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Abstract: Cutaneous Melanoma (CM) is the most lethal form of skin cancer if it becomes metastatic,
where treatment options and survival chances decrease dramatically. Inmunotherapy treatments
based on the immunologic checkpoint inhibitors (PD-1 and CTLA4) constituted a main break-
through in the treatment of metastatic CM, particularly in the long-term benefit. However, several
molecular pathways are responsible for the failure of this strategy in about 50-70% of CM patients.
Some Long Non-coding RNAs (IncRNAs), and circular RNAs (circRNA) are implicated in triggering
pro- and antitumorigenic responses to various cancer treatments. The relationship between IncRNA,
circRNA and Immune Checkpoint Blockade (ICB) immunotherapy is not extensively explored in
cutaneous metastatic melanoma (CMM). The aim of this study is to evaluate the potential role of
both circRNA and IncRNA as a predictive immunotherapy biomarker in CMM. RNA-seq from 12
FFPE samples from the metastatic biopsy of metastatic melanoma patients treated with Nivolumab
were analyzed. Our findings indicate that specific IncRNA and circRNA are involved in regulatory
networks of the immune response against metastatic melanoma under treatment with nivolumab.
Moreover, we have established a risk score that allows the prediction of Overall survival (OS) and
Progression-free survival (PFS) of CMM patients with high accuracy. This proof of principle work
provides a possible insight on the function of ceRNA, contributing to decipher the complex molec-
ular mechanism of ICB cancer treatment response.
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1. Introduction

Melanocytes are pigment-producing cells in the skin embrionary-derived from the
neural crest [1] Epidermal melanocytes can undergo a malignant tumor transformation
process that leads to Cutaneous Melanoma (CM), which is the deadliest type of skin can-
cer [2]. CM is a common cancer with increasing incidence rates in the western world [3].
In 2040, 510000 new cases are expected to be diagnosed; of them, it is calculated that
around 96000 will die [3-5]. Both genetics and environmental risk factors have been char-
acterized for CM. Exposure to ultraviolet radiation (UV) is the main risk factor for mela-
noma. UV radiation is known to generate mutations that induce cell death and malignant
transformation of melanocyte cells [6]. One of the consequences of the constant exposure
to UV is that melanoma has one of the highest mutation rates and mutational burdens
compared to other solid malignancies [7]. Genomic studies have identified several driver
genes in melanoma such as BRAF, NRAS, TP53, PTEN, among others, as well as the rele-
vant pathways involved in its carcinogenesis like the CDKN2A, MAPK and PI3K/AKT
pathways, and the cell cycle control and telomerase programs. All of them are affected by
pathologic somatic mutations in protein-coding genes [8].

Interestingly, many of these mutations arise early in the clinical process; for example,
over 80% of benign nevi have already a BRAF mutation [9]. In more advanced stages,
metastatic progression is driven by specific genomic alterations including somatic muta-
tions and other perturbations of the genomic integrity [10,11].

Detected and treated early on, CM is highly curable. However, if CM becomes meta-
static, treatment options and survival chances decrease dramatically. Immunotherapy
treatments based on the immunologic checkpoint inhibitors PD-1 and CTLA4 have been
a main breakthrough in the treatment of metastatic CM and have changed the landscape
of treatment options for CM in the recent years [12]. Even though it is a very promising
therapy, primary immune checkpoint blockade resistance arises in about 70% of CM pa-
tients treated with a CTLA-4 inhibitor and 40-65% of CM patients administered with PD-
1-targeting treatment[13,14]. Several studies have proposed a variety of molecular path-
ways that might lead to therapy failure [14,15]. There is currently a great effort trying to
determine reliable biomarkers for predicting immunotherapy response, among which the
predominant ones are PD-L1, microsatellite instability and TMB. To present, only tumor
mutational burden (TMB) has been tested as a biomarker in therapeutic trials, but it has
not been found to predict clinical benefit in melanoma patients, owing to the high muta-
tion rate of all melanoma tumors [14,16].

