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Abstract: Cutaneous Melanoma (CM) is the most lethal form of skin cancer if it becomes metastatic, 

where treatment options and survival chances decrease dramatically. Immunotherapy treatments 

based on the immunologic checkpoint inhibitors (PD-1 and CTLA4) constituted a main break-

through in the treatment of metastatic CM, particularly in the long-term benefit. However, several 

molecular pathways are responsible for the failure of this strategy in about 50-70% of CM patients. 

Some Long Non-coding RNAs (lncRNAs), and circular RNAs (circRNA) are implicated in triggering 

pro- and antitumorigenic responses to various cancer treatments. The relationship between lncRNA, 

circRNA and Immune Checkpoint Blockade (ICB) immunotherapy is not extensively explored in 

cutaneous metastatic melanoma (CMM). The aim of this study is to evaluate the potential role of 

both circRNA and lncRNA as a predictive immunotherapy biomarker in CMM. RNA-seq from 12 

FFPE samples from the metastatic biopsy of metastatic melanoma patients treated with Nivolumab 

were analyzed. Our findings indicate that specific lncRNA and circRNA are involved in regulatory 

networks of the immune response against metastatic melanoma under treatment with nivolumab. 

Moreover, we have established a risk score that allows the prediction of Overall survival (OS) and 

Progression-free survival (PFS) of CMM patients with high accuracy. This proof of principle work 

provides a possible insight on the function of ceRNA, contributing to decipher the complex molec-

ular mechanism of ICB cancer treatment response. 
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1. Introduction 

Melanocytes are pigment-producing cells in the skin embrionary-derived from the 

neural crest [1] Epidermal melanocytes can undergo a malignant tumor transformation 

process that leads to Cutaneous Melanoma (CM), which is the deadliest type of skin can-

cer [2]. CM is a common cancer with increasing incidence rates in the western world [3]. 

In 2040, 510000 new cases are expected to be diagnosed; of them, it is calculated that 

around 96000 will die [3–5]. Both genetics and environmental risk factors have been char-

acterized for CM. Exposure to ultraviolet radiation (UV) is the main risk factor for mela-

noma. UV radiation is known to generate mutations that induce cell death and malignant 

transformation of melanocyte cells [6]. One of the consequences of the constant exposure 

to UV is that melanoma has one of the highest mutation rates and mutational burdens 

compared to other solid malignancies [7]. Genomic studies have identified several driver 

genes in melanoma such as BRAF, NRAS, TP53, PTEN, among others, as well as the rele-

vant pathways involved in its carcinogenesis like the CDKN2A, MAPK and PI3K/AKT 

pathways, and the cell cycle control and telomerase programs. All of them are affected by 

pathologic somatic mutations in protein-coding genes [8].  

Interestingly, many of these mutations arise early in the clinical process; for example, 

over 80% of benign nevi have already a BRAF mutation [9]. In more advanced stages, 

metastatic progression is driven by specific genomic alterations including somatic muta-

tions and other perturbations of the genomic integrity [10,11].  

Detected and treated early on, CM is highly curable. However, if CM becomes meta-

static, treatment options and survival chances decrease dramatically. Immunotherapy 

treatments based on the immunologic checkpoint inhibitors PD-1 and CTLA4 have been 

a main breakthrough in the treatment of metastatic CM and have changed the landscape 

of treatment options for CM in the recent years [12]. Even though it is a very promising 

therapy, primary immune checkpoint blockade resistance arises in about 70% of CM pa-

tients treated with a CTLA-4 inhibitor and 40–65% of CM patients administered with PD-

1-targeting treatment[13,14]. Several studies have proposed a variety of molecular path-

ways that might lead to therapy failure [14,15]. There is currently a great effort trying to 

determine reliable biomarkers for predicting immunotherapy response, among which the 

predominant ones are PD-L1, microsatellite instability and TMB. To present, only tumor 

mutational burden (TMB) has been tested as a biomarker in therapeutic trials, but it has 

not been found to predict clinical benefit in melanoma patients, owing to the high muta-

tion rate of all melanoma tumors [14,16]. 

