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Abstract: The enormous increase in the volume of Earth Observations (EOs) has provided the 1

scientific community with unprecedented temporal, spatial, and spectral information. However, 2

this increase in the volume of EOs has not yet resulted in proportional progress with our ability to 3

forecast agricultural systems.This study examines the applicability of EOs obtained from Sentinel2 4

and Landsat8 for constraining the APSIM-Maize model parameters. We leveraged leaf area index 5

(LAI) retrieved from Sentinel2 and Landsat8 NDVI to constrain a series of APSIM-Maize model 6

parameters in three different Bayesian multi-criteria optimization frameworks across 13 different 7

sites across the U.S Midwest. A time variant sensitivity analysis was performed to identify the most 8

influential parameters driving the LAI estimates in APSIM-Maize model. Then surrogate models were 9

develop using random samples taken from the parameter space using Latin hypercube sampling to 10

emulate APSIM’s behavior in simulating NDVI and LAI at all sites. Site-level, global and hierarchical 11

Bayesian optimization models were then developed using the site-level emulators to simultaneously 12

constrain all parameters and estimate the site to site variability in crop parameters. For within sample 13

predictions, site-level optimization showed the largest predictive uncertainty around LAI and crop 14

yield, whereas the global optimization showed the most constraint predictions for these variables. 15

Lowest RMSE for within sample yield prediction was found for hierarchical optimization scheme 16

(1423 Kg ha−1) while the largest RMSE was found for site-level (1494 Kg ha−1). In out-of-sample 17

predictions within the spatio-temporal extent of the training sites, global optimization showed lower 18

RMSE (1627 Kg ha−1) compared to the hierarchical approach (1822 Kg ha−1) across 90 independent 19

sites in the U.S Midwest. On comparison between these two optimization schemes across another 242 20

independent sites outside the spatio-temporal extent of the training sites, global optimization also 21

showed substantially lower RMSE (1554 Kg ha−1) as compared to the hierarchical approach (2532 Kg 22

ha−1). Overall, EOs demonstrated their real use case for constraining process-based crop models and 23

showed comparable results to model calibration exercises using only field measurements. 24

Keywords: yield prediction; APSIM; optimization; Bayesian; hierarchical; emulation 25

1. Introduction 26

Data ingestion and data integration are grand challenges of today’s age of digital 27

agriculture. The enormous volume of data produced by all phases of agriculture, such 28

as field observations, satellite imagery, flux towers or soil/plant sensors, has enabled 29

data-driven decision making for improving agricultural productivity [1–3]. However, the 30

inherently fragmented nature of observational data due to variable temporal and/or spatial 31

resolution has made the integration of these data products challenging and often impractical 32

[4]. As a result, previous multidimensional assessments of agricultural productivity and 33

environmental impacts have often fallen short of data-measured potential. To perform 34

multidimensional studies across broads regions, agricultural researchers are increasingly 35

turning to process-based simulation models [5,6], such as the APSIM [7] or DSSAT [8] 36
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models. These models integrate state-of-the-art knowledge on a multitude of soil and 37

crop processes to enable analyses of higher dimensionality than what is possible with 38

field experiments. These pioneering models are at the core of many recent forecasting and 39

climate impact assessment efforts around the world [9–11]. However, due to the large 40

number of uncertain parameters within these models, their predictive capacity is limited in 41

accuracy, precision, or both for real-world applications [12,13]. 42

Although constraining parameters in nonlinear models is a common task across many 43

different disciplines, optimizing and constraining process-based crop model parameters is 44

a particularly challenging task for several reasons [14]. First, process-based crop models are 45

computationally expensive, and it is often impractical to optimize them using "big data" 46

that spans a large number of sites and/or years [15]. As a result, crop model calibration 47

exercises are typically limited to a single site or single data constraint, an approach that 48

is in direct contrast to the diverse range of available observations produced by all phases 49

of agriculture [13]. Second, the observational data used for calibrating crop models often 50

have substantial associated uncertainty due to low sample size. Since most numerical 51

optimization techniques lack mechanisms to account for uncertainty in observational data, 52

their application can potentially lead to wrongly over-confident model predictions. Third, 53

it is unclear how observational data from multiple sites and years can be simultaneously 54

ingested. The most common approach is to independently calibrate crop models at different 55

sites (known as site-level calibration); however, this approach assumes that all sites are 56

completely independent and ignores the potential of across-site information. Consequently, 57

site-level calibration offers limited potential for upscaling model simulations to new sites 58

and across broad regions [15,16]. On the other hand, global optimization (known as 59

joint calibration) assumes no site-to-site variability and pools all observations to identify a 60

combination of parameters that minimizes model prediction error at all sites simultaneously. 61

Past studies have shown that both approaches have trouble estimating the "true" uncertainty 62

in model parameters and offer no formal distinction between "within-sample" prediction 63

and "out-of-sample" prediction [17]. In addition, these approaches provide no clear path to 64

capturing spatiotemporal variability in model parameters. Lastly, process-based models 65

are calibrated with a limited number of observations that often pales in comparison to the 66

potential list of parameters impacting the simulated results. This often results in equifinality, 67

such that calibration does not lead to unique parameter values and different combinations 68

of parameter values can give the same results [14]. Due to the above-mentioned reasons, 69

most model calibration studies lack proper constraint and accounting of uncertainty in 70

model parameters and, therefore, produce models that perform well only in a subspace of 71

the G x E x M inference space and, consequently, have limited generalizability for broader 72

application. 73

Earth Observations (EOs) with their extensive temporal and spatial coverage have 74

provided the scientific community with a unique opportunity to monitor and map plant 75

status [18]. Radiative Transfer Models (RTM) have enabled retrieval of biophysical and 76

biochemical plant traits from EOs through both passive and active measurements [19, 77

20]. These estimates are spatially contiguous and temporally frequent and they offer a 78

substantially larger sample size compared to field measurements [21]. Consistent and 79

long-term plant traits obtained from EOs could potentially inform process-based models, 80

constraining multiple state variables, such as LAI, plant N concentration, and plant biomass, 81

and/or model parameters, such as thermal times for phenological stages. Thus, EOs could 82

help to overcome the spatiotemporal limitations of field experiment data and could serve 83

as a powerful resource for multi-criteria crop model calibration across broad regions [21]. 84