A wide range of distinct RNA species have recently been spotlighted thanks to the
advent of RNA sequencing (RNA-seq). Non-coding RNAs (ncRNAs), which comprise 98
percent of the human genome, are implicated in triggering pro-tumorigenic and anti-
tumorigenic responses to various cancer treatments [17]. Of them, two particular RNA
species have lately sparked interest in different disciplines including cancer research:
Long non-coding RNAs (LncRNAs) and Circulating RNAS (CircRNAs). CircRNAs are
single-stranded stable RN As that are produced by covalently closing head-to-tail (or back-
spliced) circularized transcripts from 5'-to-3’ transcription of coding gene exons or long
non-coding RNAs (IncRNAs). CircRNAs have been linked to a variety of biological func-
tions, including protein translation templates, RNA-binding protein regulators, and
miRNA-binding sponges, among others. Several circRNAs are also involved in tumor reg-
ulation in a variety of malignancies[18]. CircRNAs have been found to interact with miR-
NAs and create a network to control cellular physiological and pathological functions in
several scenarios [19]. In melanoma, several circRNAs such as CDR1-AS [20] ,
circ_0002770 [21] circRNA_0084043 [22,23], circ_0025039 [24], circ-MYC [25], circ_0079593
[26], circ-FOXM1[27], circ_0020710 [28] work as miRNA sponges or interact with RBPs to
modulate the expression level of target miRNAs or proteins, which in turn affects various
cellular signaling cascades and cancer-related cellular transitions [29-31].

The LncRNAs are defined as noncoding RNA molecules longer than 200 nucleotides.
An increasing amount of data suggests that LncRNAs have a variety of roles in cellular
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activities notwithstanding that they are not translated into proteins. LncRNA can interact
to control gene expression by altering local chromatin structure or recruiting regulatory
molecules to particular locations [30]. While the interactions with proteins can either pro-
mote or inhibit protein complexes formation, the interactions with mRNAs can be more
intricate and alter their stability, translation, and isolation [32]. Regarding the expression
levels of IncRNAs, it is important to note that even though they are expressed at lower
levels than protein-coding genes, they have marked tissue-specific expression patterns[33]
Both IncRNAs and circRNAs can be acting as competitive endogenous RNAs (ceRNAs)
[34] and lead to a new additional posttranscriptional layer. The ceRNA hypothesis argues
that biological processes are regulated by an intrinsic mechanism. It is becoming increas-
ingly apparent that dysregulated of IncRNA and circRNAs are implicated in carcinogen-
esis and progression of numerous cancers, acting as either oncogenes or tumor suppres-
sors [30]. Moreover, abnormal circRNAs levels have been shown to be associated with the
development of resistance of chemotherapy in different tumors [35]. However, to our
knowledge, the relationship between IncRNAs and circRNAs and ICB immunotherapy
has not been explored in cutaneous metastatic melanoma. With all these, the aim of this
study is to evaluate the potential role of circRNA and IncRNA expression as predictive
immunotherapy biomarkers in CMM.

2. Materials and Methods
Subjects

A total of 16 metastatic melanoma patients treated with Nivolumab donated FFPE bi-
opsy samples that were collected at pre-treatment status (four samples derived from pri-
mary tumors biopsy and twelve from metastatic tissue). Samples were collected at the
Hospital Regional de Malaga and Hospital Universitario Virgen de la Victoria (Malaga).
The study follows the Declaration of Helsinki and is vetted by the Ethical Committee of
Malaga. Approval date on 26/10/2017 with the title: “Omics integration for precision can-
cer immunotherapy” (799818, H2020-MSCA-IF-2017) research project. All patients
signed an Informed Consent to participate in the study and received an information
sheet about the project.

For this specific analysis, we used the metastatic biopsies in order to identify biomarkers
that were specific to the metastatic disease, giving the scarce knowledge in the field [36]
and this it is currently the most frequent indication for immunotherapy in melanoma.

Bad responders were defined as patients that progressed up to three months after the start
of the treatment and good responders were the ones in treatment for at least one year.

Nucleic acid extraction

The tumor-specific area in FFPE melanoma samples was predefined by a pathologist. Two
to four 10 pum slides were dissected for nucleic acid extraction, using the microtome HM
340E (Thermo Scientific). RNA was extracted with the RNeasy FFPE kit (Qiagen; Ref.
73504).

Next Generation Sequencing

RNA-Seq libraries were prepared using TruSeq Stranded Total RNA Gold (Illumina;
Ref.20020598) and indexed by IDT for Illumina TruSeq RNA UD Indexes (Illumina; Ref.
20020591). Libraries concentration was determined by Qubit dsDNA BR kit, and the size
distribution was examined by Agilent Bioanalyzer. Paired end reads (75bp x 2) were ac-
quired from the Illumina NextSeq 550 platform according to the corresponding protocol.
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Realtime PCR validation

The expression levels of CDR1-AS the most frequent circRNAs was verified by qRT-PCR
using a predesigned TaqMan probe in all samples. (Hs05016408 s1).