A wide range of distinct RNA species have recently been spotlighted thanks to the 

advent of RNA sequencing (RNA-seq). Non-coding RNAs (ncRNAs), which comprise 98 

percent of the human genome, are implicated in triggering pro-tumorigenic and anti-

tumorigenic responses to various cancer treatments [17]. Of them, two particular RNA 

species have lately sparked interest in different disciplines including cancer research: 

Long non-coding RNAs (LncRNAs) and Circulating RNAS (CircRNAs). CircRNAs are 

single-stranded stable RNAs that are produced by covalently closing head-to-tail (or back-

spliced) circularized transcripts from 5′-to-3′ transcription of coding gene exons or long 

non-coding RNAs (lncRNAs). CircRNAs have been linked to a variety of biological func-

tions, including protein translation templates, RNA-binding protein regulators, and 

miRNA-binding sponges, among others. Several circRNAs are also involved in tumor reg-

ulation in a variety of malignancies[18]. CircRNAs have been found to interact with miR-

NAs and create a network to control cellular physiological and pathological functions in 

several scenarios [19]. In melanoma, several circRNAs such as CDR1-AS [20] ,  

circ_0002770 [21] circRNA_0084043 [22,23], circ_0025039 [24], circ-MYC [25], circ_0079593 

[26], circ-FOXM1[27], circ_0020710 [28] work as miRNA sponges or interact with RBPs to 

modulate the expression level of target miRNAs or proteins, which in turn affects various 

cellular signaling cascades and cancer-related cellular transitions [29–31].  

The LncRNAs are defined as noncoding RNA molecules longer than 200 nucleotides. 

An increasing amount of data suggests that LncRNAs have a variety of roles in cellular 
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activities notwithstanding that they are not translated into proteins. LncRNA can interact 

to control gene expression by altering local chromatin structure or recruiting regulatory 

molecules to particular locations [30]. While the interactions with proteins can either pro-

mote or inhibit protein complexes formation, the interactions with mRNAs can be more 

intricate and alter their stability, translation, and isolation [32]. Regarding the expression 

levels of lncRNAs, it is important to note that even though they are expressed at lower 

levels than protein-coding genes, they have marked tissue-specific expression patterns[33] 

Both lncRNAs and circRNAs can be acting as competitive endogenous RNAs (ceRNAs) 

[34] and lead to a new additional posttranscriptional layer. The ceRNA hypothesis argues 

that biological processes are regulated by an intrinsic mechanism. It is becoming increas-

ingly apparent that dysregulated of lncRNA and circRNAs are implicated in carcinogen-

esis and progression of numerous cancers, acting as either oncogenes or tumor suppres-

sors [30]. Moreover, abnormal circRNAs levels have been shown to be associated with the 

development of resistance of chemotherapy in different tumors [35]. However, to our 

knowledge, the relationship between lncRNAs and circRNAs and ICB immunotherapy 

has not been explored in cutaneous metastatic melanoma.  With all these, the aim of this 

study is to evaluate the potential role of circRNA and lncRNA expression as predictive 

immunotherapy biomarkers in CMM. 

2. Materials and Methods 

Subjects 

A total of 16 metastatic melanoma patients treated with Nivolumab donated FFPE bi-

opsy samples that were collected at pre-treatment status (four samples derived from pri-

mary tumors biopsy and twelve from metastatic tissue). Samples were collected at the 

Hospital Regional de Malaga and Hospital Universitario Virgen de la Victoria (Málaga). 

The study follows the Declaration of Helsinki and is vetted by the Ethical Committee of 

Malaga. Approval date on 26/10/2017 with the title: “Omics integration for precision can-

cer immunotherapy” (799818, H2020-MSCA-IF-2017) research project. All patients 

signed an Informed Consent to participate in the study and received an information 

sheet about the project.  

 For this specific analysis, we used the metastatic biopsies in order to identify biomarkers 

that were specific to the metastatic disease, giving the scarce knowledge in the field [36] 

and this it is currently the most frequent indication for immunotherapy in melanoma.  

Bad responders were defined as patients that progressed up to three months after the start 

of the treatment and good responders were the ones in treatment for at least one year.   

Nucleic acid extraction   

The tumor-specific area in FFPE melanoma samples was predefined by a pathologist. Two 

to four 10 µm slides were dissected for nucleic acid extraction, using the microtome HM 

340E (Thermo Scientific). RNA was extracted with the RNeasy FFPE kit (Qiagen; Ref. 

73504). 

Next Generation Sequencing 

RNA-Seq libraries were prepared using TruSeq Stranded Total RNA Gold (Illumina; 

Ref.20020598) and indexed by IDT for Illumina TruSeq RNA UD Indexes (Illumina; Ref. 