However to leverage EOs, novel and flexible methods are needed that allow for streamlining 85

data extraction, ingestion, and integration into crop models with the goal of constraining 86

model parameters and state variables. 87

As one of the most widely used process-based crop models, APSIM model has been 88

calibrated using a variety of different optimization techniques and observational data 89

types for simulating maize across the U.S Midwest [22–25]. These studies have often 90
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achieved high yet inconsistent prediction accuracy in estimating maize grain yields. For 91

instance, [26] tested the APSIM model with 12 years of experimental data covering maize- 92

maize and maize-soybean rotations in IA. APSIM captured changes in maize yield due to 93

nitrogen fertilizer treatments but still made large prediction errors in a few site-years. The 94

authors attributed such errors to missing crop damage processes (i.e., hail), missing spatial 95

information (i.e., elevation), and an overly simple N-uptake routine, which emphasized 96

N stress at floral initiation. [27] also calibrated and tested APSIM at several maize sites in 97

IA and found the model to be highly accurate, explaining 87% of the variability in maize 98

yields and achieving an nRMSE value of 7.7%. However, the authors also highlighted the 99

fact that their calibration and validation datasets originated from a similar study area and, 100

consequently, experienced the same weather patterns. Consequently, their calibrated model 101

was tested under limited environmental conditions. [24] calibrated APSIM for 6 years of 102

experimental data covering maize-maize, maize-soybean, and winter cover crop rotations 103

in IA to investigate crop water use efficiency. When performing two-year simulations, they 104

found the model was successful in predicting yield for the maize-maize rotations with an 105

RMSE of 723 kg/ha. [28] calibrated the APSIM model for 16 site-years in the U.S. Midwest 106

that spanned different rotations and fertilizer rates. They found the calibrated model to 107

perform better when N fertilizers were applied since the model only had to rely on correct 108

water limitation simulation. Moreover, [29] used default APSIM settings to test the model 109

in predicting maize stover and grain yield at three locations. Against 113 observations, 110

APSIM achieved an RMSE of 1241 kg/ha (nRMSE 14%) for maize grain yield estimates, 111

and the authors also noted improved simulation with increased N fertilizer rates (i.e., lower 112

N stress conditions). 113

Although the APSIM model has been calibrated and validated extensively using field 114

observations, the unprecedented data coverage provided by EOs has never been leveraged 115

to our knowledge to optimize APSIM and broaden its successful application. In this study, 116

we present a mathematical framework that constrains APSIM model parameters with EOs 117

for maize simulations in the U.S. Midwest using emulation and three Bayesian optimization 118

schemes: global, individual, and hierarchical. The overall objectives of the current study 119

are: 1) to assess the potential of EOs for improving maize yield prediction using the 120

APSIM model; and 2) compare different optimization techniques with varying degree of 121

information sharing across sites in their maize yield prediction in the U.S Midwest. 122

2. Materials and Methods 123

2.1. Overall workflow 124

This study explores the effectiveness of incorporating EOs into the APSIM crop model 125

through different optimization schemes to constrain and improve maize yield prediction. 126

First, a comprehensive global sensitivity analysis (GSA) was performed to identify the most 127

influential parameters controlling LAI estimation in APSIM. Next, the APSIM model was 128

run across a series of random parameter samples drawn from the influential parameter 129

space at 13 calibration sites. Based on these runs, surrogate models (emulators) were 130

developed using Generalized Additive Models (GAMs) to replace APSIM with more 131

efficient statistical models. These GAMS were trained on the APSIM output to estimate LAI 132

and NDVI at each site as a function of influential parameters. LAI estimates from Sentinel2 133

and NDVI estimates from Landsat8 were then used to constrain the APSIM parameters 134

using the fitted site-level emulators within a Bayesian optimization framework. Finally, the 135

information contribution of the LAI and NDVI observations was assessed in simulating 136

maize yield across different optimization schemes and 332 sites in the U.S. Midwest. 137

2.2. Study sites 138

The study area for this modeling experiment extends over the Midwest region of the 139

U.S., including sites in Iowa, Illinois, Missouri, Indiana, Michigan, Ohio, and Kentucky. 140

The region was chosen because of its relative importance in global and domestic maize 141

production [30]. Across the study area, maize was planted on an average of 16.5 ± 0.2 142
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Figure 1. 2 Figures side by side

million ha from 2014-2019 [31]. To perform APSIM simulations at a series of randomly 143

selected locations, site-level information was acquired from the publicly available maize 144

yield dataset maintained by Beck’s Hybrids (https://www.beckshybrids.com/Research/ 145

Yield-Data). The dataset included information on management operations (i.e., planting 146

date, harvesting date, plant population, row spacing, and previous crop planted for residue 147

type), soil, and weather for 332 locations from 2014 to 2019 (Figure 2(a)). Information on 148

soil texture and soil organic carbon (SOC) across the study sites is presented in Figure 149

2(b). Each location consisted of a field varying in size from 0.3-0.5 km2. Multiple hybrids 150

were grown simultaneously, and as a consequence of the within hybrid variability, average 151

maize yield was used as representative of the location as elaborated in [32]. 152

(a) label 1 (b) label 2

Figure 2. Location of the sites and the distribution of soil properties for all sites

2.3. Data collection 153

2.3.1. Weather and soil 154

All the simulations conducted in this study, including those used in the sensitivity 155

analysis, emulator development, and final yield validation, were performed by leveraging 156
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the uncertainty propagation workflow detailed in [12]. A Monte-Carlo sampling approach 157

was used to propagate uncertainties in soil properties, meteorological variables, and un- 158

known management practices. To propagate uncertainty in soil properties, 25 different 159

representations (ensembles) of the soil profile were sampled for each site using the mean 160

and uncertainty values retrieved from the SoilGrids dataset [33]. 10 ensemble members 161

from the ERA5 reanalysis data product [34], which provides weather information at a 162