IncRNA and circRNA detection

Quality control of Fastq data from pair end reads was performed with FastQC. Fastq files
were trimmed with a cutoff of Q30. We evaluated five different pipelines to identify and
quantify circRNA reads. CIRI[37], CIRCExplorer2[38], DCC[39], STARchip[40] and CIRI-
QUANTI[41] were used and compared. The circRNA sequences were annotated based on
the circAtlas 2.0 database [42]. To obtain high confidence circRNAs, we used a filtering
cut-off minimum of two junction reads in at least two samples and in at least three soft-
ware (validation strategy), which allowed a minimum of back-splice junction reads (BSJ)
per circRNA. This criterion resulted in 19030 unique circRNAs in all samples, and we used
these high confidence circRNAs for all the analyses performed in this study. With for-
ward-splice junction reads (FSJs) and back-splice junction reads (BS]s), we used the fol-
lowing formula: 2*bsj/(2*bsj+fsj) to calculate the circular to linear transcripts ratio.
LncRNAs reads were identified by mapping trimmed fastq files against reference genome
GRGh38 using STAR (v 2.5.1b). Read quantification was done with Feature Count. LncAt-
las[43] was used to annotate IncRNAs.

Differential expression analysis

The DESq2 pipeline of total mapped reads were used to perform differential expression
(DE) of high confidence circRNA and IncRNA. The differential expression analysis was
based on negative binomial generalized linear models and the threshold values were ad-
justed p-value < 0.1 and absolute value of log2(fold change) > 1.5. For both circRNA and
IncRNA DE analysis, the total linear mapped read counts were used for size factor esti-
mation.

ceRNA- miRNA-mRNA interactions

Analysis of Common Targets for circRNAs (ACT) [44] , which employs miRbase [45] and
miRanda [46] , was used to identify miRNA-binding sites for the differentially expressed
circRNAs. To characterize IncRNAs and get the list of miRNAs: DE IncRNA interactions,
DIANA-LncBase v2 [47] was employed. The R multiMir package[48] was used to detect
the microRNA-mRNA interaction. This package combines up to seven different tools: DI-
ANA-microT, EIMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and TargetScan [49-
56]. To improve prediction sensitivity, only those interactions that appear in at least 5 dif-
ferent tools will be considered as a microRNA-mRNA pair. Only differentially expressed
mRNAs with a binding site with a miRNA from the joint combination of miRNAs ob-
tained from DE circRNA and DE IncRNA were considered for the analysis.

We also compared our deferentially expressed circRNAs to those reported in prior re-
search using the circRNA disease databases circ2disease [57], circad [58], and circAtlas
[42]. The CSCD database [59] was used to estimate cellular localization of all detected
circRNAs.

Pearson correlation coefficient was used to measure the strength of the linear association
between ceRNA and mRNA.

Gene Set Enrichment and Gene Interactions Networks
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DE mRNA genes targeted by predicted miRNAs were analyzed using Ingenuity Path-
ways Analysis (IPA) software (Qiagen Ingenuity Systems; (www.ingenuity.com/). Up-
stream regulator analysis (URA), downstream effects analysis (DEA), mechanistic net-
works (MN), and causal network analysis (CNA) prediction algorithms were used to get
functional annotations and regulatory network analysis. IPA can precisely predict func-
tional regulatory networks from gene expression data and assigns a significance score to
each network based on how well it fits the database's set of focus genes [60].

Statistics and Visualization

Statistical analyses chart and graphs were performed using R 4.0.2. The Venn Diagram R
package was used to create Venn diagrams. The ComplexHeatmap R package [61] was
used to create the heatmaps, and the subsequent plots and graphs were created with the
ggplot2 package [62]. In survival analysis, Kaplan-Meier (KM) and Logrank-test were
used to test the difference between groups. The risk score for each patient was estimated
adapting the previously described method for the estimation using the joint expression
information of the circRNA and the IncRNA [63]. Based on the expression value of
circRNA and LncRNA weighted by regression coefficients in univariate cox regression
analysis

N
Risk Score (RS) = 2 (Expression; * Coefficient;)

i=1

Where N is the number of DE circRNA and IncRNA, Expression-i represents the normal-
ized expression value, and Coefficient-i is the Cox regression coefficient in the univariate
model