20020591). Libraries concentration was determined by Qubit dsDNA BR kit, and the size 

distribution was examined by Agilent Bioanalyzer. Paired end reads (75bp × 2) were ac-

quired from the Illumina NextSeq 550 platform according to the corresponding protocol. 
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Realtime PCR validation 

The expression levels of CDR1-AS the most frequent circRNAs was verified by qRT-PCR 

using a predesigned TaqMan probe in all samples. (Hs05016408_s1). 

lncRNA and circRNA detection 

Quality control of Fastq data from pair end reads was performed with FastQC. Fastq files 

were trimmed with a cutoff of Q30. We evaluated five different pipelines to identify and 

quantify circRNA reads. CIRI[37], CIRCExplorer2[38], DCC[39], STARchip[40] and CIRI-

QUANT[41] were used and compared. The circRNA sequences were annotated based on 

the circAtlas 2.0 database [42]. To obtain high confidence circRNAs, we used a filtering 

cut-off minimum of two junction reads in at least two samples and in at least three soft-

ware (validation strategy), which allowed a minimum of back-splice junction reads (BSJ) 

per circRNA. This criterion resulted in 19030 unique circRNAs in all samples, and we used 

these high confidence circRNAs for all the analyses performed in this study. With for-

ward-splice junction reads (FSJs) and back-splice junction reads (BSJs), we used the fol-

lowing formula: 2*bsj/(2*bsj+fsj) to calculate the circular to linear transcripts ratio. 

LncRNAs reads were identified by mapping trimmed fastq files against reference genome 

GRGh38 using STAR (v 2.5.1b). Read quantification was done with Feature Count. LncAt-

las[43] was used to annotate lncRNAs. 

Differential expression analysis 

The DESq2 pipeline of total mapped reads were used to perform differential expression 

(DE) of high confidence circRNA and lncRNA. The differential expression analysis was 

based on negative binomial generalized linear models and the threshold values were ad-

justed p-value < 0.1 and absolute value of log2(fold change) > 1.5. For both circRNA and 

lncRNA DE analysis, the total linear mapped read counts were used for size factor esti-

mation.  

ceRNA- miRNA-mRNA interactions 

Analysis of Common Targets for circRNAs (ACT) [44] , which employs miRbase [45] and 

miRanda [46] , was used to identify miRNA-binding sites for the differentially expressed 

circRNAs. To characterize lncRNAs and get the list of miRNAs: DE lncRNA interactions, 

DIANA-LncBase v2 [47] was employed. The R multiMir package[48] was used to detect 

the microRNA-mRNA interaction. This package combines up to seven different tools: DI-

ANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and TargetScan [49–

56]. To improve prediction sensitivity, only those interactions that appear in at least 5 dif-

ferent tools will be considered as a microRNA-mRNA pair. Only differentially expressed 

mRNAs with a binding site with a miRNA from the joint combination of miRNAs ob-

tained from DE circRNA and DE lncRNA were considered for the analysis. 

We also compared our deferentially expressed circRNAs to those reported in prior re-

search using the circRNA disease databases circ2disease [57], circad [58], and circAtlas 

[42]. The CSCD database [59] was used to estimate cellular localization of all detected 

circRNAs.  

Pearson correlation coefficient was used to measure the strength of the linear association 

between ceRNA and mRNA.  

Gene Set Enrichment and Gene Interactions Networks 
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DE mRNA genes targeted by predicted miRNAs were analyzed using Ingenuity Path-

ways Analysis (IPA) software (Qiagen Ingenuity Systems; (www.ingenuity.com/). Up-

stream regulator analysis (URA), downstream effects analysis (DEA), mechanistic net-

works (MN), and causal network analysis (CNA) prediction algorithms were used to get 

functional annotations and regulatory network analysis. IPA can precisely predict func-

tional regulatory networks from gene expression data and assigns a significance score to 

each network based on how well it fits the database's set of focus genes [60]. 

Statistics and Visualization 

Statistical analyses chart and graphs were performed using R 4.0.2. The Venn Diagram R 

package was used to create Venn diagrams. The ComplexHeatmap R package [61] was 

used to create the heatmaps, and the subsequent plots and graphs were created with the 

ggplot2 package [62]. In survival analysis, Kaplan–Meier (KM) and Logrank-test were 

used to test the difference between groups. The risk score for each patient was estimated 

adapting the previously described method for the estimation using the joint expression 

information of the circRNA and the lncRNA [63]. Based on the expression value of 

circRNA and LncRNA weighted by regression coefficients in univariate cox regression 

analysis 

 

Where N is the number of DE circRNA and lncRNA, Expression-i represents the normal-

ized expression value, and Coefficient-i is the Cox regression coefficient in the univariate 

model 

3. Results 

 

3.1 Overview of circRNA and lncRNA expression patterns in cutaneous melanoma 

tissues  

We analyzed the circRNA and lncRNA transcripts by RNA-seq sequencing analysis 

with rRNA depletion from FFPE tissue of clinical metastatic cutaneous melanoma tumors 

to find aberrant expression of these ceRNAs between good and bad responders to ICB. 