0.25 degree spatial resolution, were employed to propagate uncertainty in meteorological 163

forcing. 164

2.3.2. LAI retrieval and data processing 165

Sentinel2 and Landsat8 were used in this study to provide observations of Leaf Area 166

Index (LAI) and NDVI, respectively, for the calibration sites. The forward model used for 167

the LAI retrieval is a canopy radiative transfer model PROSAIL [35], which takes inputs 168

of bio-physical parameters, defining the state of canopy structure, leaf structure and leaf 169

pigments (Table A2), and soil background, generating canopy level reflectance spanning 170

400-2500 nm. In order to cover a wide variety soil conditions for different land surface, the 171

soil reflectance model in the original PROSAIL model is replace with one derived from 172

wider samples. A spectral library of more than 6000 soil samples from public available soil 173

databases (Table A1) is used to derive a soil model Eq. 1 based on principle components 174

analysis (PCA): 175

R̂soil = Rsoil +
4

∑
i=1

PCi × Wi (1)

where R̂soil is the simulated soil reflectance, Rsoil is the mean value of soil reflectance
from the spectral library, PCi is the ith component of the PCA analysis and Wi is the weight
for the ith component. To simulate different soil spectra with the proposed soil model,
weights for each component are randomly sampled within the bounds of PCs’ weights
from the original soil spectral library. Then the forward model PROSAIL M is used to
simulate the surface reflectance R with the inputs of Xcanopy and R̂soil can be expressed as:

r = M(Xcanopy, R̂soil) (2)

Using inverse emulators Neural Networks (NNs) W, the mapping from the top of 176

canopy (TOC) reflectance r to canopy state parametersxcanopy is described as: 177

xcanopy = W(r) (3)

Bounds for xcanpy,shown in Table A2, are used to generate samples from the PROSAIL 178

model with uniform distributions. 179

The practical processes are described as: 180

1. Randomly sampled 400,000 combinations of PROSAIL input parameters with bounds 181

shown in Table A2 and weights for the soil model. 182

2. Using PROSAIL to compute top of canopy reflectance with the randomly sampled 183

inputs and the simulated soil background 184

3. The simulated reflectance is convolved with the S2 relative spectral response functions 185

to simulate surface reflectance at different bands 1
186

4. Train NN for LAI by using the simulated reflectance over S2 bands as inputs 187

5. The trained NN is then used to map from satellite surface reflectance to LAI 188

After retrieving LAI and calculating NDVI, a double logistic model was fit to each time 189

series to remove noisy observations. NDVI values of below 0.5 was not used for further 190

model optimization, because surface reflectance signal is dominated by background soil 191

1 B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12
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reflectance compared to canopy reflectance early in the growing season resulting in often 192

unreliable retrieval of plant traits. 193

2.3.3. Crop growth model 194

The APSIM model (version 7.10) was employed and constrained in this study. As 195

one of the most widely used crop modeling platforms, APSIM uses meteorological forcing 196

and detailed soil information to simulate soil water, soil carbon (C), and soil nitrogen (N) 197

dynamics at a daily time step and to generate predictions of crop growth and development. 198

APSIM has been extensively tested and validated across the U.S. Midwest and has been 199

used for exploring new management practices [22], as well as crop yield prediction at both 200

the regional [12,36] and farm scale [10,37]. 201

The Maize module in APSIM simulates the growth and development of a maize 202

crop in response to climate, soil water, and soil N [7,38]. Leaf area development in the 203

maize module is estimated based on total leaf number and leaf area [39]. Furthermore, the 204

maize module allows for thermal time accumulation between 0 to 10 C, providing a more 205

accurate simulation of maize phenology in cool environments [40]. Estimating daily leaf 206

area development in the maize module begins by calculating the potential increase in leaf 207

area from new leaves which is driven by thermal time and leaf size [41]. The potential 208

leaf area is then limited by the biomass accumulation (carbon supply) and the number 209

of expanded leaves [39]. Therefore, the accuracy of LAI predictions in the Maize module 210

is dependent on both the accurate simulation of phenology as well as the crop specific 211

parameters controlling leaf size, leaf appearance rate, and biomass partitioning. 212

To estimate canopy reflectance from APSIM outputs, this study coupled APSIM with 213

PROSAIL (version. 5B) (a Radiative Transfer Model) through the APSIM C# Manager 214

module. The PROSAIL model integrates the PROSPECT leaf optical properties model and 215

the SAIL canopy bidirectional reflectance model to effectively simulate the crop canopy 216

reflectance as a function of leaf biochemical traits, canopy architecture, soil background, 217

and sensor geometry [35]. At the end of each day and for each ensemble member, APSIM 218

passes a series of soil and plant state variables to the PROSAIL model to compute spectral 219

reflectance. The reflectance profile simulated by the PROSAIL model was then used to 220

estimate APSIM NDVI for each site, which was then compared to site-level Landsat8 NDVI 221

estimates. Site-level LAI estimates from Sentinel2 were directly compared with APSIM LAI 222

predictions. 223

This study closely followed the coupling procedure detailed in [42]. In addition to LAI, 224

which was directly passed to the PROSAIL model from APSIM, the remaining PROSAIL 225

inputs were estimated as follows : 226

N =
0.025 + 0.9 × SLA

SLA − 0.1
(4)

ρsoil = 1 − SWC
SAT

(5)

Cm =
1

SLA
(6)

Cab = (DM × NP − 0.2057)× 40[
µg

cm2 ] (7)

Car =
Cab
4.11

[
µg

cm2 ] (8)

where SLA is the specific leaf area per dry weight ( cm2
mg ), ρsoil is soil wetness/dryness factor, 227

SWC is the actual soil water ( mm3
mm3 ), SAT is the soil water at saturation ( mm3

mm3 ), DM is the dry 228

matter ( g
m2 ) and NP is the percentage of green leaf nitrogen (%). The other 9 parameters 229

within the PROSAIL model were either directly extracted from the EO images or set using 230
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the same default values as given in Table 2 of [42]. These parameters are mainly related to 231

the viewing geometry of sensor, crop type, and day of the year. The viewing parameters 232

