the lin-
eage and function of Tfh1 [129] with interferon-mediated signaling via interferon regula-
tory factor 3 (IRF3) supporting a developmental shift away from Tfh to Th1 [131]. More 
recent studies have comprehensively dissected the intracellular signals governing plastic-
ity of the Tfh/Th1 phenotype in CD4+T cells responding to blood stage Plasmodium infec-
tion [132]. As such, molecules that down-regulate T-bet mediated IFN-γ secretion in B 
cells, such as IL-10, [133] promote humoral responses to blood stage Plasmodium infection 
[126]. However, this function appears to be more important for extrafollicular plas-
mablasts [134] rather than plasma cells developing in the GC. Given that extrafollicular 
plasmablasts act as a nutrient sink impairing the follicular GC reactions[135] the effects 
for IFN-γ may occur indirectly via effects on extrafollicular plasmablast activation. 

There is still much to be learned regarding the factors that regulate the development 
of B cell responses to blood stage Plasmodium. The discovery of a novel population of 
NK1.1 T cells supporting antibody production from short lived extrafollicular plasma 
blasts [136] demonstrates the complexity in the development and control of humoral re-
sponses to blood stage Plasmodium infections. The main rodent models utilized in investi-
gating humoral responses to malaria involve the species P. chabaudi and P. yoelii due to 
their non-lethal phenotype in many backgrounds of mice, including C57BL/6. However, 
modelling the role of antibodies in severe malaria has been accomplished using P. berghei 
ANKA infections normally employed for immunopathogenesis studies. As such, a study 
observed that the pro-inflammatory mediators that enhance the onset of pathology asso-
ciated with severe malaria also affect the development of efficacious humoral immune 
responses through inhibition of Tfh cell differentiation and consequently compromised 
GC reactions [137].  

5.4. The importance of innate immune cells in iRBC control 
Antibody-mediated control of parasites via blocking of invasion is not the only im-

mune mechanism of iRBC control. Much data has been gathered on human Plasmodium 
infections clearly demonstrate functional activity of innate cells against iRBCs. The con-
tribution of innate immune responses to P. falciparum in the Fulani tribe in Sub-Saharan 
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Africa has been attributed to their greater resistance to infection compared with more sus-
ceptible sympatric ethnic groups [138] and innate responses to P. falciparum in CHMI stud-
ies has been associated with subsequent control of both iRBCs and clinical symptoms 
[139]. In P. falciparum blood stage infection, innate cells of the myeloid lineage [140-142], 
neutrophils[143, 144], natural killer (NK) [145-149] and γδ-T cells [150] have all been 
shown to neutralize iRBCs. Correlations of innate cell function with parasitemia or clinical 
symptoms has suggested the importance of these cells in control of iRBCs.  However, 
mouse models have played a key role in deciphering how innate cells modulate adaptive 
responses and exert protection against the blood stages of Plasmodium in the context of the 
global response. 

One example of this is dissecting the relative roles of cells from the myeloid lineage. 
Circulating monocytes are able to phagocytose P. falciparum [151, 152] and P. vivax [153] 
iRBCs in both an opsonic and non-opsonic [154] manner. The P. chabaudi AS model has 
been used to demonstrate a significant contribution of monocytes[155] over neutro-
phils[156, 157] in control of iRBCs. Although for neutrophils, this data appears to repeat 
in the P. yoelii XNL model of malaria[158], iRBCs are less controlled in P. berghei ANKA 
infected mice when neutrophils cannot make neutrophil extracellular traps (NETs)[159]. 
Thus, it seems that differences in the function of myeloid cells may exist amongst rodent 
parasite species that may be related to parasite life cycle preferences such as infection of 
reticulocytes (P. yoelii XNL) over normocytes (P. chabaudi AS) or differences in inflamma-
tory potential from iRBCs of different species. 