The raw sequences were processed with five different circRNA pipelines to increase the 

analysis specificity and sensibility. Only circRNAs that were found in at least three of the 

five pipelines were selected for further analyses (19030 circRNAs). Both differentially ex-

pressed (DE) circRNA and DE lncRNA between good and bad responders were used to 

build a ICB-response ceRNA network (Figure 1a). Overall, 4339 circRNA loci were de-

tected by all tested software in metastatic tissue samples (Figures 1b and 1c). The top ten 

circRNAs generating loci were hsa-CDR1, hsa-HIPK3, hsa-SMARCA5, hsa-CSNK1G3 and 

hsa-PCMTD1. Interestingly, hsa-CDR1 stands as the top circRNAs loci with remarkable 

distances to the others in 4 out of the 5 software. Moreover, the pattern of enrichment in 

bad responders is reproduced by all 5 (Figure 2a). The distribution of circRNAs according 

to response throughout the 46 human chromosomes indicates a similar horizontal cover-

age between good (yellow line) and bad (blue line) responders (Figure 2b) However, some 

chromosomes such as 1, 5, 8 ,18 and 22 are enriched in circRNAs for bad responders. In-

terestingly, irrespective of the distribution by response, the total number of reads did not 

correlate with the chromosomal length. This is particularly patent in chromosome 3 and 

12 (Figure 2C). Remarkably, the most significant entity was circRNA derived from protein 

coding regions (supplementary figure 1).  
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Figure 1. 1a) Bioinformatic workflow of the ceRNA interaction network. The pipe-

line is depicted from the RNA-seq fastq files to the Ingenuity Pathway analysis. Five dif-

ferent software were employed to identify circRNAs. mRNAs affected by ceRNAs were 

predicted by its interaction with miRNA. Differential expression analysis with DESeQ2 

was used to decipher differences in response to immunotherapy. 1b) Venn diagram with 

the number of different cirRNAs detected by each software. 1c) Upset plot showing the 

maximum number of identified circRNA with each software combination.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Frequencies and distribution of the circRNAs by response to ICB 2a) Top 10 

circRNA loci identified by the different algorithms used. 2b) Horizontal chromosomal 

coverage. 2c) Normalized count quantification per chromose. 

a) 
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3.2 Differential Gene Expression of circRNA and lncRNA 

To analyze the expression pattern of lncRNA and circRNA in relation to response to 

immunotherapy, we identified the expression profile of dysregulated circRNAs and 

lncRNAs in 8 good versus 4 bad responders using whole genome transcriptome analysis. 

In the volcano map, we depict the differentially expressed circRNAs (Figure 3a) and 

lncRNA (Figure 3b) with a fold-change cut-off greater than 1.5 and an adjusted p value 

less than 0.1. We found 23 aberrantly expressed circRNA with a fold change of > 1.5 and 

adjusted p value < 0.1, of which 21 circRNA were upregulated and only two were down-

regulated. To further characterize the identified DE circRNA, we retrieved data from three 

circRNA databases: circBase, circAltlas and Cancer Specific CircRNA Database (CSD). 

The annotations from CSD, a circRNA database focused on cancer, were particularly rel-

evant, where we found 15 circRNAs (68.2%). On the other hand, 7 of the 23 DE circRNAs 

(31,8%) were newly identified in this study. Based on the fold change, the top five most 

upregulated circRNA were hsa-ALDH1L2_0014, hsa-CD38_0001, hsa-CD74_0005, hsa-

CDR1_0001 and hsa-CPM_0002. 

To better understand the relation between linear and circular expression seeking 

other possible differences between good and bad responders, we have determined the 

circular-linear ratio of the differentially expressed circRNAs (Figure 3 c).. The inferred 

ratios from RNAseq data with the formula 2* Circular/(2*Circular + Linear), showed a 

broad distribution of ranges from 0.1 to 1. This analysis can represent the splicing prefer-

ence of the loci interrogated. We observed ratios higher than 0.5 in hsa-SLIT2, has-RP11, 

hsa-IFI30, hsa-HLA-DRB1 and hsa-CDR1. Interestingly, hsa-CDR1 shows one of the 

higher ratios and is the most relevant circRNA, in term of number of counts, it is tran-

scribed with a total of 2211 counts distributed in 1644 vs 567 counts between good and 

bad responders, respectively. 