(hotspot, solar zenith angle, Observer solar angle, azimuth) were extracted directly from 233

the image properties, while other biophysical parameters (Cbrown, Cw, leaf Angle) were 234

set according to the values provided by [43], [42] and [44]. 235

2.4. Model and parameter selection 236

A global sensitivity analysis (GSA) was performed prior to model calibration on 14 237

Maize module parameters across 13 training sites. Parameters were selected which control, 238

to some extent, the estimation of LAI in the model. GSA is usually performed to reduce 239

the dimensionality of crop model calibration techniques by identifying the most influential 240

model parameters for a particular model output. In this study, the candidate parameters 241

influencing LAI were chosen based on [39], which laid the foundation for LAI estimation in 242

the APSIM Maize module. A time-variant, ANOVA-based GSA was employed to identify 243

parameters that explained the largest variation in LAI during the growing season across 244

the 13 sites. 245

Prior to GSA, a power analysis was performed to determine the minimum sample 246

size required for detecting an effect size as small as 0.01 with α = 0.05. Our power analysis 247

showed that, with 2500 simulations, our ANOVA-based GSA would be able to detect effects 248

as small as 0.01 with more than 95 % power (β) for 4 model parameters. 249

For the GSA, a total of 2500 simulations were executed for each site using random 250

samples taken from the candidate parameter space. Then, a linear model was fit to predict 251

simulated LAI as a function of the sampled parameters at 30 different time steps during 252

the growing season in 2018 and 2019. The contribution of each parameter was calculated as 253

the proportion of variability in LAI estimates that it explained at each time step. The total 254

sensitivity of each parameter was estimated as the Sums of Square (SSQ) ratio following 255

[18,22] 256

Main effect sensitivity indices : S1 =
SSQ1

SSQT
; S2 =

SSQ2

SSQT

Interaction sensitivity indices : S1 =
SSQ12

SSQT

Total sensitivity indices : S1 =
SSQ1 + SSQ12

SSQT
; S2 =

SSQ2 + SSQ12

SSQT

(9)

2.5. Emulator development 257

Given that most optimization techniques require frequent evaluation of the process 258

model, most prior stochastic Bayesian optimization studies have focused on simple crop 259

models, as applying such techniques with slow process-based models would impose a com- 260

putational burden. To overcome this limitation, this study leveraged more computationally 261

efficient surrogate models (emulators) instead of the full APSIM model when performing 262

optimization. Emulators are statistical models that are faster to run and can replicate the 263

behaviour of the full model within a constrained parameter space [45]. 264

To develop the the site-level emulators for optimization, we used a Latin hyper cube 265

sampling method to generate 250 samples for the most sensitive parameters found in the 266

GSA under broad, non-informative priors. Then, for each sampled point in the parameter 267

space, APSIM was run with 50 ensembles (accounting for the uncertainty in soil and 268

weather data) at each site to generate LAI estimates. Average APSIM estimates of LAI 269

were computed for each sampling point at each site and used as the response variable in 270

emulator development. Emulators were developed using Generalized Additive Models 271

(GAM) as follows: 272

LAI ∼ f (P1, P2, ..., PN |t) (10)
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where t represents time and Pi represents the ith most sensitive parameter. The emulators 273

were fitted independently at each site and predict an LAI time series at days with available 274

observations as a function of the most sensitive parameters. 275

2.6. Optimization schemes 276

This study explores three different Bayesian optimization schemes with each scheme 277

varying in the degree to which observations are shared across different sites. The site-level 278

optimization scheme assumes full independence between observations collected at different 279

sites, while the global (joint) optimization scheme shares all observations across all sites and 280

attempts to find a set of optimum parameters that maximizes the likelihood of observing 281

observations across all sites simultaneously (Fig 3). These two optimizations schemes 282

are widely used for constraining process-based ecological and crop growth models [22]. 283

However, it has been demonstrated that the full independence assumption in site-level 284

optimization limits the extent to which results can be up-scaled or applied to new sites 285

[17]. Prediction at new sites will be unreliable and overconfident. In addition, neither 286

scheme offers a solution for quantifying or propagating spatiotemporal variability in model 287

parameters [17]. 288

Figure 3. Spectrum of different optimization schemes explored in this study adopted from [46]

Alternatively, a hierarchical optimization scheme (HPDA; Fig 3) allows for sharing 289

information across sites and attempts to capture site-to-site variability in model parameters 290

by estimating a series of site effects. The unexplained variability captured in site effects 291

can help to reveal missing processes in the process model and to account for systematic 292

biases in model inputs and/or parameters. This scheme estimates a global mean, as well as 293

site-level means which vary around the global mean by an estimated random site effect. 294

By estimating site effect variance in HPDA, we quantify the portion of total variability in 295

model parameters which can be attributed to variability between sites. 296

To compare the site-to-site variability among parameters, the standard deviation 297

estimated for site effects was used with the HPDA joint mean estimate for each parameter 298

to calculate a unit-less coefficient of variation. All statistical models for the optimization 299

schemes (Table 1) were fit using the NIMBLE package in R [47]. Consistent uniform 300

priors were selected for all parameters across all optimization schemes to ensure objective 301

estimates of parameter posteriors. 302

We assessed the information contribution of NDVI for constraining model parameters 303

by performing two HPDA optimizations: one with both data constraints and one with only 304

LAI as a data constraint. The shrinkage in prediction uncertainty associated with LAI and 305

NDVI constraints was then estimated as the ratio of the coefficients of variation for the two 306

HPDA optimizations (i.e., both:LAI only). When this ratio is less than one, it represents a 307
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larger shrinkage of prediction uncertainty with both data constraints, while a value greater 308

than one indicates LAI alone led to greater shrinkage. 309

Table 1. Model definition for different optimization schemes explored in this study. Across all
schemes, µ represents the vector of model parameters, k represents observations or parameters for
site k, Y represents LAI and NDVI observations, and f represents the emulator.