A second important contribution of mouse models of malaria in the understanding 
the contributions of NK cells and γδ-T cells. NK cells induce target cell death through nat-
ural cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), engagement of Fas 
Ligand (FasL) or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 
[148]. PLZF-FcRγ- NK cells have been shown to confer protection in P. falciparum infection 
via cytokine production and ADCC that subsequently inhibits P. falciparum growth in 
RBCs [147, 148].  Although able to directly recognize iRBCs to produce IFN-γ [160, 161], 
NK activation has been shown to depend on accessory cells of the myeloid lineage [162] 
as well as T cells [163]. In acute malaria infection, an increase in the γδ-T cell numbers 
correlate with protection from high parasitemia [150, 164]. Mechanistically, γδ-T cells pro-
duce IFN-γ, and granzyme B that inhibits parasite growth in contact-dependent manner 
[165]. Repeated exposure to malaria has been shown to lead to a decrease in circulating 
Vδ2+ γδ T cell numbers as well as a decrease in pro-inflammatory cytokine production 
concomitantly with upregulation in immunomodulatory molecules [150, 166, 167] and the 
expression of Fc receptor CD16 [168]. γδ-T cells displaying CD16+ Vδ2+ TCRs were able to 
respond to opsonized P. falciparum iRBCs through engagement of CD16 receptors [168]. 
CD16+ Vδ2+ T are shown to exhibit some of the features of NK cells and are thought to be 
more cytolytic than their CD16- Vδ2+ T counterparts. Thus, it is hypothesized that this fa-
cilitates Vδ2+ T cell effector function with respect to ADCC cytotoxicity in the face of 
chronic and repeated exposure to malaria [168].  

Despite overwhelming evidence of the ability of NK cells and γδ-T cells to kill iRBCs 
in P. falciparum infections, mouse models of malaria suggest a greater importance for γδ-T 
cells compared with NK cells in this respect. γδ-T cells produce IL-21 and IFN-γ that may 
enhance humoral immune response against blood stage infection [169] and can also ex-
press M-CSF that protect against P. chabaudi recurrence at the later stage of the infection 
[164]. Infection of humanized mice with P. falciparum confirmed in vitro observations of 
contact dependent NK cell in elimination of iRBCs [145]. Furthermore, using the non-le-
thal P. yoelii XNL mouse model of Plasmodium infection it has been shown in an in vivo 
setting that iRBCs induce activation of NK cells via synergistic effects of  IL-18 and IL-12 
to induce the expression of CD25 and IFN-γ production [170]. However, depletion studies 
in P. chabaudi adami 556KA-infected mice found a more prominent role for γδ T cells com-
pared to NK cells in the control of iRBCs [171], a  finding supported by a second study in 
P. yoelii-infected mice which found no significant role for NK cells in parasite control [172]. 
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Collectively, these findings may be due to differences in NK cells between mice and hu-
mans [173], or fundamental differences in the relative importance of immune effector 
mechanisms in iRBC control. However, this illustrates the power of undertaking in vivo 
experiments in a naïve setting where the contribution of different immune cells can be 
parsed out in a way that is not easy to undertake in culture studies or human infection 
studies, an exception being controlled human malaria infections[174, 175]. 

6. Immunopathogenesis of malaria and clinical immunity  
While sterile immunity preventing Plasmodium infection does not commonly occur, 

people living in malaria endemic regions ultimately develop clinical immunity that pro-
tects against symptoms associated with Plasmodium blood-stage infection. Clinical im-
munity to malaria is characterized by reduced parasitemia and attenuated inflammatory 
responses [176, 177]. As such, people who develop clinical immunity to malaria often 
carry Plasmodium iRBCs asymptomatically with a low-grade pro-inflammatory immune 
response that limits blood stage parasite replication.  

Based on human studies, clinical immunity has long been thought to center on the 
acquisition of strong immunomodulatory mechanisms that fine tune the inflammatory 
response necessary for control of the parasite burden while controlling the inflammation-
induced pathology. Clinical symptoms of malaria are driven by type 1 inflammation char-
acterized by IFN-γ, a cytokine known to be important in the development of immune ef-
fector mechanisms including high affinity class switched anti-parasite antibody [178, 179] 
and activation of phagocytes [180]. The main, but not only, sources of IFN-γ found in P. 
falciparum infection include Th1 cells, cytolytic T cells, NK cells and γδ T cells [181], in 
particular Vδ2+γδ T cells [150] where high production of pro-inflammatory cytokines by 
Vδ2+-γδ had been shown to protect from infection by P. falciparum in children living in a 
high transmission setting. Analysis of T cell responses after controlled human malaria in-
fection (CHMI) with P. falciparum demonstrated that higher blood stage parasitemia was 
associated with an expansion of T regulatory cells that express CD25 and FoxP3 after schi-
zogony from the liver [175], suggesting down regulation of the inflammatory response 
supports parasite replication in the blood stage.  