3. Results

3.1 Overview of circRNA and IncRNA expression patterns in cutaneous melanoma
tissues

We analyzed the circRNA and IncRNA transcripts by RNA-seq sequencing analysis
with TRNA depletion from FFPE tissue of clinical metastatic cutaneous melanoma tumors
to find aberrant expression of these ceRNAs between good and bad responders to ICB.
The raw sequences were processed with five different circRNA pipelines to increase the
analysis specificity and sensibility. Only circRNAs that were found in at least three of the
five pipelines were selected for further analyses (19030 circRNAs). Both differentially ex-
pressed (DE) circRNA and DE IncRNA between good and bad responders were used to
build a ICB-response ceRNA network (Figure 1a). Overall, 4339 circRNA loci were de-
tected by all tested software in metastatic tissue samples (Figures 1b and 1c). The top ten
circRNAs generating loci were hsa-CDR1, hsa-HIPK3, hsa-SMARCAS5, hsa-CSNK1G3 and
hsa-PCMTD1. Interestingly, hsa-CDR1 stands as the top circRNAs loci with remarkable
distances to the others in 4 out of the 5 software. Moreover, the pattern of enrichment in
bad responders is reproduced by all 5 (Figure 2a). The distribution of circRNAs according
to response throughout the 46 human chromosomes indicates a similar horizontal cover-
age between good (yellow line) and bad (blue line) responders (Figure 2b) However, some
chromosomes such as 1, 5, 8,18 and 22 are enriched in circRNAs for bad responders. In-
terestingly, irrespective of the distribution by response, the total number of reads did not
correlate with the chromosomal length. This is particularly patent in chromosome 3 and
12 (Figure 2C). Remarkably, the most significant entity was circRNA derived from protein
coding regions (supplementary figure 1).
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Figure 1. 1a) Bioinformatic workflow of the ceRNA interaction network. The pipe-
line is depicted from the RNA-seq fastq files to the Ingenuity Pathway analysis. Five dif-
ferent software were employed to identify circRNAs. mRNAs affected by ceRNAs were
predicted by its interaction with miRNA. Differential expression analysis with DESeQ2
was used to decipher differences in response to immunotherapy. 1b) Venn diagram with
the number of different cirRNAs detected by each software. 1¢) Upset plot showing the
maximum number of identified circRNA with each software combination.
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3.2 Differential Gene Expression of circRNA and IncRNA

To analyze the expression pattern of IncRNA and circRNA in relation to response to
immunotherapy, we identified the expression profile of dysregulated circRNAs and
IncRNAs in 8 good versus 4 bad responders using whole genome transcriptome analysis.
In the volcano map, we depict the differentially expressed circRNAs (Figure 3a) and
IncRNA (Figure 3b) with a fold-change cut-off greater than 1.5 and an adjusted p value
less than 0.1. We found 23 aberrantly expressed circRNA with a fold change of > 1.5 and
adjusted p value < 0.1, of which 21 circRNA were upregulated and only two were down-
regulated. To further characterize the identified DE circRNA, we retrieved data from three
circRNA databases: circBase, circAltlas and Cancer Specific CircRNA Database (CSD).
The annotations from CSD, a circRNA database focused on cancer, were particularly rel-
evant, where we found 15 circRNAs (68.2%). On the other hand, 7 of the 23 DE circRNAs
(31,8%) were newly identified in this study. Based on the fold change, the top five most
upregulated circRNA were hsa-ALDH1L2_0014, hsa-CD38_0001, hsa-CD74_0005, hsa-
CDR1_0001 and hsa-CPM_0002.

To better understand the relation between linear and circular expression seeking
other possible differences between good and bad responders, we have determined the
circular-linear ratio of the differentially expressed circRNAs (Figure 3 c).. The inferred
ratios from RNAseq data with the formula 2* Circular/(2*Circular + Linear), showed a
broad distribution of ranges from 0.1 to 1. This analysis can represent the splicing prefer-
ence of the loci interrogated. We observed ratios higher than 0.5 in hsa-SLIT2, has-RP11,
hsa-IFI30, hsa-HLA-DRB1 and hsa-CDRI. Interestingly, hsa-CDR1 shows one of the
higher ratios and is the most relevant circRNA, in term of number of counts, it is tran-
scribed with a total of 2211 counts distributed in 1644 vs 567 counts between good and
bad responders, respectively.