Optimization scheme Model definition Hyperprior

Site-level

µk ∼ N(µ0, τ)

YLAI
k ∼ N( fLAI(µk), σLAI)

YNDVI
k ∼ N( fNDVI(µk), σNDVI)

µ0

Hierarchical/HPDA

µ ∼ N(µ0, τ)

αk ∼ N(0, τα)

µk = µ + αk

YLAI
k ∼ N( fLAI(µk), σLAI)

YNDVI
k ∼ N( fNDVI(µk), σNDVI)

µ0, τα

Global/Joint

µ ∼ N(µ0, τ)

YLAI
k ∼ N( fLAI(µ), σLAI)

YNDVI
k ∼ N( fNDVI(µ), σNDVI)

µ0

3. Results 310

3.1. Sensitivity analysis and emulator performance 311

The 14 parameters included in the GSA were those within APSIM that control leaf 312

appearance (e.g., leaf_init_rate, leaf_app_rate1), growth (e.g., largestLeafParams1), and 313

development (e.g., tt_emergence_to_endjuv). The time-varying GSA demonstrated the 314

dynamic contribution of all 14 parameters in explaining LAI variation across all sites for 315

2018 and 2019 (Fig 4). Similar patterns were found across both years and all sites, where the 316

14 included parameters accounted for ≈ 80% of the variation in LAI between early June until 317

early September. However, the predictive power of the selected parameters diminished 318

from early September until early November, at which these parameters explained only 319

≈ 10% of the variability. After this initial set of parameters loses its predictive power 320

in early September, the residuals - which describe the contribution of all other factors to 321

LAI variability - keep increasing till the end of October. We speculate that parameters 322

controlling leaf senescence would make up much of the residual contribution towards the 323

end of growing season. 324
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Figure 4. Average sensitivity index for maize LAI across 14 model parameters in APSIM over all sites
for 2018 and 2019

Of the 14 parameters included in the GSA, the largestLeafParams1 and the thermal 325

time from emergence to the end of the juvenile stage (tt_emergence_to_endjuv) were the 326

most influential parameters, together explaining ≈ 40% of the LAI variability at their 327

peak contribution. In addition, leaf_init_rate and leaf_app_rate1 together explained a 328

maximum ≈ 20-25% of the LAI variability. Therefore, we selected these four parameters 329

for emulator development and optimization in this study as they are the most influential 330

parameters for LAI estimation in the APSIM Maize module. Following [39], APSIM uses 331

a nonlinear continuous equation to estimate the total leaf area as a function of the leaf 332

number (determined by growing degree days and leaf appearance rate) and the area of 333

the largest leaf, where maximum leaf area is limited to 1000 cm2 per plant. Looking at our 334

most influential parameters, largestLeafParams1 helps determine the largest potential leaf 335

area, while leaf_init_rate and leaf_app_rate1 help to control the total leaf number. Further 336

constraint of the largestLeafParams1 parameter was especially warranted as the original 337

model proposed by [39] was developed with a relatively small sample size (n = 18). 338

Figure 5. Comparison between estimates generated by the emulator and APSIM model in simulating
LAI and NDVI across calibration sites.

To assess the predictive power of the emulators, APSIM estimates of NDVI and LAI 339

were compared against emulator estimates (Fig 5). Both the LAI and NDVI emulators 340

showed strong predictive capacity with R2 of 0.95 for LAI and 0.90 for NDVI, demonstrating 341

their ability to replicate APSIM behavior given the most influential parameters found in 342
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the GSA (Fig 5). We speculate the variability around the 1:1 line for both LAI and NDVI 343

predictions stems from the uncertainty propagated in APSIM simulations (Fig 5). This 344

uncertainty can be associated with soil properties, meteorological forcing, and management 345

practices. 346

3.2. Within sample prediction 347

Emulators showed sufficient flexibility in replicating the dynamic behavior of LAI 348

and NDVI throughout the growing season across all sites when given the most sensitive 349

parameters (Fig 6). Across all sites, site-level optimization showed the largest predictive 350

uncertainty around LAI and NDVI estimates, whereas global optimization demonstrated 351

the most constrained predictions. This behaviour was expected as it closely relates to 352

how each statistical model (Table 1) shares information across sites and, consequently, the 353

number of observations available to each model for "learning" LAI and NDVI patterns. 354

With site-level optimization, only observations available at each site are used to 355

estimate the model parameters. As a result, we found greater constraint of LAI and 356

NDVI predictions for sites with a higher number of observations (e.g., site 80866, 94099 357

and 93889) compared to sites with larger data gaps (e.g., site 79575) (Fig 6). With global 358

optimization, all observations across all sites are used simultaneously for estimating model 359

parameters. Global optimization ignores the structure in the data and provides mean 360

parameter estimates that maximize the likelihood of all observations when using all site 361

emulators simultaneously. This increases the total number of observations available for 362

estimating model parameters compared to the site-level approach. HPDA, on the other 363

hand, attempts to capture the site-to-site variability by adding random effects for each site, 364

while still leveraging all available observations. Site effects in HPDA account for another 365

layer of uncertainty around the global mean estimate for each parameter and naturally 366

resulting in more uncertain LAI and NDVI predictions compared to global optimization 367

(Fig 6. 368
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Figure 6. 95 % confidence interval for LAI prediction made by the emulator across all the sites using
the optimized parameters obtained from different optimization schemes

All optimization schemes showed similar d-index values in LAI prediction across 369

all months and sites (Table 2), though global optimization showed a marginally lower d- 370

index, on average, when compared to the site-level and HPDA schemes. A similar pattern 371

was found for RMSE such that the site-level and HPDA schemes showed lower RMSE 372

than the global optimization. However, it was found that the site-level scheme largely 373

underestimates LAI compared to the global and HPDA optimizations with ME of -0.16 374

kg/ha compared to -0.08 and -0.07 kg/ha for global and HPDA optimization schemes, 375

respectively. 376

Table 2. Performance of different optimization techniques across different months for LAI