At the same time, systemic inflammation appears to correlate with the pathogenesis 
of malaria. Higher IFN-γ production from γδ T cells diminishes clinical immunity in re-
sponse to subsequent infections with P. falciparum [150], presumably due to inflammation-
induced pathogenesis. As such, decreased Vδ2+ T cell numbers, and an upregulation of 
immunoregulatory makers such as Tim-3 and CD57 on γδ T cells is associated with clinical 
immunity to malaria [150, 166]. Along the same lines, the identification of CD4 T cells 
producing both IFN-γ and IL-10, termed Tr1 (Foxp3- regulatory T cells) cells, have been 
identified in P. falciparum infected individuals [182] and associated with uncomplicated 
disease in children. Indeed a longitudinal analysis of children from endemic region indi-
cate a recent exposure to Plasmodium infection changes cytokines profile with upregula-
tion in IL-10 only in children with persistent asymptomatic infection [176] suggestion a 
protection from clinical symptoms of malaria via this immunomodulatory cytokine. Fur-
thermore, there are multiple studies suggesting a protective correlative role for transform-
ing growth factor- β (TGF-β) against clinical symptoms of malaria [183-185]. Collectively 
this data supports a role for inflammation-suppressing cytokines in protecting against the 
pathogenesis of malaria. 

Mouse models of non-lethal malaria have been used to confirm the importance of 
immunomodulatory cytokines such as TGF-β [186] and IL-10 [187, 188] against malaria 
pathogenesis. Nonetheless, IL-10 and TGF- β are both pleiotropic cytokines with several 
possible sources. Thus, the main contribution of studies in mouse models of Plasmodium 
infection has been the ability to dissect the roles of these pleiotropic cytokines throughout 
the course of the infection, as well as identify the most potent sources of these cytokines 
mediating clinical immunity to the blood stages of Plasmodium infection. For example, 
comparison of the lethal (P. yoelii 17XL) and non-lethal (P. yoelii 17XNL) strains of P. yoelii 
revealed that early production of TGF-β (within 24 hours) is associated with delayed IFN-
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γ and TNF-α production, leading to uncontrolled parasite growth and 100% fatality [189]. 
This was in contrast with a later (day 5 post-infection) production of TGF-β in the same 
study which was associated with reduced parasitemia and resolution of the infection. In 
a similar vein, the timing of IL-10 during the progression of the malarial diseases seems 
to be crucial in control of severe immunopathology [189, 190]. 

With regards to IL-10, the absence of which turns a non-lethal P. chabaudi AS infection 
into a lethal one [187], mouse models have been used to determine that this cytokine is 
essential in the  control of pathogenic TNF-α production [187, 188]. Mouse models have 
challenged the notion that these immunoregulatory cytokines were produced by classical 
CD4+ CD25+ FoxP3+ T regulatory (T reg) cells. Early studies comparing lethal P. yoelii 
17XL and nonlethal P. yoelii 17NL infections demonstrated a similar expansion and acti-
vation of Treg following infection with these two strains, indicating that the early activa-
tion of Treg does not contribute to the virulence [191]. Indeed, studies of TGF-β induction 
by P. yoelii indicated that the main producers of TGF-β were in fact CD8+ CD25+ T regula-
tory cells. On the other hand, the main source of IL-10 has been found in both the P. 
chabaudi [192] and P. yoelii [191] models to come not from classical T regulatory cells, but 
rather FoxP3- negative T cells that have been shown to simultaneously-produce IFN-γ 
[192]. The presence of IL-10/IFN-γ Tr1 cells has been shown in human infection [193] but 
it is in mouse models that the production of IL-10 and IFN-γ in Tr1 cells has been shown 
to be dependent on IL-27 signaling [192, 194]. IL-10 production by Tr1 cells (CD4+CD25-