 

Regarding LncRNA, 112 were differentially expressed with a fold change of 1.5 and 

adjusted p value < 0.1, from which 58 were found downregulated and 54 upregulated. DE 

lncRNA were annotated with LncAtlas[43].  
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Finally, we were able to group good and bad responders by their basal expression of 

circRNA and lncRNAs. Hierarchical clustering analysis showed good discrimination 

among good and bad responders for both types of RNAs (Figure3d and 3e).  

  

 

 

Figure 3. CeRNAs as biomarkers of response to ICB in metastatic melanoma 3a) X 

circRNAs are differentially expressed (LFC X p value X) 3b) X lncRNAs are differentially 

expressed (LFC x  value x) 3c) Ratio of circRNA vs lineal RNA per DE circRNA loci. Y-

axis list the DE circRNA among good and bad responders. X-axis represent ratio : 2*cir-

cular/(2*circular+linear) were range 0 represent deviation to linear expression and 1 max-

imun deviation to circRNA expression . EXPLICA LA GRÁFICA 3d) & 3e) Expression 

signatures of the DE circRNAs and DE lncRNAs, respectively, separate good and bad re-

sponders to ICB. Normalized expression values are represented against location and sev-

eral clinical variables.                                              
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3.3 Competitor endogenous RNA network (ceRNA Network)  

In order to understand the role of the DE circRNAs and lncRNAs as posttranslational 

regulators in the context of resistance to ICBN, a ceRNA Network was build that included 

69 lncRNA (36 upregulated and 33 downregulated; the 43 missing lncRNAs up to the total 

122 DE lncRNAs do not have any miRNA interaction) and 23 circRNA, (21 upregulated 

and 2 downregulated). Two additional layers complemented the network. One of them 

consisted of 537 target miRNAs, from mirBase with strongly predicted binding sites to 

our DE circRNAs and lncRNAs. Of them, the ones showing the highest prediction values 

were Let-7e-5p, miR-1285-3p, miR-6757-3p, miR-877-3p, and miR-3689d. The second addi-

tional component comprised 154 DE mRNAs among good and bad responders that 

showed interaction with miRNAs predicted to bind the DE ceRNAs. Furthermore, the 

statistical correlation between the DE mRNAs regulated by these miRNAs and the DE 

ceRNAs shows that all correlations are direct, reinforcing the notion of the ceRNA inhib-

itory role on miRNAs action (Figure 4). We have also identified several major putative 

regulators such as LINC00861, CHRM3-AS2, MEG3 and RP11−115D19.1, which correlated 

with multiple mRNAs, as well as 3 mRNAs that we speculate can be regulated by 2 or 

more ceRNAs in the context of melanoma resistance to Nivolumab: ICOS, PAX3, 

HLA−DOA and HLA−DPB1.  

 

 

Figure 4. Lineal correlation of expression of the DE ceRNAs and the DE mRNAs that 

belong to the ceRNA interaction network.   
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3.4 IPA Functional Enrichment Analysis based on the ceRNA Network 
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In order to gain more quantitative and qualitative insight into the mechanism of the 

putative regulation of ICB response by ceRNAs, we characterized the biofunctions and 

the diseases associated with those DE mRNA that interacted with the DE ceRNA, as well 

as the downstream and upstream modulators. Influence network analysis shows that the 

differential expression of the interactome key molecules led to activity changes mostly in 

immunological processes. Activated molecules include TNF, IRF, IL27, TLR9, EIB3, TGM2 

and IFNG, an inhibited ones include MAPK1 and IL1RN (Figure 5a). In the same line 

almost all the enriched functional categories are related to the immune response, and even 

specifically to the PD-1 PD-L1 cancer immunotherapy pathway, target axis of Nivolumab 

(Figure 5b). Amongst the most activated functions in good responders are TH1 Pathway, 

T cell receptor signaling, ICOS-ICOS-L signaling in T Helper cells, Role of NFAT in Reg-

ulation of the Immune Response, Dendritic Cell Maturation, and calcium induced T lym-

phocyte apoptosis.), together with MSP−RON Signaling in Macrophages Pathway, Natu-

ral Killer Cell Signaling, and Synaptogenesis Signaling Pathway. The most relevant mol-

ecules annotated for these molecular functions are CCL5, CD6, CSF2RA, HLA-B HLA-

DRA, HLA-E, ICOS, IKZF1, IL12RB1, IL12R, LAIR1, LILRB2, LILRB4, MS4A1, PDCD1, 

TBX21 and UBD. It is important to note that key genes for the antitumoral immune re-

sponse part of the PD−1 PD−L1 axis such as those coding for the receptor of TNF (TNFR), 

IFNγ, MHC1α and β and PD1 are upregulated in good responders to Nivolumab (Figure 

5c). 