Month Site-level Global HPDA
d-index RMSE( Kg

ha ) ME( Kg
ha ) d-index RMSE(Kgha) ME( Kg

ha ) d-index RMSE( Kg
ha ) ME( Kg

ha )
May 0.48 0.52 -0.43 0.48 0.51 -0.32 0.49 0.51 -0.42
June 0.96 0.51 -0.24 0.95 0.58 -0.17 0.97 0.46 -0.1
July 0.91 0.52 0.07 0.84 0.75 -0.02 0.91 0.55 0.19
Aug 0.94 0.53 -0.03 0.92 0.65 0.02 0.93 0.58 0.04
Sep 0.96 0.44 -0.18 0.92 0.69 0.07 0.95 0.53 -0.1

Average 0.85 0.5 -0.16 0.82 0.63 -0.08 0.85 0.52 -0.07

To assess the contribution of NDVI observations in shrinking LAI prediction un- 377

certainty within the HPDA scheme, the prediction CV under both data constraints was 378

compared with that under only LAI constraint using a ratio. Shrinkage in model uncer- 379

tainty with added NDVI constraint was dependent on site (or possibly data quality at each 380

site) and month of the year. The largest reduction in LAI uncertainty after adding NDVI 381

was found in May, August, and September, and the largest reduction in NDVI uncertainty 382

was found in May and August (Fig A2). 383
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Figure 7. 95 % CI for with-in sample yield comparison between different optimization schemes

Including NDVI in the HPDA optimization resulted in more constrained estimates of 384

largestleafParam1 and shifted the mean site-level estimates of tt_emergence_to_endjuv up 385

(Fig A5). In addition, both scenarios resulted in a similar mean σLAI suggesting a minimal 386

contribution of NDVI in closing the gap between model estimates and observations. All 387

optimization schemes performed similarly for within-sample yield prediction, with RMSE 388

values ranging from 1423 ( Kg
ha ) for HPDA to 1494 ( Kg

ha ) for site-level optimization. HPDA 389

showed the highest d-index (0.9), whereas global optimization showed the lowest d-index 390

of 0.85. Among all optimization schemes, the global scheme showed the lowest mean 391

error (ME) of -282 ( Kg
ha ), whereas HPDA showed the largest ME of -780 ( Kg

ha ). Furthermore, 392

as expected global optimization showed the lowest median CV for both years in with-in 393

sample yield prediction followed by HPDA and then the site-level scheme (Fig A1). 394

3.3. Comparing posterior distributions 395

Though we set identical priors for each parameter across all optimization schemes (Fig 396

8), the most constrained posterior densities were found for tt_emergence_to_endjuv and 397

leaf_app_rate1 across all sites and optimization schemes. Global optimization offered the 398

most constrained set of posterior distributions for all parameters, whereas site-level opti- 399

mization estimated the least constrained set of posteriors and exhibited variable constraint 400

across different sites. 401
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Figure 8. (95 % Credible interval for different parameters and across different optimization schemes

Since the site-level and HPDA schemes are more reliant on the quality and quantity 402

of observations available at a given site, the degree to which they were able to constrain 403

model parameters varied significantly with site. In site-level optimization, the largest site- 404

to-site variability was found for tt_emergence_to_endjuv (CV = 9.5 %), while the lowest 405

variability was estimated for largestleafParam1 (CV = 5%). Similarly, the largest site-to-site 406

variability within the HPDA was found for leaf appearance rate with an average CV of 407

9% while tt_emergence_to_endjuv showed the least variability with a CV of 2 %. Greater 408

parameter constraint with the global optimization scheme (Fig 8) resulted in narrower 409

confidence intervals around LAI and NDVI predictions (Fig 6). Alternatively, prediction 410

intervals depend on σ in sites with greater mean estimates of σLAI and σNDVI often showed 411

larger prediction intervals. 412

In addition, no statistically significant relationship was found between variability in 413

model parameters and the quality of fit (σLAI and σNDVI). Sites with fewer observations 414

had substantially larger values of σ relative to those estimated with the global and HPDA 415

schemes. We found a statistically significant and lower value of σLAI for site 93937 which, 416

interestingly, demonstrated a trade-off with a higher value of σNDVI . 417

3.4. Out-of-sample prediction 418

The evaluation of the optimization schemes for predicting crop yield was carried out 419

at 325 sites independent of those used for optimization. Since site-level optimizations 420

cannot be generalized to new sites, this optimization scheme was dropped from evaluation. 421

The HPDA and global optimization schemes reported similar d-index values (0.55 for 422

Global and 0.51 for HDPA) for evaluation when averaged across all sites and years (Table 423

3). The global optimization, however, reported a lower RMSE for crop yield (1768 kg ha-1) 424

than HDPA (2296 kg ha-1) and, similarly, the ME for global optimization and HPDA was 425

estimated to be around -66 kg ha-1 and -939 kg ha-1, respectively when averaged across 426

all sites and years. The ME values from year to year showed that the HDPA optimization 427

systematically underpredicted crop yield at the evaluation sites. 428
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Figure 9. Density plot comparing yield estimates on out of sample sites (top row), and yield variability
(bottom row) for global and HPDA optimization

To assess whether there was a spatial pattern in the underestimation of crop yield, 429

we divided the sites into two different categories: ‘within’ the spatial extent of calibration 430

sites and ‘beyond’ the spatial extent of calibration sites. Following this approach, 242 sites 431

were classified as ’within’ and 90 sites were classified as ’beyond’ of the 332 sites evaluated 432

(Fig A4). When HPDA and global optimization schemes were compared only within the 433

temporal and spatial extent of the training sites (90 sites), both approaches showed robust 434

(less variable) and similar performance in maize yield prediction with RMSE values ranging 435

from 1.6 - 1.8 Mg/ha for global and HPDA predictions, respectively (Table 3). When HPDA 436

and global optimization predictions were compared for sites outside the spatiotemporal 437

extent of the training dataset (242 sites), global optimization performed substantially better 438

than HPDA with average RMSE of 1838 Mg/ha for global versus 2500 Mg/ha for HPDA 439

(Table 3). For these ’beyond’ predictions, lower precision in yield prediction was found 440

for HPDA on average whereas global optimization consistently showed lower uncertainty 441

compared to HPDA. This is mainly due to the fact that the HPDA global mean µk estimates 442

for parameters is inherently more uncertain. 443
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Table 3. Comparing model performance in simulation crop yield on out of sample sites for outside
(2014-2017) and within the (2018-2019) the spatiotemporal extent of training dataset