Foxp3-CD127-) was able to down-regulate pro-inflammatory responses which would oth-
erwise been able to control low infection with lethal P. yoelii 17XL infection [191]. It has 
been subsequently shown that the immune regulatory role of IL-10-producing Tr1 differs 
between primary or secondary infection in blood stage Plasmodium infection. The use of 
double IFN-γ-YFP+ and IL-10-GFP+ reporter mice have indicated that following resolution 
of primary infection, the stability and potential of CD4+IFNγ+IL-10+ T cells to become 
memory is limited [195], in part because they exhibit exhaustion phenotype and are gen-
erally unresponsive at the early stage of secondary infection. 

Systemic inflammation is correlated with malaria pathogenesis. This is because sys-
temic inflammatory cytokines are indicative of vascular inflammation which mediates or-
gan-specific pathologies malaria. Caused by sequestration of iRBCs via vascular adhesion 
[196] and trapping of iRBCs in the capillaries due to reduced deformability [197-199], or-
gan dysfunction can result in severe cases. With the advent of luciferase expressing con-
structs, the rodent Plasmodium parasites have been shown to sequester in different organs 
in mice [200-203]. Given the relative inaccessibility of human organs from patients expe-
riencing severe malaria syndromes, the rodent models of Plasmodium infections have been 
instrumental in dissecting immunopathological mechanisms associated with localized in-
flammation from sequestered and accumulated iRBCs [203-205]. Models of particular ma-
laria-associated syndromes can be achieved using different combinations of rodent para-
site species and mouse backgrounds (Table 3). Here, we focus on how mouse models of 
blood stage malaria have contributed to our understanding of the immunological under-
pinnings of three of the most well-studied sequelae of malaria: severe malarial anemia 
(SMA), cerebral malaria (CM) and acute respiratory distress syndrome (ARDS).  

6.1. Mechanisms of inflammation-induced SMA 
SMA in children is defined as a hemoglobin value <5 g/dL and detectable parasitemia 

in the blood stream [206]. Although Plasmodium replication in RBCs results in physical 
destruction of the RBC, SMA is more likely caused by mechanisms that result in hemolysis 
[207] and clearance of both uninfected and iRBCs via erythrophagocytosis [208] in combi-
nation with disrupted erythropoiesis in the bone marrow [209]. The relative contributions 
and mechanisms underlying these different contributors to a reduction in circulating 
RBCs is difficult to assess in humans without splenic or bone marrow biopsies. Sequestra-
tion / accumulation of iRBCs in the inflamed bone marrow has been shown [210]. How-
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ever, mouse models of SMA, principally the non-lethal P. chabaudi model, have been in-
strumental in demonstrating the underlying mechanisms of anemia and in dissecting the 
relative contributions of each. 

Early work in using P. chabaudi as a model for SMA established that dyserythropoie-
sis in malaria may result from stalling of late erythroid progenitor cells [211] and be re-
lated to bone marrow inflammation, in particular the pro-inflammatory cytokines IL-12 
[212] and macrophage migration inhibitory factor (MIF) [213]. A role for type 2 cytokines, 
specifically IL-4, has also been shown to suppress late erythroid progenitor cells [214]. 
Inflammation is likely derived from iRBCs that accumulate in the bone marrow, but early 
studies suggested that “malaria toxins”, free GPI anchors that are released during iRBC 
schizogeny [215], can directly lead to dyserythropoiesis [216, 217]. Hemozoin has also 
been shown to induce anemia [218], demonstrating a contribution from parasite products 
in the suppression of erythrocyte production. Nonetheless, the density of circulating 
iRBCs is not necessarily related to level of anemia in the P. chabaudi model [219] suggesting 
that direct parasite destruction of RBCs during replication and release of inflammatory 
products during schizogony plays a more minor role in the severity of malarial anemia. 
However, given the insoluble and persistent nature of hemozoin, the contribution of 
hemozoin may be cumulative over time during chronic infection. 