Regarding LncRNA, 112 were differentially expressed with a fold change of 1.5 and
adjusted p value < 0.1, from which 58 were found downregulated and 54 upregulated. DE
IncRN A were annotated with LncAtlas[43].
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Finally, we were able to group good and bad responders by their basal expression of
circRNA and IncRNAs. Hierarchical clustering analysis showed good discrimination
among good and bad responders for both types of RNAs (Figure3d and 3e).

Figure 3. CeRNAs as biomarkers of response to ICB in metastatic melanoma 3a) X
circRNAs are differentially expressed (LFC X p value X) 3b) X IncRNAs are differentially
expressed (LFC x value x) 3c) Ratio of circRNA vs lineal RNA per DE circRNA loci. Y-
axis list the DE circRNA among good and bad responders. X-axis represent ratio : 2*cir-
cular/(2*circular+linear) were range 0 represent deviation to linear expression and 1 max-
imun deviation to circRNA expression . EXPLICA LA GRAFICA 3d) & 3e) Expression
signatures of the DE circRNAs and DE IncRNAs, respectively, separate good and bad re-
sponders to ICB. Normalized expression values are represented against location and sev-

eral clinical variables.
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3.3 Competitor endogenous RNA network (ceRNA Network)

In order to understand the role of the DE circRNAs and IncRNAs as posttranslational
regulators in the context of resistance to ICBN, a ceRN A Network was build that included
69 IncRNA (36 upregulated and 33 downregulated; the 43 missing IncRNAs up to the total
122 DE IncRNAs do not have any miRNA interaction) and 23 circRNA, (21 upregulated
and 2 downregulated). Two additional layers complemented the network. One of them
consisted of 537 target miRNAs, from mirBase with strongly predicted binding sites to
our DE circRNAs and IncRNAs. Of them, the ones showing the highest prediction values
were Let-7e-5p, miR-1285-3p, miR-6757-3p, miR-877-3p, and miR-3689d. The second addi-
tional component comprised 154 DE mRNAs among good and bad responders that
showed interaction with miRNAs predicted to bind the DE ceRNAs. Furthermore, the
statistical correlation between the DE mRNAs regulated by these miRNAs and the DE
ceRNAs shows that all correlations are direct, reinforcing the notion of the ceRNA inhib-
itory role on miRNAs action (Figure 4). We have also identified several major putative
regulators such as LINC00861, CHRM3-AS2, MEG3 and RP11-115D19.1, which correlated
with multiple mRNAs, as well as 3 mRNAs that we speculate can be regulated by 2 or
more ceRNAs in the context of melanoma resistance to Nivolumab: ICOS, PAXS3,
HLA-DOA and HLA-DPBI.

Figure 4. Lineal correlation of expression of the DE ceRNAs and the DE mRNAs that
belong to the ceRNA interaction network.
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In order to gain more quantitative and qualitative insight into the mechanism of the
putative regulation of ICB response by ceRNAs, we characterized the biofunctions and
the diseases associated with those DE mRNA that interacted with the DE ceRNA, as well
as the downstream and upstream modulators. Influence network analysis shows that the
differential expression of the interactome key molecules led to activity changes mostly in
immunological processes. Activated molecules include TNF, IRF, IL27, TLR9, EIB3, TGM2
and IFNG, an inhibited ones include MAPK1 and ILIRN (Figure 5a). In the same line
almost all the enriched functional categories are related to the immune response, and even
specifically to the PD-1 PD-L1 cancer immunotherapy pathway, target axis of Nivolumab
(Figure 5b). Amongst the most activated functions in good responders are TH1 Pathway,
T cell receptor signaling, ICOS-ICOS-L signaling in T Helper cells, Role of NFAT in Reg-
ulation of the Immune Response, Dendritic Cell Maturation, and calcium induced T lym-
phocyte apoptosis.), together with MSP-RON Signaling in Macrophages Pathway, Natu-
ral Killer Cell Signaling, and Synaptogenesis Signaling Pathway. The most relevant mol-
ecules annotated for these molecular functions are CCL5, CD6, CSF2RA, HLA-B HLA-
DRA, HLA-E, ICOS, IKZF1, IL12RB1, IL12R, LAIR1, LILRB2, LILRB4, MS4A1, PDCD1,
TBX21 and UBD. It is important to note that key genes for the antitumoral immune re-
sponse part of the PD-1 PD-L1 axis such as those coding for the receptor of TNF (TNFR),
IFNy, MHC1a and 3 and PD1 are upregulated in good responders to Nivolumab (Figure
5¢).