Year HPDA Global
d-index RMSE ( Kg

ha ) ME ( Kg
ha ) d-index RMSE ( Kg

ha ) ME ( Kg
ha )

2014 (n=61) 0.52 1731 -982 0.62 1260 -154
2015 (n=67) 0.47 2017 465 0.54 1878 994
2016 (n=50) 0.27 4061 -2670 0.35 2359 -861
2017 (n=64) 0.49 2322 -1428 0.49 1855 -715

Average 0.44 2532 -1153 0.50 1554 -184
2018 (n=51) 0.7 1822 -571 0.59 1625 -72
2019 (n=39) 0.66 1823 -448 0.71 1629 413

Average 0.68 1822 -509 0.65 1627 170

This study solely relied on EOs to calibrate and validate the APSIM model across an 444

unprecedented number of sites with large spatiotemporal variability, but the results of 445

model validation still showed similar performance to prior site-level APSIM calibrations 446

with field observations. For instance, [48] calibrated APSIM using 56 site-years of data from 447

8 field studies across six states in US Midwest for maize-maize rotation. They reported 448

grain yield RMSE at the site-level (not summarized) with values ranging from 1.35 - 2.97 449

Mg/ha. [23] calibrated APSIM using a time-dependent parameter estimation framework 450

to better capture maize yield variability due to changes in cultivar and management. 451

They parameterized 9 parameters for maize cultivar across the US Corn-Belt using three 452

different calibration methods and compared predictions to 9 machine learning models. 453

Their calibrated APSIM model showed RMSE values between 0.865-1.459 Mg/ha over the 5 454

sites for the time period between 1985-2018. [49] calibrated APSIM for seven experimental 455

sites in the Midwest (including sites in southern Minnesota, Iowa, Indiana, and Ohio). 456

After calibration, their model achieved an RMSE of 1.27 Mg/ha for maize yields. Lastly, 457

[25] compared two different formal (DREAM) and informal (GLUE) Bayesian optimization 458

approaches in calibrating APSIM maize model and reported RMSE ranging from 0.274 - 2.1 459

Mg/ha across 6 maize cultivar on the north China plain. 460

4. Discussion 461

Although direct measurements are not available for all optimized parameters, a recent 462

study by [50], explored the variability of leaf appearance rate across 98 sites for maize in 463

the U.S Midwest. Their results showed that the average first phase phyllochron for modern 464

maize hybrids in the U.S Midwest is 57.9 ± 7.5 (◦C − day). This aligns with the results of 465

this study, such that the mean estimates of this parameter was 64, 60 and 56 (◦C − day) 466

for the global, site-level, and HPDA schemes, respectively. In another study with manual 467

calibration, [27] found that leaf appearance occurs at a rate of 57 (◦C − day), a rate that is 468

significantly faster than APSIM maize’s default rate of 65 (◦C − day) in the U.S Corn Belt. 469

Similar to [46], who did not find any improvement in model accuracy using HPDA 470

over global optimization scheme on "out-of-sample" sites, we did not find any improvement 471

in maize yield prediction using HPDA. However, [46] suggested that the difference in 472

performance between HPDA and global optimization will increase in favor of HPDA as 473

the number of sites/parameters increases. In contrast to completely generic (global) or 474

completely site-specific (site-level) model parameters, HPDA offers an alternative solution 475

that allows under-sampled sites to borrow strength from sites with more data to achieve 476

better constraint in model predictions [51,52]. HPDA has the advantage of having a formal 477

distinction between prediction at known calibration sites and “out-of-sample" sites [46]. 478

When predictions are made for "within-sample" sites, site-level parameters (µk, Table 1) 479

can be used to make predictions, whereas the global mean (µ) estimated through HPDA is 480

used to make predictions on "out-of-sample" sites. Furthermore, when designing HPDA 481

optimization schemes, extra attention needs to be paid in deciding which parameters should 482

be random. By attempting to capture site-to-site variability, the total number of parameters 483

in our hierarchical model increases, which could be limiting in cases with low sample sizes. 484
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However, this is less of a concern for EOs given their extensive spatiotemporal coverage 485

and larger sample size compared to field experiments. Similar to [23] which accounted 486

only for the effect of year in APSIM model parameters, future works on HPDA also may 487

need to explore the impact of including a year effect in addition to the site effect to estimate 488

the full spatiotemporal variability in APSIM maize parameters. 489

Site-level model calibration showed variable performance in constraining LAI and 490

yield estimates, with performance operating as a function of data density across within- 491

sample sites. This points to the inherently limited nature of this calibration scheme for 492

application to broad regions. Moreover, this limitation in site-level calibration is even more 493

pronounced due to the "perfect model" assumption behind all calibration procedures. The 494

"perfect model" assumption ignores any structural error in process-based crop models, 495

assuming discrepancies between model estimates and data originate solely from non- 496

optimum parameters. Calibration attempts to correct for these discrepancies in the model 497

by adjusting the parameter values so that the model performs well within the domain 498

of the training dataset. However, due to biased parameter estimates which often differ 499

from the "true" parameter values, the final parameterized model often underperforms in 500

out-of-sample sites [53]. 501

[53] suggested it is often impractical to fit multiple data streams simultaneously using 502

complex computer simulation models due to internal constraints, such as mass balance 503

and structural error. They argued that calibration schemes tend to find an optimum set of 504

parameter values that corrects for error in the more data-rich output at the cost of larger 505

errors or overly narrow confidence intervals in data-poor streams. In this study, though 506

an unbalanced dataset of LAI and NDVI was used, APSIM performed reasonably well 507

in simulating both outputs and, overall, no trade-off was found between NDVI and LAI 508

predictions (e.g. Site 79924). 509

No significant correlation was found between maximum a posteriori of optimized 510

parameters and different soil or weather variables across all training sites suggesting that 511

the estimated site effect is potentially also reflecting a confounding G X E effect and not 512

just an environmental (’E’) effect. However, in order to untangle this confounding G x E 513

interaction, more replications are needed for the cultivars used in the training sites. In a 514

similar study, [46] calibrated the the Simplified Photosynthesis and Evapotranspiration 515