Whilst existing data using rodent models of Plasmodium infection point to a direct 
suppression in the development of late erythroid progenitor cells via inflammatory cyto-
kine induction, there may be an indirect effect via cytokine modulation of erythropoietin 
produced by the kidney [220]. Other studies have investigated whether defects in iron 
handling also contributes to suppression of erythropoiesis [221] and how this may be re-
versed [222]. Other than production of new RBCs during the process of erythropoiesis, 
removal of both infected and uninfected circulating RBC has been shown to occur in the 
liver via erythrophagocytosis in rodent infections [223]. Moving forward, mouse models 
of blood stage Plasmodium infection will be instrumental in determining how iRBCs inter-
act in the bone marrow niche [224], and the mechanisms by which extramedullary eryth-
ropoiesis are established in an attempt to remedy diminished circulating RBCs, particu-
larly in the red pulp of the spleen [225, 226].  

6.2. T cell-mediated breakdown of the blood brain barrier in cerebral malaria 
Pediatric cerebral malaria (CM) is almost always fatal when not treated with antima-

larials, and still has mortality rates between 15% and 20% with treatment [227].  The ini-
tiation of CM is thought to occur as a result of sequestration and adherence of iRBCs to 
the brain vasculature leading to disruption of the blood brain barrier (BBB), a complex of 
cells and extracellular structures that regulates the exchange of molecules between the 
blood and the central nervous system. BBB disruption occurs upon activation of brain 
microvascular endothelial cells. Although markers of vascular activation can be measured 
in the bloodstream of individuals with CM [228], the mechanism by which the BBB breaks 
down is poorly understood, in part due to the paucity of brain tissue availability from 
victims of CM and other control groups for comparison. As such rodent models of CM are 
essential to enable cellular mechanisms of BBB breakdown in CM to be elucidated and 
rationally targeted therapeutically. 

Infection of C57Bl/6J mice with P. berghei ANKA recapitulates many of the features 
that characterize human CM (HCM) (Table 4)  and is a commonly used model described 
as experimental cerebral malaria (ECM) [229]. Whilst other models of ECM exist, the P. 
berghei ANKA model does not rely on extremely high parasitemia to cause disease. In-
fected mice usually die between 6 and 10 days after infection [230] with accumulation of 
iRBCs to the brain microvasculature [231] and the activation of brain endothelial cells [232, 
233]. Human studies suggest that both host and parasite factors mediate the development 
of CM in P. falciparum-infected children. As such there is some debate on the utility of this 
rodent model of CM, particularly since there are some differences in the expression of 
parasite adhesion molecules such as CD36 on human brain microvascular endothelial cells 
[234, 235] compared with mouse [236]. Furthermore P. berghei ANKA lacks Plasmodium 
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falciparum erythrocyte membrane protein-1 (PfEMP-1),  a ligand of both intercellular ad-
hesion molecule-1 (ICAM-1) and endothelial protein C receptor (EPCR) on brain endothe-
lial cells, and this interaction is thought to facilitate sequestration [237]. P. berghei ANKA 
iRBC accumulation in organs relies on the expression of the schizont membrane-associ-
ated cytoadherence protein (SMAC) on the surface of P. berghei ANKA iRBCs and CD36, 
a host molecule that is not highly expressed on brain endothelial cells [236]. Nonetheless, 
there is ample microscopic evidence of sequestered iRBCs on the endothelial lining, par-
ticularly using 2-photon techniques [238-240] and experiments with luciferase-expressing 
P. berghei ANKA strain which clearly show focused accumulation in the brain, particularly 
in the brain stem and olfactory bulb [241-246].    

Inflammation related to sequestered iRBCs is thought to be a central facet of the path-
ogenesis of CM, and is necessary for the pathogenesis of ECM. Neuroinflammation often 
involves the production of TNF-α but ablation of TNF-α using Etanercept has been shown 
in pediatric CM did not reduce the mortality rate of CM [247]. Data using the ECM model 
of CM concurs with these findings whereby infection of TNF-α deficient mice still die 
from BBB breakdown in ECM in the same time frame as intact animals [248]. Indeed, ECM 
has been critical in demonstrating that importance of lymphotoxin-α (LT-α), rather than 
TNF-α in mediating breakdown of the BBB[248, 249]. 