Figure 5. Specific immunological perturbation associated to the ceRNA network
5a) Influence network showing the activation or inhibition of the key molecules and
pathways defined by the ceRNAs 5b) Pathways enriched and influenced by the ceRNAs
dysregulation according to response to ICB. 5¢) Activated and inhibited genes and path-
ways of the PD1-PDL1 axis in the context of ceRNA dysregulation.
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Next, by using the IPA upstream regulator analysis tool based on the ceRNA net-
work, we can predict upstream molecules and provide a mechanistic network that could
explain the observed changes in gene expression. Interestingly, we observed the following
activated transcription regulators: SOX11, IRF1, NLRC5, and SMRACA4. NEUROGI was
found uniquely inhibited. Regarding cytokines, IL1IRN and IL13 were inhibited and IL27,
IFLN1, TNF, IFNG and EBI3 were predicted as activated. Other activated upstream regu-
lators were TLR9 and TGM?2, that were activated, and SAFB, SAFB2, RARA and ESR1 that
were found inhibited.

Furthermore, to characterize the specific role of ceRNAs in the regulation of the
mechanism of resistance to ICB, we sought to identify the pathway aberration related spe-
cifically to response genes that are correlated with such regulators. For this, we generated
z-scores of IPA canonical pathways of all differentially expressed genes (DEmRNA) vs
the DEmRNA correlated with ceRNAs (DEmRNA-ceRNA) and vs the differentially ex-
pressed genes not associated with ceRNA (DEmRNA-noceRNA) (Figure 6). It is very im-
portant to note that there are three pathways that denote an opposite activation profile
compared with all or non-ceRNA related genes. One of them is natural killer cell signaling.
Also, the Z-score of PD-1, PD-L1 cancer immunotherapy is lower when the pathway is de-
fined by the expression differences of the genes related to ceRNAs. Moreover, ceRNAs
seem to be involved in a fraction of the mechanisms associated to the drug response. This
indicates that ceRNA may modulate specific processes of ICB resistance independently of
other regulators that they can synergize or oppose.

Figure 6. Role of ceRNA as modulators of the ICB resistance. Comparison of the

pathways aberration according to absence or presence of genes associated with ceRNAs.
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When we extended the IPA network analysis by combining the main subnetworks,
more than 100 molecules conformed a very complex interaction network where TNF
emerges as a key functional molecule. Interestingly, individual networks also pinpoint the
relevance of NR3C1, IFNG, CTNNB1, JUN, and the inhibition of the IL2 (Supplementary
Figure 2).

Moreover, the gene ontologies and pathways were determined with IPA. The statis-
tical overrepresentation test was used to find the enriched GO terms and pathways by
matching our gene list with the human genome. The most relevant biological processes
were: leukopoiesis, lymphopoiesis, cell development and lymphocyte homeostasis
(GO:0002521, GO:0030098, GO:0046650, GO:0002260). Supplementary Figure 3 represents
the top enriched ontologies for Disease and disorders, Molecular and cellular function,
and Physiological system & physiology. The enriched ontology terms were mainly related
to cancer, cellular growth and cellular proliferation and immunological conditions. The
most enriched Molecular and cellular functions were cellular development, cellular
growth and Cell-to-Cell signaling and proliferation and the most enriched Physiological
system were hematological system development and function, Lymphoid tissue structure
and development and Immune cell trafficking. Like the GO term results, KEGG pathway
enrichment analysis identified Axon guidance, T cell receptor signaling pathway, Natural
killer cell mediated cytotoxicity, ErbB signaling pathway and Fc epsilon RI signaling path-
way as the enriched pathways in the interactome (Supplementary table 1).

3.5 Prognostic risk score using the DE ceRNA

A risk score based on the gene expression of DE ceRNA categorized the patients in
two groups: High and low risk. Patients with low risk have greater overall survival (OS),
log-rank p-value 0.00018. The low-risk patients median OS was of 869 days (95% CI, 563 -
NR) while patients with high risk have a median OS of 56 days (95% CI, 28 - NR) (Figure
7a). Concerning progression-free survival (PFS), this score is able to predict also the pa-
tients in high and low risk with a with a log-rank p-value of 0.0067 (Figure 7b). The me-
dian PFS of low-risk patients is of 468 days (95% CI, 311 - NR), while high risk patients
have a median PFS of 50 days (95% CI, 16 - NR).
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Figure 7. Prognostic value of the ceRNA signature 7a) Association of the ceRNA Risk
score based on gene expression levels with overall survival in cutaneous metastatic mela-

noma. 7b) Stratification of the patients according to PFS using the ceRNA-based risk score
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4. Discussion