 

 

Figure 5. Specific immunological perturbation associated to the ceRNA network 

5a) Influence network showing the activation or inhibition of the key molecules and 

pathways defined by the ceRNAs 5b) Pathways enriched and influenced by the ceRNAs 

dysregulation according to response to ICB. 5c) Activated and inhibited genes and path-

ways of the PD1-PDL1 axis in the context of ceRNA dysregulation.  

a) 
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Next, by using the IPA upstream regulator analysis tool based on the ceRNA net-

work, we can predict upstream molecules and provide a mechanistic network that could 

explain the observed changes in gene expression. Interestingly, we observed the following 

activated transcription regulators: SOX11, IRF1, NLRC5, and SMRACA4. NEUROG1 was 

found uniquely inhibited. Regarding cytokines, IL1RN and IL13 were inhibited and IL27, 

IFLN1, TNF, IFNG and EBI3 were predicted as activated. Other activated upstream regu-

lators were TLR9 and TGM2, that were activated, and SAFB, SAFB2, RARA and ESR1 that 

were found inhibited.  

Furthermore, to characterize the specific role of ceRNAs in the regulation of the 

mechanism of resistance to ICB, we sought to identify the pathway aberration related spe-

cifically to response genes that are correlated with such regulators. For this, we generated 

z-scores of IPA canonical pathways of all differentially expressed genes (DEmRNA) vs 

the DEmRNA correlated with ceRNAs (DEmRNA-ceRNA) and vs the differentially ex-

pressed genes not associated with ceRNA (DEmRNA-noceRNA) (Figure 6). It is very im-

portant to note that there are three pathways that denote an opposite activation profile 

compared with all or non-ceRNA related genes. One of them is natural killer cell signaling. 

Also, the Z-score of PD−1, PD−L1 cancer immunotherapy is lower when the pathway is de-

fined by the expression differences of the genes related to ceRNAs. Moreover, ceRNAs 

seem to be involved in a fraction of the mechanisms associated to the drug response. This 

indicates that ceRNA may modulate specific processes of ICB resistance independently of 

other regulators that they can synergize or oppose.  

 

Figure 6. Role of ceRNA as modulators of the ICB resistance. Comparison of the 

pathways aberration according to absence or presence of genes associated with ceRNAs.   
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When we extended the IPA network analysis by combining the main subnetworks, 

more than 100 molecules conformed a very complex interaction network where TNF 

emerges as a key functional molecule. Interestingly, individual networks also pinpoint the 

relevance of NR3C1, IFNG, CTNNB1, JUN, and the inhibition of the IL2 (Supplementary 

Figure 2). 

Moreover, the gene ontologies and pathways were determined with IPA. The statis-

tical overrepresentation test was used to find the enriched GO terms and pathways by 

matching our gene list with the human genome. The most relevant biological processes 

were: leukopoiesis, lymphopoiesis, cell development and lymphocyte homeostasis 

(GO:0002521, GO:0030098, GO:0046650, GO:0002260). Supplementary Figure 3 represents 

the top enriched ontologies for Disease and disorders, Molecular and cellular function, 

and Physiological system & physiology. The enriched ontology terms were mainly related 

to cancer, cellular growth and cellular proliferation and immunological conditions. The 

most enriched Molecular and cellular functions were cellular development, cellular 

growth and Cell-to-Cell signaling and proliferation and the most enriched Physiological 

system were hematological system development and function, Lymphoid tissue structure 

and development and Immune cell trafficking. Like the GO term results, KEGG pathway 

enrichment analysis identified Axon guidance, T cell receptor signaling pathway, Natural 

killer cell mediated cytotoxicity, ErbB signaling pathway and Fc epsilon RI signaling path-

way as the enriched pathways in the interactome (Supplementary table 1). 

 

 

3.5 Prognostic risk score using the DE ceRNA 

A risk score based on the gene expression of DE ceRNA categorized the patients in 

two groups: High and low risk. Patients with low risk have greater overall survival (OS), 

log-rank p-value 0.00018. The low-risk patients median OS was of 869 days (95% CI, 563 - 

NR) while patients with high risk have a median OS of 56 days (95% CI, 28 - NR) (Figure 

7a). Concerning progression-free survival (PFS), this score is able to predict also the pa-

tients in high and low risk with a with a log-rank p-value of 0.0067 (Figure 7b). The me-

dian PFS of low-risk patients is of 468 days (95% CI, 311 - NR), while high risk patients 

have a median PFS of 50 days (95% CI, 16 - NR). 
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Figure 7. Prognostic value of the ceRNA signature 7a) Association of the ceRNA Risk 

score based on gene expression levels with overall survival in cutaneous metastatic mela-

noma. 7b) Stratification of the patients according to PFS using the ceRNA-based risk score  
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4. Discussion 