In addition to TNF-α and LT-α, interferons are a key facet of the neuroinflammatory 
response to iRBCs. Plasmodium parasites are known to induce type 1 IFNs (IFN-I) which, 
depending on context, have the capacity to both suppress and activate innate and adap-
tive immune cells, promote pro-inflammatory cytokine production and enhance parasite 
clearance. All IFN-I subtypes signal through heterodimeric IFN-I receptor (IFNAR) func-
tioning in both an autocrine and paracrine manner. The binding of IFN-I to IFNAR in-
duces a signal cascade that initiates the transcription of interferon stimulated genes (ISGs). 
Host genetic variation can lead to differences in gene regulatory regions of the IFNAR1 
subunit of IFNAR. The development of cerebral malaria in children has previously been 
associated with a variant of IFNAR1 associated with a higher expression of IFNAR1[250-
253]. This suggests that Type 1 interferon signaling to be a pathogenic event [250] and is 
a finding supported by studies in ECM[254, 255].  

Similarly, there have been associations with polymorphisms in the IFN-γ receptor 
[256] and lower levels of plasma IFN-γ [257] with development of CM suggesting that 
IFN-γ is protective. This is in agreement with polymorphisms in the IFN-γ gene promoter 
which are associated with increased transcription of IFN-γ and protection from CM [257]. 
The ECM model of CM relays a different story: IFN-γ has been shown to be necessary for 
death to occur in ECM[230, 258], in particular that derived from endothelial cells [259] to 
induce trafficking of pathogenic T cells to the brain [259, 260] and cross-presentation of 
merozoite-derived epitopes on major histocompatibility complex (MHC)-I [263] for recog-
nition by infiltrating parasite-reactive CD8 T cells and BBB disruption. In ECM, IFN-γ 
leads to upregulation of adhesion molecules on brain microvascular endothelial cells en-
hancing the adhesive properties of P. berghei ANKA iRBCs [261]. The reason for the ap-
parent difference in the role of IFN-γ in BBB disruption is unknown, but may be related to 
the differences exerted on parasite control mechanisms initiated by IFN-γ.  

One of the significant breakthroughs in our understanding of the immunological un-
derpinning of CM from the ECM model was the demonstration that CXCR3  [262] and 
CCR5 [263]-dependent CD8 T cell infiltration into the brain is necessary for disruption of 
the BBB[264]. In mice IFN-γ, including that secreted by NK cells [262], induces production 
of CXCR3- and CCR5-responsive chemokines in the neurovascular unit thus facilitating 
recruitment of pathogenic CD8 T cells and other immune cells to the CNS [261]. Whilst 
initial studies on human autopsy samples indicated a cellular infiltrate that was largely 
devoid of CD8 T cells [265, 266], indicating a potential fundamental difference in the eti-
ology of BBB breakdown between human CM and mouse ECM, more in depth studies 
from pediatric CM victims in Malawi have provided evidence that CD8 T cells do infiltrate 
the brain [266, 267], and this increase in CD8 T cells is correlated to density of iRBC se-
questration [267].  
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The mechanisms by which CD8 T cells mediate breakdown of the BBB via effects in 
the endothelium are still poorly understood but the ECM model has been critical in eluci-
dating some of the parameters by which this occurs. It has been shown in ECM that lytic 
molecules perforin and granzyme B [268, 269] are essential components in this process. 
Evidence of apoptosis in brain endothelial cells can be observed in autopsy samples of 
pediatric CM cases [270, 271] as may be expected via the lytic action of incoming primed 
CD8 T cell recognition of cross-presenting brain endothelial cells. However, although 
apoptosis can also be seen in brain sections of P. berghei ANKA as well as via 2-photon 
microscopy [240], it is minimal. Furthermore, infected mice do not have a significantly 
increased cleaved caspase compared with naïve mice [269]. Whilst other mechanisms of 
brain microvascular endothelial cells such as necrosis, ferroptosis and pyroptosis have not 
been extensively investigated, this data does suggest that perforin and granzyme are act-
ing through non-cell death-inducing pathway that disrupts the BBB. In this regard find-
ings in the ECM model are similar to Theiler’s murine encephalomyelitis in mice, another 
model of CD8 T cell dependent disruption of the BBB, where perforin but not FasL is re-
quired to mediate vascular leakage and death[272]. 