(SIPNET) model through HPDA across 12 temperate deciduous Ameriflux sites. They 516

identified a missing temperature response in respiration and photosynthesis and associated 517

it with a lack of thermal acclimation and adaptation in the model. The missing temperature 518

response was found due to large site-site variability (’E’ effect) found in parameters related 519

to these processes. 520

For within-sample model application, the global optimization approach offered the 521

most robust (least variability) parameter estimates and provided the most well-constrained 522

LAI and yield predictions. This shows the potential for global optimization in low sample 523

size prediction problems. Global optimization also performed substantially better than 524

HPDA in “out-of-sample" sites, especially when sites fell outside of the spatiotemporal 525

extent of the training data (Table 3). 526

[54] states that describing the state of knowledge for complex ecological systems clearly 527

and accurately is only possible when one has accounted for all sources of uncertainty. These 528

sources include uncertainty in model parameters, initial and boundary conditions, and 529

agricultural practices [12], similar to those propagated in this study. Bayesian optimization 530

techniques offer a systematic approach for accounting for these uncertainties [55,56] and are 531

often preferred over numerical methods for calibrating process-based crop models because 532

1) when new data becomes available, posterior densities from previous studies can be used 533

as an informed prior to rapidly incorporate new information and 2) Bayesian techniques 534

allow for incorporating error in observational data, which, given the noisy nature of EOs, 535

can be essential to account for true uncertainty in model parameters [21]. 536

The larger sample size and multi-faceted observational data provided by EOs can 537

potentially reduce the risk of equifinality in model calibration by constraining multiple 538
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parameters/state variables in models simultaneously. Furthermore, recent advancements 539

in mapping and monitoring crop phenology [57] through EOs could be leveraged in 540

addition to retrieving biophysical variables, like LAI, to further increase the number of 541

data constraints and adjust crop phenology accordingly. Process-based crop models are 542

often calibrated under no-stress conditions which is impractical given the nature of EOs. 543

However, as a future direction, we will work towards including additional parameters 544

that control water/N stress within the optimization problem. This could be particularly 545

important as [50] reported that water and nitrogen stress may delay phenology and leaf 546

appearance in maize across the U.S Midwest. 547

Our proposed framework is novel among previous model calibration efforts in that 548

it (1) incorporates and leverages site-to-site variability in optimization, (2) employs EOs 549

to constrain model parameters, (3) accounts for observation uncertainty and estimates 550

parameter uncertainty, and (4) follows a systematic calibration approach that could be 551

updated as new data becomes available for new sites. This work demonstrated a proof- 552

of-concept for direct application of EOs in constraining and improving yield prediction 553

with the APSIM model. Future works should consider upscaling this framework from 13 554

calibration sites to potentially hundreds of sites with sufficient sample sizes on different 555

crops/cultivars to fully explore the inherent spatiotemporal variability of APSIM model 556

parameters. 557

5. Conclusions 558

This study demonstrated the use of EOs for calibrating parameters in complex process- 559

based crop models through different optimization schemes that vary in the degree to which 560

information is shared across sites. A time-varying global sensitive analysis performed on 561

13 sites helped identify the most influential parameters controlling maize LAI prediction in 562

APSIM. GAMs were used as surrogate models to replicate the APSIM model behavior in 563

simulating LAI and NDVI given the most influential parameters. These surrogate models 564

were then used in three different calibration schemes including site-level, hierarchical, and 565

global/join optimization. Overall, all optimization schemes showed similar performance in 566

simulating crop yield for within-sample sites. However, global optimization demonstrated 567

the most constrained LAI and yield estimates, while HPDA provided the most accurate 568

yield estimates. For out-of-sample sites, global optimization provided both, the most 569

accurate and most constrained yield estimates of the three optimizations. 570
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Appendix A 580

Table A1. List of spectral database used.

Library Type Reference

USGS v7 Measurements [58]
ICRAF-ISRIC Measurements [59]
Price Soil model [60]
Prosail Soil model [35]

Table A2. PROSAIL parameters

Traits type Parameter Symbol Range Unit
Canopy structure leaf area index LAI 0-8 m²/m²

leaf angle distribution function ALA 0-90 ◦

Leaf optical chlorophyll a and b content Cab 0-120 µg/cm2

Carotenoid content Car 0-25 µg/cm2

Anthocyanin content Can 0 µg/cm2

leaf dry matter per leaf area Cm 0.002-0.01 µg/cm2

leaf water content per leaf area Cw 0-0.04 mg/cm²
brown pigment content Cbrown 0-1 -

mesophyll structure coefficient N 1-2.5 -
angles solar zenith angle sza 0-80 ◦

viewing zenith angle vza 0-15 ◦

relative azimuth angle raa 0-360 ◦

Figure A1. With-in sample yield variability comparison between different optimization schemes
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Table A3. List of inital candidate parameters used in the global sensitivity analysis

Parameter Upper bound Lower bound

tt_flower_to_maturity 1100 700
tt_emerg_to_endjuv 500 200
tt_flower_to_start_grain 400 100
leaf_app_rate1 65 40
leaf_app_rate2 50 20
leaf_app_rate3 50 20
largestLeafParams1 -1 -2
largestLeafParams2 0.05 0.03
y_lai_sla_max1 55000 45000
y_lai_sla_max2 30000 20000
leaf_init_rate 30 15
rue 3 1.6
grain_gth_rate 11 8
initial_tpla 450 300

Figure A2. Difference in the posterior of parameters with LAI only and both data constraint in HPDA
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Figure A3. 95 % confidence interval for NDVI prediction made by the emulator across all the sites
using the optimized parameters obtained from different optimization schemes
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Figure A4. Density plots comparing observed yield versus APSIM predicted maize yield for two
optimization schemes

Figure A5. Difference in the posterior of parameters with LAI only and both data constraint in HPDA
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