At present, the continuous improvement of high-throughput transcriptome sequenc-

ing technology and the increasingly complete gene bank data provide a powerful basis 

for the understanding of the transcriptomic reprogramming of immune cells in response 

to cancer cells. This is of special importance for understanding complex processes in 

which disentangling the role of the different modulators is key. One of these scenarios is 

the interaction between metastatic cells and the tumor microenvironment in the context 

of resistance to ICB. We know now that the immune-phenotype of the patients is strongly 

associated to the antitumoral effect of ICB drugs [64]. However, the regulation of this pro-

cess has been scarcely explored. 

In an attempt to unmask new players in the control of the ICB resistance mechanisms, 

we characterized the association of RNA species of recent annotation with the response to 

ICB in metastatic CM patients. CircRNAs and lncRNAs have recently gained considerable 

attention because of their potential implication in a wide range of cellular processes such 

as normal cell differentiation to tissue development and human illnesses [65] including 

melanoma etiology and therapy responses. Theses ncRNAs are normally considered to 

have pleiotropic effects, as they can affect a variety of pathways rather than acting pri-

marily through a single target gene. In the specific context of CM, they have been reported 

to regulate the expression towards the growth and spread of CM cancer cells. This sug-

gests a diagnostic and therapeutic target role for them[32] [66]. However, most of the cur-

rent studies have focused on the differences in linear gene expression, while no one has 

addressed the specific influence of circular RNAs in response to ICB. Therefore, we per-

formed transcriptome analysis of bulk metastatic melanoma tissue to generate infor-

mation from both tumor and immune cells from the metastatic niche. Ribosomal-depleted 

RNA-seq provided us with information about circRNA, lncRNA and mRNA. Our strategy 

to discover the mechanisms associated with ICB resistance was to identify which circR-

NAs and lncRNAs were up or downregulated in the patients that were going to respond 

or not to the treatment. Next, we integrated them as regulatory layers in a network that 

included their putative mRNA targets that were also differentially expressed in good re-

sponders. In line with several previous reports that have paved the importance of immune 

function in the process of melanoma metastasis and ICB response [67], our results show a 

profound influence of the dysregulation of these ncRNAs on the activation or inhibition 

of key antitumor immunological processes such as the Th1 pathway, Natural Killer Signal-

ing, T cell receptor signaling or the PD-1, PD-L1 cancer immunotherapy pathways. Interest-

ingly, the expression perturbation of the good responders is associated with increasing 

expression of PD-1 and PD-L1 (CD274). The identification of these ncRNAs as regulators 

of PD-1 and PD-L1 expression is important for understanding the interindividual varia-

tion in this axis, which holds the first FDA approved marker for ICB [68]  

We departed from the hypothesis that circRNAs and lncRNAs could regulate the re-

sponse to ICB by exerting a sponge function that inhibited specific miRNAs as ceRNAs. 

In order to test this, we integrated the miRNAs that were both targets of the DE ceRNAs 

and targeting DE mRNAs of our dataset. The resulting selection of DE mRNAs targeted 

by those miRNAs was subjected to a correlation test with the ceRNAs. Consistently with 

our hypothesis, the expression correlations were always direct, suggesting that the in-

creased expression of the ceRNAs was aligned with the increased expression of the mRNA 

putatively through inhibition of the corresponding miRNA. Since miRNAs expression in-

formation is absent from our dataset, our conclusions cannot include the direct association 

with the miRNAs.  

On the other hand, the identification of the pattern of pathway aberration that was 

exclusive to the ceRNA-associated genes unmasked a modulatory role of the ceRNAs for 

a subset of specific resistance pathways. This finding implies that ceRNAs can either refine 

or oppose to the effects on the processes of drug response. This is particularly important 

for two pathways that are intrinsically related to the ICB response: Natural Killer Cell Sig-

naling and PD-1, PD-L1 cancer immunotherapy. The dysregulation of the ceRNAs in good 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2022                   doi:10.20944/preprints202207.0162.v1

https://doi.org/10.20944/preprints202207.0162.v1


 

responders is related to the inhibition of the natural killer cells, while it ameliorates the 

inhibition of the PD-1/PD-L1 axis.  

All in all, the major disruption of immunological antitumor pathways related to ceR-

NAs and observed in responders denote the crucial role that the tumor Immune microen-

vironment (TIME) plays in the treatment response to ICB. Some lines of evidence indicate 

that tumor cells can modify TIME by recruiting immunosuppressive cells and both 

circRNA and lncRNA are tools that tumor cells can use, via extravesicular particles, to get 

favorable TIME and in consequence leading to a treatment failure. Interestingly, previous 

reports, both in hepatocellular carcinoma and pancreatic cancer, associate specific cirRNA 

with response to targeted therapy and linked to NK cell dysregulation [69]. 