These findings may occur via downregulation of tight-junction and adherens-junc-
tion proteins which normally enable endothelial cells to dynamically control the passage 
of solutes and other molecules across the BBB [273]. Disassembly and downregulation of 
junction proteins on brain microvascular endothelial cells has been observed in both pe-
diatric CM autopsy samples [274] and in ECM [239, 242]. In ECM CD8 T cell-degranula-
tion may induce downregulation of junction proteins via release of perforin [269, 275] 
which could augment expression of vascular activation-induced molecules such as the 
tyrosine kinase receptor EphA2 which has been shown to mediate the loss of tight junction 
on both human and mouse brain microvascular endothelial cells [242]. In the Theiler’s 
murine encephalomyelitis model, leakage and downregulation of tight junction proteins 
occurs before an increase in apoptosis markers [275]. Thus, the timing of BBB breakdown 
in ECM and CM relative to initial Plasmodium infection may be important in the interpre-
tation of ECM studies as applied to CM. 

The rodent model of ECM does not perfectly recapitulate all aspects of pediatric CM 
but is a crucial tool in unravelling the most important mechanisms that lead to fatal path-
ogenesis. Endothelial cells are only one player in the neurovascular unit that also includes 
mural cells (pericytes), astrocytes and microglia[276]. It is hard to discount the potential 
role of these accessory cells in disassembly of inter-endothelial junction proteins in CM 
given that astrocytes and microglia are both activated in ECM [277-279] and the known 
role they play in regulation of BBB integrity. Indeed, molecules secreted from these cells 
upon activation can be measured in the cerebral spinal fluid of children with CM [280] 
and pediatric autopsy samples demonstrate activation of microglia and astrocytes in fatal 
CM [281]. The mechanisms by which these accessory cells become activated, and the 
mechanisms which control endothelial cell junction protein modulation in CM, remain to 
be discovered. Given the difficulty in studying these cells, it is likely that the ECM model 
will be instrumental in disentangling the cellular and molecular basis of endothelial cell 
junction disassembly. In addition, the ECM model is likely to be important in the identi-
fication of possible avenues for therapeutic targeting, such as possible IL33 administration 
to induce anti-inflammatory cytokine expression and the expansion of anti-inflammatory 
macrophage and regulatory T cell populations [282]  or IL-15 complex treatment to pro-
tect BBB leak by expanding a population of IL-10 producing NK cells [283].  

6.3. Mechanisms of malaria-associated acute lung injury (MA-ALI) in malaria-associated acute 
respiratory distress syndrome (MA-ARDS)  

Pulmonary complications arising from Plasmodium infection can occur with all spe-
cies but in particular falciparum, vivax and knowlsei. This is a syndrome of severe malaria 
resulting in up to 40% mortality even with treatment [284]. Though more common in 
adults infected with vivax malaria, in children, MA-ARDS can often present along with 
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cerebral complications [285]. MA-ARDS is characterized by increased permeability of pul-
monary capillary endothelial cells and alveolar epithelial cells, with pulmonary edema 
(PE), hypoxia [284] and in some cases fibrosis [286-288]. Most data related to the patho-
genesis of MA-ARDS and MA-ALI comes from post-mortem studies of lung tissue from 
adult fatalities of Plasmodium infection showing apoptosis of alveolar cells [289]. However, 
the immunological mechanisms underlying MA-ARDS and MA-ALI in Plasmodium pa-
tients is relatively understudied and poorly understood. 