At present, the continuous improvement of high-throughput transcriptome sequenc-
ing technology and the increasingly complete gene bank data provide a powerful basis
for the understanding of the transcriptomic reprogramming of immune cells in response
to cancer cells. This is of special importance for understanding complex processes in
which disentangling the role of the different modulators is key. One of these scenarios is
the interaction between metastatic cells and the tumor microenvironment in the context
of resistance to ICB. We know now that the immune-phenotype of the patients is strongly
associated to the antitumoral effect of ICB drugs [64]. However, the regulation of this pro-
cess has been scarcely explored.

In an attempt to unmask new players in the control of the ICB resistance mechanisms,
we characterized the association of RNA species of recent annotation with the response to
ICB in metastatic CM patients. CircRNAs and IncRNAs have recently gained considerable
attention because of their potential implication in a wide range of cellular processes such
as normal cell differentiation to tissue development and human illnesses [65] including
melanoma etiology and therapy responses. Theses ncRNAs are normally considered to
have pleiotropic effects, as they can affect a variety of pathways rather than acting pri-
marily through a single target gene. In the specific context of CM, they have been reported
to regulate the expression towards the growth and spread of CM cancer cells. This sug-
gests a diagnostic and therapeutic target role for them[32] [66]. However, most of the cur-
rent studies have focused on the differences in linear gene expression, while no one has
addressed the specific influence of circular RNAs in response to ICB. Therefore, we per-
formed transcriptome analysis of bulk metastatic melanoma tissue to generate infor-
mation from both tumor and immune cells from the metastatic niche. Ribosomal-depleted
RNA-seq provided us with information about circRNA, IncRNA and mRNA. Our strategy
to discover the mechanisms associated with ICB resistance was to identify which circR-
NAs and IncRNAs were up or downregulated in the patients that were going to respond
or not to the treatment. Next, we integrated them as regulatory layers in a network that
included their putative mRNA targets that were also differentially expressed in good re-
sponders. In line with several previous reports that have paved the importance of immune
function in the process of melanoma metastasis and ICB response [67], our results show a
profound influence of the dysregulation of these ncRNAs on the activation or inhibition
of key antitumor immunological processes such as the Th1 pathway, Natural Killer Signal-
ing, T cell receptor signaling or the PD-1, PD-L1 cancer immunotherapy pathways. Interest-
ingly, the expression perturbation of the good responders is associated with increasing
expression of PD-1 and PD-L1 (CD274). The identification of these ncRNAs as regulators
of PD-1 and PD-L1 expression is important for understanding the interindividual varia-
tion in this axis, which holds the first FDA approved marker for ICB [68]

We departed from the hypothesis that circRNAs and IncRNAs could regulate the re-
sponse to ICB by exerting a sponge function that inhibited specific miRNAs as ceRNAs.
In order to test this, we integrated the miRNAs that were both targets of the DE ceRNAs
and targeting DE mRNAs of our dataset. The resulting selection of DE mRNAs targeted
by those miRNAs was subjected to a correlation test with the ceRNAs. Consistently with
our hypothesis, the expression correlations were always direct, suggesting that the in-
creased expression of the ceRNAs was aligned with the increased expression of the mRNA
putatively through inhibition of the corresponding miRNA. Since miRNAs expression in-
formation is absent from our dataset, our conclusions cannot include the direct association
with the miRNAs.

On the other hand, the identification of the pattern of pathway aberration that was
exclusive to the ceRNA-associated genes unmasked a modulatory role of the ceRNAs for
a subset of specific resistance pathways. This finding implies that cceRNAs can either refine
or oppose to the effects on the processes of drug response. This is particularly important
for two pathways that are intrinsically related to the ICB response: Natural Killer Cell Sig-
naling and PD-1, PD-L1 cancer immunotherapy. The dysregulation of the ceRNAs in good
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responders is related to the inhibition of the natural killer cells, while it ameliorates the
inhibition of the PD-1/PD-L1 axis.

Allin all, the major disruption of immunological antitumor pathways related to ceR-
NAs and observed in responders denote the crucial role that the tumor Immune microen-
vironment (TIME) plays in the treatment response to ICB. Some lines of evidence indicate
that tumor cells can modify TIME by recruiting immunosuppressive cells and both
circRNA and IncRNA are tools that tumor cells can use, via extravesicular particles, to get
favorable TIME and in consequence leading to a treatment failure. Interestingly, previous
reports, both in hepatocellular carcinoma and pancreatic cancer, associate specific cirRNA
with response to targeted therapy and linked to NK cell dysregulation [69].