Two of the main molecules highlighted by the ceRNA network (Figure 5a) are TNF 

and IFNG. Recently, the overexpression of TNF, IFNG and IL2 among other molecules 

have been reported as key molecules that may enhance melanoma progression through 

activating the JAK-STAT signaling Pathway [70]. Moreover, other studies indicate that 

both TNF and IFNG are directly linked with high density and T cell infiltration and Cyto-

toxicity of cytotoxic T cells function (CTL) [71]. This process has been recently character-

ized by Weigelin et al, whose findings suggest that CTL-mediated apoptosis induction is 

not a one-size-fits-all process, and the most common mechanism of tumor cell eradication 

by antigen-specific CTL is the accumulation of sublethal damages [72]. Additionally, other 

studies had shown a strong positively correlation between TNF and PD-L1 expression 

and poor prognosis [73]. Based on our dataset, we speculate that some of the identified 

DE mRNAs of the TNF ligand family (TNFSF8, TNFRSF9, TNFRSF17, TNFRSF13B, 

TNFRSF12A, TNFRSF11B) (supplementary table 1) may affect the CTL activity and the 

lymphocyte infiltration. That supports the relevance of TNF in response to ICB in CCM 

and contributes to support the concept of combining therapies based on anti-TNF and 

anti-PD-1 in CMM.  

With regards specific ceRNAs identified in this study, CDR1 circRNA stands out as 

potentially implementable biomarker of response. Previous studies have highlighted the 

relevance of CDR1 in cancer and particularly in the metastatic melanoma process. The 

main biological process identified to date is sponging miRNA-7, which is well established 

as a cancer progression marker. Recently, Hanniford, D et al described a more complex 

regulation of this region via the epigenetic silencing of the lncRNA LINC00632 [20]. In our 

study, we have observed that CDR1 is one of the most relevant DE circRNAs, in terms of 

abundancy and differential expression in bad responders. Moreover, we observed that the 

good responders tend to have a more homogeneous CDR1 expression, indicating that 

CDR1 seems to be dysregulated in most of the bad responders. Further studies are needed 

to validate CDR1 for predicting and monitoring treatment response. 

Finally, this work has found another utility as a generator of a prognosis prediction 

model in the context of response to ICB in metastatic CM. A prognostic Risk Score has 

been created for the signature of ceRNAs and used to stratify the patients in high and low 

risk for OS and PFS. The application of this score can be used to predict these outcomes. 

To our knowledge this the first time that a DE ceRNA signature could be associated to a 

prognosis of any ICB treatment. 

In the current study, we have reported for the first time the association of circular 

RNAs with the response to immunotherapy. Together with specific lncRNAs, a new role 

for ncRNAs as ceRNA has been unmasked in the regulation of specific resistance mecha-

nisms to ICB. The joint circRNA and lncRNA predictive signature has been used as well 

to build a prognosis score that reinforces the utility of these ncRNAs in the management 

of metastatic CM patients. All in all, this work provides a novel insight into the modula-

tors of ICB resistant and imply the existence of new players to be considered as prognosis 

biomarkers and targets to counteract resistance in ICB treated cutaneous melanoma. 

 

5. Conclusions 
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In the present study, we have characterized the ceRNAs in metastatic melanoma patients 

treated with ICB to explore the biological role of ceRNA network on the response. Our 

exploratory analysis revealed that ceRNAs can modulate specific ICB resistance processes 

and therefore need to be considered in the complex regulatory scenario of the TIME inter-

actions. Finally, the definition of a Risk Score based on the ceRNA expression signature 

constitutes a potentially useful tool for predicting prognosis in the context of ICB treat-

ment in metastatic CM. 
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Supplementary figure 1. Exon type of circRNA. Mapping of circRNA indicates that 98,3% of circRNA identified 

are exon-exon type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 2. Radial graphic of networks merged by IPA of the main DEmRNA of ceRNA pinpointing 

the central role of TNF.  

SpliceType

Exon−Exon 98.31%

Exon−Intron 0.82%

Unannotated 0.87%
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Supplementary figures 4. Figure 4a). Interaction networks of the main molecules of the DEmRNA of ceRNA predicted 

by IPA. Figure 4b). Relevant upstream molecules indicates the activation cascades of IL27 EBI3 and the inhibition of 

SAFB 

a)  
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