Pulmonary vascular activation is thought to arise in response to the sequestration of 
iRBCs resulting in inflammation in the lung microvasculature [289, 290] characterized by 
expression of TNF-α [285], von Willebrand factor (VWF) and angiopoietin-2 (ANG2) 
[291].  However, sequestration of iRBCs is likely to occur via a different suite of adhesion 
molecules upregulated on the pulmonary vasculature compared with the BBB. For exam-
ple, EPCR expression which is a key molecule mediating adhesion of iRBCs on brain mi-
crovascular endothelial cells [292] has been found to be significantly down-regulated on 
pulmonary vasculature endothelial cells in those who have succumbed to MA-ARDS [285] 
compared with those dying of other malaria-related syndromes.  

Although some studies employ the P. berghei ANKA strain used to study ECM by 
virtue of the fact this strain sequesters in the lung [293, 294] and the ultrastructure of the 
infected lung looks similar to postmortem samples from victims of MA-ARDS [295], MA-
ARDS and MA-ALI are more commonly studied using infections with the NK65 strain of 
P. berghei  [204]. The advantages of the P. berghei NK65 models are that they do not appear 
to result in neurological manifestations of infection and have higher ARDS clinical scores, 
than P. berghei ANKA infection [204]. Parasites accumulate in the lung vasculature, with 
an increase in VWF expression as also found in human Plasmodium infections. There are 
two primary strains of P. berghei NK65 used for studies in the pathogenesis of MA-ARDS 
and MA-ALI: the Edinburgh strain (P. berghei NK65E) and the New York strain (P. berghei 
NK65NY). Possibly due to slower growth of iRBCs due to the predilection of P. berghei 
NK65NY to infect reticulocytes, the P. berghei NK65NY does not recapitulate MA-ARDS 
despite sequestering in the lung tissue. However the Edinburgh Strain results in rapid 
death of C57BL/6 mice from days 6-10 post-infection and recapitulates features of MA-
ARDS seen in humans such as extensive neutrophil infiltration, an increase in pulmonary 
VWF expression[296] and an increase in protein concentration in lungs [204]. P. berghei-
NK65E has been used to demonstrate the critical role of VWF in alveolar leakage[296]. 

In mice, MA-ARDS and ALI appear to have similarities regarding the underlying 
pathogenesis of ECM.  Studies on MA-ARDS / ALI using P. berghei ANKA infections 
have demonstrated that IFN-γ, upregulation of chemokines[297] and functioning CD8 T 
cells are all necessary for lung sequestration of iRBCs and pulmonary edema[298]. In ad-
dition, pulmonary vascular leak and BBB breakdown are dependent on the presence of 
platelets[299]. Unlike the BBB where molecules such as ICAM-1 and EPCR have been 
shown to play a key role, sequestration in the lung appears to be more dependent on the 
scavenger receptor CD36[236]. There also appears to be differences in the importance of  
myeloid cells with infiltration of neutrophils[300] and monocytes[301] to the lung which, 
at least for monocytes, appear to play a key role in controlling iRBC numbers. 

The suite of P. berghei strains available to study this syndrome of malaria will be of 
some help in the interpretation of pulmonary autopsy samples from patients who have 
died of MA-ARDS and MA-ALI, a necessary endeavor given the lack of other tractable 
options to study this in Plasmodium-infected humans. 

7. Conclusion 
In summary this review has highlighted the utility of the rodent models of Plasmo-

dium infection with regards to understanding the immunology of blood stage malaria. 
Several models exist although none completely recapitulate all aspects of malaria. How-
ever, this reflects the heterogeneity of this disease. Choosing the correct model to investi-
gate specific aspects of this disease is essential in order to be able to extrapolate to human 
Plasmodium infections. There is still a plethora of key outstanding questions that remain 
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in the field of blood stage immunology of malaria. With the advent of genetically modified 
rodent Plasmodium strains and an ever-increasing catalog of genetically modified mouse 
strains available, the interpretation of how immune responses shape parasite dynamics 
and immunopathogenesis of infection will allow discoveries to be made with increasing 
precision. In turn this will be instrumental in the rational design of novel immunologi-
cally-based therapeutic strategies that are badly needed in the fight against this disease.  
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