Two of the main molecules highlighted by the ceRNA network (Figure 5a) are TNF
and IFNG. Recently, the overexpression of TNF, IFNG and IL2 among other molecules
have been reported as key molecules that may enhance melanoma progression through
activating the JAK-STAT signaling Pathway [70]. Moreover, other studies indicate that
both TNF and IFNG are directly linked with high density and T cell infiltration and Cyto-
toxicity of cytotoxic T cells function (CTL) [71]. This process has been recently character-
ized by Weigelin et al, whose findings suggest that CTL-mediated apoptosis induction is
not a one-size-fits-all process, and the most common mechanism of tumor cell eradication
by antigen-specific CTL is the accumulation of sublethal damages [72]. Additionally, other
studies had shown a strong positively correlation between TNF and PD-L1 expression
and poor prognosis [73]. Based on our dataset, we speculate that some of the identified
DE mRNAs of the TNF ligand family (TNFSF8, TNFRSF9, TNFRSF17, TNFRSF13B,
TNFRSF12A, TNFRSF11B) (supplementary table 1) may affect the CTL activity and the
lymphocyte infiltration. That supports the relevance of TNF in response to ICB in CCM
and contributes to support the concept of combining therapies based on anti-TNF and
anti-PD-1 in CMM.

With regards specific ceRNAs identified in this study, CDR1 circRNA stands out as
potentially implementable biomarker of response. Previous studies have highlighted the
relevance of CDR1 in cancer and particularly in the metastatic melanoma process. The
main biological process identified to date is sponging miRNA-7, which is well established
as a cancer progression marker. Recently, Hanniford, D et al described a more complex
regulation of this region via the epigenetic silencing of the IncRNA LINC00632 [20]. In our
study, we have observed that CDR1 is one of the most relevant DE circRNAs, in terms of
abundancy and differential expression in bad responders. Moreover, we observed that the
good responders tend to have a more homogeneous CDR1 expression, indicating that
CDR1 seems to be dysregulated in most of the bad responders. Further studies are needed
to validate CDRI1 for predicting and monitoring treatment response.

Finally, this work has found another utility as a generator of a prognosis prediction
model in the context of response to ICB in metastatic CM. A prognostic Risk Score has
been created for the signature of ceRNAs and used to stratify the patients in high and low
risk for OS and PFS. The application of this score can be used to predict these outcomes.
To our knowledge this the first time that a DE ceRNA signature could be associated to a
prognosis of any ICB treatment.

In the current study, we have reported for the first time the association of circular
RNAs with the response to immunotherapy. Together with specific IncRNAs, a new role
for ncRNAs as ceRNA has been unmasked in the regulation of specific resistance mecha-
nisms to ICB. The joint circRNA and IncRNA predictive signature has been used as well
to build a prognosis score that reinforces the utility of these ncRNAs in the management
of metastatic CM patients. All in all, this work provides a novel insight into the modula-
tors of ICB resistant and imply the existence of new players to be considered as prognosis
biomarkers and targets to counteract resistance in ICB treated cutaneous melanoma.

5. Conclusions
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In the present study, we have characterized the ceRNAs in metastatic melanoma patients
treated with ICB to explore the biological role of ceRNA network on the response. Our
exploratory analysis revealed that ceRNAs can modulate specific ICB resistance processes
and therefore need to be considered in the complex regulatory scenario of the TIME inter-
actions. Finally, the definition of a Risk Score based on the ceRNA expression signature
constitutes a potentially useful tool for predicting prognosis in the context of ICB treat-
ment in metastatic CM.
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Supplementary figure 1. Exon type of circRNA. Mapping of circRNA indicates that 98,3% of circRNA identified
are exon-exon type.

SpliceType
Exon-Exon 98.31%
Exon-Intron 0.82%

. Unannotated 0.87%

Supplementary figure 2. Radial graphic of networks merged by IPA of the main DEmRNA of ceRNA pinpointing
the central role of TNF.
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Supplementary figures 4. Figure 4a). Interaction networks of the main molecules of the DEmRNA of ceRNA predicted
by IPA. Figure 4b). Relevant upstream molecules indicates the activation cascades of IL27 EBI3 and the inhibition of
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